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Abstract

In this paper

1

two di�erent models of pronunciation

are presented: the �rst model is based on a rule set

compiled by an expert, while the second is statisti-

cally based, exploiting a survey about pronunciation

variants occurring in training data. Both models gen-

erate pronunciation variants from the canonic forms

of words. The two models are evaluated by applying

them to the task of automatic segmentation of speech

and then comparing the results to manual segmenta-

tions of the same speech data. Results show that

correspondence between manual and automatic seg-

mentations can be signi�cantly improved if pronunci-

ation variants are taken into account. The statistical

model outperforms the rule based model.

1 Introduction

The modeling of pronunciation is becoming increas-

ingly important in state-of-the-art ASR-systems.

While allophonic variations of speech sounds can be

modeled statistically by e.g. Hidden Markov Mod-

els or Arti�cial Neural Networks, a large number of

possible pronunciation variants occurring in sponta-

neous speech extends beyond single speech sounds

and reaches up to whole words or word tuples. Not

even context-dependent acoustic models for sub-word

units (like phonemes) are able to cover pronunciation

variants of this kind. Therefore, pronunciation mod-

eling is of great importance for many applications in

speech technology.

In recent work [4] it has been shown that the

consistent application of pronunciation variants for

whole words and word tuples can improve the perfor-

mance of an ASR-system. The approach, like others,

involves the generation of pronunciation variants on

the word level for the pronunciation lexicon compo-

nent of an ASR-system.

The pronunciation models presented here are in-

tended to be generic and not dependent on a speci�c

lexicon. This is achieved by providing pronunciation

variants for arbitrary phoneme sequences (micro pro-

nunciation variants) and, in the case of the statistical
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pronunciation model, probabilities for the occurrence

of a variant.

The phoneme sequences for which possible vari-

ants are provided can span word boundaries, because

cross-word pronunciation variants occur frequently in

spontaneous speech. The consideration of such vari-

ations led to improved results in various applications

(e.g. [4]).

To show the ability to model the pronunciation of

real speech data both models are applied in an auto-

matic segmentation and labeling system for German

spontaneous speech and compared with manual seg-

mentations of the same data.

2 Pronunciation Modeling

Both pronunciation models discussed in this paper

generate possible pronunciation variants given the

reference transcription of an utterance. The refer-

ence transcription is the concatenation of the canonic

forms of the words in the utterance. The canonic

form is an arbitrary but unique phonemic transcrip-

tion of a word spoken in isolation. The reference

transcription of the orthographic representation of

an utterance can therefore be determined by a simple

lexicon lookup procedure. If an adequate inventory

S of phoneme symbols (e.g. SAM-PA

2

) is used the

reference transcription c can be denoted as a string

of phoneme symbols c = 

0



1

: : : 

N�1

; 

i

2 S.

It is well known that in uent speech the actual

phonetic realizations of words often di�er from the

canonic form. This is especially true for spontaneous

speech. The actual phonetic realization of an utter-

ance will in most cases be di�erent from its refer-

ence transcription. The actual realization r can be

written as a (broad) phonetic transcription using the

same inventory of phoneme symbols as the reference

transcription, i.e. r = �

0

�

1

: : : �

M�1

; �

i

2 S.

To model the pronunciation of a reference tran-

scription c the probability p(rjc) for the occurrence

of a certain realization r is stated. The structure of

the model has to be suitable for ASR applications.

Therefore, a �rst order Markov-chain which can be

represented as a directed acyclic graph (DAG) was

chosen as a model generating possible realizations for
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a given reference transcription. The nodes of this

DAG emit symbols from S and its edges specify pos-

sible transitions and their probabilities.

The DAG for a given c is constructed from mi-

cro pronunciation variants which specify possible al-

ternative realizations for substrings of the reference

transcription comprising a small number of phonemes

(up to 10) and possibly spanning word boundaries.

Formally, a micro pronunciation variantm 2M con-

sists of a string a of symbols from S which can be sub-

stituted by a string b if a occurs in a certain context

in the reference transcription. This pre- and post-

context is speci�ed by two strings x and y respec-

tively. A micro pronunciation variant can be written

as a tuple m = (x; a; y; b) of symbol string over S.

