
The EMA Guide

Andreas Zierdt and Christian Geng

April 23, 2008

Contents

1 Preface 3

2 Equipment and experimental setup 4

2.1 Preliminary thoughts . 4
2.1.1 Setting up the AG500 . 4
2.1.2 Potential error sources . 4

2.2 Computer environment . 4
2.2.1 Required software . 4
2.2.2 Storage issues . 4
2.2.3 Using the Linux workstations for EMA processing 4

2.3 Calibration . 5
2.4 Attaching the sensors . 5

3 Data acquisition 5

4 Data Preprocessing 5

4.1 Setting up the MATLAB scripts . 5
4.2 Conversion and filtering of the AG500 data . 5

4.2.1 dofilteramps.m . 6
4.3 Slicing up long trials . 7
4.4 Working on the downsampled data . 7

4.4.1 Estimating start-values with do tapad ds.m . 7
4.4.2 Position calculation for the complete trial-list 8
4.4.3 Adjusting the amplitudes(1) . 8
4.4.4 Checking the adjustment by a new position calculation run 11

4.5 Working on the full resolution data . 12
4.5.1 Adjusting the amplitudes(2) . 12
4.5.2 Position calculation for the complete trial-list, full sample rate (1) 12
4.5.3 dovelocityrepair . 13
4.5.4 Position calculation for the complete trial-list, full sample rate (2) 14
4.5.5 Insert Euclidean distance measure of similarity between runs 15

1

EMA Guide 2

5 Head Correction 15

5.1 Processing occlusal plane trials . 16
5.2 Construction of reference objects . 17

5.2.1 Coordinate Systems . 17
5.2.2 Create reference object - User interactions . 17

5.3 Perform Correction . 19
5.4 Exporting the data to AAA . 20

A Settings regression analysis 22

B Code listing: Amplitude Correction 23

C Code listing: Creation of reference object 24

D Code listing: Rigid body analysis, extended example 26

E TAPADM Processing Steps 28

F Subversion code repository 30

G Form 30

EMA Guide 3

1 Preface

This is a guide for the EMA practitioner using MATLAB-based software, like the TAPADM-library.
It describes the top level routines – and actually also associated directory naming conventions –
aiming at the facilitation of MATLAB (post-)processing. They depart from Carstens amp-files –
storing the amplitudes as measured by the EMA device – and are finished with the generation of
the final output results containing positions the researcher normally is interested in – usually as
Matlab .mat files. These top-level scripts allow the user to perform the actual (post-)processing steps
necessary, to monitor the data processing at each stage and finally provide repair strategies in cases
of degenerative behavior of the TAPADM optimizations. Finally, there are also subsidiary routines
to do head normalization.
For the (pre/post-)processing issues, there are - grossly speaking - three different levels (i) low-level
processing routines like the TAPADM core routines or also Korin’s software (ii) an intermediate level
of MATLAB-Scripts (M-Files) using these core functions (iii) user-level scripts for the preprocessing
user which she/he has to interact with. This partitioner’s guide will mainly deal with the last,
top-level of M-Files.

EMA Guide 4

2 Equipment and experimental setup

2.1 Preliminary thoughts

2.1.1 Setting up the AG500

2.1.2 Potential error sources

2.2 Computer environment

2.2.1 Required software

You will necessarily need MATLAB to run any of the here described scripts. Version 6.5. should
be sufficient, any higher version will do it. The Optimization Toolbox is required and the Signal
Processing Toolbox and maybe the Statistics Toolbox are desirable.
We are using the Subversion version control system for organization and deployment of the MATLAB-
scripts (M-Files).

