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Abstract

The paper defines the core components of an interactive-phonetic (IP) sound change model. The

starting point for the IP-model is that a phonological category is often skewed phonetically in a certain

direction by the production and perception of speech. A prediction of the model is that sound change is

likely to come about as a result of perceiving phonetic variants in the direction of the skew and at the

probabilistic edge of the listener’s phonological category. The results of agent-based computational

simulations applied to the sound change in progress, /u/-fronting in Standard Southern British, were

consistent with this hypothesis. The model was extended to sound changes involving splits and merg-

ers by using the interaction between the agents to drive the phonological reclassification of perceived

speech signals. The simulations showed no evidence of any acoustic change when this extended model

was applied to Australian English data in which /s/ has been shown to retract due to coarticulation

in /str/ clusters. Some agents nevertheless varied in their phonological categorizations during interac-

tion between /str/ and /Str/: This vacillation may represent the potential for sound change to occur. The

general conclusion is that many types of sound change are the outcome of how phonetic distributions

are oriented with respect to each other, their association to phonological classes, and how these types

of information vary between speakers that happen to interact with each other.
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1. Introduction

Sound change can provide a useful framework for considering the main theme of

this special edition: how social variation and cognition are related. This is so because

there are evidently social and cognitive sides to understanding sound change, but these

have until fairly recently been pursued from their separate disciplinary perspectives

(Harrington & Stevens, 2014), stemming in part from the artificial division that is often

made between the conditions that give rise to sound change and those that are responsi-

ble for its spread throughout the community (e.g., Baker, Archangeli, & Mielke, 2011;

Janda & Joseph, 2003; Ohala, 1993). Theories of the origin of sound change relate

sound change to models of human speech processing. They often draw upon models of

how coarticulation and timing relationships are transmitted between a speaker and

hearer (Beddor, 2009; Sol�e & Ohala, 2010); and they are concerned with developing

general principles of how sound change is related to the typological preferences or

biases of sounds and their combinations in the world’s languages (Sol�e, 2014). On the

other hand, the focus of research in the sociolinguistic tradition has often been on

establishing how social and dialect variation (Labov, 2001; Trudgill, 2011) as well as

the type of community—whether, for example, tightly knit or loosely connected (Mil-

roy, 1992)—influences sound change. This second research line is often just as con-

cerned with establishing a general theory of how and why languages change, but it

gives more prominence to the cultural and social conditions for how sound change

spreads around and between communities from speaker to speaker and somewhat less

to the mechanisms of human speech processing. One of the main tasks in this paper is

to begin to provide the foundations for unifying both approaches within a cognitively

inspired computational model of sound change.

We focus on sound change for two further reasons, both succinctly expressed by two

leading researchers in the sociolinguistics tradition. First, as Trudgill (2012) has recently

noted, “Perhaps the greatest puzzle that faces linguistic scientists is the phenomenon of

linguistic change,” which concurs with the view of Labov (2006) who comments that

“For me, the largest questions that require the analysis of social variation are the prob-

lems of language change: how such changes are initiated, how they are transmitted across

generations, what drives them forward, how they reach completion.” In the same paper,

Labov (2006) goes on to make the very important point that studying language change

can provide direction in prioritizing analyses of social variation. As we now know, and

as so very many experiments in sociophonetics in the last 10–15 years have shown (see,

e.g., Docherty & Foulkes, 2014 for a recent review), sociophonetic variation is virtually

limitless. But to cite once again Labov (2006): “it does not follow automatically that all

such indexing should be described. . . . Some further justification for the description of

variation is required; otherwise there will be no stop to the enterprise and we will be
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plunged into an endless pursuit of detail.” Studying sound and language change provides

a framework for establishing testable hypotheses. More specifically, we may have knowl-

edge of a sound change that has or is taking place and we also know much about varia-

tion. So how then are the two connected? The question is simple and reduces to an input

(variation) output (categorical change) problem. The solution of finding how the input

and output are connected can, in turn, shed light on the architecture of human speech pro-

cessing, how it is flexibly adapted to social variation in language, and which mechanisms

within this architecture can give rise to change.

2. Phonetic bias, sound change, and phonological categories

Sound change is typically directional (Garrett & Johnson, 2013). This type of asymme-

try can often have its origins in a corresponding synchronic, phonetic bias. Thus, there

are several examples of an /s/ ? /S/ sound change in many languages (K€ummel, 2007;

Rohlfs, 1966). There is also evidence that /s/ often assimilates synchronically to /S/

(Pouplier, Hoole, & Scobbie, 2011; Recasens & Mira, 2013), that it retracts before post-

alveolars (Baker et al., 2011; Stevens & Harrington, 2016) and that /s/ becomes acousti-

cally more /S/-like before rounded vowels (Mann & Repp, 1980). But on the other hand,

whereas synchronic and diachronic /S/ ? /s/ changes may be possible, they are much less

likely. Further examples of such asymmetries include the greater likelihood for fronted

velars to be perceived as coronals (Chang, Plauch�e, & Ohala, 2001) than in the other

direction, an asymmetry that has been associated with the sound change velar palataliza-

tion (Guion, 1998); and the greater tendency than in the other direction for domain-final

voiced stops as in “tab” to become devoiced toward “tap” (Jongman, Sereno, Raaijmak-

ers, & Lahiri, 1992; Pierrehumbert, 2001) which can be associated with diachronic

domain-final neutralization toward the voiceless counterpart in various languages (Port &

O’Dell, 1985; Warner, Jongman, Sereno, & Kemps, 2004).