A micro pronunciation variant can be applied to c if

it can be written as c = sxayt where s is an arbitrary

pre�x and t is an arbitrary su�x of c. Note that the

concatenation of strings a and b is denoted as ab and

the length of a string a as jaj. The decomposition of

c is not necessarily unique and therefore the location

where a matches has to be considered. The set of

all matching micro pronunciation variants and the

corresponding location of the match is then given by

Q

(c)

=

�

(i; x; a; y; b)

�

�

(x; a; y; b) 2M

^ 

i�jxj

: : : 

i�1

= x

^ 

i

: : : 

i�jaj�1

= a

^ 

i+jaj

: : : 

i+jaj+jyj�1

= y

	

(1)

The DAG representing the Markov-chain contains

the following elements:

� Nodes o

i

emitting the reference transcription c.

Each node o

i

has the symbol 

i

; i = 0 : : :N � 1

associated with it and has a transition to the

node o

i+1

(except for the last node i = N � 1).

� For each q

k

= (i; x; a; b);q

k

2 Q; k = 0 : : : jQj a

node or a node sequence q

k;j

emitting b. Each

node q

k;j

has the symbol �

j

; j = 0 : : : jbj � 1 as-

sociated with it and, if jbj > 1 transitions to the

successor node q

k;j+1

(for j = 0 : : : jbj � 2).

� For each q

k

= (i; x; a; b);q

k

2 Q transitions

from the node o

i�1

to q

k;0

and from the node

q

k;jbj�1

to o

i+jaj

.

The nodes o

i

originate from the reference transcrip-

tion and the nodes q

k;i

from pronunciation variants.

Every path through the DAG from a initial node

to an terminal node emits a possible pronunciation

variant r for the given c. In a Markov-chain the

overall probability of a symbol sequence, i.e p(rjc)

is the product over all transition probabilities along

the path emitting the symbol sequence.

Both pronunciation models described below estab-

lish a DAG for a given reference transcription c. They

di�er in the set M of micro pronunciation variants

and in the way transition probabilities are calculated.

2.1 Statistical Pronunciation Model

The set M of micro pronunciation variants is ob-

tained by statistically evaluating a survey of pronun-

ciation variants occurring in manually labeled train-

ing data.

For each utterance in the training corpus the refer-

ence transcription and the manually transcribed ac-

tual realization are subject to a maximum common

subsequence alignment, yielding expressions for c and

r of the form

c = s

0

a

0

s

1

a

1

: : : a

L

s

L

(2)

r = s

0

b

0

s

1

b

1

: : : b

L

s

L

(3)

where the s

i

are the common subsequences and each

a

i

in c has to be replaced by b

i

to obtain r.

If a pre- and post-context of one symbol is con-

sidered and the s

i

are written as the concatena-

tion of their symbols s

i

= �

i;0

: : : �

i;js

i

j�1

each tu-

ple (�

i;js

i

j�1

; a

i

; �

i+1;0

; b

i

) can be considered as a

micro pronunciation variant, and absolute counts

N

b

(x; a; y; b) can be computed over the training cor-

pus. This yields conditional probabilities p

b

(bjx; a; y)

that the string a occurring in the context of x and

y in a reference transcription is substituted by b if a

substitution takes place (note that always a

i

6= b

i

).

Additionally the probability p

v

(vjx; a; y) = 1 �

p(:vjx; a; y) that substitution takes place at all has

to be calculated (v denotes the event \substitution of

a by b in the context of x and y"). This is done by re-

lating the number of overall occurrences of the string

xay, i.e. N

v

(x; a; y) with the number of occurrences

where a replacement actually took place. This count

is denoted by N

v

(v; x; a; y). Taking into account that

N

v

(x; a; y) = N

v

(v; x; a; y) +

N

v

(:v; x; a; y) (4)

N

v

(v; x; a; y) =

X

b2�

N

b

(x; a; y; b) (5)

where � is the set of all possible strings over S, simple

maximum likelihood estimates can be given:

p

b

(bjx; a; y) =

N

b

(x; a; y; b)

P

^

b2�

N

b

(x; a; y;

^

b)

(6)

p

v

(vjx; a; y) =

N

v

(v; x; a; y)

N(x; a; y)

(7)

Because training data are usually sparse discount-

ing techniques well known from language modeling

(e.g. [3]) can be applied to get more robust estimates.

