
ABSTRACT
In our experiment we used a bigram language model and a
standard speech recogniser to test if linguistic information is
related to the position of silence, articulatory noise, background
noise, laughing and breathing in spontaneous speech.

We observed that for silence and articulatory noise the
acoustic modelling is more important than linguistic information
represented in the bigrams of a language model. Breathing carries
useful information that can be described in a language model,
because including it into the language model improves test set
perplexity and recognition accuracy.

This means that precisely defined noise items add some
linguistic knowledge to the language model and contribute to a
better performance of an automatic speech recogniser.

1. INTRODUCTION
Language models using bigram statistics are standard tools in
automatic speech recognition (ASR). Usually only the bigrams of
orthographic units are considered. In recent years other authors
have drawn their attention to modelling hesitations and
disfluencies in spontaneous speech additional to lexical words
[7][8].

In this article we will discuss the influence of breathing,
articulatory noise, laughing, background noise and silence on the
communication process. Our hypothesis was that the perplexity
of a language model containing an item which carries linguistic
information should decrease compared to a model containing
only words, thus possibly improving speech recognition. To
evaluate the influence of the acoustical modelling vs. the
language model we conducted several experiments on a standard
HMM speech recognition system.

Our investigation is based on the VERBMOBIL 1 Corpus
consisting of spontaneous speech dialogues uttered by German
native speakers.

The following section describes the data and the ASR
system used in our experiments, while the third and fourth
section discuss the usage of silence and other noise categories
respectively.

2. EXPERIMENTAL SETUP
2.1 The Verbmobil 1 Corpus
During the first part of the VERBMOBIL project 789
spontaneous speech dialogues have been recorded and
transliterated [1].

In all the recordings two German native speakers were asked

to fix a date for a business meeting [2] by using previously
prepared diaries. The scenario was modified slightly in different
ways. In the simplest case they only had to fix up to three dates
on a business trip or for a short meeting. More complicated tasks
included arranging a flight or a train to their appointment or were
even complete travel planning. The dialogues were recorded in
Kiel, Bonn, Karlsruhe and Munich, which means that the
vocabulary of each site is influenced by different regional
variants of standard German.

Besides orthographic items breathing, speech pauses, four
different classes of hesitations, six classes of articulatory noise
and four classes of background noise have been carefully
annotated by human transcribers [3]. For our investigation we
merged some of these classes and ended up with the set of items
displayed in Table 1.

 breathing
 articulatory noise (swallow, cough, smack)
 laughing
 background noise (knock, buzz, rustle)
 silence

Table 1: The set of noise items used in our investigation

For this investigation we used 729 dialogues containing 329897
uttered words (inclusive hesitations) and 62513 noise items to
train the speech recogniser and to build the language models. The
test corpus consisted out of 64 dialogues (15043 words and 3221
noise items).

2.2 The Recogniser
The recogniser uses the Hidden Markov Model Tool Kit (HTK),
which is commercially available by Entropic [6]. The acoustical
signal is transformed into a 39 dimensional Vector, that consists
of logarithm of Energy, 12 mel-cepstral coefficients, their delta
and delta-delta coefficients. The vectors are calculated every 10
msec.

The HMM modelling is based on a set of 48 phonemes
including regular phonemes and the noise items listed in Table 1.
We trained 1075 triphone models for phoneme combinations
which occurred more often then 150 times in the training corpus.
The remaining triphones were modelled by simple monophones.
The HMMs have three to four emitting nodes with single
gaussians modelled by full covariance matrices.

We used a back-of bigram language model, that takes the
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bigram probability, if at least one bigram has been observed in
the training data, otherwise it calculates the transition probability
from the unigram count. The vocabulary size was 1263 items,
based on the wordlist of the transcription of the test data. Only
for these words bigrams have been included in the language
model. Silence and noise items are not evaluated in the word
accuracy of the recognition.

3. THE SILENCE MODEL
The quality of the silence model has a significant influence on the
performance of the recogniser. We compared three different ways
of silence modelling.

In the first system every word is followed by a one-state
silence model that may be totally bypassed (t-model). The second
system has a more elaborate silence model after each word. It
consists out of a t-model that can optionally be followed by up to
three instances of a three-state silence HMM that was trained to
labelled silence portions of the training corpus. In both systems
there is no entry for silence in the language model.

In the third system every word is followed by a silence t-
model and the above described three-state silence HMM was
added to the language model. The word recognition accuracies
obtained by these three systems are given in Table 2 (Accuracy is

defined as (no. of words – deletions – insertions – replacements)
/ no. of words).

SYSTEM ACCURACY
simple silence t-model after each word 56.64%
complicated silence model after each word 65.00%
simple silence t-model after each word and
silence in the language model

64.78%

Table 2: Recognition accuracies for different silence modelling.

The performance of the second and the third system is almost
identical, but far better than that of the first one. Another
experiment with the complex silence model after each word and
silence in the Language model reached 65.01% accuracy. That
means the language model does not contain any linguistic
information related to the position of speech pauses that would
improve the recognition accuracy.

