
1At IPS we have usually followed these procedures for Tapad and Kalman data in
parallel. This is outlined in detail in the parallel document covering the relevant procedures
for Kalman data. We have not actually experimented with parallel use of Calcpos data,
although this would be basically straightforward. After generating the adjusted amplitudes it
will simply be necessary to convert them from mat-files back to raw binary files so that
Calcpos can use them as input data (see the function saveamp.m).

EMA processing 1 amplitude adjustment

Amplitude Adjustment
Background
See Hoole/Zierdt (2010) for motivation and background to the procedures implemented here,
and explanation of the term ‘residual’ that is used frequently below (especially sections
20.3.1 and 20.3.2.1, pp. 340-345).

The basic concepts: When the position calculation algorithm determines a position estimate
for a given sensor it uses the magnetic field equations to generate the amplitude
measurements that would be expected for that position. These expected amplitudes (6 for
each sensor, corresponding to the 6 transmitters) are stored in the posamps subdirectory
within the directory where the position data itself is stored. In any real-life situation the best
overall estimate of the sensor positions will not generate exactly the amplitudes that were
actually measured. The differences between the measured amplitudes and the generated
‘posamps’ are referred to as the residuals. The so-called rms value stored together with the
position data is (as the name indicates) the root mean square value over the 6 residuals for
each sensor.

The amplitude adjustment procedure is based on a regression analysis which aims to predict
the residual for each sensor-transmitter pair from all transmitter signals for that sensor.
It is important to base this regression analysis on data that is likely to be reliable.
Accordingly, the first stage is to use do_do_comppos to collect various statistics on the data,
so that these can then be used to eliminate unusual data from the regression analysis.

In principal these procedures can be done separately and in parallel for data based on Tapad,
Calcpos and Kalman (if available).

For simplicity, we will only consider the case of Tapad data here1.

The steps in detail

After loading do_do_comppos into the editor:
Set doshowtrial to 0
Set basepath to point to the tapad solution
Comment out altpath
Enter trials that should be excluded from the statistics calculations in restlist

The regression analysis requires data that is representative for the experimental tasks
that one actually wants to analyze. So put into this list any trials where the subject
does anything unusual not related to the purpose of the experiment, e.g large body

2An additional set of figures is also generated, with names like
comppos_stats_ds_beststartl__comp6_trialn_1.fig. These show the total and
valid data per trial. If all data in the trial is valid then only one line will actually be visible.
This information is not needed for preparing the amplitude adjustment, but it should be
checked to make sure that there are no trials with unexpected lengths (and that no missing
data (NaNs) have been overlooked).

EMA processing 2 amplitude adjustment

movements with no speech, and conversely, also those where the subject is neither
moving nor speaking at all. The log file generated by the prompt program used at IPS
for running the experiments is usually used for this purpose.

Choose a value for compsensor
This should be the number of a sensor for which the position calculation appears to
have given stable results. The Euclidean distance will be calculated between this
sensor and all other sensors. Normally a reference sensor should be chosen (the
reason for this will become apparent shortly). The first choice is generally the sensor
on the bridge of the nose (it is generally reasonably in the centre of the measurement
field, and unlike a sensor on the upper incisors it is not in the nasty warm, moist
environment of the mouth). In unclear cases it will be necessary to proceed by a
process of elimination to determine which reference sensor has overall the most stable
distance to the other reference sensors.

Make sure that the specification for diaryfile is not commented out.
Set autoflag to 1 or 2 because here we are interested in the behaviour of each sensor over the
whole session, rather than in specific trials.

do_do_comppos computes statistics on rms, tangential velocity and euclidean distance from
the comparison sensor. These are displayed on the screen as the program is executed, but can
also be retrieved afterwards from subdirectory ‘figs/’.
For example, the results for sensor 1 can be retrieved with
open figs/comppos_stats_ds_beststartl__comp6_trialstats_1.fig
(the precise name may vary somewhat depending on the location of the input data; this
example assumes compsensor was set to 6)
In each panel the mean value is displayed in blue, the 2.5 percentile in green and the 97.5
percentile in red.
Check for any radical changes in the behaviour of the sensor over the course of the session. If
this is the case it may be preferable to set up the amplitude adjustment separately for different
parts of the session.2

In addition to these figures, the statistics are also stored in a text file (in the current example
it would be named ‘comppos_stats_ds_beststartl__comp6.txt’).
This text file also includes the suggested range of rms, tangential velocity and euclidean
distance for each sensor (calculated as the 5 and 95%ile over the upper and lower percentiles
of the individual trials).
The essential information in this text file can be printed out in the command window with
parsestats('comppos_stats_ds_beststartl__comp6.txt')
The last five lines are the important ones, since they arrange the information in a way that can
be directly used by the amplitude adjustment. Example:

