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Abstract
The production of speech corpora typically involves manual labor to verify and correct the output of automatic transcription/segmentation
processes. This study investigates the possibility of speeding up this correction process using techniques borrowed from automatic
speech recognition to predict the location of transcription or segmentation errors in the signal. This was achieved with functionals
of features derived from a typical Hidden Markov Model (HMM)-based speech segmentation system and a classification/regression
approach based on Support Vector Machine (SVM)/Support Vector Regression (SVR) and Random Forest (RF). Classifiers were tuned
in a 10-fold cross validation on an annotated corpus of spontaneous speech. Tests on an independent speech corpus from a different
domain showed that transcription errors were predicted with an accuracy of 78% using an SVM, while segmentation errors were
predicted in the form of an overlap-measure which showed a Pearson correlation of 0.64 to a ground truth using SVR. The methods
described here will be implemented as free-to-use Common Language and Resources and Technology Infrastucture (CLARIN) web
services.
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1. Introduction
The creation of a new speech corpus typically involves
three major steps: (1) recording, (2) (orthographic) tran-
scription and (3) alignment of the transcription to the
recorded signal, referred to hereafter as segmentation and
labeling (S&L). The quality of these three production steps
more or less defines the usefulness of the speech resource.
The transcription of a speech recording (2) can be done ei-
ther manually or via Automatic Speech Recognition (ASR).
In both cases the transcription may contain errors in the
form of deviations between the transcribed words and the
words that were actually spoken. The S&L (3) can also be
done either manually or automatically based on the tran-
script created at step (2). Since manual S&L is more time-
consuming than (2) (slower by a factor of around 20 to
100), step (3) is often first done automatically (applying
text-to-speech alignment or similar techniques) and then
manually corrected afterwards. Both tasks – the manual
correction of the transcript or the manual correction of the
S&L – are expensive and time-consuming because every
part of every utterance must be checked manually.
This study is concerned with the automatic and reliable de-
tection of errors in the S&L either caused by falsely tran-
scribed words1 or by errors of the applied S&L system:
Measure of Confidence for Corpus Analysis (MOCCA).
More specifically, MOCCA consists of two methods for
the reliable detection of word errors in the transcription and
for the word-by-word estimation of the quality of the S&L
in the form of an overlap measure. Both MOCCA meth-
ods can be used to automatically identify parts in the S&L
where ’something went wrong’, and thus facilitate the man-
ual correction task.
The estimation of the correctness of a word label in a tran-
scription based on the speech signal is similar to the as-

1Note that for the purpose of this study it is irrelevant whether
these errors stem from ASR or a manual transcription

sessment of a hypothesized word in ASR systems during or
after recognition. In ASR research such confidence mea-
sures have attracted significant attention and have been used
to detect recognition errors or to detect out-of-vocabulary
(OOV) words. Good overviews for confidence measures
are Jiang (2005) and Seigel (2013). Both classify confi-
dence measures into three categories: 1) the posterior prob-
ability approach, which estimates the true posterior proba-
bilities by approximating the probability mass function of
all possible acoustic feature vectors, 2) the utterance veri-
fication approach, which treats the problem of confidence
estimation as a statistical hypothesis testing problem (using
Likelihood Ratio Testing), where an approximation of the
alternate hypothesis is needed for a reliable decision, and
3) the classification approach, in which a model is trained
to estimate whether or not a word is correctly recognized.
Kemp et al. (1997) applied a classification approach with
a linear classifier and a neural net on features that were ex-
tracted from the ASR decoder process. As Zhang and Rud-
nicky (2001) and also Seigel (2013) pointed out, a funda-
mental problem of ASR decoder features is that the features
to generate the hypotheses and the features that are used to
make the prediction about the quality of those hypotheses
are the same, and are therefore not optimal to assess the
quality of the ASR output in a post-processing step. This
fundamental problem does not apply in our case because
the S&L system has two inputs: the speech signal and the
transcript, which is produced independently from the S&L
decoding.
Paulo and Oliveira (2004) used features from a forced-
alignment system to estimate the quality of automatic S&L.
They estimated a measure called the Overlap Ratio (OvR),
in which the overlap on phoneme level was estimated (cf.
section 4.2.). In contrast to that earlier study, we aim to
estimate the OvR over a complete word.
A S&L decoding process essentially resembles that of a
speech recognizer, but is not identical since it lacks some
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features (Kemp et al., 1997), for example the number of
times the model switches to a lower N-gram model, or the
number of active final word states. Therefore we use a sub-
set of the features described in Kemp et al. (1997) that
were suitable for the present study and could be extracted
without additional processing (e.g. estimating the Signal-
to-Noise ratio of a word segment, etc.).
The remainder of this paper is organized as follows: the
next section briefly describes the basic experimental setup,
the S&L system to be evaluated, the features used and the
classifiers that were applied. Section 3. outlines the speech
data on which we test the proposed MOCCA methods, and
in section 4. we describe the two experiments and discuss
their results.