We schematize this asymmetry in Fig. 1 by a difference in the direction of variation of

the two phonological categories in an acoustic space. Thus, in Fig. 1, the phonological

category that is represented by the ellipse encompassing the filled circles (=/s/) points

more toward that of the filled triangles (=/S/) than the other way round. Such differences

in orientation affect the degree to which a category shifts depending on the uptake of out-

liers.

More specifically, Fig. 1 shows that there is a much greater likelihood of the /s/-cate-

gory shifting due to the absorption of /s/-outliers (open circles, Fig. 1, row 1) than there

is of a shift due to the /S/-category as a result of absorbing /S/-outliers (open triangles,

Fig. 1, row 2). Three principles define whether an outlier is incorporated into a category.

1. An outlier in a lexical item L can only ever be absorbed into the phonological cate-

gory with which L is associated.

Suppose that the fricative in the lexical item “string” maps to the phonological cate-

gory /s/. Then according to (1), a fricative outlier in “string”—even one that was in
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the middle of the /S/ space acoustically—could only ever be absorbed into /s/ and

never into /S/ (or into any other phonological category). Analogously, the open cir-

cles in row 1 (open triangles of row 2) of Fig. 1 are only ever considered for inclu-

sion as part of the filled circle category in row 1 (filled triangle category in row 2).

The further implication of (1) is that, while of course not denying that listeners

sometimes confuse phonologically similar lexical items, this type of confusion is not

considered to drive sound change: that is, there is no sense in which the mis-identifi-

cation of “bet” for “bed” can contribute to sound change in the model being pre-

sented here.

2. The probability of category membership must be higher than to any other category.

Probability is defined here as the posterior probability of category membership. That

is, the listener has a number of phonological categories that are each defined by a

parametric Gaussian distribution across the signals with which they are associated. A

calculation is then made of the posterior probability that a perceived signal could be

a member of any of the categories stored by the listener. According to (2) an /s/-out-

lier, Os, may be absorbed into the /s/ category only if p(Os|s) > p(Os|S), that is, if the
probability that it belongs to the /s/-category is greater than the probability of it

(a) (b) (c)

(d) (e) (f)

Absorption of / /-outliers (open triangles) into /

    Before sound change                        During sound change                            After sound change

Fig. 1. The two standard-deviation ellipses per panel are statistical generalizations across members of two

separate phonological categories (filled data points) in a hypothetical two-dimensional space such that one

phonological category (filled circles, e.g., /s/) is skewed toward the other (filled triangles, e.g., /S/). The open

data points are outliers of either the circle (top row 1a–c) or triangle (bottom row, 1d–f) phonological cate-
gories. The gray ellipses and associated filled gray data points show the change in the positions of the phono-

logical categories after the first (middle panels, 1b, 1e) and final stages (right panels, 1c, 1f) of absorbing

outliers and removing an equivalent number of the probabilistically most marginal category members.
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belonging to the /S/ category (or indeed to any other category). Similarly, an /S/-outlier

OS in row 2 is only absorbed if p(OS|S) > p(OS |s). This constraint is based on a similar

principle adopted elsewhere (e.g., Blevins & Wedel, 2009; Garrett & Johnson, 2013;

Hay, Pierrehumbert, Walker, & LaShell, 2015) of not incorporating ambiguous signals

into memory. It is also the same constraint in Labov (2010) and in related variationist

research (e.g., Dinkin & Dodsworth, 2017) of not absorbing an outlier into a phono-

logical category if it is positioned too close to another category. The incorporation of

outliers that are distant from a category (but closer than to any other category) is one

of the mechanisms that variationist research has used to explain drag-chain shifts in

vowels (see Labov, 2010, pp. 143–145, also for an extension of this principle to

push-chains). Taken together, principles 1 and 2 guarantee a degree of stability in the

computational model of sound change (see Kirby, 2014 for a further discussion); that

is, they prevent mergers of different phonological categories and therefore of semantic

loss.

3. Whenever an outlier is absorbed, then a member of the same category is removed

either randomly or using a form of memory loss or probabilistically.

In Fig. 1 and following (3), whenever an outlier is absorbed, then the probabilistically

most marginal member of the same category was removed (which can cause an outlier to be

absorbed and then immediately removed if it happens to be the probabilistically least likely

category member). Principle (3) is a form of memory loss that is designed to counteract an

indefinite broadening of categories due to the uptake of outliers (see also Ettlinger, 2007;

Pierrehumbert, 2001, for the incorporation of memory decay in an exemplar model). Once

the outlier is removed, then it forms no further part of the analysis in the model.