The micro pronunciation variants observed in the

training data establish the set M . Best results were

obtained with a set of the size jM j of approx. 1200,

extracted from 72 dialogs (1245 turns) of The Kiel

Corpus of Spontaneous Speech [1] dialog database.

A set Q

(c)

and a corresponding DAG for an arbi-

trary utterance with a reference transcription c can
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Figure 1: Part of a DAG representing pronunciation variants of an utterance. All edges are directed from left

to right, the oat values give transition probabilities.

now be given. For the calculation of the transition

probabilities eqn. 6 and 7 have to be considered and

moreover the fact that micro pronunciation variants

in Q

(c)

might overlap and the application of one vari-

ant prevents other variants from being applied. In

other words, statistical dependencies exist between

micro pronunciation variants which have not been

taken into account during training. However, a �-

nite number of maximal non-overlapping subsets of

Q

(c)

for which the assumption made during training

is true can be found. A probability p

c

(q) which is

the relative frequency of occurrences of q in these

sets can be calculated and accounts for the context

dependencies in a given c.

The probability for the application of q

k

=

(i; x; a; y; b) is equal to the probabilities p(q

k;0

) =

: : : = p(q

k;jbj�1

) that the symbol emitted by q

k;j

is in

a realization r.

p(q

k;0

) = : : : = p(q

k;jbj�1

) =

= p

c

(q

k

)p

b

(bjx; a; y)p

v

(vjx; a; y) (8)

with: q

k

= (x; a; b; y); q

k

2 Q

(c)

The probability that no micro pronunciation variant

is applied at index i is p(o

i

).

p(o

i

) = 1�

X

q̂

k

2U

i

p

c

(q̂

k

)p

b

(bjx; a; y)p

v

(vjx; a; b)

(9)

with: q̂

k

= (x; a; b; y); U

i

� Q

(c)

where U

i

is the subset ofQ

(c)

that contains micro pro-

nunciation variants spanning over the node o

i

. With

eqn. 8 and 9 the probabilities for all transitions con-

tained in the graph can be expressed as:

p(q

k;0

jo

i�1

) =

p(q

k;0

)

p(o

i

)

(10)

p(o

i+1

jo

i

) = 1�

X

k2�

+

(i)

p(q

k;0

jo

i

) (11)

p(q

k;i

jq

k;i�1

) = 1 (12)

p(o

i

jq

k;j

) = 1 (13)

In eq. 11 o

i

is a predecessor of all q

k;0

with k 2 �

+

(i).

The eqn. 10 through 13 state all transition probabili-

ties occurring in the DAG according to the structural

description given in section 2. Figure 1 shows an ex-

ample.

2.2 Rule Based Pronunciation Model

This pronunciation model is based on a set of pronun-

ciation rules compiled by a phonetician. These rules

make up the setM . The rules were generated by eval-

uating a survey of pronunciation variants occurring

in a speech database (PHONDAT II) and extrapolat-

ing the results to unseen but { from the phonetician's

point of view { possible variants. At the moment the

set comprises approx. 1500 rewrite rules. For a de-

tailed description of the rule set see [5].

As there is no statistical information about the

probabilities of rules, each variant contained in the

resulting DAG is assumed to be equally likely and

the transition probabilities are set accordingly.

3 Alignment

For an assessment of their ability to model the pro-

nunciation of unseen speech data, DAGs produced by

both pronunciation models were aligned to the cor-

responding speech signals containing the utterance.