2. Method
2.1. Overview
The MOCCA tagger was based on a classification ap-
proach, which introduces a post-processing step after the
actual alignment. The general setup of the experiments was
as follows: test data consisting of the speech signal and the
corresponding transcript were processed by the S&L sys-
tem Munich AUtomatic Segmentation System (MAUS) de-
scribed in Schiel (1999). Based on features derived from
the MAUS decoding process, MOCCA tagged each word
of the input transcript as to whether it matched the speech
signal or not (experiment 1) and at the same time estimated
the degree of overlap (OvR) between the calculated seg-
mentation and the ground truth segmentation (experiment
2). The estimation of whether a word label is correct is a
two-class classification problem, while the prediction of the
OvR is a regression task; for both tasks, classification and
prediction, we tested a SVM, which was reported to give
good results in Zhang and Rudnicky (2001), and a RF.

2.2. S&L System MAUS
The transcript text input was converted into a canonical
phonological transcript using the grapheme-to-phoneme
service G2P (Reichel, 2012). The phonological transcript
was then passed to the MAUS service, which first gener-
ated a probability graph for all predictable pronunciations
together with their prior probabilities (Schiel, 2015), and
then decoded this graph into the most likely S&L using
the Hidden Markov Toolkit (HTK, Young et al. (2002);
for details about the MAUS technique see Schiel (1999)).
Features for the confidence measure experiments were ex-
tracted from the HTK Viterbi decoding as described in the
following section.

2.3. Features
Kemp et al. (1997) showed that features from the output
of an ASR system can be utilized to predict the correctness
of the recognized words. Since the automatic segmentation
obtained with MAUS is not exactly the same as the output
of an ASR system, only a subset of the features described
in Kemp et al. (1997) were extracted for each segmented
word:
logLM: the log prior language model probability
logAP: the log posterior probability as produced by the

HTK Viterbi decoder (Young et al., 2002)

logAPNorm: the log posterior probability normalized by
log prior probability:
logAPNorm = logAP − logLM

Duration: the duration after alignment of the phoneme se-
quence as output by G2P of the segmented word

SpkRate: the local speaking rate, calculated as the ratio
of the mean phoneme sequence duration of the word
in the training data MeanDuration and Duration:
SpkRate = MeanDuration

Duration
logNPhones: the logarithm of the number of phonemes in

the target word according to segmentation
The MAUS system models phones not words. Since words
have variable numbers of phones n, it follows that for each
word, n feature values logLM, logAP and logAPNorm are
produced. To circumvent the problem of feature vectors
with variable lengths, we used the following functionals of
these features: sum, mean, median, range, standard devia-
tion, variance and Discrete Cosine Transform (DCT) coef-
ficients 1-3.