The application of (1–3) initially to all outliers (middle panel) and then iteratively to

any remaining outliers until there is no further change causes a much bigger category

shift (gray ellipses) relative to the category starting position (black ellipses) when /s/-out-

liers are absorbed into the /s/-category (row 1) than when /S/-outliers are absorbed into

the /S/-category (row 2).

Experiments from perceptual learning (Mitterer & Reinisch, 2013; Norris, McQueen,

& Cutler, 2003; Samuel & Kraljic, 2009) in the last decade provide some support for

such a cognitive mechanism by which the category boundary between two sounds varies

depending on asymmetries between them in the direction of variance. In these experi-

ments, a listener’s decision boundary between two phoneme classes x, y is shifted toward

x after exposure to a speaker whose productions of y are perceived to be skewed toward x, that
is, whose y-productions are more likely to extend into the x-space than the other way round.

The actual experiments typically make use of word-final fricatives /f, s/ and involve an expo-

sure and a test. Listeners are firstly exposed to words with final /f/ containing an acoustically

unambiguous [f], as well as to words with final /s/ that is acoustically ambiguous between /f,

s/. The listeners subsequently categorized a continuum between /f/ and /s/. Tokens from this

continuum that prior to exposure might be perceived to be ambiguous between the fricatives

have a greater probability of being classified as /s/ following exposure; that is, the category

boundary shifts toward /f/. Translated into Fig. 1, the circles and triangles represent /s/ and /f/,
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respectively, and the /s/-variation points more in the direction of /f/ than the other way round

(because the /s/-stimuli in the exposure phase had been acoustically skewed toward /f/). This

result in perceptual learning experiments is bidirectional so that the category boundary shifts

more in the other direction following exposure to words with final unambiguous /s/ and words

with final ambiguous /f/. This bi-directionality in perceptual learning provides evidence for a

general cognitive mechanism by which the mapping between words and ambiguous (or in

terms of Fig. 1, skewed) speech signals can warp the boundaries between phonological

categories.

There is another similarity between the results from perceptual learning and the model

in Fig. 1 in that the lexicon is activated in both cases in categorizing outliers (or ambigu-

ous tokens) and in shifting the boundary between categories. In perceptual learning, it is

the activation of lexical items with ambiguous tokens that retunes the mapping between

phonological categories and speech signals (McQueen, Tyler, & Cutler, 2012; Norris

et al., 2003; Reinisch & Mitterer, 2016). Analogously, an outlier /b/ of “tab” in our

model activates the lexical item “tab” by way of principle (1), even if it is an outlier that

falls acoustically in the space of the /p/ category. Whether or not the /b-p/ category

boundary is actually retuned by such an outlier in our model depends according to princi-

ple (2) on whether it is probabilistically closer to the /b/ than to the /p/ category; and

according to principle (3) on whether it is then retained in the /b/ category.

There is further support for a mechanism such as in Fig. 1 but this time from research

in sociolinguistics. Trudgill (2004, 2008) provides extensive evidence that many of the

sound changes in new-world settlements such as New Zealand in the 19th century are a

consequence of imitation especially among children. Trudgill’s analysis suggests that the

emerging and defining characteristics of the New Zealand English accent were a function

of the type and strength (in terms of number of settlers) of dialects that came into contact

with each other. Thus, New Zealand English shares many characteristics with the accents

from the East of England at that time, because this is where the majority of settlers were

from. A puzzle for Trudgill (2004) is, however, why New Zealand English has neutral-

ized the /ɪ, ə/ contrast in unstressed syllables, so that, as in Australian English, dances
and dancers have become homophones (but distinct in many British English varieties

with final /ɪz, əz/, respectively). Trudgill (2004) reluctantly appeals to markedness as a

possible explanation. However, Fig. 1 suggests an alternative solution. In spontaneous

speech, there is a tendency for the distinctive vowel quality in unstressed syllables to be

lost so that words with weak /ɪ/ are likely to become schwa-like; whereas there is no rea-

son for /ə/ in dancers to shift toward /ɪ/. Consequently, there is once more an asymmetry

in the direction of variance such that /ɪ/ points more toward /ə/ than the other way round.

If schwa-like productions of /ɪ/ are increasingly incorporated into the distribution of

words like dances (which is highly likely in the developing New Zealand accent, given

that many speakers at the time of settlement had a final /ə/ and no /ɪ/ in such words), then

/ɪ/ incrementally should shift toward /ə/ according to the model in Fig. 1. However, while

the model can explain why /ɪ/ should shift toward /ə/ it has no explanation for why these

vowels should merge. For this, a separate mechanisms of splitting and merging phonolog-

ical categories is needed, as discussed in Section 4.
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There is some but as yet only very limited evidence of a shift related to Fig. 1 when

acquiring a new dialect through relocation. Evans and Iverson (2007) report for a North-

ern variety of English that high back lax [ʊ] in words like luck became more centralized

when Northern students moved to the Southern English dialect region that has an open

central [ʌ̈] in such words. In terms of Fig. 1, this comes about because contact might

magnify an existing tendency for [ʊ] to centralize in spontaneous speech. Interestingly,

there was much less shift of the Northern fronted [a] toward the Southern English back

[ɑ] (in words like bath) and perhaps this is because the direction of the synchronic [a]-

variation is “vertical,” that is, toward the center and not horizontal toward the back of the

vowel space.