EMA processing 3 amplitude adjustment

rmsthreshb = [3 5 5 6 6 3 3 5 11 9 8 7];
velthreshb = [170 150 230 40 110 40 60 220 30 40 80 90];
parameter7b = [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0];
lolimb = [75.0 70.0 76.5 67.0 96.0 NaN 69.5 89.0 155.0 154.5 83.0 85.5];
hilimb = [97.0 95.0 100.5 70.0 110.0 NaN 76.0 115.0 157.0 159.5 92.5 96.0];

Sensors are arranged from left to right in each line.
The fives lines are as follows:
rmsthreshb: upper boundary for rms, i.e any data with rms above this value will be ignored

in the regression analysis
velthreshb: upper boundary for tangential velocity
parameter7b: currently irrelevant for Tapad-based and Calcpos-based data, but very

important for Kalman (outlined in the parallel document)
lolimb: lower limit of euclidean distance from comparison sensor
hilimb: upper limit of euclidean distance from comparison sensor

(the last two lines have NaN for sensor 6, since the comparison sensor cannot
be compared with itself)

It is important to realize that these statistics are basically dumb: if there is an unusually large
proportion of unstable data for any sensor then they will not be realistic. For example, the
expected range of euclidean distances for the tongue relative to the nose sensor is about
20mm. If the automatic statistics give a value of, say, 50mm, then one will have to refer back
to the figures to see if a subset of potentially stable trials suggests a more plausible value.

A further important issue comes up here for the first time: The relative stability of the
different reference sensors. Clearly, if reference sensors can be absolutely rigidly fixed to the
head, and if measurement accuracy is perfect, then the distance between any pair of reference
sensors should not change. Thus, in the above statistics, the lower limit and upper limit of the
euclidean distance should be very close together. Later, we will need to decide which
reference sensors to use for normalization of head position. We here get a first indication of
whether there are noticeable differences in the likely quality of the data for the different
reference sensors.

Open the base version of the wrapper function do_ampvsposamp and save under this name.
Fill in the locations with ‘??’ with appropriate values. Paste in the last five lines from
parsestats in the location indicated, and decide whether any of these threshold values need
changing by hand. The main possible complication involves deciding whether to subdivide
the session.

While the script is running there is a great deal of output in the command window and also
various graphics are generated.
However, as the processing can take quite a while it is often more convenient to look at the
output afterwards (note that separate sets of output files are generated for each sub-part). The
graphics are stored in subdirectory ‘figs/’.
The command window output is stored in a log file something like
‘ampvsposampstats_dsbeststartl1_log.txt’ (depending on the path to the input data, sub-part
indicated by the digit before ‘_log’).

In the log file the main thing to check is that unexpected amounts of data have not been
excluded (this may mean the thresholds for rms etc. have been set wrong).

EMA processing 4 amplitude adjustment

Examine the lines like:
Total/unreliable samples : 4473 255

The details are given in lines like:
Trial 374. Bad samples (rms, vel. euc. p7 overall : 0 0 35 0 35

This indicates that a total of 35 samples have been eliminated for this trial for this sensor, all
based on the euclidean distance thresholds.

The analyses have to be carried out for every combination of sensor and transmitter
(indicated by lines like : 1 6)
The following lines give estimates of the distribution of the residuals before and after the
adjustment for ones such combination

Histograms (per 1000) of residuals (old then new) for bins with upper edges:
 5 10 15 20 25 30 Inf

===============================
 604 396 0 0 0 0 0
 1000 0 0 0 0 0 0

This indicates that before adjustment 60.4% of the residuals were in the region of 0-5, and
39.6% in the region 5-10. After adjustment 100% are below 5.

This information is also available from the graphics (names like
‘ampvsposampstats_dsbeststartl1_S1_oldnewres.fig’ where ‘S1' etc. stands for the sensor).
They show scatter plots of the old residuals and estimated new residuals. Improvements in
the rms can be expected if the new residuals cluster more closely around 0 than the old ones.

The most important output from the procedure is a small mat file named something like
‘ampvsposampstats_dsbeststartl1.mat’ (i.e basically the same name as the log file). It
contains the results of the regression analyses, and is needed as input for the next stage.
Normally the user will not need to be concerned with this file directly, but may need to check
that it is actually present (or has the expected name) if the next stage fails to work.

