Measuring physiological speech entrainment with electromagnetic articulography (EMA)

Phil Hoole & Jonathan Harrington IPS Munich

Setting up a dual EMA configuration for studying speaker interaction

Some EMA background

A set of transmitter coils generates an alternating electromagnetic field at frequencies of about 10kHz

- ===> Induction of a position- and orientation-dependent signal in small sensors attached to the articulators
- Captures data for both visible (including head) and invisible articulators in readily analyzable form

Good temporal resolution (samplerate typically > 200Hz)

First approach: Edinburgh Speech Production Facility

Two Carstens AG500 machines

Main drawback: Both systems use the same transmitter frequencies

==> interference ==> speakers must be at least 6m apart

==> in practice, in separate rooms (connected by CCTV)

Geng, C. et al. (2013) *Recording Speech Articulation in Dialogue: Evaluating a synchronized double Electromagnetic Articulography Setup.* J. Phonetics 41(6): 421-431.

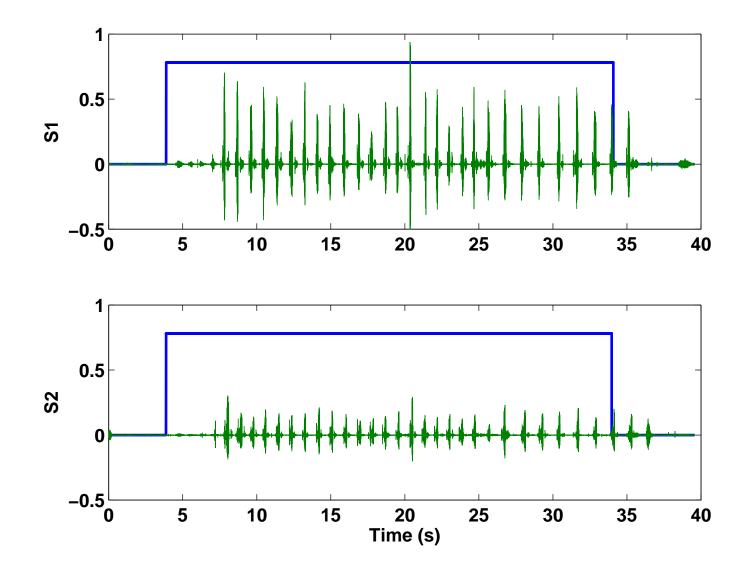
Second Approach

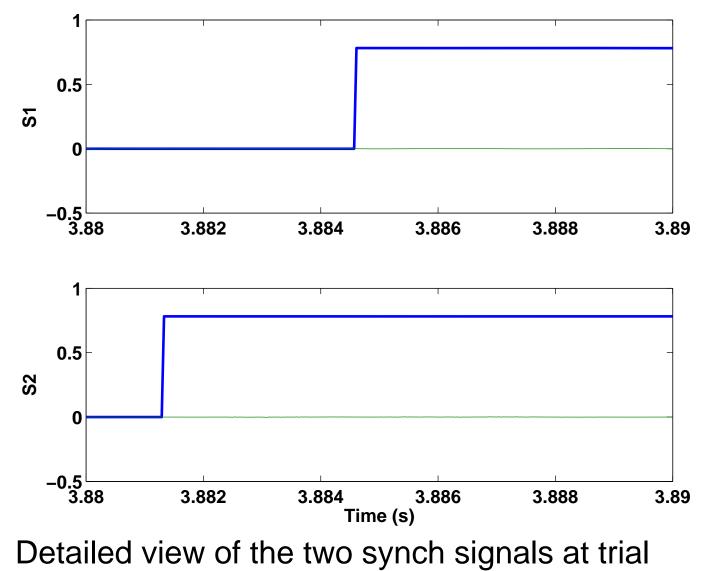
1x Carstens AG500 with 1x NDI Wave

No mutual interference of transmitter frequencies

Speakers can be face-to-face, about 2m apart

Pilot experiment at MARCS lab, Univ. W. Sydney:


Tiede, M., Bundgaard-Nielsen, R., Kroos, C., Gibert, G., Attina, V., Kasisopa, B., Vatikiotis-Bateson, E. & Best, C. (2010). Speech articulator movements recorded from facing talkers using two electromagnetic articulometer systems simultaneously. Proceedings of Meetings on Acoustics, Vol. 11, 060007


Vatikiotis-Bateson, E., Barbosa, A. V. & Best, C. (2014). Articulatory coordination of two vocal tracts. J. Phonetics 44, 167-181.