There is, however, no reason according to Fig. 1 why variation should necessarily be

drawn to the center of the vowel space or even in the direction of variation due to sponta-

neous speech, as is of course known from various patterns of vowel chain shifts (Labov,

2010). Compatibly, Bigham (2010) reported that the wide horizontal variation in female

Southern Illinois high school students’ [o, u] shifted toward the back of the vowel space

after contact with Northern students who had a more compact and retracted [o, u]. Evi-

dence from dialect contact suggests that children more readily acquire the features of the

new dialect that tend to apply to all words with limited exceptions (Chambers, 1992;

Nycz, 2015; Payne, 1980). Kerswill (1985, cited in Chambers, 1992) reports that immi-

grants to Bergen, Norway, nevertheless acquired a more complex rule of word-final

schwa lowering that only applies in certain contexts. However, the migrant group already

had a tendency to shift schwa in this direction in their variety. Thus, following the rea-

soning associated with Fig. 1, an existing phonetic tendency may have become magnified

through contact with another group whose variants lie in the path of synchronic variation.

3. Testing the model: Variants of the same phonological category

In the model in Fig. 1, there are separate phonological categories that are differently

oriented with respect to each other in an acoustic space.1 The model can also be applied

to modeling different orientations of two phonetic variants of the same phonological cate-

gory. This version of the model is relevant for predicting the outcome when two dialects

that have realizational differences of the same phoneme come into contact with each

other. Although there is some evidence that second dialect acquirers shift their variety in

the direction of the one that they are acquiring (Munro, Derwing, & Flege, 1999; Siegel,

2010) sometimes resulting in a form of phonetic averaging between the two (Trudgill,

1999, 2008), there are few studies concerned with how the outcome might be affected by

the types of phonetic asymmetries considered in the previous section.

The single difference compared with the scenario in the preceding section centers

around principle (2) which only allows a signal to be absorbed into a phonological cate-

gory as long as it is not probabilistically closer to any other phonological category (as a

result of which two phonological categories can never merge). This principle does not

apply in the case of Fig. 2, which has different phonetic realizations of the same
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phonological category. Thus, the prediction of the model is that a certain degree of

approximation of two phonetic variants that are close to each other in an acoustic space

(as in Fig. 2) is inevitable; moreover, their complete merger is possible given that princi-

ple (2) does not apply. The question to be considered is the following: Is one phonetic

variant absorbed at a faster rate into the other?

We make the prediction that if the phonetic variant of a dialect x lies along the path of

phonetic variation of another dialect y, then y will be drawn toward x (Fig. 2). This is

because the probability that an outlier of x could belong to y is greater than in the other

direction, that is, p(x’|y) > p(y’|x) where x’ and y’ are outliers of their dialect groups and

where x and y are different (dialect-dependent) variants of the same phoneme as in Fig. 2.

The shift in y is predicted to be caused by the same type of directional asymmetry as in

Fig. 1 in which there is an interaction between two separate phonological categories.

Harrington and Schiel (2017) provided a test of the model in Fig. 2 using an agent-

based simulation applied to data from an earlier apparent-time study in Harrington, Kle-

ber, and Reubold (2008).

This earlier study had provided evidence for /u/-fronting as a sound change in progress

in both production and perception based on an apparent-time comparison of older and

younger speakers of the Standard Southern British English (SSBE) variety. Of relevance

to the present investigation is that there was also an asymmetry between the groups in

the direction of the variation in the second formant frequency (F2) that indexes fronting.

Fig. 2. Contours of equal probability at the same number of ellipse standard deviations around x and y that

are two phonetic variants of the same phonological category in an arbitrary two-dimensional perceptual space.

x0 and y0 are outliers in their respective distributions. The lines show the first principal component, that is,

major axis of variation in x (dashed) and in y (solid). Because x falls along the path of the major axis of vari-

ation of y (but not the other way round), the probabilistic (Mahalanobis) distance of x0 to y is smaller than

that of y0 to x. For this reason, outliers such as x0 are more likely to be absorbed into the distribution of y,
causing y to shift incrementally toward x.
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Thus, the upper range of F2-variation for older speakers was quite close to the F2-mean

for younger speakers; in contrast, younger speakers’ lower range of F2-variation was con-

siderably further from older speakers’ F2-mean. This asymmetry may come about

because some of the older speakers were already participating in the sound change in pro-

gress. As discussed in Harrington and Schiel (2017), the more likely reason is that older

speakers’ retracted /u/ is often drawn to the front of the vowel space by target undershoot

and/or coarticulation with coronal consonants (Harrington, Hoole, Kleber, & Reubold,

2011; Lindblom & Studdert-Kennedy, 1967); whereas the corresponding backing of

younger speakers’ fronted /ʉ/ due to these synchronic forces is much smaller. Following

Fig. 2, the older speakers’ retracted /u/ should shift more toward younger speakers’

fronted /ʉ/ following interaction and imitation across these groups.