Applying the adjustments
The previous procedure has performed the regression analysis to capture any systematic
pattern in the residuals, but has not actually generated a new set of amp data.
This is carried out by the script do_adjamps.
There is not usually much that needs setting up in this script if the standard locations for the
old amps (input) and new amps (output) are used.
The division of a session into sub-parts should be copied from do_ampvsposamp. The only
difference is that no trials should be excluded.
The main decision is whether to apply the amplitude adjustments just to the full data or to
both the full and the downsampled data.
Here, we will assume that the adjustments are applied to both versions of the data, for reasons
that will become clearer in the next section (when combining Tapad with Kalman then other
choices may be more convenient).
After applying the adjustments to the downsampled data, do_tapad_ds should be run again
with the adjusted amplitudes as input.
The main reason for applying the amplitude adjustment is to reduce the chances of unstable
solutions. So if any sensors have looked unstable then it is, of course, interesting to determine

3Whenever we refer to start positions we always mean all five coordinates (i.e
including the orientation).

EMA processing 5 amplitude adjustment

whether the amplitude adjustment has improved the stability before continuing. In other
words, do_do_comppos can be used to compare the position data before and after amplitude
adjustment. In cases where there are big differences between the versions then one hopes, of
course, that the adjusted version looks preferable (e.g velocity patterns are more typical of
speech data).

In a worst case scenario, it may turn out that some data (maybe for just one sensor) is not yet
acceptably stable. In principle, it is possible to go through multiple cycles of adjustment for
individual sensors, but this has rarely resulted in radical improvements. It may then be better
to check whether one of the alternative position calculation procedures (Kalman, Calcpos)
gives better results for that sensor.

Applying the amplitude adjustment to the full data will result in the creation of a new
subdirectory ampsfiltadj1/amps.
These amp data will in turn provide the input for running tapad on the full data.

Tapad with full data

Assuming the downsampled Tapad data based on the adjusted amplitudes is satisfactory, it is
possible to do the full run of tapad in what is referred to as recursive mode.

This means that existing position data is used to provide start positions3 on a sample by
sample basis.
The existing position data in this case is the downsampled Tapad data (upsampled internally
be the program to match the full data rate).
This contrasts with the way we have used start positions up to now, in which the start
position provided by the user is just used for the first sample in the trial. After that, the start
position for calculating sample n+1 simply consists of the positions just calculated for sample
n.

What are the advantages of the recursive approach?
1. Since the start position for every individual sample is probably very close to the

actual solution Tapad is less likely to go off into outer space.
2. Also Tapad will run faster because fewer iterations are needed to reach the solution.
3. And if Tapad does go off into outer space then this increases the chances that the

outliers will be restricted to isolated samples: with the non-recursive procedure there
is always the danger that the algorithm will become ‘locked’ into the vicinity of a
wrong solution, since the wrong solution is used as the start position for the next
sample. Isolated outliers are generally easier to identify and fix than extensive
mistrackings (see the topic “velocity repair”).

The wrapper script for this version of tapad is do_tapad_full_base.m
This will need editing so that the variable 'recursivestartfile' contains the path to the
downsampled Tapad data to be used as the recursive input.

EMA processing 6 amplitude adjustment

Possible complications:
Assume the downsampled Tapad solution is very poor for one sensor. Tapad is set up so that
not all sensors have to be processed the same way. Accordingly, one could first run Tapad as
outlined above for all sensors except one. Then tapad can be run again for the missing sensor,
using the same output files since any sensors already in the output files are not overwritten.
For this missing sensor there are a number of possibilities:
1. Simply run the program non-recursively with a single start position
2. As a desperate measure: There is a pair of functions that allows the position of a given

sensor to be predicted on a sample by sample basis from a group of other sensors.
This prediction can then be used as the recursive input. See the help text for
predictsensorfromothers.m and calcsensorfromothers.m for details.

Final word
Setting up the amplitude adjustments is one of the most time-consuming tasks in processing
the data, since a lot of user interaction is required.
If one is absolutely sure that the data is stable then one could consider skipping the
adjustments altogether.
The adjustments could also probably be skipped for any sensor where the rms value does not
exceed about 5, since a low rms means that the regression analysis on which the amplitude
adjustment is based is unlikely to find any systematic pattern in the residuals.
Nevertheless, being forced to examine the data and collect statistics on velocity, euclidean
distances etc. helps to build up a feeling for typical patterns in the data, and makes it less
likely that one will overlook screwy data when it does occur.

