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ABSTRACT

In this paper a method for three-dimensional modeling of the human vocal tract based on T1-weighted
MRI data sets is introduced. This includes the reconstruction of the vocal tract shape and the computa-
tion of the vocal tract midline. Reconstruction of the vocal tract shape is realized by three-dimensional
region growing within the vocal tract after teeth phantoms are matched into the MRI data set. The
midline is obtained by using a modified 1d-Kohonen algorithm. Optimization and smoothing of the
midline leads to computation of characteristic area functions. With those methods, human time ex-
pense could be reduced such that now a study of several subjects is possible.

1 INTRODUCTION

Obtaining articulatory-acoustic models requires detailed knowledge about three-dimensional consis-
tency of the human vocal tract. Since most models are based on one-dimensional wave propagation,
the vocal tract can be approximated as a tube consisting of a finite number of ”stacked” cylindrical
area elements from the glottis to the mouth opening. This model can be obtained by determining
sections of the vocal tract along a midline as a function of distance from the glottis. Thus, a particular
vocal tract shape can be described by its so-called area function.

After obtaining these models based on X-ray images and vocal tract impressions (Fant, 1960; Mer-
melstein, 1973) in the 60’s and 70’s, the meaning of MRI increased in the last ten years (Baer, Gore,
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Table 1: Acquisition parameters for the MRI data sets. Werte fuer TE und TR sind noch nachzutragen!

Sagittal Axial Coronar
Magn. field strength [T] 1.5

Number of slices 15 23 23
Matrix size

�������������
Pixel size [mm] 1.172

Slice Thickness [mm] 3 5 5
Interlice gap [mm] 1 0 0�
	

[ms] 11.6�
�
[ms] 4.9

Gracco, and Nye, 1991; Narayanan, Alwan, and Haker, 1995; Titze and Story, 1996; Soquet and
Leciut, 1998) to get articulatory modeling more precise, i.e. area functions need not be estimated
from a midsagittal projection but can be directly obtained from three-dimensional image data.

This work deals with the segmentation of the human vocal tract and the generation of its area func-
tion. For segmentation a simple algorithm based on three-dimensional region growing is introduced
(sec. 3). The vocal tract midline is computed not only for a midsagittal slice but for the whole three-
dimensional data set. This is done based on one-dimensional self-organizing feature maps (sec. 4).

2 IMAGE DATA

Three-dimensional MRI data were acquired from 25 healthy professional speakers (13 male, 12 fe-
male), aged 22 to 34 years. A standardized MRI sequence protocol (Siemens ��
 Vision 1.5 T, T1w
FLASH1, see table 2) was used. Scans were made in axial, coronal, and sagittal planes each in order
to improve subsequent software-based 3d analysis of the data sets. The subjects prolonged emission
of sounds of the German phonetic inventory (vowels /i/, /y/, /u/, /e/, /a/, and (post-) alveolar conso-
nants /s/, /sh/, /n/, /l/, /t/). Simultaneous audio tape recording was obtained for professional control of
correct utterance.

From each subject, teeth impressions were taken. These are scanned in a Computertomograph (CT) in
order to get three-dimensional data of the teeth with a high resolution (see table 2) without exposing
the subjects themselves to CT radiation (see 3).

The methods explained in the following are tested on one male subject aged 34 years from this group
using the sagittal MRI data.

Registration of the teeth phantoms was done on a Picker VoxelQ VX workstation. All other compu-
tations were made on a Linux personal computer with an Intel ��
 Pentium III 900 MHz Processor
in Interactive Data Language (IDL) from Research Systems Inc. (RSI ��
 ).
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Table 2: Acquisition parameters for the teeth phantom data set.

Matrix size
�������������

Pixel size [mm] 0.156
Slice thickness [mm] 0.3

2

1

(a) (b)

Figure 1: (a): Midsagittal slice, vowel /a/; (b): Three-dimensional surface-rendered vocal tract
shape.
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(a) (b)

Figure 2: Insertion of the teeth phantom data into the anatomic data set; (a) before, (b) after image
registration on a Picker VoxelQ VX.

3 Segmentation

Goal of the segmentation process is to generate a vocal tract shape which is completely separated
from its surrounding tissue. That means, we want to obtain binary masks � ������� ��� of a MRI data
set � , in which the voxels containing the vocal tract hold the value one, else zero. Fig. 1a shows a
midsagittal slice of the human skull. Vocal tract shape is extracted from the glottis (vertex 1) to the
mouth opening (vertex 2). The segmentation result can be seen in fig. 1b as a 3d surface rendered
image.

