
From segmentation bootstrapping to transcription-to-word conversion

Uwe D. Reichel

Institute of Phonetics and Speech Processing, University of Munich
reichelu@phonetik.uni-muenchen.de

Abstract
The mapping of a raw phonetic transcription to an orthographic
word sequence is carried out in three steps: First, a syllable
segmentation of the transcription is bootstrapped, based on un-
supervised subtractive learning. Then, the syllables are grouped
to word entities guided by non-linguistic distributional proper-
ties. Finally, the phonetic word segmentations are mapped onto
entries of a canonic pronunciation dictionary by means of a co-
occurrence based aligner. For syllable segmentation accuracies
between 89 and 96% are obtained, and for word segmentation
accuracies between 92 and 98%. The transcription to word con-
version performance amounts 77%.
Index Terms: segmentation, bootstrap, distributional learning,
subtractive learning, alignment

1. Introduction
Phonetic or linguistic examinations of raw transcriptions usu-
ally require a segmentation of these transcriptions into sylla-
bles and/or words. Numerous studies about human segmen-
tation of connected speech have revealed strategies like using
boundary cues and subtractive learning [1]. Among the iden-
tified boundary cues are stress (see [2] for a review), segment
transition probabilities [3] subsuming phonotactic constraints
[4], and phonetic variation related to coarticulation [5]. In com-
putational approaches segmentation is addressed in terms of en-
coding optimization like in the Minimum description length al-
gorithm of [6] or by utilizing information theoretic findings of
low segment information due to high occurrence frequencies
and high entropy values across segment boundaries [7]. [8] car-
ries out an iterative dynamic programming segmentation, aug-
menting a segment lexicon and a frequency table from unparsed
utterance parts which in turn are used for re-segmentation of
these parts. [9] accompany this algorithm by phonotactic n-
gram models of word boundaries.

The algorithm introduced here incorporates subtractive
learning and probabilistic aspects mentioned above. In section 2
the grouping of phonemes to syllables is addressed, and in sec-
tion 3 the grouping of syllables to words. Section 4 introduces
an approach to map the word-segmented transcription onto a
sequence of lexical entries.

2. Syllable Segmentation
2.1. Data

Parts of the Kiel Corpus of Spontaneous Speech [10] were taken
for this study containing transcribed spontaneous German dia-
logue speech and corresponding canonic transcriptions in Ger-
man SAMPA. The data comprised 51 K words, the canonic tran-
scription contained 229 K phones and 90 K syllables the spon-
taneous speech transcription 201 K phones and 87 K syllables.

2.2. Learning Algorithm

Syllable segmentation is carried out by acquiring knowledge
about possible syllable onsets and codas to find the correct split
point between syllable nuclei. The bootstrap learner operates in
three steps: (1) initialization of syllable onset and coda coun-
ters for transcription substrings, (2) iterative increment of these
counters by means of subtractive learning, and (3) finalization
by deriving the sets of onsets and codas from the counter val-
ues. In addition to this iterative learning procedure, phoneme
bigram probabilities are stored for fallback purposes.

In application, the optimal split point is derived from the
stored onset and coda frequencies or by fallback from the
phoneme bigram probabilities.

2.2.1. Learner prerequisites

The following assumption about the bootstrap learner are made:
it is able to distinguish between speech and pause, it can detect
syllable nuclei, and it can make use of the distributional proper-
ties of the input data.

The learner is conservative by constraining its onset and
coda assignments to frequency thresholds. This is required
since wrong constituent classifications would spread exponen-
tially during the iteration phase. The threshold to be exceeded is
set to the logarithm of the number of nuclei and pauses, which is
4 for our data. This definition is arbitrary but fulfills the purpose
to link the threshold to the size of the data.

2.2.2. Notations

In the following pseudocode passages [P] stands for speech
pause, [N] for syllable nucleus, S,X, Y are transcription sub-
strings including the empty string ε, COD and ONS refer to
the set of codas and onsets, ncod(X) and nons(Y) are counters
for X and Y occurring as a coda or onset respectively, while
mcod(X|Y) and mons(Y|X) are conditional counters, saying
that mcod(X|Y) is added to ncod(X) if Y has been identified as
an onset (analogously for mons(Y|X)). b is the counter thresh-
old to be exceeded.

2.2.3. Initialization of the constituent counters

In the initialization step, seed syllable constituents are extracted
from environments trivially to parse. These trivial cases are
given by transcription substrings occurring between syllable nu-
clei and pauses.