To test such a prediction, the model in Harrington and Schiel (2017) included 22

agents, 11 representing older speakers with clearly retracted /u/ and 11 representing

younger speakers with a fronted /u/. Each agent was initialized with a lexicon containing

minimal-pair /i, ju, u/ triplets (e.g., feed, feud, food) together with the corresponding F2-

trajectories of /i, ju, u/ that had been produced for these words by the original speakers in

Harrington et al. (2008). There were typically 10 repetitions of each word and each tra-

jectory was compressed using the discrete cosine transformation (DCT) to a point in a

three-dimensional space whose axes are proportional to the F2-mean, linear-slope, and

curvature (see Watson & Harrington, 1999, for further details of the DCT). Thus, consis-

tently with episodic models of speech (Pierrehumbert, 2003a,b), each word-class was

associated with a multidimensional cloud of points stored in memory. A Gaussian model

was constructed for each word over the cloud of points and used to generate a random

sample (a DCT-triplet) whenever an agent produced a word. In addition, and also follow-

ing episodic models, phonological classes were defined as the union of the cloud of

points across the corresponding word classes; thus, /i/ was a Gaussian model over the

cloud of points associated with all words (feed, heed, keyed, seep) in which /i/ occurred.

An interaction was always between a pair of agents selected at random, one of which

was the agent-speaker and the other the agent-listener. A word was randomly chosen

from the agent-speaker’s lexicon. A DCT-triplet, sampled from the word’s Gaussian

model of the agent-speaker, was transmitted together with the word label to the agent-lis-

tener. The probabilistic distance of the incoming DCT-triplet to the phoneme classes

determined whether or not the agent-listener memorized the incoming signal. More

specifically, and following principle (2) outlined earlier, if the word-class heed was trans-

mitted, then the DCT-triplet had to be probabilistically closer to the agent listener’s /i/

than to the distributions of the other phoneme classes (i.e., /ju, u/). Following principle

(3), if the agent-listener memorized an item, then an item from the same word class was

removed whose vowel was probabilistically most marginal (for this example, whichever

heed item whose vowel was probabilistically most marginal in the agent-listener’s /i/ dis-

tribution was removed from memory). Compatibly with the predictions based on Fig. 2,

the shift after 50,000 interactions (beyond which there was scarcely any further change)

was asymmetric such that there was a greater shift of older agents’ retracted /ju, u/

toward the front of the vowel space than in the other direction (Fig. 3).
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It should be noted that this result excluded any effects of statistical frequency as far as the

number of speakers was concerned (which was the same for both older and younger agents)

and also as regards lexical or indeed phoneme frequency. The results would certainly have

been different if there had been a different number of agents per dialect group or if word

access had been differently weighted in relation to lexical statistics: This could be used to test

the extent to which sound change is affected by lexical frequency (e.g., Bybee, 2000; Hay

et al., 2015). Both of these effects of statistical frequency could be straightforwardly modeled

using the existing architecture by increasing or decreasing the number of times different types

of agents (older or younger) or lexical items (high or low frequency) are accessed.

4. Splits and mergers

A shortcoming of the model so far is that, while phonological categories might approx-

imate each other in an acoustic space, they can never merge (Fig. 1). This is because of

principle (2), according to which, for example, an outlier /b/ from “tab” could never be

absorbed into the phonological category associated with “tap”, even if the outlier falls

well within the /p/ space acoustically. The model was therefore extended to incorporate

mergers and category splits both of which are common types of sound change (Kiparsky,

Normalized (proportional) time
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Fig. 3. Speaker and linearly time normalized F2 trajectories aggregated in the original data prior to any inter-

action (0.0) and then at intervals of 10,000 (0.1) up to 50,000 (0.5) interactions in the older (old/gray) and

younger (young/black) agents for the three vowel classes in /i/ (e.g., feed), /ju/ (e.g., feud), and /u/ (e.g., food)
words (e.g., “old.1” is the trajectory aggregated across all older agents after 10,000 interactions). From Har-

rington and Schiel (2017).
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2016; Labov, 1994, Ch. 12). The general idea behind this extension is to allow a phono-

logical category to split such that any of the components derived from the split can merge

with other categories. This procedure might allow, for example, a /u/ category to split

into two categories, one of which might include /u/ variants following fronting (“Sue”)

and the other non-fronting (“woo”) consonants. The synchronic variation leading to

domain-final neutralization of voicing in obstruents in many languages might initially

involve a shift of the voiced toward the voiceless category in the manner of Fig. 1 after

which the voiced category splits into subcategories which are then merged with the voice-

less category.

An algorithm for splitting and merging was therefore incorporated into the architecture

of the agent-based model that had been applied to /u/-fronting described earlier.

For the splitting algorithm, a phonological class, P, defined as a statistical distribution

over an acoustic space (in this case over the space formed by the three DCT-coefficients)

was split into two maximally acoustically distant classes, p1, and p2, using k-means clus-

tering (Hartigan & Wong, 1979). If the probability of category membership (based on the

Mahalanobis distance: Duda, Hart, & Stork, 2001) of the cloud of points to P was less

than to p1, and p2, then no split occurred; otherwise the split was made (Fig. 4).