• sum: sum(X) =
n∑
i=1

xi

• mean: X = 1
n

n∑
i=1

xi

• median: med(X) =

{
xn+1

2
n odd

1
2

(
xn

2
+ xn+1

2

)
n even

• range: range(X) = max(x)−min(x)

• standard deviation: σ(X) =

√
n∑

i=1
(xi−x)2

N−1

• variance: V ar(X) = σ2

• DCT coefficients 1-3: Ck(X) =
n∑
i=1

xi cos [
π
n (i+

1
2 )k], for k = 1, 2, 3

where n is the number of phonemes and xi is the feature
value of the i− th phoneme of a given feature. This yields
a feature vector of constant dimensionality p = 30 for each
word.

2.4. Classifiers
For both experiments we tested two different classifica-
tion/regression algorithms: SVM and RF (Meyer et al.,
2015; Wright and Ziegler, 2015). Both classifiers sup-
port binary classification and regression (with minor dif-
ferences, e.g. the splitting criterion).

SVM The two best SVM kernels reported in Zhang and
Rudnicky (2001) were a Gaussian Radial Basis Function
(RBF) kernel of the form:

k(u, v) = exp(−γ‖u− v‖2) (1)

and the ANOVA RBF kernel of the form:

k(u, v) =

n∑
k=1

exp(−σ(uk − vk)2)d (2)
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Since the training of the ANOVA kernel is quite time-
consuming, and Karatzoglou et al. (2005) report that
ANOVA RBF kernels generally perform well in regression
problems, we applied this kernel only for the regression
task in experiment 2. The Gaussian RBF kernel was ap-
plied in both experiments 1 and 2.
Since the SVM is sensitive to its hyperparameters, we tuned
them by performing a standard grid search: in the case of
the Gaussian RBF kernel, we tuned the parameters C (val-
ues tested: C = 0.0001, 0.001, 0.01, 0.1, 1, 10, 100) and
γ (values tested: γ = 0.0001, 0.001, 0.01, 0.1, 1, 10, 100).
For the ANOVA RBF kernel we tuned the parameters C
(values tested: C = 0.1, 1, 10), σ (values tested: σ =
0.1, 1, 10) and degree (values tested: degree = 1, 2, 3).
For implementation we applied the R Programming Lan-
guage (R) package e1071 (Meyer et al., 2015) which uses
the LibSVM library (Chang and Lin, 2011), a parallelizable
implementation of SVMs.

Random Forest Fernández-Delgado et al. (2014)
showed that RFs often have similar or better performance
in classification problems than SVMs. Additionally, RFs
have the advantage that they are less sensitive to their
(tunable) parameters (Breiman, 2001; Archer and Kimes,
2008; Dı́az-Uriarte and De Andres, 2006), and that they
can be parallelized more efficiently than SVM. The two
RF parameters we tuned were the number of trees to grow
(ntree = 50, 100, 200, 500) and the number of features to
consider at each split in the tree (mtry =

√
p, 8, p3 ).

We used the R package Random Forest Generator (ranger)
to train the random forests, since ranger is to our knowledge
the fastest RF implementation available in R (Wright and
Ziegler, 2015).

3. Test Data
We tested MOCCA on recordings from two different
speech corpora. For training and parameter tuning in a 10-
fold Cross Validation (CV)2 we used a subset of the Kiel
Corpus (Kohler, 1995). To evaluate the performance of
MOCCA, we used recordings from the PhonDat2 (PD2)
corpus (The ASR Consortium, 1995) as an independent
test set. Both corpora have a manually verified ortho-
graphic transcript and a manual S&L which was produced
by trained phoneticians. Both corpora contain German read
and spontaneous speech produced by native German speak-
ers.

Kiel Corpus: The subset of the Kiel corpus used in the
present study consists of 2225 utterances from spontaneous
speech produced by 30 speakers doing the appointment
scheduling task and while performing a map task3 (John,
2012).

PD2 The subset of the PD2 corpus used in the present
study consists of read speech produced by 16 speakers,
who each produced 64 semi-spontaneous utterances doing
an information query task (1024 utterances total).

2In each fold a speaker is either part of the test or training set
and the number of observations is balanced so that each of the 10
test and 10 training sets has roughly the same size.