This alignment results in �nding the transcription

symbol sequence with the highest overall likelihood

and a corresponding segmentation of the speech sig-

nal. A HTK [6] aligner with the following prepro-

cessing settings and HMM-structure was used for this

purpose:

� preprocessing with 13 MFCCs + �rst and second

time derivative + Energy

� context independent phoneme models (SAM-

PA) with 3 to 5 states, 5 mixtures, no state-tying

� bootstrapping and isolated reestimation on a

medium-size hand-labeled speech corpus

Best results for the statistical pronunciation model

were obtained if the scores given by the transition

probabilities in the graph were multiplied by a con-

stant factor and incremented by a constant factor

thereby giving more weight to the pronunciation

modeling.



4 Evaluation and Results

For the model evaluation, segmentations produced

with the HTK aligner as described above were com-

pared with manual segmentations of the same data.

This test data was excluded from the training data

for the acoustic and the pronunciation model. In

a comparison of two segmentations the accuracy in

terms of the transcription and the segment bound-

aries was done after a longest common subsequence

alignment between the segmentations concerned.

A fundamental problem lies in the fact that a

unique correct segmentation and labeling of an utter-

ance does not exist. Even carefully produced man-

ual segmentations carried out by di�erent individuals

will di�er from each other. Therefore, in addition to

the comparison of manual and automatic segmenta-

tions, the manually produced ones were compared to

each other [2].

felix marion htkrla1 htkmr

dani 82.6 78.8 80.2 76.7

felix - 79.9 80.3 77.2

marion - - 74.9 72.5

Table 1: Comparison between 3 manual segmen-

tations (dani, felix, marion), an automatic seg-

mentation with the statistical pronunciation model

(htkrla1), and an automatic segmentation with the

rule-based pronunciation model (htkmr).

Table 1 shows the symmetric accuracy

3

in terms of

the transcription symbol sequence for one dialog of

the VERBMOBIL corpus (approx. 5000 segments).

Each cell gives the accuracy if the segmentation as-

sociated with the row is compared to that associated

with the column.

The highest agreement exists among the two man-

ual segmentations dani and felix but both di�er

considerably from the third manual segmentation

marion and are even closer to the automatic seg-

mentation produced with the statistical pronuncia-

tion model (htkrla1). The statistical pronunciation

model consistently outperforms the rule-based model

(htkmr) on this task.

In terms of accuracy of segment boundaries the

comparison between manual segmentations shows a

high agreement: on average 93% of all correspond-

ing segment boundaries deviate less than 20ms from

each other. The average percentage of correspond-

ing segment boundary deviating less than 20ms in

an automatic vs. a manual segmentation is 84%.

3

The widely used accuracy measure

N�D�S�I

N

relating the

number of segments in the reference (N), deletions (D), sub-

stitutions (S) and insertions (I) which assumes that one of the

segmentations is the reference is made symmetric by averaging

with each segmentation once taken as a reference.

5 Conclusion

The results show that a high-quality segmenta-

tion and labeling can be generated if phonetic-

phonological knowledge is used for modeling the pro-

nunciation of spontaneous speech. This implies the

usefulness of pronunciation modeling, especially sta-

tistically based, for other applications in speech tech-

nology.

The phonetic-phonological knowledge can be in-

corporated in the segmentation process by using a

set of pronunciation rules or a statistical pronuncia-

tion model which is trained on data hand-labeled by

phonetic experts. The former yields slightly worse

performance but is independent of a speci�c domain.

The latter leads to higher accuracy if test and train-

ing data are taken from the same domain.

The entropy of the graphs generated with the sta-

tistical pronunciation model is much lower than with

the rule based model. This shows the close �tting

to the domain and facilitates the task of the HMM

aligner as the high accuracy of the resulting segmen-

tation indicates. The lack of information in the case

of the rule-based model, on the other hand, leads

to very high entropy, i.e \ignorance" in the resulting

graphs. ASR-applications using this kind of model

therefore tend to make more errors.

Because of the promising results and its computa-

tionally e�cient structure the statistical pronuncia-

tion model is at the moment being integrated into

our HTK based speech recognizer.
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