
PermA and Balloon: Tools for string alignment and text processing

Uwe D. Reichel

Institute of Phonetics and Speech Processing, University of Munich, Germany
reichelu@phonetik.uni-muenchen.de

Abstract
Two online research tools are presented in this paper:
PermA, a general-purpose string aligner which can for ex-
ample be used for grapheme-to-phoneme and phoneme-
to-phoneme alignment, and Balloon, a text processing
toolkit for German and English providing components
for part-of-speech tagging, morphological analyses, and
grapheme-to-phoneme conversion including syllabifica-
tion and word-stress assignment. The general architec-
tures of these tools are introduced with a focus on re-
cent improvements concerning the alignment cost func-
tion derivation and word stress assignment.
Index Terms: alignment, grapheme-to-phoneme con-
version, part-of-speech tagging, morphology, word-stress
assignment, tools

1. Introduction
One major aim of the currently ongoing CLARIN-D [1]
project is to provide webservices to facilitate research in
humanities. In this context two online tools for alignment
and text processing made available for research purpose
will be introduced in the following sections with respect
to their underlying algorithms.

Alignment By alignment corresponding parts of
parallel symbol sequences are mutually linked. Typical
speech science scenarios are the alignment of grapheme
and phoneme sequences stored in a pronunciation dic-
tionary or to align parallel broad canonic and narrow
spontaneous speech transcriptions. In speech technol-
ogy this serves to provide training material for grapheme-
to-phoneme (G2P) and for phoneme-to-phoneme (P2P)
conversion the latter for mapping canonic pronunciation
onto a more natural transcription accounting for con-
nected speech processes. In fundamental linguistic re-
search it can be used to infer phonological rules trans-
forming canonic to spontaneous speech.

Text processing Some elementary text processing
steps as part-of-speech (POS) tagging and G2P conver-
sion are captured by the toolkit introduced in this pa-
per. POS tagging serves as a starting point for syntac-
tical analyses. G2P conversion can be used for phono-
logical analyses for example to derive phoneme statistics
and phonotactic models.

This paper shortly addresses the tool components al-

ready introduced in former publications and focuses on
new developments, as are the alignment cost function
derivation and the word stress assignment procedure.

2. PermA – A probabilistic aligner
2.1. General architecture

PermA is a probabilistic aligner allowing for a uniform
modeling of all edit operations. It is a further develop-
ment of the CoocA aligner introduced in [2]. As usu-
ally PermA considers the alignment of two sequences v
and w as a task to transform v to w by a minimum sum
of edit costs, which is known as the Levenshtein dis-
tance. This minimisation task is solved algorithmically
by means of dynamic programming by a method pro-
posed by [3]. Hereby the standard basic edit operations
substitution, insertion, and deletion are used.

2.2. Cost function

All edit costs are defined in terms of conditional proba-
bilities reflecting symbol co-occurrences.

Notation In the subsequent sections v and w are
the sequences to be aligned by transforming v to w with
minimum costs, |v| denoting the length of v. c is a cost
function, c(vi, wj) denotes the cost to substitute the i-th
symbol v by the j-th symbol of w, c(vi,) is the cost to
delete vi, and c(, wj) is the cost to insert wj .

2.2.1. Substitutions

Substitution costs are defined as follows:

c(vi, wj) =

0 : equal(vi, wj) ∧ vi, wj ∈ D

1− P (wj |vi) : else. (1)

Zero-substitutions are only supported if the elements
of v and w come from the same shared vocabulary
D, which is generally true for P2P alignment, but not
for G2P alignment, since for example in German the
grapheme <x> is not mapped to the phoneme /x/ but to
/k s/. Substitution costs for unequal (vi, wj)–pairs are de-
fined in terms of conditional probabilities, which are cal-
culated by maximum likelihood estimation: P (wj |vi) =
#(vi,wj)

#(vi)
. As shown in Figure 1, in order to derive the

. . . vi

oooooooooo

OOOOOOOOOO . . .

1

. . . wi−2 wi−1 wi wi+1 wi+2 . . .

Figure 1: Distribution of co-occurrence counts in a trian-
gular window of area 1.

s c h u l e
S u: l @

S u: l @
S u: l @

. . .

Figure 2: Permutation sample of empty symbols for uni-
form treatment of substitutions, insertions and deletions.

co-occurrence statistics counts are incremented by cen-
tering a triangular window of a defined length (usually 5,
but depending on the amount of the training material) and
area 1 on vi.