Two further conditions were applied: Any phonological class had to be associated with

more than one word (since there would otherwise be no phonological generalization

across the lexicon); and no word could be associated with more than one phonological

class. If a word class was split across two phonological classes after applying k-means

clustering (if, e.g., following a split, food mapped onto both a front /ʉ/ and back /u/), then

reassignment based on majority membership to one of the classes occurred. Merger was

essentially the reverse and occurred if the probability of category membership of the

cloud of points to the union of two classes, p1, and p2, was greater than the probabilities

P p1

p2

Fig. 4. A phonological category, P, containing points in a two-dimensional space and the two categories, p1,
and p2, into which it is split following k-means clustering. The split was only made if the probability of cate-

gory membership of the four points to p1 and the four points to p2 was greater than that of the eight points

together to P.
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to the two classes separately. A test for merger was applied iteratively to all existing pair-

wise combinations of phonological classes in an agent-listener’s memory.

A modification of the agent-based model that incorporated splitting and merging was

applied in this study to speech data from 20 adult speakers to model /s/-retraction in Aus-

tralian English (Stevens & Harrington, 2016). The aim of the investigation was to assess

whether /s/ in /str/ clusters would shift toward /S/ as a consequence of agent interaction,

given the evidence for /s/-retraction to occur in such contexts in various varieties of Eng-

lish (Baker et al., 2011; Cox, 2012; Warren, 1996) as a consequence of the anticipatory

coarticulatory influences of the post-alveolar approximant. Labov’s (2010) merger-by-

approximation (rather than by transfer or by expansion) is most closely related to the type

of /s/ to /S/ merger considered here because in merger-by-approximation and in these /s/-

retraction data the merger takes place through the gradual shift of one category toward

another in potentially all lexical items.

Each speaker was represented by an agent. The lexicon consisted of 10 monosyllabic

words: two with word-initial singleton /s/, two with word-initial singleton /S/, and the

remainder with initial /str/. As discussed in further detail in Stevens and Harrington

(2016), some of the speakers produced an audibly retracted /s/ in /str/-words, but others

did not. Once again, each word was associated with a cloud of points that was in this

case a DCT-parameterization of the first spectral moment (Jongman, Wayland, & Wong,

2000) calculated at 10 ms intervals between the fricative’s acoustic onset and offset. The

initial conditions included two phonological classes: one for the /s, str/ words combined

and the other for the two /S/-words. As before, each phonological class was associated

with a cloud of DCT data points. We ran the agent-based model using the same architec-

ture as for /u/-fronting described earlier, but incorporating splitting and merging as

sketched above.

Overall, the results showed scarcely any acoustic change over 20,000 pairwise agent

interactions. Perhaps this is unsurprising, given firstly the relative homogeneity of the

speakers (who were all adults of the same Australian English variety and from the

same community) and secondly because of the unrealistically small number of sepa-

rate lexical items. There was, however, some evidence of a change in how words

were associated with phonological classes as a result of splitting and merging. As

Fig. 5 shows, after 1,000 interactions /str/ split from singleton /s/ for most agents,

whereupon between 1 and 2 agents merged /str, S/ into a single class. Typically, those

agents who did merge /str, S/ (dashed lines) vacillated in doing so over the cycle of

iterations. Thus, as shown in Fig. 6, for one of the agents, /s, str, S/ were in three

separate classes at 10,000 interactions; then /str/ and /S/ merged between 11,000 and

12,000 interactions; and at 13,000 interactions unmerged them again into two separate

classes.

This instability in the category label but stability in the acoustic signal may represent the

first stages of change, or the potential for change to take place. Vacillation in phonological

affiliation may also be an appropriate model for the listener’s uncertainty in whether the

speech production had actually corresponded to /str/ or /Str/. An acoustic bias that remains

stable, combined with the potential for categorical change, is in some ways analogous to the
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first stages of sound change in Ohala’s (1993) model in which there is an abrupt change of

phonetic variants (e.g., from retracted /u/ to fronted /ʉ/) if the listener misparses coarticulation

in perception. But this re-categorization happens without the listener necessarily duplicating

this change (and/or applying it in other contexts) in speech production.

5. Discussion

A consequence of incorporating splitting and merging into the IP-model is that words

map onto sub-phonemic classes (e.g., food and move may come to be associated with

fronted /ʉ/ and retracted /u/, respectively). From the perspective of human speech pro-

cessing, Pierrehumbert (2003b) notes that positional allophones may be a more viable

form of abstraction than phonemes because phoneme classes are often too coarse for

parametric distributions to be distinguished from each other. Sub-phonemic abstraction is

compatible with the idea that non-contrastive phonetic variants can form part of the lexi-

con (Kiparsky, 2015, 2016) and with recent studies from perceptual learning showing that

listeners adapt to units that are more fine-grained than the phoneme (Reinisch & Mitterer,

2016; Reinisch, Wozny, Mitterer, & Holt, 2014). There is also other evidence for sub-

phonemic processing from second language (Polka, 1991) and new dialect learning (Ger-

man, Carlson, & Pierrehumbert, 2013). Splitting and merging were also agent-specific in