2.2.2 Storage issues

The latest Version of Phils MATLAB-scripts is available at:
https://svn.phonetik.uni-muenchen.de/svn/repos/Phil/trunk

The required TAPADM-Version is available at:
https://svn.phonetik.uni-muenchen.de/svn/repos/TAPADM/branches/Phil

The most recent version of this manual is available at:
https://svn.phonetik.uni-muenchen.de/svn/repos/EMA Manual/trunk/

At the IPSK, EMA-Data is stored at:

\\\Samba\tera21\Phil

2.2.3 Using the Linux workstations for EMA processing

Obviously one needs an account to use the Linux PCs, for processing of EMA data, there is a special
account which should be used in favor to personal staff accounts.1

This account must not be used for personal activities!
login: EMA

pwd: Ta=4wo (This account is for work only)

Setting up a Linux PC

1. Log in as user EMA at ssh.phonetik.uni-muenchen.de

2. Request the of possible usable remote PC: cat /share/local/lib/PARALLELHOSTS

3. Check for clients already in use: share/local/bin/listMatlabRunningHosts.bash

4. Switch to a remote PC: ssh Linux24

1This helps to avoid hassle with access authorization and also allows the IPS sysops to identify (and honor) usage by
the EMA-group.

https://svn.phonetik.uni-muenchen.de/svn/repos/Phil/trunk
https://svn.phonetik.uni-muenchen.de/svn/repos/TAPADM/branches/Phil
https://svn.phonetik.uni-muenchen.de/svn/repos/EMA_Manual/trunk/

EMA Guide 5

5. enter w to show active users and load. If load is higher than 0.7, switch to another computer!

6. Change current directory to the actual ‘session’ path of your project, i.e. the place where you
store the data from one day and one subject:
cd /raid/tera21/Phil/ema/dfgberlin_new/lz/lzema1

7. Start MATLAB: nice -20 matlab -nodisplay -nosplash -nojvm

If you get a error message here, probably no MATLAB runtime license is available at the
moment and you have to options: wait or convince somebody to exit his or her MATLAB
session.

2.3 Calibration

Actually subject of changes.

2.4 Attaching the sensors

3 Data acquisition

Not covered yet.

4 Data Preprocessing

4.1 Setting up the MATLAB scripts

Data processing - apart from the core levels of tapadm - is performed by several MATLAB scripts,
which can be divided roughly in two groups. The more basal scripts are automatically managed and
updated from a central code repository every time MATLAB is started. The second group contains
small scripts, which are used for batch processing and documentation purposes. A actual version of
these scripts can be found at:
matlabnew/phil/emascripts/

Copy the scripts you are going to use from this location into the actual ‘session’ path of your project,
i.e. the place where you store the data from one day and one subject. (e.g. data\subject_name\)
Than adapt them (following the next paragraphs) to your data. Later, the adapted versions can be
stored together with the measurement data and results and will document the processing steps.

4.2 Conversion and filtering of the AG500 data

During measurement, the AG500 creates a set of files with the extension ‘amp’. Copy this AG500-files
into a directory named amps in your data path, which might look like: subject_name\task_name\amps\
This binary amp-files have to be converted to the MATLAB ’mat’-format prior to any processing.2

Because of its relative high temporal resolution, the system generates a lot of data, which requires a
lot of computing time. To ease this situation, the data are filtered and partly down sampled right
with the initial conversation.

2The format of any generated ’mat’-file should be interoperable with MATLAB 6.5 to maintain backward compatibility.

EMA Guide 6

4.2.1 dofilteramps.m

The script is used to generate two sets of ‘mat’-files from the measured data. The first one will also be
downsampled to reduce the amount of data for the first steps of preprocessing. To generate this set,
we have to edit the script dofilteramps.m which should be either placed in a directory just above
the ‘amps’ directory with the measured data, or in the sessions root directory with use of mypart. In
any case a special dofilteramps.m can be used for all files from one recording session.
The script defines three variables, which have to be adjusted for each session:

dodown is a flag which decides if the script will downsample the data (dodown=1) or not (dodown=0)

usersensornames labels the sensors of the current experiment. To avoid typos, better use copy+paste
to get the names from docopyds.m

mypart defines the (relative) path to the data. (May be empty)

filterspecs if the script uses filtering, filter parameters (like cut-off frequency) are defined her indi-
vidual for each sensor. Actually we only distinguish between regular and reference sensors here.
Also, to avoid errors, better copy this data from docopyds.m

dofilteramps.m has to be run twice, with different dodown setting, to generate both sets of ‘mat’-
files. In a sub-directory ampsfilt it generates the MATLAB version of the original measurement
data (which will processed later), while in ampsfiltds it generates the down sampled data-version,
we need for the next step.