2.2.2. Deletions, insertions

Previous probabilistic cost function definitions did not al-
low for uniform handling of substitution, deletion, and
insertion costs. Instead several heuristics have been ex-
ploited to model deletions and insertions. A review of
these heuristics is given in [4]. PermA in contrast allows
for a uniform modelling of all editing costs defining dele-
tion and insertion costs as:

c(vi,) = 1− P (|vi) (2)
c(, wj) = 1− P (wj |) (3)

The counts for the maximum likelihood estimates
P (|vi) and P (wj |) are derived the following way:
Whenever v and w differ in length indicating deletions or
insertions they are set to equal length by padding empty

symbols to the shorter sequence. Since the correct lo-
cation of these symbols is not known, a permutation of
these symbols is carried out as illustrated in Figure 2. For
each instance co-occurrence counts are incremented as
explained in the previous section and the final increments
are normalised by the number of permutation instances.
To account for realistic alignment patterns and for low
computational costs permutation can be constrained to
a maximum allowed number of adjacent –symbols, 2
would for example be a reasonable choice in German
G2P alignment relating <sch> and /S/.

2.3. Evaluation

PermA evaluation on 450 word types with differing
canonic and spontaneous transcriptions yielded a word

text
��

word class
tt ��))

morphology //

%%

&&

��
orth. syllables //

��

phones

zz

word stress

phon. syllables

OO

Figure 3: Balloon information flow.

error rate of 10.64% for grapheme-to-phoneme and of
1.31% for phoneme-to-phoneme alignment.

3. Balloon: A text processing toolkit
The Balloon text processing toolkit contains the follow-
ing functionalities: text normalisation, part-of-speech
(POS) tagging, morphological analyses, and grapheme-
to-phoneme conversion including syllabification and
word stress assignment. The processing steps are illus-
trated in Figure 3.

3.1. Text normalisation

Several text normalisation steps are carried out by means
of finite state techniques and heuristics [5]. Amongst
others, normalisation includes the expansion of abbrevia-
tions and number-to-letter conversions, the latter comple-
mented by a number disambiguation mechanism to ac-
count for year and phone number realisations. The ex-
pansion of German ordinal numbers includes congruent
inflection.

3.2. Part-of-speech tagging

The challenges of part-of-speech (POS) tagging consist
in ambiguous word-tag mappings and out-of-vocabulary
cases. For Balloon a Markov tagger has been developed
which has already been introduced in detail in [6, 7].
Similar to the TnT tagger [8] it additionally uses POS in-
formation stored in word suffixes. Whereas in the TnT
approach these suffixes are simply defined by word-final
substrings of certain lengths, the Balloon tagger tries to
extract meaningful suffix units by means of an adaptation
of the peak and plateau algorithm of [9].

3.3. Morphological analysis

The morphological analysis yields a flat segmentation
of a word into morphemes and their morpheme classes.
The concatenative approach underlying the analysis has

been introduced in [10] for German and in [5] for En-
glish. Generally, each input s is recursively divided into
substring prefixes and suffixes from left to right. In the
course of the recursion, a boundary dividing the current
substring into the prefix a and the suffix b is accepted if
(1) a is found in the lexicon, (2) there exists a permitted
segmentation for b into b1 . . . bn, or (if not) b is found in
the lexicon, (3) the sequence class(a), class(b1) is not in
conflict with language-dependent morphotactics, and 4)
class(bn) is compatible with the POS of the word.

3.4. Grapheme-to-phoneme conversion

G2P conversion is carried out by a C4.5 decision tree [11]
as described in [12] for German and [13] for English. It
is preceeded by a grapheme syllable segmentation which
itself is also accomplished by a C4.5 tree [12]. The fea-
tures used to map grapheme gi onto phoneme pi are: (1)
the grapheme window gi−2 . . . gi+2, (2) the position of
gi within the grapheme syllable to account for phenom-
ena like the German terminal devoicing, (3) the class of
the morpheme containing the grapheme, and recurrently
(4) the left-adjacent G2P result. To cope with arbitrary
m-to-n-mappings, graphemes are not only converted to
single phonemes but also to phoneme clusters and empty
phonemes arising from the alignment.

For English phonological syllabification is again car-
ried out by a C4.5 tree [5]. For German syllable bound-
aries are placed in front of each sonority minimum, and
their locations are subsequently adjusted in case German
syllable phonotactics as specified by [14] is violated [12].