3For a detailed description of a map task please refer to (An-
derson et al., 1991)

4. Experiments and Results
4.1. Experiment 1: Correctness of Transcription
Overview: This section describes experiment 1, the goal
of which was to correctly recognize, whether a word in the
given transcript is correct or not. An example of the assign-
ment of correct confidence measure labels to an incorrect
transcript can be found in Table 1.
In this section we tested the following hypothesis: The fea-
tures described in section 2.3. carry enough information to
classify each segmented word into the classes ’correct tran-
script’ versus ’incorrect transcript’. Since there were no
transcription errors in the test sets, we applied a replace-
ment strategy on every test recording to introduce artifi-
cial transcription errors as explained in the following para-
graphs.

Real utterance: Have a great day
Confidence Measure Label: C C I C

Given Transcription: Have a bad day

Table 1: Illustration of the mode of operation of MOCCA
by labeling incorrectly transcribed parts of speech (correct:
C; incorrect: I).

Artificial Transcription Errors: First a MAUS S&L
was performed on the test recording and features were ex-
tracted from the decoder output for all words. Since we
assume that the transcript is correct, these features repre-
sent the “correct transcript” case. We then repeated the
S&L over the complete recording, once for each word wo
that had an OvR (see section 4.2.) of more than 90% be-
tween the MAUS S&L and the ground truth segmentation,
but with wo replaced by another (wrong) word wr in the
transcript. Again, features were extracted from the decoder
output for the replaced word wr, this time representing the
“incorrect transcript” case. wr was randomly selected from
the corpus’ word list with two restrictions: first, the number
of characters length(wr) had to be in the range of±1 com-
pared to the length of original word length(wo); second,
the word-length normalized Levenshtein distance (Leven-
shtein, 1966) between wr and wo had to be at least 75%. If
no word could be found in the range ±1, the range was in-
crementally increased, until a replacement could be made.
For example, a rejected replacement for “train” would be
“rain”, since “rain” only fulfills the length requirement and
not the Levenshtein requirement; a valid replacement for
“train” would be for instance “wash”.
The word length restriction was introduced so that replace-
ment words had roughly the same amount of phonemes.
This is crucial in cases for words that are originally very
short and are replaced by much longer words e.g. “ja”
by “Zugverbindung” (“yes” by “train connection”). In
this case the MAUS S&L may fail, since the available
time frame is too short for the number of phonemes to be
aligned.
The Levenshtein condition was introduced to ensure a sig-
nificant difference in pronunciation between the original
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and the replacement word. Although this probably simpli-
fied the recognition task to a certain degree, it allows us to
test the feasibility of transcription error detection based on
features from the Viterbi decoder in the first place.4

This replacement strategy had two benefits: firstly, many
training examples could be generated automatically, and
secondly the training set was balanced with regard to the
output classes (every word in the transcript was analyzed
once as correct and once as incorrect). The procedure ap-
plied to the test data yielded a total of 26,649 training ex-
amples.

Results: Table 2 summarizes the results of the classifica-
tion. Hyperparameters of both classifiers were optimized to
a 10-fold CV of Kiel Corpus (see values in the caption of
Table 2). We report accuracy, precision and recall for the
model yielding the best accuracy, defined as:

Accuracy =
tp + tn

tp + tn + fp + fn

Precision =
tp

tp + fp
, Recall =

tp
tp + fn

where tp are the true positives, tn the true negatives, fp
the false positives and fn the false negatives (“bad” is the
positive class).
The lower half of 2 shows the results for tests on the inde-
pendent test set PD2 using the same parametrization.

Corpus Class. Accuracy Precision Recall
Kiel SVM 0.7822 0.7897 0.7672

RF 0.7908 0.7862 0.7968
PD2 SVM 0.7876 0.7785 0.7868

RF 0.7526 0.6923 0.7794

Table 2: Results of the classifiers SVM and RF, when tuned
to the Kiel corpus (maximal accuracy); the SVM was built
with tuned parameters C = 100 and γ = 0.1; the RF was
built with parameters ntree = 500 and mtry = 8.

