= (MU IS

E{r;i::}r:;at_ INSTITUTE OF PHONETICS
- AND SPEECH PROCESSING

Modelling similarity perception
of intonation

Uwe Reichel, Felicitas Kleber, Raphael Winkelmann
IPS, LMU Munchen

reichelu|kleber|raphael@phonetik.uni-muenchen.de

25th June 2009



e Introduction

e Perception of intonation similarity

e Relation between physical and perceptual intonation distance
e Modelling the perception of similarity

e Discussion and Conclusion

Content



Research context

¢ Intonation modelling
— based on human perceptual equivalence judgements (e.g. IPO, t'Hart et

al., 1990)

— based on physical distance measures not motivated by human perception
(e.g. PaintE, Mohler& Conkie, 1998)

— goal: combine both — perceptual justification + automatisation
e Evaluation of Speech synthesis systems (Clark&Dusterhoff, 1999)

e Second language acquisition (Hermes, 1998)

Given Approaches

e Physical measures: e.g. correlation, absolute distance, RMS (Hermes, 1998),
tangential and warping methods (Clark&Dusterhoff, 1999)

e Evaluation: e.g. correlation with human judgements derived from an ordinal
scale (Hermes, 1998), so far up to 0.7.
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Hypotheses and goals

e Ability of subjects to judge intonation similarity:

(1) Identical contours are judged to be more similar than different
contours

(2) Contour judgements are consistent

e signal properties guiding the similarity judgements:

(3) There is a measurable relation between acoustic and perceived
intonation similarity

Introduction



Subjects

e n=24 (17 female)

e age: from 20 to 42

e trained phoneticians: 19
e musical education: 14

e German native speakers: 19
Stimuli

e delexicalised [mama:ma] stimuli (vs. top-down processing)
e generated by Mbrola (male German voice; Dutoit et al., 1996)
e relevant f0 movement on the center syllable

e onset and nucleus durations: 60 and 200 ms, 130 and 300 ms, and 80 and
220 ms respectively (which was judged as natural and yielded the desired
prominence relation in an informal pretest)
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e f0 generation:
— target syllable: third order polynomials, coefficients drawn randomly from
ranges derived from fO stylised corpus (IMS corpus, male German voice)

— remaining contour: cubic spline extrapolation

— constraints: concerning fO range and distance of subsequent values
Method

e stimuli presented pairwise to the subjects over head phones (ISI: 0.5 sec,
n(pairs)=300, presented once, 30 trial blocks)

e similarity judgement by clicking in a white area on the screen, the vertical
position corresponding to perceived similarity

e no scale given since:
— there is no sequence of equidistant categories related to similarity

— ordinal scale hard to interpret (informal pretest)

e stimulus subsets:
— IDENT: 20 pairs of identical contours to test Hypothesis (1)

— CONSIST: 40 triplets (pairs presented 3 times) to test Hypothesis (2)

e removing judgement bias by normalising the answers to [0 1], reflecting the
amount of perceived similarity
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Results

e Capability of similarity judgements
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Figure 1. Left: Perceived similarity of identical vs. differing contours. Right: Inconsistencies
(standard deviations) for repeated pair and randomly combined pair triplets.

— means of identical vs. different contour similarity judgements: 0.92 vs. 0.43,
h.s. (one-tailed Welch test, p < 0.0001) — Hypothesis (1) confirmed

— mean inconsistencies (standard deviations) of repeated vs. random pair
triplets: 0.17 vs. 0.25, h.s. (one-tailed Mann-Whitney test, p < 0.0001)
— Hypothesis (2) confirmed

— Subjects are capable to judge intonation similarity
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e transforming similarity to distance judgements: d =1 — s

Correlations

Table 1: Pearson r between perceived distance of intonation contours and a collection of their
physical distances applied to raw f0 contours (in ST) and polynomial coefficients.