3.5. Word stress assignment

Balloon assigns word stress again by means of a C4.5
tree that predicts for each syllable whether it is stressed
or not. The feature vector contains the word class, the
syllable weight, the compound part index and the class of
the morpheme containing the nucleus of the syllable for
which the word stress decision is to be made.

The shortcomings of this syllable-based approach are,
(1) that the stress assignment decision is made locally in
isolation for each syllable not accounting for the overall
word pattern, and (2) that it does not serve to locate the
main stress in compounds which is highly relevant for the
very productive compounding mechanism in German.

For this reason an alternative stress assignment algo-
rithm has been developed which incorporates principles
of metrical phonology [15] to locate main stress within
compounds and of instance-based learning to account for
global word patterns influencing stress assignment. The
algorithm consists of three steps: (1) compound decom-
position of the morphological segmentation, (2) metrical
tree induction to locate the stressed compound part, and
(3) instance-based classification to locate the stressed syl-
lable within this compound part.

3.5.1. Compound decomposition

Compound decomposition operates on the output of the
flat morphological segmentation introduced in section
3.3. It simply places compound boundaries between adja-
cent morphemes mi and mi+1 if the following set mem-
berships hold: mi ∈ {lexical morph, inflection ending,
suffix, ordinal marker, gap morpheme}, mi+1 ∈ {lexical
morph, prefix, adverb, verbal particle}.

For the compound Wasserstandsanzeiger (wa-
ter level tracer) which can be morphologically
split into wasser+stand+s+an+zeig+er the com-
pound decomposition places a boundary between the
gap morpheme and the verb particle thus yielding
[wasser+stand+s]+[an+zeig+er].

3.5.2. Metrical tree induction

To locate word stress within compounds [15] provides the
recursive compound stress rule (CSR) saying: given con-
stituent [AB], B is strong s if only B is further divisible,
else A. The stressed compound part is finally identified
by following the s branches from the tree root to the leafs.

Coherence Trees In the current approach, metrical
trees are inferred from coherence trees reflecting the co-
herence values of adjacent compound parts x, y. Follow-
ing [16] we measure coherence in terms of the likelihood
ratio H0

H1 of the two hypotheses H0: x and y are inde-
pendent and H1: x and y are mutually dependent. The
likelihood ratio is derived from the likelihoods LH0 and
LH1 of the observed co-occurrence frequencies of x and
y. The ratio is then transformed to a χ2 value by χ2 =
−2lnLH0

LH1
resulting in a gradual interpretation of coher-

ence: the higher χ2, the higher the coherence between x
and y. A coherence tree is then constructed recursively,
branching at local coherence minima as is illustrated for
the compound [braun][kohle][berg][bau][skandal][nudel]
(brown coal mining sleazebag) in Figure 4.

From the resulting coherence tree a metrical tree is
derived by adding s (strong) and w (weak) labels to the
branches according to the CSR as shown in Figure 4.

3.5.3. Instance-based learning

To locate the stressed syllable within the compound part
x at the end of the s-path in the metrical tree, it is first
checked whether x contains one or more stressable syl-
lables. Only one stressable syllable is given for example
in the presence of stress-attracting affixes as in German
Reg+ent (regent), or if after affix stripping a one-syllable
word stem remains as in Ver+bann+ung (banishment).

Within multi-syllable word stems stress is located by
k-nearest-neighbor-classification. The stem in question
is compared with a database of word stems stored to-
gether with their stress position relative to the final syl-
lable. The comparison is carried out with respect to six
features that are vowel quantity (long, short, reduced) and

s

����������

w

,,,,,,,,,,,,,,,

s

���������
w

00000000

s

�������
w

)))))))

s

�������
w

&&&&&&&

s

�������
w

)))))))

braun kohle berg bau skandal nudel

Figure 4: Metrical tree inference: recursive branching at
local compound part coherence minima.

syllable coda type (open, closed) of the last 3 syllables.
The distance D between the feature vectors a and b is
measured by means of the weighted Hamming distance:
D(a, b) =

∑
ai 6=bi

wi, i indexing the features. Here the
weight w of a feature X is defined as the mutual infor-
mation MI(X;Y) between X and the word stress posi-
tion Y . MI(X;Y) is based on the entropy H of Y and
its conditional entropy given that the value of feature X
is known: MI(X;Y) = H(Y) − H(Y |X). It turned
out that vowel quantity, especially in the ult and penult
syllable contains more information about the word stress
position than syllable coda type.