[N] X [P] −→ ncod(X)++
[P] Y [N] −→ nons(Y)++

Examples

• [t r a k t <P>] −→ ncod(k t)++
• [<P> t r a k t] −→ nons(t r)++

2.2.4. Iterative counter increment

The onset and coda counters are iteratively updated using sub-
tractive learning, that is, given an inter-nucleus sequence S =
XY , then X is considered as a potential coda in case Y has
already been established as a reliable onset (and vice versa).
Reliability is derived from the constituent counters, i.e. Y is
treated as a reliable onset, if the onset counter nons(Y) is al-
ready greater than the threshold b.

First iteration step: undivided inter-nucleus sequences

In the first iteration step already initialized counters of un-
divided inter-nucleus sequences are updated together with the
complementary counter of the remainder empty sequence.

data := {[N1] S1 [N2], [N2] S2 [N3], . . .}

foreach [N] S [N] ∈ data

if nons(S) ∧ ¬ ncod(S)

nons(S)++
ncod(ε)++

if ncod(S) ∧ ¬ nons(S)

ncod(S)++
nons(ε)++

end

Example

• [a:6 S t r a:]:
• if S t r initialized (only) as onset

• then onset count increment for S t r: nons(S t r)++
and coda count increment for ε: ncod(ε)++

Further iterations steps: split inter-nucleus sequences

In the further iteration steps, an inter-nucleus sequence S
for which exists only one possible segmentation with respect
to subtractive learning into subsequences X and Y results in
the following counter updates: if X is already established as a
coda, i.e. ncod(X) > b, then the onset counter of Y nons(Y)
is incremented as well as the conditional coda counter of X
mcod(X|Y). The latter counter will be added to ncod(X) if Y
turns out to be an onset in the end. After these updates, S is
removed from the data.

repeat until no more update of ncod(*) and nons(*)

foreach [N] S [N] ∈ data
S← X Y
if ncod(X) > b ∧ ¬∃ X’ 6= X: ncod(X’) > b

nons(Y)++
mcod(X|Y)++
data← data− [N] S [N]

if nons(Y) > b ∧ ¬∃ Y’ 6= Y: nons(Y’) > b

ncod(X)++
mons(Y|X)++
data← data− [N] S [N]

end
end

Example

• [I m t r a]:

• if m – t r is the only possible segmentation,
i.e. only nons(t r) > b

• then

1. coda count increment for m: ncod(m)++

2. dependent onset count increment for t r:
mons(t r|m)++, which will be added to nons(t r)
later on, given that m turns out as a coda in the
end, i.e. if ncod(m) will finally exceed b

3. remove the sequence from the data

2.2.5. Finalization

In the finalization step, the conditional constituent counters are
added to the onset and coda counters in order to derive the final
frequency values. All constituents occurring more often than b
are stored together with their frequency information.

repeat until no more update of ncod(*) and nons(*)

foreach Y: nons(Y) > b

foreach X: ncod(X) > 0

ncod(X)← ncod(X) + mcod(X|Y)
mcod(X|Y)← 0

end
end

foreach X: ncod(X) > b

foreach Y: nons(Y) > 0

nons(Y)← nons(Y) + mons(Y|X)
mons(Y|X)← 0

end
end

end

ONS ← {Y : nons(Y) > b}
COD ← {X : ncod(X) > b}

2.2.6. Phoneme transition probabilities

Additionally to the constituent information extracted as de-
scribed above, phoneme bigram probabilities are calculated in
terms of maximum likelihood estimates. Transition probabili-
ties are considered to be useful for syllable segmentation since
they have been found to be significantly higher within than
across syllables.

2.3. Application

Given an inter-nucleus sequence S the optimal split point ŝ
splitting S into the sub-sequences X and Y is the one which
maximizes the sum ncod(X)+nons(Y). If no split into a reli-
able onset and coda can be found, the split point is set to the
phoneme transition probability minimum.

given: [N] S [N]

T ← [ε S ε]
ŝ← arg maxs

ˆ
nons(t1...s) + ncod(ts+1...n)

˜
if ¬∃ŝ

T ← [[N] S [N]]
ŝ← arg mins

ˆ
P (ts+1|ts)

˜
Examples

• [a n t r aI]

– n – t r: ncod(n)+nons(t r) = 2288+21 = 2309

– n t – r: ncod(n t)+nons(r) = 172+42 = 214

−→ [a n – t r aI]

• [I s C @]

– s C: no possible segmentation by COD and ONS

– P (s|I) = 0.16
P(C|s) = 0.01
P (@|C) = 0.05

– transition probability minimum between [s] and
[C]

−→ [I s – C @]

2.4. Results

2.4.1. Syllable constituent retrieval

Table 1 shows the evaluation results for syllable constituent re-
trieval for the entire data described in section 2.1.