%% test for using the function dofilteramps.m

%% the dodown flag is set to 1

%% This setting has to be changed later for also processing the

%% data with do_tapad_full.m

dodown=1;

mysuff=’’;

idownfac=1;

usercomment=’Filter complete data for input to amp adjustment’;

if dodown

mysuff=’ds’;

idownfac=8;

usercomment=’Filter and downsample data’;

end;

In this example, the usage of do dofilteramps.m generates the directory ampsfiltds/amps/.
This directory contains the amplitudes for the filtered and downsampled data. The downsampling
factor is set to idownfac=8. This to our current knowledge is a good trade-off between processing
speed and accuracy. Setting this variable to 16 has been tried out, but the quality deteriorates.
Similar routines are available for “online” processing, i.e. for the processing during the recording
session: do copyds.m und do tapad rtmon.
The next listing gives an example on how to specifify sensors and their respective filtering options.
These specifications will be needed again in section 4.5.3.

usersensornames=str2mat(’t_back’,’t_mid’,’t_tip’,’ref’,’jaw’,’nose’, ...

’upper_lip’,’lower_lip’,’head_left’,’head_right’,’occapex’,’occbase’);

%

%channels to actually be processed by do_tapad_rtmon

chanlist=[1:10];

EMA Guide 7

P=desc2struct(usersensornames);

%this will happen if parameter names are ambiguous

if isempty(P) return; end;

%set up filtering

list1=[P.t_back P.t_mid P.lower_lip P.upper_lip P.jaw];

list2=[P.ref P.nose P.head_left P.head_right P.occapex P.occbase];

list3=[P.t_tip];

ll=[list1 list2 list3];

if length(ll)˜=length(unique(ll))

disp(’Filter lists probably wrong!’);

keyboard;

return;

end;

filterspecs=cell(2,2);

filterspecs{1,1}=’fir_20_30’;

filterspecs{1,2}=list1;

filterspecs{2,1}=’fir_05_15’;

filterspecs{2,2}=list2;

filterspecs{3,1}=’fir_40_50’;

filterspecs{3,2}=list3;

triallist=1:47; %mca5_1 cc2

4.3 Slicing up long trials

newstudy.m

4.4 Working on the downsampled data

As already mentioned, processing of the full resolution data may take a long time. To optimize quality
of the position calculation while minimizing effort, most of the preparative steps are performed on a
downsampled (shorter) version of the data. The motivation for working with a downsampled sketch
of the data is (i) to quickly get an idea of the quality of the data (possibly already during data
acquisition!!) and (ii) provide good starting positions for the full versions (running tapad with ’-r’,
i.e. recursive). These preliminary runs hopefully help to minimize the occurrences of local minima
and therefore warrant fewer problematic data.

4.4.1 Estimating start-values with do tapad ds.m

To compute the sensor positions, we first need an estimation of the mean sensor position and orien-
tation. The TAPAD-Algorithm sometimes fails when given start values are too far from the sensors’
actual position and orientation.3 The start values do not have to be very precise, therefore an ac-
ceptable estimation can be gained by using a subset of the downsampled data. Position-calculation
is - as always - performed by editing and running do_tapad_ds.m.

% Startpos are not yet available and therefore not included.

% They are commented out:

3This mainly affects sensor orientation though.

EMA Guide 8

% load startpos_v1;

% The working path is ’ampsfiltds’,

% the alternative with the adjusted data is

% commented out and will be used later.

firstpath=’ampsfiltds’;

%firstpath=’ampsfiltdsadja’;

% For this initial run, we do not need to process all trials

% a subset of , e.g. every 30th could be sufficient:

triallist=10:30:232;

The script stats2start.m calculates the needed start values - see the variable startpos:

>> stats2start

These are than saved to the starting positions matfile needed for the next run:

>> comment = ’start positions from rtmon_cfg’

>> save startpos_v1 startpos comment

This step necessarily can require increased levels of human interaction: If no start values emerge, the
procedure has to be repeated with a different trial-list – without start values further processing does
not make much sense.4

4.4.2 Position calculation for the complete trial-list

Once the creation of the file with startposition has been successful, the next step consists in another
position calculation run, but now using the complete triallist.5

To use the start values, do tapad ds.m has to be edited, so that it first loads startpos v1. Also we
want the full trial-list now. Obviously it makes no sense to compute new start values during this run,
so we comment the lines where this is achieved.