Our setup: 1 x Carstens AG501 with 1x Carstens AG500 No mutual interference at inter-speaker distances > 2m

onset

Further features of recording setup

- No noisy equipment in recording booth
- HDV video: merged view of 2 cameras plus control PC monitor
- Additional synchronized measurement signal are easy to record

Pilot experiment based on Tiede et al. experiment at MARCS

EMA sensors

articulators: tongue tip, tongue body, upper lip, lower lip head: upper incisors, bridge of nose, behind left and right ear

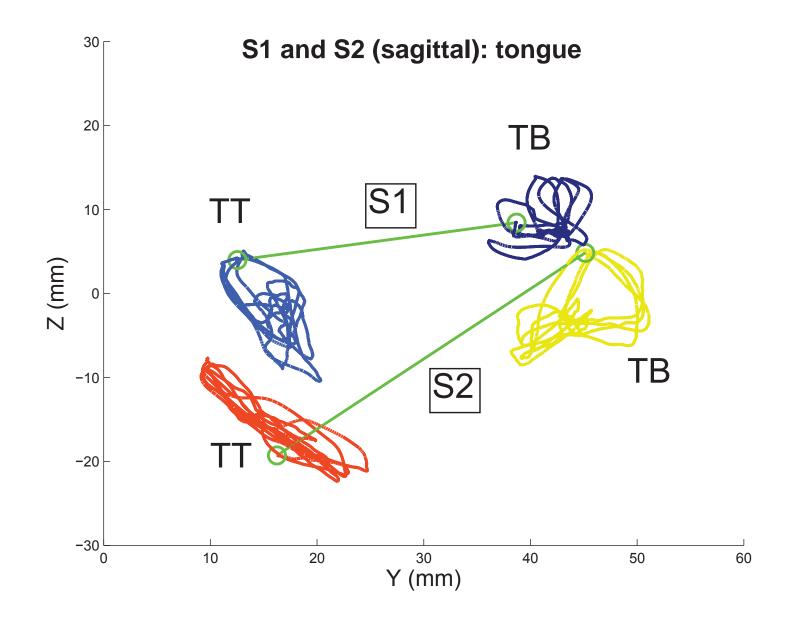
After recording, head sensors used

- (1) to factor out head movement from articulator sensors
- (2) to calculate the rigid-body parameters of head movement (3 translations, 3 rotations)

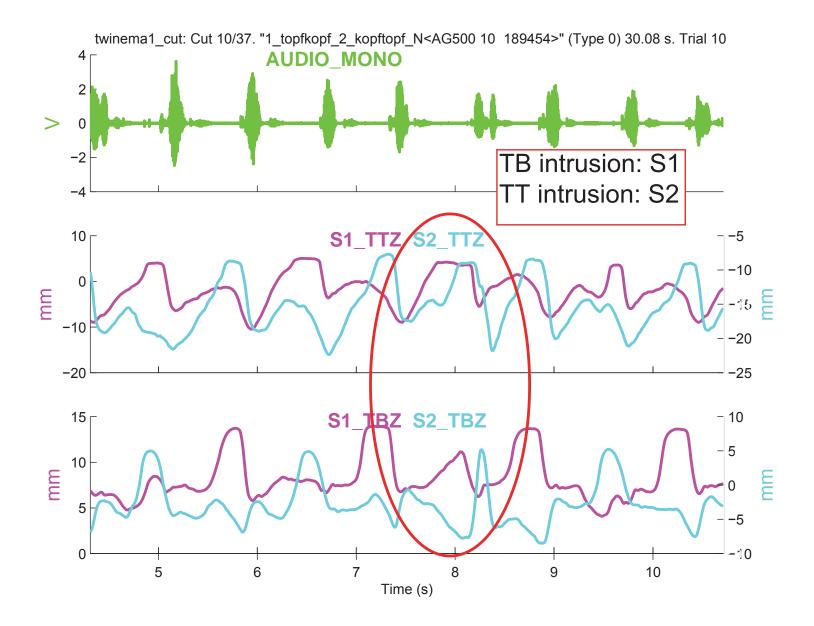
Subjects spoke alternating word sequences for 30s, e.g.

S1: "Topf Kopf Topf Kopf"

S2: "Kopf Topf Kopf Topf"


sometimes "disturbed" by instructions from investigator to speed up or slow down.

cf. Goldstein, L., Pouplier, M., Chen, L., Saltzman, E. & Byrd, D. (2007). *Dynamic action units slip in speech production errors*. Cognition 103, 386-412.


[some non-alternating sequences also recorded, e.g.

S1: "Topf Topf Topf Topf"

S2: "Kopf Kopf Kopf Kopf"

Movie demo

Final comments

Examples of entrainment in this presentation based on rhythmic utterances ("speech-error" paradigm).

But Tiede & Mooshammer have recently applied the dual-EMA setup to a more traditional phonetic convergence paradigm.

Kinematic properties of velar consonants in test items more similar after a period of face-to-face interaction.

Tiede, M. & Mooshammer, C. (2013) Evidence for an articulatory component of phonetic convergence from dual electromagnetic articulometer observation of interacting talkers. Proceedings of Meetings on Acoustics, Vol. 19, 060138

Outlook

Upgrade AG500 to AG501 (2x AG501 setup is possible because AG501 can be configured to different transmitter frequencies)

Advantages of AG501:

data-processing much less time-consuming

- large head-movements captured with much less measurement error
- subject less enclosed (easier to combine with optical systems)
- ===> improved possibilities for more natural subject interaction

Other labs (e.g. USC) are exploring use of dual NDI Wave systems.