Fig. 5. The figure shows the number of agents (y-axis) per phonological class combination between 1,000

and 20,000 interactions averaged over 20 separate simulations. The lines representing the possible different

combinations are as follows: solid, three classes, /s, str, S/; dashed, two classes, merged /S+str/ and /s/; dotted,
two classes, merged /s+str/ and /S/; dashed-dotted, one class, merged /s+str+S/. For example, the top solid line

at the far left shows that 10 agents had on average three separate (unmerged) classes /s, S, str/ at 1,000

interactions.
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Fig. 6. Each panel shows the position of /s, str, S/ word tokens in a two-dimensional acoustic DCT space

between 0 and 13,000 interactions for one agent. The symbols (+, 9, Δ) show the affiliation to phonological

classes. For example, at 0 interactions, that is, the starting condition (top left) /s, str/ word tokens are in the

same class because they are both represented by Δ; at 11,000 and 12,000 interactions (bottom left), /S, str/

word tokens are in the same class (both represented by +) but in separate classes at 13,000 interactions (bot-

tom right).
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the IP-model. The analogous idea that sub-phonemic abstraction is speaker-specific is also

compatible with episodic models of speech. This is because phonological abstraction is a

generalization across word classes that are themselves generalizations over listener-speci-

fic stored episodes of speech (Pierrehumbert, 2003a,b). The sub-phonemic classes have a

stabilizing function that limits the uptake of episodes that stray into the phonetic space of

another sub-phonemic class. This stability through sub-phonemic classification of signals

in perception is one of the main reasons why phonetic variation need not (and typically

does not) result in sound change in the IP-model (Kirby, 2014; Ohala, 1993).

Various studies have shown that categorization in perception is strongly influenced by

different kinds of context. For example, the category boundary between /i-u/ is closer to /i/

in a fronting context such as /Vdə/ (Ohala & Feder, 1994) or /jist-just/, yeast-used (Harring-

ton et al., 2008) than in a non-fronting context such as /Vbə/ or /swip-swup/, sweep-swoop.
This effect of context on category boundaries is a consequence in the IP-model of sub-pho-

nemic abstraction. That is, the category boundaries between yeast-used and sweep-swoop
are necessarily different, if used and swoop map onto different sub-phonemic classes. The

size of such differences also varies between agents. Analogously, there is also evidence

from human speech processing that groups (Kataoka, 2011; Yu, 2013) or specific listeners

(Beddor, 2009; Fowler & Brown, 2000) vary in the extent to which they normalize for these

types of context effects.

Compensating for coarticulation insufficiently, which is one of the potential causes for

certain types of sound change in Ohala’s (1993) model, corresponds in the IP-model to a

merger of sub-phonemic classes. A major difference between the two models is that

whereas the listener’s failure to normalize for context in Ohala (1993) is causally related

to sound change, in the IP-model it may instead be an effect of the incrementally closer

approximation and eventual merger of sub-phonemic classes brought about by interaction.

This interpretation is then closer to incremental sound change in episodic models of

speech (see also discussion in Harrington et al., 2008).

In both episodic models and in the IP-model, word-specific phonetic detail that has

been found in many studies (e.g., Yaeger-Dror, 1996) is a consequence of associating

word classes with their perceived speech signals or exemplars. Pierrehumbert (2002) rea-

sons, however, that speech production does not involve sampling directly from such

exemplars but is instead mediated by phonological abstraction. Among the reasons given

are that many sound changes nevertheless apply with a great deal of consistency across

the words that meet the context for the sound change. In the IP-model by contrast, agents

sample from the word-specific space when producing a word. Phonological abstraction in

our model acts as a brake in perception to prevent any exemplar from being absorbed

into a phonological class if it is probabilistically closer to another class (principle (2) out-

lined earlier). For this reason, the statistical generalization across the exemplars of a word

class is necessarily molded in the IP-model by both word-specific detail and phonological

conformity (that is imposed indirectly in speech perception). Thus, sampling from the

word space in production need not preclude across-the-board sound changes. Moreover,

the dichotomy in the IP-model that has word-specific detail but which allows phonologi-

cal categories to merge in perception may provide a way of accounting for near-mergers
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(Labov, 1994, Ch. 12; Yu, 2007) and incomplete neutralizations (Warner et al., 2004) in

which minimal-pairs are shown to have subtle production differences but that are not per-

ceptible.

The machinery in the IP-model needs to be adapted to handle sound change with a

much longer time window than the types of sound change considered so far, such as

metathesis (Blevins & Garrett, 2004; Egurtzegi, 2014), dissimilation (Abrego-Collier,

2013; Alderete & Frisch, 2006), and phonologization (Hyman, 2013; Kiparsky, 2015;

Kirby, 2013, 2014). We are currently exploring the extent to which it is possible in the

IP-model to derive this type of change as a consequence of an interaction-driven incre-

mental shift in shape trajectories.

The phonetic biases that are likely to lead to sound change in the model by Lindblom,

Guion, Hura, Moon, and Willerman (1995) are those due to hypo- and hyperarticulation.