contours | coefficients
Euclidean 0.40 0.38
Cityblock 0.38 0.37
Chebychev 0.47 0.38
1—Cosine 0.22 0.32
1—Correlation || 0.33 0.29

e all correlations significantly different from zero (t-test, p =0) —
Hypothesis (3) confirmed

e but nevertheless low — metrics in isolation not capable of predicting
perceived distance
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Relative weights

e grouping of the metrics by PCA loadings into four categories
— pci: non-correlation-based distances for fO contours

— pco: non-correlation-based distances for polynomial coefficient vectors

— pcs: correlation-based distances (1—Cosine, 1—Correlation) of polynomial
coefficient vectors

— pcy: correlation-based distances of fO contours

e linear regression using pci—pcy as predictors for distance perception and
comparing the regression weights

e result: pcy > pcg > pcy > pey

e non-correlation-based distances of f0 contours have the highest
relative influence on perceived distance
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Features

e 1—Correlation of the polynomial coefficient vectors
e pairwise absolute distances between the coefficient values

e Euclidean, Chebychev, and 1—Correlation distance between the onset
contours (in ST) of the target syllable

e Euclidean, Chebychev, and 1—Correlation distance between the nuclei
contours of the target syllable

e dichotomous algebraic sign comparison of the slope coefficients

e absolute differences in 7 equally sized area segments between the contours
e absolute difference of number of contour maxima

e previous answer of the listener

e Preprocessing: orthogonalisation by PCA

Modelling the perception of similarity



Model 1: linear regression
e pairwise interaction model: d, = wo + > wifi + > . Zj wi; fif;

Model 2: Two-layer feed-forward networks

Figure 2: Network Architecture
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Figure 3: Neuron model. Output O; is given by its response a to summed weighted input I;.
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Figure 4: Activation functions a(1;). Here logsig is chosen.

e training:
— modification of the weights w;; in order to yield outputs d, as close as

possible to human distance judgements d
— gradient descent backpropagation with momentum and adaptive

learning rate vs. stranding in and oscillating around local optima
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Figure 5: Gradient descent learning: update of weight w; guided by local minimisation of error
E (=MAE between d and d,).
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Method

e excluding data from two subjects performing very badly with respect to
judgement consistency

e 10-fold cross validation

Results

e human performance: standard deviation of the judgements for repeated
contour pairs (= root mean squared error RMSE assuming, that the
correct answer is given by mean value)

RMSEd-triplett — \ o Z(dz — g)z

e model performance: RMSE for each model prediction (= absolute error)

RMSE4, = \/(dy—d)?=|d,—d
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Figure 6: Human errors in terms of standard deviation of the judgement of repeated pair
triplets. Absolute errors of the neural network and the regression model.

e one-way ANOVA, factor performer ("human"” vs. "feed forward network” vs.
"linear regression” ): significant mean differences (p = 0.002)

e Tukey-Kramer post-hoc: only significant differences between human and the
linear regression performance

e trained feed forward networks do not perform significantly worse than
the human listeners
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Setting of the perception experiment

e humans are able to perceive intonation similarities wrt judgement consistency

e worse performance of non-German natives: perhaps different prominence
perception of center syllable

e not addressed yet:
— longer segments than one target syllable

— possible interference between perceptual similarity of two contours and
their functional equivalence (Kohler, 1987)

Physical representation of perceived similarity

e low correlations for metrics in isolation and in combination
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e possible reasons:
— not all physical influence factors have been found yet

— factors work together in a more sophisticated manner than examined here

— the appropriateness of metrics is not adequately expressed in terms of
correlation alone (see below)

e further extensions: e.g. weighting the contour distances by intensity
(Clark&Dusterhoff, 1999)

e proposed method to determine the relative weight of influence factors by
grouping them to PCs and by comparing the PC weights in a linear regression
model

Model evaluation

e possible to develop acceptable feed forward network models to predict
intonation distance

e performance not significantly worse than human performance vs. low
correlation between model outputs and human perception data —
suggesting that a model’s performance is not adequately expressed in
terms of correlation alone
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