Table 1: Evaluation of syllable constituent retrieval.

constituent measure canonic spontaneous
onset precision 100 92.86

recall 51.90 24.07
token coverage 92.22 87.27

coda precision 100 100
recall 50.00 29.37
token coverage 95.66 87.92

The conservative behavior of the learner forced by the fre-
quency threshold b results in high precision and low recall val-
ues. Since precision and recall refer to onset and coda types,
low recall values are justifiable since only the rarely occurring
types have been missed. This can be read from the high token
coverage values.

2.4.2. Segmentation performance

For evaluation only non-trivial cases have been considered (no
speech pauses, and no pause-adjacent phones). So the results
shown in table 2 are to be interpreted as lower performance
boundaries.

No significant performance difference on training and test
data is observed (Wilcoxon rank sum tests, −0.26 < z < 1.17,
p > 0.25) indicating a good generalization capability of the
algorithm.

Table 2: Evaluation of syllable segmentation (for non-trivial
cases only). Means and standard deviations after 10-fold cross
validation. Accuracy is given on the phoneme level, precision
and recall for detected syllable boundaries.

measure data canonic spontaneous
accuracy train 96.02 (0.18) 89.19 (0.17)

test 95.89 (0.46) 89.15 (0.70)
precision train 95.02 (0.21) 88.27 (0.21)

test 94.86 (0.68) 88.23 (0.88)
recall train 94.88 (0.24) 86.47 (0.21)

test 94.71 (0.66) 86.42 (1.17)

3. Word Segmentation
In principle, for word segmentation the same subtractive learn-
ing approach as for the syllable segmentation could be em-
ployed, but since the number of word types by far exceeds the
number of syllable constituent types, it is not expected to per-
form well. Therefore, word segmentation is carried out in a
supervised learning framework by C4.5 decision trees [11] pre-
dicting for each syllable si whether it is in word-initial position,
thus right-adjacent to a word boundary, or not.

3.1. Features

The C4.5 tree was trained on the following distributional and
bootstrapping features:

• Distributional:

– Transition probabilities P (si|si−1), P (si+1|si),
and P (si−1|si−2).

• Bootstrapping-based:

– STANDALONE(si)

– STANDALONE(si−1)

– P ([P]|si−1)

– P (si|[P])

STANDALONE(*) means, that * occurs at least once in an
inter-pausal position in the training data.

3.2. Results

As with syllable segmentation only non-trivial cases have
been considered for the word segmentation evaluation ignoring
speech pauses and pause-adjacent syllables.

The results are presented in table 3. As with syllable seg-
mentation, no significant performance difference on training
and test data is observed (Wilcoxon rank sum test, −1.47 <
z ≤ 0, p > 0.15) again indicating a good generalization capa-
bility of the presented method. All accuracies are significantly
higher than the baseline performance of 64.19% achieved by
the model “each syllable is a word” (Wilcoxon rank sum test,
z > 4.00, p < 0.001).

4. Transcription to word conversion
Each word entity t of the transcription derived by the word
segmentation is mapped to the appropriate lexical entry e of a
canonical pronunciation dictionary L by finding the most sim-
ilar canonical pronunciation w(e). Similarity is expressed in

Table 3: Evaluation of word segmentation (for non-trivial cases
only). Means and standard deviations after 10-fold cross val-
idation. Accuracy is given on the syllable level, precision and
recall for detected word boundaries.

measure data canonic spontaneous
accuracy train 97.85 (0.18) 95.54 (0.20)

test 97.86 (0.62) 95.56 (1.05)
precision train 97.69 (0.22) 95.99 (0.16)

test 97.77 (0.55) 96.02 (0.71)
recall train 98.99 (0.11) 97.41 (0.17)

test 98.95 (0.42) 97.42 (0.87)

terms of the Levenshtein distance which is derived from the
PermA sequence aligner [12].

ê = arg min
e∈L

[levdist(w(e), t)]

4.1. PermA Alignment

The Levenshtein distance is defined as the minimum total edit
cost to convert the sequence w (short for w(e), the canonical
transcription in the pronunciation dictionary) to the sequence
t (the transcription of the entity derived from word segmen-
tation). PermA uses the standard edit operations substitution,
deletion and insertion. Their costs are defined in terms of con-
ditional probabilities which are calculated by maximum likeli-
hood estimation (i and j refer to character indices within the
sequences w and t respectively):

• substitution:

c(wi, tj) =

0 : equal(wi, tj)

1− P (tj |wi) : else.