Phonetic reduction is also central to Bybee’s (2001) usage-based model of sound change.

For Trudgill (2011), reduced forms are especially likely to be phonologized over long

time periods, possibly leading to greater phonological complexity, in small, remote,

socially tightly knit communities. This is because listeners can bring to bear more top-

down knowledge in such societies in which interlocutors are likely to be known to each

other and in which vocabulary items and topics are also often repeated. Modeling such

relationships is theoretically possible using an extended architecture of the IP-model, but

it will obviously require very many more speakers, lexical items, and variations in speak-

ing style.

6. Conclusion

The purpose of the IP-model is to bridge the gap between two different models of

sound change: those that are concerned with the phonetic conditions that can give rise to

sound change (Ohala, 1993) and those whose primary focus is on how social factors con-

strain or propagate its spread around the community (Eckert, 2012; Labov, 2001; Milroy,

1992). Both provide crucial insights into the evolution of sound change and while recog-

nizing that some variationist research has been concerned with how phonological change

is related to the transmission of phonetic variation between individuals (Dinkin & Dods-

worth, 2017; Raymond, Brown, & Healy, 2016; Rohena-Madrazo, 2015), there is not

much common ground between them. Moreover, we agree with Lindblom (1998) that it

is unnecessary to limit the phonetic contribution to sound change to the initiation stage.

To bridge this gap, the IP-model seeks an answer to the question: What conditions are

required for the interaction between individuals to convert existing phonetic biases into sound

change? This question is a computationally tractable way of reformulating the famous ques-

tion of the actuation of sound change: Why do changes in a structural feature take place in a

particular language at a given time, but not in other languages with the same feature, or in the

same language at other times (Weinreich, Labov, & Herzog, 1968)?

This intermediary stage of sound change in the IP-model when a stable phonetic bias is

pushed by interaction into unstable change is essentially non-social, that is, a more general
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consequence of speech (Pardo, Gibbons, Suppes, & Krauss, 2012) and motoric (Shockley,

Richardson, & Dale, 2009) accommodation across individuals who happen to come into

contact with each other (Labov, 2001, pp. 19–20). We contrast this with a social view of

sound change in which speakers preferentially copy the speaking style of the social category

that they want to belong to (see, e.g., Baker et al., 2011; Garrett & Johnson, 2013). These

two different perspectives are appropriately summarized by Siegel (2010), who distinguishes

between a linguistic ambience effect of imitation in which the imitation is not conditioned

by social factors but is “automatic” or “reflexive” as opposed to accommodation (Giles, Tay-

lor, & Bourhis, 1973), which, according to Siegel (2010), “is socially motivated, arising

from an unconscious desire for social approval from one’s interlocutors.” This nonsocial

propagation that in the IP-model is consequence of a combination of phonetic asymmetries

and population dynamics is also likely to be the initial force controlling the development of

dialects in new world (Trudgill, 2008) or new town (Kerswill & Williams, 2000) settings. It

is also likely to be the level of operation of what in sociolinguistics is referred to as sound

change from below (Labov, 2007). Trudgill (2004) notes that children are the main drivers

of this non-social change. Compatibly, Nielsen (2014) has shown that children are especially

prone to imitation while a study by Nardy, Chevrot, and Barbu (2014) showed phonetic con-

vergence due to peer interaction within a group of primary school children, but without any

significant influence from role models (neither from teachers nor peers that children liked).

In the agent-based model developed by Pierrehumbert, Stonedahl, and Dalaud (2014), lan-

guage innovations are primarily spread between ordinary near neighbor individuals rather

than from those who enjoy high prestige by being well connected. These are the types of

interaction and change that are most relevant to the IP-model in linking the phonetic condi-

tions that have the potential to bring about change to its initial spread through interaction

among a community of speakers.

The cognitive architecture for effecting these initial stages of non-social change in the

IP-model requires a probabilistic association between word classes and remembered

dynamically changing speech signals that may be updated through interaction. This

updating is in turn dependent upon classification in perception using a level of sub-

phonemic abstraction that is both a further generalization across word-classes and also

speaker-specific. Determinism (Trudgill, 2004, 2008) only has a very limited role to play

in the IP-model and is a consequence of both commonality in the design of language

and its use across individuals who have similar sets of vocal organs and hearing systems,

as well as the potential to imitate and mould each other’s mappings between words, sub-

phonemic classes, and speech signals. The far bigger component of the IP-model is

stochastic in that whether or not sound change actually comes about depends upon which

speakers regularly speak to each other, whether a phonetic bias happens to be magnified

by interaction, and whether or not sub-phonemic classes are fragmented and regrouped

over time.

These probabilities in combination explain why spoken accents (Cohen, 2012) and lan-

guages are phonetically so idiosyncratic (Pierrehumbert, 2002). They also explain sound

change’s mercurial side, which goes to the very core of the actuation problem referred to

earlier: why sound change may happen under one set of circumstances, but not another.
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Note

1. The software for running the agent-based modeling can be downloaded from ftp://

ftp.bas.uni-muenchen.de/pub/BAS/ABM/DemoABM.1.zip
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