According to Table 3 the perplexity per transition increases
to a great extend when the silence notation is included into test
set and language model. This is due to the distribution of bigram
probabilities P(word|silence). Silence is with 32129 hits the most
frequent item in the training corpus. Nearly half of the transitions
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Figure 1: Bigram distribution of the silence item and some frequent words in the corpus.



to the words in the test corpus have been observed in the training
data. Therefore the entropy of the bigram distribution of silence
is amongst the lowest 20% of all items of the lexicon.

Figure 1 displays the bigram distributions of silence and of
some frequent words of the corpus. For the 50 most likely
transitions the line for silence is extremely low compared to the
others. This is the reason for the increase in perplexity caused by
the silence model.

The bigram distribution of silence in the language model is
not even approximately uniform. In system 2 it is equally likely
that each word is followed by the silence t-model, one three-state
silence HMM, or even two three-state HMMs. All these findings
suggests that the gain in recognition accuracy must be due to
good acoustic modelling.

4. THE NOISE CATEGORIES
For all the following investigations system two with the complex
silence model and only words and hesitations in the language
model will be regarded as the baseline system. The complex
model represents the best silence modelling and was used in all
following tests.

LANGUAGE MODEL PERPLEXITY
words only 71.05
words, articulatory noise 71.25
words, breathing 68.40
words, laughing 71.15
words, background noise 73.85
words, silence 89.03
words, articulatory noise, breathing 68.37
words, articulatory noise, breathing,
laughing

68.44

words, articulatory noise, breathing,
laughing, background noise

70.57

Table 3: Perplexity per transition, calculated for different
language models. The perplexity was derived from the same basis

test set to which the relevant noise annotation was added. The
language models were derived from the training set with the

specified annotation added.

4.1 Background Noise
Some of the background noise is caused by the speakers, when
they knock on the table, move their seats or rustle with paper.
Some subjects were observed to knock on the table in the rhythm
of their speech.

The test set perplexity increases when background noise is
included into the language model. And the recognition accuracy
does not substantially change when background noise is
supported in the language model. It occurs 7413 times in the
training corpus and 492 times in the test set and is therefore the
fifth frequent item in the data base.

Since we discarded the noise markers that superimposed
words, background noise was only observed within silence and is
therefore nothing more than an inefficient silence model.

4.2 Laughing
Laughing is a very rare item, it occurs 239 times in the training

corpus and only twice in the test set, therefore it does not alter
recognition accuracy and test set perplexity substantially.

4.3 Articulatory Noise
Articulatory noise is caused by swallowing, coughing or
smacking. It can be found amongst the ten most frequent items
and occurs 5889 times in the training corpus and 328 times in the
test set. Included into the language model it causes an
insignificant increase in the test set perplexity and a gain of
0.62% in recognition accuracy. This suggests that articulatory
noise carries not much linguistic information related to its
position in spontaneous speech and the increase in recognition
accuracy comes largely from the acoustic modelling.

4.4 Breathing
There are many publications in phonetic journals that deal with
breathing during speech. [4] and [5] report that inspirations are
largely taken at sentence boundaries or other positions
appropriate to the grammatical structure of spontaneous speech.

Breathing is with 16843 hits in the training corpus and 771
hits in the test corpus the second frequent item in both sets. It
causes an insignificant decrease in the test set perplexity and a
gain of 0.52% in recognition accuracy. Therefore breathing
contributes indeed a bit of linguistic information related to its
position in spontaneous speech to the language model.

LANGUAGE MODEL ACCURACY

baseline model, words only 65.00

words, background noise 65.23

words, laughing 65.22

words, breathing 65.52

words, articulatory noise 65.62

words, articulatory noise, breathing 65.73

words, articulatory noise, breathing, laughing 65.72

words, articulatory noise, breathing, laughing,
background noise

65.71

words, articulatory noise, breathing, laughing,
background noise, silence

65.76

Table 4: Recognition accuracies for different language models.
The recognition for all systems was performed on the same test

corpus and the recogniser used the complex silence model

4.5 Combinations
The language model which contains breathing and articulatory
noise has the lowest test set perplexity in our experiment and
increases the recognition accuracy by 0.73%

Including all noise items and silence in the language model
improves the recognition accuracy to 65.76% compared to the
baseline model with 65.00%. This difference is significant at the
0.1 level.

A recognition system with the simple silence t-model at the
end of each word and all noise items plus silence in the language
model reaches 65.69% recognition accuracy.



5. CONCLUSION
Our hypothesis that linguistic information related to the position
of non-verbal items in spontaneous speech is reflected in a
bigram language model was confirmed only for breathing. This
result encourages some effort to improve the acoustical model of
breathing.

Articulatory noise and silence did not improve the
perplexity of the language model on the test set. One possible
explanation could be that both items do not carry linguistic
information; the other is that the linguistic information carried by
these items cannot be represented in a bigram statistic.
For instance, articulatory noise is a mixture of swallowing,
coughing or smacking. If these sub-categories each hold different
types of linguistic information, the distribution is blurred and
therefore spoils the test set perplexity. The same effect could hold
for silence, which cannot easily be split off into sub-categories.
Therefore a complex silence model after each word is more
effective than including silence into the language model.

To get more reliable results a bigger corpus should be used
for training and testing.
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