It is desirable to perform segmentation with least possible human and computational work. Slice-
based segmentation methods like manual contour or edge tracing or even two-dimensional region
growing (Soquet and Leciut, 1998) require much human effort and are thus very time-consuming. So,
we think that 3d region growing as in (Titze and Story, 1996) is best suited to solve this segmentation
problem. However, there are four major problems in vocal tract segmentation:

1. Teeth are only poorly imaged in MRI which causes a gray value like air (black) in the image
data. This would cause region growing to leak into the teeth region.

2. The hard palate is also poorly imaged for the same reason as in 1. Thus, three-dimensional
region growing would leak into the nasal tract.

3. The vocal tract area has to be non-continuous with air outside the body. Due to the open mouth
during phonation, region growing would leak outside the head region and include the whole
extracranial air.

4. In some cases region growing can leak through the glottis into the trachea and thus include
extracranial air as well.

The first and the second problem were solved by taking teeth impressions from the subjects, taking
a separate computer-tomographic (CT) scan of the impressions and inserting these ”teeth phantoms”
into the MRI dataset by manual image registration (see fig. 2). This method has two advantages which

1Fast Low Angle SHot.
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simplify the registration process: (i) teeth data can be extracted by a simple thresholding algorithm
and (ii) the impressions of upper and lower jaw can be scanned and inserted, separately. Because the
teeth impression of the upper jaw also contains the hard palate, the vocal tract is now separated from
the nasal tract.

The problem of closing the mouth opening can be solved by undergoing each slice of the MRI data
set a 2d convolution with an I-shaped kernel � frontal from a reference point which is set dorsal to
the lips (see vertex 1 in fig. 3a):
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where 9 and < denote the slice’s x- and y-dimension, respectively and 5 denotes the kernel size.

In a next step, masks can be generated by 3d region growing marking a point within the lips of the
convoluted image as an upper threshold and a point in the extracranial air as a lower threshold. In the
resulting head masks ? �@����� ��� all voxels outside the head within the convolved region obtain the
value one.

Leakage problems towards the trachea can be prevented by setting a reference point at the bottom of
the glottis and defining all voxels caudal from it to the value one in the mouth opening mask (vertex
2 in fig. 3a). The anatomical image within the resulting masks is shown in fig. 3b.

The zero region inside the head can be filled out with the thresholded image of the corresponding
slice of the MRI data set containing the teeth (see fig. 3c). Now, all voxels inside the vocal tract have
the value zero and the vocal tract itself is almost completely separated from surrounding zero regions.
For checking purposes, all slices are supervised and, if necessary, leakages can be closed.

In the last step, 3d region growing is performed on the vocal tract which leads to the result of fig. 3d.

4 Computation of the vocal tract midline

After obtaining a 3d data set of the vocal tract, its midline can be calculated. This was done using
a modified Kohonen algorithm like in (Der and Herrmann, 1999) for tracing the midline not only on
the midsagittal slice but on the whole 3d data.

Consider the vocal tract data as a distribution in the three-dimensional geometric space. Then we
obtain feature vectors A containing the 9 -, < - and B -coordinate for each voxel having the value one.
On this data distribution, Kohonen’s vector quantization algorithm (Kohonen, 1995) can be performed
using a one-dimensional network topology (a Kohonen chain) consisting of C codebook vectors DFE
with the iteration G DHEI!#JLK;MON��PN�QSRTMOAVUWDHESRX� (2)

where YZ� IR is the input vector and K[MON��=N Q R denotes the neighbor function depending on the distance
from neuron N to the winner neuron N Q :K;MON��PN Q R ! �\ ��]_^ E exp `aU MbNcUWN Q Red��]f^ dE g � (3)
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(a) (b)

(c) (d)

Figure 3: Illustration of the segmentation procedure; (a) convolution ventral from vertex 1 accord-
ing to (1) and region limitation caudal from vertex 2; (b) resulting mask after region growing; (c)
thresholded anatomic image added to the mask from (b); (d) extracted vocal tract after 3d region
growing.
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where J is an annealing parameter and
^ E�MihjR is the value of the neighborhood width, both decreasing

with the time.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Evaluation of the Kohonen chain within the vocal tract mask.