3.5.4. Evaluation

For a sample of 700 compounds containing more than
two parts the accuracy of the hierarchical compound anal-
ysis based on the morphological segmentation and the co-
herence tree induction amounted 83%. Compound stress
assignment was successful in 95% of all cases. The ade-
quacy of the compound stress rule expressed in the con-
ditional probability P (stress correct | compound analysis
correct) is 0.96, indicating that for the used data this rule
is appropriate.

In a 10-fold cross validation task on 1300 multi-
syllable word stems the k-nearest-neighbor-classification
for k=15 successfully predicted the stress location in 84%
of all cases. This value is to be seen as a lower perfor-
mance bound, since one-syllable simplex and stressed af-
fix cases have not been included in the test set and are
trivially classified correctly.

4. Conclusion
In this paper the underlying algorithms of an alignment
and a text processing online tool have been addressed.
These tools can currently be found following this link:

http://www.phonetik.uni-muenchen.de/∼reichelu/webservices.html.

As regards webservice chaining Balloon is already in-
tegrated in the MAUS webservice for phonetic segmen-
tation [17] currently to be found here:

https://webapp.phonetik.uni-muenchen.de/BASWebServices.

5. Acknowledgments
The work of the author has been carried out within the
CLARIN-D project [1] (BMBF-funded).

6. References
[1] “http://eu.clarin-d.de/index.php/en/,” Clarin-D web page.
[2] U. Reichel and R. Winkelmann, “Phoneme-to-phoneme align-

ment and conversion,” in Elektronische Sprachverarbeitung 2010,
ser. Studientexte zur Sprachkommunikation, R. Hoffmann, Ed.
Dresden: TUDpress, 2010, pp. 126–133.

[3] R. Wagner and M. Fischer, “The string to string correction
problem,” Journal of the Association for Computing Machinery,
vol. 21, no. 1, 1974.

[4] G. Kondrak, “Algorithms for Language Reconstruction,” Ph.D.
dissertation, University of Toronto, 2002.

[5] U. Reichel and H. Pfitzinger, “Text Preprocessing for Speech Syn-
thesis,” in Proc. TC-Star Speech to Speech Translation Workshop,
Barcelona, Spain, 2006, pp. 207–212.

[6] U. Reichel, “Improving Data Driven Part-of-Speech Tagging by
Morphologic Knowledge Induction,” in Proc. AST Workshop,
Maribor, 2005.

[7] U. Reichel and L. Bucar Shigemori, “Automatic correction
of part-of-speech corpora,” Speech and Language Technology,
vol. 11, pp. 167–174, 2008.

[8] T. Brants, “TnT – a statistical part-of-speech tagger,” in Proc.
ANLP-2000, Seattle, WA, 2000, pp. 224–231.

[9] M. Nascimento and A. da Cunha, “An experiment stemming non-
traditional text,” in Proc. SPIRE’98, Santa Cruz de La Sierra, Bo-
livia, 1998, pp. 74–80.

[10] U. Reichel and K. Weilhammer, “Automated Morphological Seg-
mentation and Evaluation,” in Proc. 4th Language Resources &
Evaluation Conference, Lisbon, Portugal, 2004, pp. 503–506.

[11] J. R. Quinlan, C4.5: Programs for Machine Learning. San Ma-
teo: Morgan Kaufmann, 1993.

[12] U. Reichel and F. Schiel, “Using Morphology and Phoneme His-
tory to improve Grapheme-to-Phoneme Conversion,” in Proc. Eu-
rospeech, Lisboa, 2005, pp. 1937–1940.

[13] U. Reichel, H. Pfitzinger, and H. Hain, “English grapheme-to-
phoneme conversion and evaluation,” Speech and Language Tech-
nology, vol. 11, pp. 159–166, 2008.

[14] K. Kohler, Einführung in die Phonetik des Deutschen. Berlin:
Erich Schmidt Verlag, 1995.

[15] M. Liberman and A. Prince, “On Stress and Linguistic Rhythm,”
Linguistic Inquiry, vol. 8, pp. 249–336, 1977.

[16] T. Dunning, “Accurate methods for the statistics of surprise and
coincidence,” Computational Linguistics, vol. 19, pp. 61–74,
1993.

[17] F. Schiel, “Automatic Phonetic Transcription of Non-Prompted
Speech,” in Proc. ICPhS, San Francisco, 1999, pp. 607–610.