The SVM and the RF both showed similar performance
metrics in the 10-fold CV (Kiel); the RF had a slightly bet-
ter accuracy than the SVM. This result is consistent with
Fernández-Delgado et al. (2014) who also found that RFs
and SVMs had similar accuracies in classification tasks.
When testing against the independent test set PD2, the ac-
curacy obtained for the SVM was very close to the one on
the Kiel data set; it therefore seems that the SVM gener-
alized better than the RF. The RF also showed a skewed
distribution towards predicting more false negative results
fn which lead to a decrease in precision by more than 10%
on the independent data set.

Example: An example can be seen in Table 3, where
MOCCA used the best SVM model to predict the correct-
ness of each word in a transcript taken from the PD2 cor-
pus. The classification results of two transcripts are shown:
one correct (top) and one where the word “es” (“it”) was

4It would be interesting to measure the Levenshtein distance in
real data, and study how this influences the outcome of the error
detection, but at the time of writing such data were not available.

replaced by “man” (“one”) following the replacement strat-
egy described in section (bottom). In both cases the aligned
transcript is shown together with class probabilities and
classification result of the SVM.
As expected the class probability was decreased for the re-
placed word in the wrong transcript (underlined). Addi-
tionally, the class probability for the following word was
decreased as well. This is due to the fact that the wrong
transcript also influenced the segmentation of the following
word.

Class prob.: 0.9299 0.7325 0.7523 0.7225
Class labels: C C C C

Correct Transcr.: Geht es nicht eher
Wrong Transcr.: Geht man nicht eher

Class labels: C I C C
Class prob.: 0.9330 0.1252 0.6821 0.7225

Table 3: A real live example from the PD2 corpus of the
German sentence “Geht es nicht eher” (which loosely trans-
lates in this context to “Isn’t there an earlier connection”).
The replaced (wrong) word in the transcript is underlined
(see text for details).

4.2. Experiment 2: Segmentation Quality

Figure 1: A real example of phoneme strings and their
alignment: an automatic and erroneous S&L (top), a man-
ual and correct S&L (bottom) and the resulting OvR values
(middle).

Overview: In this experiment the predictive power of the
extracted features (cf. Section 2.3.) with regard to the
segmentation quality was evaluated by predicting the val-
ues for the OvR and comparing these to the OvR from the
ground truth segmentation.
The OvR is a measure of the amount of overlap between
two given time segments. It is independent of the dura-
tion of the segments ti and tj and is defined as (Paulo and
Oliveira, 2004):

OvR =
tij

ti + tj − tij
(3)

where ti and tj are the duration of the segments i and j
respectively (see Figure 2).
The range of the OvR is from ] −∞, 1]. However, in our
case it made no difference whether something was “nega-
tively overlapped” (OvR < 0), meaning that a gap existed
between the segments, or OvR = 0, meaning that the end
of segment ti was the beginning of segment tj . We there-
fore forced all OvR < 0 to OvR = 0 so that the range of
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Figure 2: The visualization of the OvR as described in
equation 3 (adapted from Paulo and Oliveira (2004)).

OvR became [0, 1] (where 1: perfect match of segment to
ground truth; 0: total mismatch).
Unfortunately the overlap ratio was not equally distributed
over the possible range of values: there were very many val-
ues close to 1 (indicating an almost total overlap of word
segments to the ground truth segmentation) and very few
values < 1 (indicating a small overlap). While this is actu-
ally a good sign since it means that the MAUS S&L was in
most cases correct, it made it difficult to train a model that
can predict the OvR equally well over the complete range
of possible values.

Binning: To address this problem we divided the OvR
into 20 equally sized bins of width 0.05 between 0 and 1
and restricted all bins to the same number of measurements.
We set this number of measurements to the average over all
bins (1890 observations), and selected these randomly from
the available measurements. This corresponds to an under-
sampling strategy, in which the bins with a higher number
of observations are under-sampled more often than the bins
with fewer observations. This strategy resulted in a total of
55,739 training observations from the Kiel Corpus.