If we consider the Kohonen chain as the principal curve through a data distribution the goal is to
adjust

^ E such that the curve fits the distribution in an optimal manner. Usually,
^ E is defined globally

for all neurons N . However, below a critical value
^ �E , the network topology will break down. This

results in an over-fitting of the chain towards the data distribution which meanskWl � for k ! m N�noUWN�n npmq� (4)

where N n is the first and N n n is the second closest neuron to the current data point. In other words,
if (4) is fulfilled

^ E has fallen below its critical value. This local onset of the phase transition to the
over-fitting case makes it necessary to find convenient values of

^ E locally.

Der’s approach is to keep
^ E fluctuating around its critical value

^ �E . For each iteration, in the first
step,

^ E is decreased by G ^ EI!rU �sF�_t ^ E uvN�� (5)

where
s

is the number of neurons and
�wt

denotes the adjustment parameter.
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(a) (b) (c)

(d) (e)

Figure 5: Optimizing the main axis generated by a 1d Kohonen chain: (a) polygon of the native
kohonen chain projected on the sagittal plain; (b) after smoothing the initial codebook; (c) after
extrapolating the polygon and setting equidistant points onto it; (c) points translated into the center of
gravity within its oblique vocal tract section; (d) after translating the points from (c) into the center of
gravity within its oblique vocal tract section and resampling to a larger number of equidistant points;
(e) final midline after smoothing thr points of (d).

In the second step,
^ E is increased locally if over-fitting is recognized:^ Eyxz! max ` ^ E{� k � exp ` U � MONcU 	 R dk d g|g � where

	 ! �� MON�n4}�N�n n~RX� (6)

where � is an empirical factor (for details see (Der and Herrmann, 1999)). The result of this method
applied on the midline finding problem is shown in fig. 4. After contraction the codebook is iteratively
distributed through the vocal tract shape and serves as a basis for generating the area function.

4.1 Determining the Area Function

In our application, we found it the best to perform the modified Kohonen algorithm with only a
small number of

s
codebook vectors. However, the representation of the resulting midline does not

suffice for generating an area function because (i) the codebook vectors are not equidistant and (ii) the
Kohonen chain does not always lie in areas of thin data distribution density (see fig. 4i). Furthermore,
it is desireable to use one parameter set for the image data of all phonemes in order to save time,
such that the codebook initially could look like in fig. 5a. Hence, the Kohonen chain � is used as
initialization for following optimization algorithm:

1. Smooth � by convolution with a kernel which decreases exponentially by neighborhood dis-
tance to the smoothed codebook �� .
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2. Extrapolate �� to the point next to the glottis and to the point next to the mouth opening, respec-
tively, and set �s equidistant points �� in the polygon (see fig. 5b).

3. For each point ��;� in �� , calculate a normal vector by ��v� ! ��;���6� U ��;�~�v� which is perpendicular to
an oblique section �� � through the vocal tract. For the edge points ���� and ���� , �� is extrapolated.

4. For each oblique section �� � , translate ��[� into the center of gravity within its vocal tract area and
resample �� with � l �s equidistant points (see fig. 5c).

5. Convoluting the curve �� by applying step 1 leads to a smoothed midline
�

.

From each point �[� � � , a normal vector can be calculated. If we perform step 3 with � l �s
we would get overlap of the oblique sections which could result in undesirable interchange of the
codebook vectors . This is avoided by smoothing the normal vector using a neighborhood relation:�;� ! ���P� � e � ��� ��� ��� � U � �~� �m�m � ��� � U � �~� � m�m � (7)

where � denotes the neighborhood width and � is a smoothing factor.

With the smoothed normal vectors, we can easily get plains
� � which contain vocal tract sections

corresponding with � � . A voxel counting algorithm leads to the desired area function shown in fig. 6.

5 CONCLUSION AND OUTLOOK

Two methods were introduced which decrease the interactive effort of building an articulatory model
of the human vocal tract.

The segmentation method of (Titze and Story, 1996) was improved by inserting the teeth into the MRI
data before segmentation and by closing the mouth opening using a two-dimensional convolution
approach.

The use of a modified Kohonen algorithm to calculate the vocal tract midline has the advantage of
obtaining it in all three dimensions without setting reference points, manually.

These methods can serve as a basis for further research of MRI data sets from a larger group (see
section 2). Such a wide-area study can lead to interesting conclusions with respect to standardized
vocal tract shapes for each phoneme which could eventually improve the model of (Mermelstein,
1973).

Of course, these methods can further be enhanced, e. g. the segmentation method by reference point-
and grey value-based feature extraction and voxel-based classification by a neural network using
radial basis functions (Wismüller, Vietze, and Dersch, 2000, Behrends, 2000).
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Figure 6: Area functions for the vocals /a/, /i/ and /o/, respectively.
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