% File: do_tapad_ds.m

% occlusal plane not processed:

chanlist=[1:10];

% Startpositions are now available and therefore commented in.

% This looks like:

load startpos_v1; % comment removed now

% This run now contains all trials.

triallist=1:1:232; % or simply 1:232

4.4.3 Adjusting the amplitudes(1)

TAPADM (or the Carstens calcpos program) deals with two different kinds of amplitude data. These
are (a) the Amplitudes as measured by the device and (b) the so-called PosAmps. These are the
expected amplitudes for the calculated sensor positions, given the model of the electromagnetic field.

4The data from from the quasi real-time computing (rtmon.cfg) might also be helpful.
5Notice that the term position actually means spatial position and orientation

http://wiki.ag500.net/Glossary#Amplitudes
http://wiki.ag500.net/Glossary#PosAmps

EMA Guide 9

These are related by rms values. The rms value returned with the position data is basically the rms
difference (over the 6 transmitters) between the posamps and the input amps.
The idea behind amplitude adjustment is that the distortion of the system is reflected in the discrep-
ancy between measured (amps) and predicted (posamps). In configurations were amps and posamps
are almost identical there will be almost no adjustment being made. The interesting cases are where
the solution is not very robust and the rms very high, then the approach reduces the chances of
getting the really wild outliers. The approach has been based on various regression techniques, but
this discussion is not very informative at the moment, there has been rapid change between the use
of standard linear regression, robust regression and at the moment Principal Component regression
the top-level scripts. Of greater importance is to illustrate the basic funtioning. The adjustment
of the amplitudes itself is performed by the routine doadjampsa.m, the result should be checked
against do do comppos.m. The script generates several onscreen plots, therefore this step can not
performed in an SSH-terminal. The output directory for the adjusted amplitudes in the current step
is ampsfiltdsadja. The adjustment of the amplitudes requires the following three steps

1. Compute the regression coefficients for each sensor-transmitter combination (see
doampvsposampa.m whose main job is to call ampvsposampa.m)

2. Carry out the adjustment itself (see doadjampsa.m, which in turn calls adjamps.m)

3. Run tapadm again with the adjusted amps as input.

Note that the current version based on Principal Component Regression uses different M-files, file
names are just supplemented by “pc”, e.g. doampvsposampa.m becomes doampvsposampapc.m.
The most cumbersome step is the first one, because it requires visual inspection of the data.
Visual inspection of solutions with do do comppos.m For that purpose, the diagnostic tool
do do comppos.m can be used. There are three major statistics output by do do comppos.m

suitable for different evaluation purposes. These are

1. rms value, see above

2. a tangential velocity value which also should be self-evident and

3. Euclidean distance from a comparison sensor.

The aim of producing these outputs is to be able to judge the homogeneity of the distances of the
data from a reference sensor - e.g. the nose - in other words to see whether these data behave well.
Therefore only a single solution will be evaluated. For example, extremely large tongue tip tangential
velocities can be detected. The statistics are then logged to a file which will be used for amplitude
adjustment.

% File: do_do_comppos.m

triallist=1:47;

%restlist=[1 2 122 235 343 344 455 571 572];

%triallist=setxor(triallist,restlist);

% The file is set to the downsampled and filtered data

basepath = fullfile(basepath0, ’ampsfiltds’, ’beststartl’, ’rawpos’)

% No alternative solution.

altpath=’’;

http://wiki.ag500.net/Glossary#rms
http://wiki.ag500.net/Glossary#rms

EMA Guide 10

% We want a diaryfile, e.g

diaryfile=’comppos_stats_dsadjabeststartl2nose.txt’;

% The reference sensor could be the nose:

compsensor = 6

%autoflag=0;

autoflag=1; % runs through

In the next step a helper routine called parsestats.m is applied which generates the

>> diaryfile=’comppos_stats_dsadjabeststartl2nose.txt’;

>> parsestats(diaryfile)

parsestats.m outputs various statistics at the MATLAB prompt. The relevant part of the output
could look something like