• deletion: c(wi,) = 1− P (|wi)

• insertion: c(, tj) = 1− P (tj |)

When generating the cost function all (wi, tj) co-
occurrence count increments are distributed within a triangular
window of length 3 and area 1 centered on wi. (wi,)-counts
are derived the same way from training instants where |t| < |w|.
In these cases, sequence t is set to equal length as w by padding

–symbols. Counts are then incremented for all t-permutations
with respect to possible –symbol positions, and all increments
are finally normalized to the number of permutations. (, tj)-
counts for the insertion costs are derived analogously. This way
PermA allows for a uniform modeling of all editing costs.

4.2. Results

As shown in table 4 for the spontaneous speech transcriptions
the mean word retrieval accuracy amounts 76.48%. The error
is given by the sum of deletion and insertion rates, which were
obtained from errors in syllable and word segmentation, and
by the substitution rate obtained from errors of transcription to
word mapping.

Table 4: Word retrieval evaluation. Means and standard devia-
tions after 10-fold cross validation.

accuracy 76.48 (2.09)
substitution rate 18.63 (1.44)
deletion rate 1.95 (0.45)
insertion rate 2.94 (0.59)

5. Discussion
Syllable segmentation It has been shown that bootstrap learn-
ing with few and non-linguistic assumptions is capable to group
phones to syllables. Not faced in this study is the issue of am-
bisyllabicity. In the evaluation data, ambisyllabic phones were
attached to the second syllable.

Word segmentation It turned out, that word segmentation
based solely on low-level non-linguistic features is quite suc-
cessful. Given additional word stress information a further im-
provement can be expected as is pointed out for example in [13]
who exploit this information in form of a one stress per word
constraint. A problem not faced in this study is the treatment
of clitics resulting in ambiword syllables as in [ha:p QIC −→
ha:pC] (have I).

Transferability to human phonology inference As was
pointed out, bootstrapping design and feature selection was to
some extent inspired by findings of human word segmentation.
Some other features which turned out to be useful here, could in
turn be helpful to formulate hypotheses about human inference.
In general, machine learning insights could be used as a starting
point for psycholinguistic artificial language studies on aspects
of human language acquisition.

6. Acknowledgments
The work of the author has been carried out within the
CLARIN-D project [14] (BMBF-funded).

7. References
[1] D. Dahan and M. Brent, “On the discovery of novel wordlike

units from utterances: An artificial-language study with implica-
tions for native-language acquisition,” J. Experimental Psychol-
ogy: General, vol. 128, pp. 165–185, 1999.

[2] A. Cutler, D. Dahan, and W. Donselaar, “Prosody in the compre-
hension of spoken language: A literature review,” Language and
Speech, vol. 40, pp. 141–202, 1997.

[3] J. Saffran, “Statistical language learning: Mechanisms and Con-
straints,” Current Directions in Psychological Science, vol. 12,
no. 4, pp. 110–114, 2003.

[4] P. Jusczyk, P. Luce, and J. Charles-Luce, “Infants’ sensitivity to
phonotactic patterns in the native language,” J. Memory and Lan-
guage, vol. 33, pp. 630–645, 1994.

[5] S. Mattys, L. White, and J. Melhorn, “Integration of Multiple
Speech Segmentation Cues: A Hierarchical Framework,” J. Ex-
perimental Psychology: General, vol. 134, no. 4, pp. 477–500,
2005.

[6] C. de Marcken, “The unsupervised acquisition of a lexicon from
continuous speech,” Technical Report AIM-1558, 1995.

[7] P. Cohen, N. Adams, and B. Heeringa, “Voting Experts: An unsu-
pervised algorithm for segmenting sequences,” Journal of Intelli-
gent Data Analysis, vol. 11, no. 6, pp. 607–625, 2007.

[8] M. Brent, “An efficient, probabilistically sound algorithm for seg-
mentation and word discovery,” Machine Learning, vol. 34, no.
1–3, pp. 71–105, 1999.

[9] D. Blanchard and J. Heinz, “Improving word segmentation by
simultaneously learning phonotactics,” in Proc. CoNLL, Manch-
ester, 2008, p. 6572.

[10] K. Kohler, “Labelled data bank of spoken standard German – the
Kiel Corpus of Read/Spontaneous Speech,” in Proc. ICSLP, 1996,
pp. 1938–1941.

[11] J. R. Quinlan, C4.5: Programs for Machine Learning. San Ma-
teo: Morgan Kaufmann, 1993.

[12] U. Reichel, “Perma and Balloon: Tools for string alignment and
text processing,” in Proc. Interspeech, Portland, Oregon, 2012, p.
paper no. 346.

[13] T. Gambell and C. Yang, “Mechanisms and constraints in word
segmentation,” Manuscript, 2005.

[14] “http://eu.clarin-d.de/index.php/en/,” Clarin-D web page.