Results: Table 4 summarizes the results for the SVR as
well as the RF. The values reported are the Pearson cor-
relation coefficient between real and predicted OvR (Cor-
Coeff), mean absolute error (MAE), and root mean squared
error (RMSE). Again we only report values resulting from
the best parametrization of the hyperparameters (see cap-
tion), in this case tuned according to the correlation coef-
ficient (CorCoeff). The results of the ANOVA RBF kernel
were omitted, because the best parametrization of the SVR
model based on a standard hyperparameter grid search re-
sulted in a weak negative correlation (−0.26).
The results were again very similar for the SVR and RF
regression in the cross validation (Kiel). When applied to
the independent test set (PD2), the correlation significantly
decreased for all classifiers, which indicates that the models
did not generalize well for this prediction task. Again the
values for the RF deteriorated more than those of the SVR.

Example: An example for the prediction of the overlap
ratio by MOCCA is shown in Figure 3. The example con-
sists of a sentence of 10 words, for which the OvR was
calculated on the ground truth segmentation (red) and es-

Corpus Class. CorCoeff MAE RMSE
Kiel SVR GRBF 0.7336 0.1277 0.1856

RF 0.7430 0.1290 0.1814
PD2 SVR GRBF 0.6415 0.09464 0.1346

RF 0.5955 0.1143 0.1535

Table 4: Results of the SVR with Gaussian RBF (GRBF)
kernel and of the RF (both parametrizations were optimized
according to the Pearson correlation coefficient (CorCo-
eff)). The GRBF SVR was built with parametersC = 1 and
γ = 0.1; the RF was built with parameters ntree = 500
and mtry = p

3 .

timated using the best SVM model described in Table 4
(blue). A perfect model would have resulted in identical
values. It can be seen that the prediction generally followed
the trend of the true OvR values.

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
Word index

O
vR

OvR Type: Original Prediction

Figure 3: The true overlap ratio and the predicted overlap
ratio of an example sentence with 10 words.

5. Discussion
Experiment 1 suggests evidence that erroneous words in a
transcript can be detected from the results of a MAUS S&L
procedure with about 78% accuracy (at roughly equal error
types). The SVM classifier outperforms the RF in terms of
generalization when applied to data from another corpus.
The advantage of the classification applied in this study
compared to confidence measure estimation in ASR sys-
tems is that it uses two knowledge sources by combining
the information from the independent transcriber (be it a
human or an ASR system) with the MAUS alignment fea-
tures; this partly explains the high accuracy.
Experiment 2 is similar to confidence measure estimation
in speech recognition, because the same features are used
for deciding word boundaries and then afterwards for esti-
mating the quality of these boundaries. We showed that the
prediction of the confidence measure is possible, but only to
a Pearson correlation of about 0.64 tested on the indepen-
dent data set. It remains to be seen whether this prediction
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is good enough to be useful in a practical corpus correction
scheme. Regression using a ANOVA RBF kernel did not
yield any usable results in experiment 2. Thus, the positive
results reported by Zhang and Rudnicky (2001) could not
be replicated in our setting.
In addition to the undersampling strategy in experiment 2,
an oversampling strategy e.g. as in Torgo et al. (2013)
could improve the regression analysis. This could be espe-
cially beneficial for the detection of overlap ratios that are
close to 0 (no overlap), as the data set could be balanced
out better than with the simple undersampling strategy.
To summarize, the prediction of transcription word er-
rors as described in this study appears to be a promis-
ing method to make the process of speech corpus an-
notation more efficient; the method based on SVM will
be implemented and made available via a web-interface
and as a web service within the CLARIN infrastructure
(see http://clarin.phonetik.uni-muenchen.
de/BASWebServices). The prediction of S&L time-
alignment errors turned out to be more challenging and will
need further attention in the future.
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