Suggested range : 0.013872 5.8279

Suggested range : 0.9174403 103.4539

Suggested range : 63.9269 80.8529

Sensor 2

Suggested range : 0.083282 12.6932

Suggested range : 1.008409 109.7505

Suggested range : 58.5577 74.8666

Sensor 3

Suggested range : 0.060664 7.6516

Suggested range : 1.316299 212.6506

Suggested range : 63.741 79.5511

This output is used to derive specifications for several variables in doampvsposampapc.m:

% doampvsposampapc.m

% calculate weightings for amplitude adjustments

% (a) Positions, (b) amplitudes are needed to calculate the coefficients

% outfile: Coefficients

if adjnum==1

amppath=[fullfile(commonpath,’ampsfiltds’,’amps’) pathchar];

pospath=[fullfile(commonpath,’ampsfiltds’,’beststartl’,’rawpos’) pathchar];

outfile=’ampvsposampstats_adjapc_dsbeststartl_’; % coeffs

%outfile=’tmpadj_’;

sensorsused=[1:10];

%sensorsused=[1];

end;

if adjnum==1

%(’t_back’,’t_mid’,’t_tip’,’ref’,’jaw’,’nose’,’upper_lip’,’lower_lip’,’head_left’,’head_right’, ...

% ’occ1’,’occ2’);

% 1 2 3 4 5 6 7 8 9 10 11 12

rmsthreshb=[6 13 8 5 7 8 5 5 5 5 NaN NaN];

EMA Guide 11

velthreshb=[120 130 250 50 100 60 80 200 50 50 NaN NaN]; %in mm/s

parameter7b=[NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN];

lolimb= [63 57 62 57.5 82 NaN 57 77 139.5 144.5 NaN NaN];

hilimb= [81 76 81 60 95 NaN 65 96 142 147 NaN NaN];

end;

% Note the meaning of hilimb and lolimb:

% These are valued related to the Euclidean distance of a reference

% sensor: The distance varying between 63 and 81mm for tb:

% ‘‘2cm Hub displacement in speech.’’

% param7b: reserve field!

As shown, the output mainly consists in a coefficient file including also various summary statistics.
Another main decision is which trials to use. The routine returns statistics on the number of
outliers detected. This output is worth eyeballing: The exclusion of more data than anticipated
due to wrong setting of thresholds is to be avoided: You do not want to exclude more data than
necessary. Once satisfied, the actual adjustment is carried out with the routine doadjampsapc.m.
There is not much user specification necessary, it just has to be assured that we are working with the
downsampled version. The coffile in the easiest case is the mat-file with the regression coefficients
generated by doampvsposampapc.m in the previous steps.

myinfix=’ds’; % currently working with the downsampled data

%myinfix=’’;

if adjnum==1

inpath=fullfile([’ampsfilt’ myinfix],’amps’);

outpath=fullfile([’ampsfilt’ myinfix ’adja’],’amps’);

%% Eventuell 2 Verschiedene Coffile

coffile=’ampvsposampstats_adjapc_dsbeststartl_’;

end;

4.4.4 Checking the adjustment by a new position calculation run

After adjusting the amplitudes, a third run of do tapad ds.m is performed, the generated positions
are than serving as individual start positions for position calculation of the full data.

% This time, the adjusted amplitudes will be used:

%firstpath=’ampsfiltds’; % commented out

firstpath=’ampsfiltdsadja’;

% outpath is now: Note the adja!

ampsfiltdsadja/beststartl/rawpos

% and the directory

ampsfiltdsadja/beststartl/rawpos/posamps/

% will be created, if not already existant.

EMA Guide 12

4.5 Working on the full resolution data

4.5.1 Adjusting the amplitudes(2)

A second run to adjust the amplitudes - now of the full, not downsampled data set is performed. Again
using the script do do comppos.m is used in the first place to judge the quality of the adjustment
achieved so far. This time the purpose is to check whether the adjustment of the amplitudes yielded
satisfactory results by comparing adjusted to the non-adjusted data.

% We are comparing 2 solutions, therefore no compsensor!

compsensor=[]

% Solutions: Amplitudes-adjusted (alt) versus not adjusted (base),

% both downsampled versions

basepath = fullfile(basepath0, ’ampsfiltds’, ’beststartl’, ’rawpos’)

%altpath=’’;

%altpath = fullfile(basepath0, ’ampsfiltds’, ’beststartl’, ’rawpos’);

altpath = fullfile(basepath0, ’ampsfiltdsadja’, ’beststartl’, ’rawpos’);

Given satisfactory results, amplitudes are adjusted again with doadjampsa(pc).m and friends. The
procedure is pretty much the same as above, with the sole exception that for the first time, the full
data are used. Achieving this is fairly simple:

% use non downsampled data, therefore

myinfix=’’’

4.5.2 Position calculation for the complete trial-list, full sample rate (1)

The next step is a position calculation for the complete triallist. This involves execution of do tapad full.m.
First of all, do tapad full.m now is a function with two input arguments. These are igo and istep
which designate (i) the first trial to be processed and (ii) the incrementation of trials, e.g. 3 indicates
that every third trial is to be processed. These arguments are essential if one wants to split the com-
putations across a number of machines in a network. Putting it more sloppy, igo is the trial you want
to start with and istep indicate the number of machines which you intend to run the job on. So after
starting matlab on a couple of different machines with nice -20 MATLAB -nodisplay -nosplash -nojvm,
typical calls could be

• do tapad full(1,2) and do tapad full(2,2) for two machines,

• do tapad full(1,3),do tapad full(2,3) and do tapad full(3,3) for three machines

and so forth.
The listing dicusses the most important settings:

function do_tapad_full(igo,istep)

basepath=pwd;

triallist=igo:istep:47; % see calling conventions

chanlist=[1:10];

myoptions=’-l-r’; % always used in the full run

% (see documentation for tapadm)

EMA Guide 13

% firstpath=’ampsfilt’;

% should be correct ???

% Or is this changed for the velocity

% repaired version?? Think again

firstpath=’ampsfiltadja’;

% first full version

outpath=[firstpath pathchar ’recursedsl’ pathchar ’rawpos’]

% start pos taken from the DOWNSAMPLED versions of the data

startpath=[basepath, pathchar, ’ampsfiltdsadja’, ...

pathchar, ’beststartl’, pathchar, ’rawpos’]

% Commented out

% second full version (for comparison with smoothed full version)

% outpath=[firstpath pathchar ’recursevelrepl’ pathchar ’rawpos’]

% startpath=[basepath pathchar ’ampsfiltadja’, pathchar, ...

% ’velrep’ pathchar ’rawpos’]

mkdir([outpath pathchar ’posamps’]);

stats=tapad_ph_rs(basepath,[firstpath pathchar ’amps’], ...

outpath,triallist,chanlist,myoptions,startpath);

After this step, one usually will want to have a look at the adjusted data with do_do_comppos.m.
Specify it that no alternative version will be needed.

q ampsfiltadja\recurseddsl\rawpos\

altpath=’’

One will first look at summaries (with autoflag = 1) and if necessary look at more specific
sensors and trials (autoflag = 0). Typically, one might want to check tangential velocities of the
data for plausibility. For example, the tongue tip has repeatedly caused trouble. Typically, tangential
velocities higher than 300 mm/s will be regarded as suspicious for this sensor. But this is only a rule
of thumb ...

4.5.3 dovelocityrepair

In some instances, some instabilities remain even after amplitude correction. While the raw am-
plitudes are clearly continuous, positions might still be not. A further repair procedure eliminates
unreliable data by applying follwing strategy:

• Eliminate unreliable data

• Use linear regression to compute estimate of sensor velocities directly from first derivative of
raw amplitudes

• Repair unreliable position data using predicted velocities (after integration)

Use linear regression to compute estimate of sensor velocities. A little bit more on the background
of this repair strategy can be read at here. Note that it is essential that dovelocityrepair.m
requires to use identical specifications for the filters as applied in dofilteramps.m (see section
4.2.1). Therefore it seems wise to just open this file again and copy the necessary specifications.

%dovelocityrepair

% uses input data from recursedsl and amplitudes

% writes to the VELREP directory

http://www.ag500.de/wiki/nijmegen_slides_1.pdf

EMA Guide 14

inpath=[commonpath, ’ampsfiltadja’, pathchar, ’recursedsl’, ...

pathchar,’rawpos’,pathchar];

amppath=[commonpath, ’ampsfiltadja’,pathchar,’amps’,pathchar];

outpath=[commonpath, ’ampsfiltadja’,pathchar,’velrep’,pathchar, ...

’rawpos’,pathchar];

mkdir([outpath pathchar ’posamps’]);

chanlist=[1:10];

triallist=1:322; % e.g. all of them

%Best to copy/paste to dovelocityrepair

usersensornames=str2mat(’t_back’,’t_mid’,’t_tip’,’ref’,’jaw’,’nose’, ...

’upper_lip’, ’lower_lip’,’head_left’,’head_right’, ...

’occapex’,’occbase’);

%Adjust filtering options

%make sure no sensors missing, or used twice!! ...

(check comment of output files)

list1=[1 2 5 7 10 11];

list2=[4 6 8 9 12];

list3=[3];

filterspecs=cell(3,2);

filterspecs{1,1}=’fir_20_30’;

filterspecs{1,2}=list1;

filterspecs{2,1}=’fir_05_15’;

filterspecs{2,2}=list2;

filterspecs{3,1}=’fir_40_50’;

filterspecs{3,2}=list3;

Further, the following settings will be relevant:

%just filter

veldifflim=ones(12,1)*NaN;

veldifflim(3)=150

veldifflim=130 % length==1, one value used for all sensors

velocityrepair(inpath,amppath,outpath,triallist,chanlist, ...

filterspecs,veldifflim);

In this example, in the first step, all the values of the variable veldifflim are initialized as NaNs.
The variable veldifflim holds a vector of thresholds for difference between measured tangential
velocity and predicted tangential velocity. If length==1 same thresholds are used for all channels
processed.

4.5.4 Position calculation for the complete trial-list, full sample rate (2)

Another run of do tapad full, changes in the M-files are fairly few and simple.

% function do_tapad_full(igo,istep)

% COMMENTED OUT

% first full version

% outpath=[firstpath pathchar ’recursedsl’ pathchar ’rawpos’]

% start pos taken from the DOWNSAMPLED versions of the data

% startpath=[basepath, pathchar, ’ampsfiltdsadja’, ...

% pathchar, ’beststartl’, pathchar, ’rawpos’]

EMA Guide 15

% COMENTED IN

% second full version (for comparison with smoothed full version)

outpath=[firstpath pathchar ’recursevelrepl’ pathchar ’rawpos’]

startpath=[basepath pathchar ’ampsfiltadja’, pathchar, ...

’velrep’ pathchar ’rawpos’]

The purpose of this run is to check the quality of the lowpass filtering - just done in the dovelocityrepair.m

(see section 4.5.3). This is achieved by comparing results of the two do_tapad_full.m runs (i)
version 1, see section 4.5.2 and (ii) version 2, see this section (4.5.4).

4.5.5 Insert Euclidean distance measure of similarity between runs

By means of the functions doeucdistpos.m which in turn calls eucdist2pos.m, the variable
parameter7b is utilized in order to derive additional diagnostic information on the similarity be-
tween two different solutions.

%add distance between

% - velrep(filterd) and

% - recursive versions to velrep version

basepath=’’;

rr=pathchar

eucdist2pos([basepath ’ampsfiltadja’ rr ’velrep’ rr ’rawpos’],...

[basepath ’ampsfiltadja’ rr ’recursevelrepl’ rr ’rawpos’],1:47);

Again, the tool to look at differences between solutions is do_do_comppos.m. You want to
look at one the solution in /ampsfiltadja/velrep. Recall that the solution in the directory
ampsfiltadja/recursevelrepl, which was procuced by the second run of do_tapad_full.m
is a dead end and only a diagnostic solution. The data produced in this run are written in the
paramteter7b for future use and are one of the main diagnostic tools for data quality. The diagnostic
variable in parameter7b is compdist and measures whether a run using velocity-repaired data as
starting values converges to a solution near the starting values or “jumps back” to the solution before
velocity repair. Recall that the data in recursedvelrep is a solution for diagnostic purposes only, and
that the velrep solution contains the final data.

5 Head Correction

The purpose here is to separate movement of the speech articulators - in a narrower sense - from
head movements. For this purpose, the creation of a reference object is required. The first step
(with domakerefobj.m) consists in creating such a reference object. The second step consists in
re-expressing all other data with reference to this object. This step is done by calling the script
do_rigidbodyana.m.

The exact procedure depends on whether specific reference trials containing occlusal plane information
were recorded during the procedure or whether rest trial serve the same purpose. In the first case
it will be necessary to repeat many of the steps already described in the preceding sections in a
slightly altered fashion. In the second - simpler - case you will simply use one of the trials in
ampsfiltds/beststartl/rawpos/ to create the reference position. The next sections reviews

the necessary additional steps for the more complicated procedure.

EMA Guide 16

5.1 Processing occlusal plane trials

In a first step you copy the scripts dofilteramps.m, do_tapad_ds.m and domakerefobj.m and
the file with the global startpositions startpos_v1.mat in the folder where you want to process
your reference data. By convention, this is the directory ’palocc’. In cases in which you did not
start with a new session for the reference trials, you could create the directory palocc and copy the
reference files into this folder. You have to know which data contain reference trials anyhow. If you
started a new study then you must run dofilteramps.m on the occlusion plane trials. You know
how that works already (see section 4.2.1).

% Run dofilteramps with downsampled data

dodown = 1 % Edit if necessary

% Edit usersensornames. i.e., change sensornames for those sensors

% which are % used for the recording of the occlusion plane.

% Example:

% OLD

%usersensornames=str2mat(’head_left’,’nose’,’upper_lip_cent’,

% ’upper_lip_lat’,’unused’,’lower_lip_cent’,’lower_lip_lat’,

% ’tongue_rear’,’tongue_mid’,’tongue_tip’,’ref’,...

% ’upper_jaw_mandible’);

% now

usersensornames=str2mat(’head_left’,’nose’,’OCCL1’,’OCCL2’, ...

... ’unused’,’lower_lip_cent’,’lower_lip_lat’,’tongue_rear’, ...

’tongue_mid’,’tongue_tip’,’ref’,’upper_jaw_mandible’);

Edit triallist =[] % edit to contain reference trials, leave out rest

In the next step you set the starting values for the sensors of the occlusal plane to 0. In the example
above ’OCCL1’,’OCCL2’ were sensors 3 and 4 in the usersensornames string matrix. The
startpos variable contains values in rows 3 and 4 which you want to set to 0. This can be done from
the Matlab command line:

>>load startpos_v1

Get information about the contents of the mat file

>>whos

Display the starting positions of all sensors

>>startpos

Set startpos of the two occlusal plane reference sensors - in this example sensors 3 and 4 - to 0. Then,
write the comment variable and save file (under a new name) of starting positions:

>>startpos([3 4],:)= 0

>>comment = ’zero startpos for occ sensors’

>>save startpos_v1_occ startpos comment

In the next step, you run a variant of do_tapad_ds.m for reference and occlusion plane sensors.
You move the script do_tapad_ds.m to do_tapad_ds_occ.m and make following changes:

load startpos_v1_occ % instead of the old version startpos_v1

chanlist=[1 2 3 4 11 12] % Which channels?

triallist=1; % if a new session was started frequently 1st trial,

% otherwise could be one of the last trials

EMA Guide 17

Now you should have processed the data you need to construct the reference object, either obtained
by the method just described for the case in which occlusal plane trials are present or already present
in the case that you use rest trials. It should be evident that it is necessary to record a sufficient
number of rest and occlusal plane trials if you want to have all options at this stage of the processing
chain.

5.2 Construction of reference objects

5.2.1 Coordinate Systems

Before you begin, you have to decide which coordinate system you want to use. This is not so much a
question of right or wrong, but rather your personal preferences. Here, two half-standard coordinate
systems will be displayed, mostly only for mnemonic purposes: The researcher is free to adapt the
orientation of data to own purposes. The description of one possible coordinate system for speech
movements is found in co_comment variable in the M-file makerefobjn.m:

co_comment=[’Coordinate system resulting from transformation:’ crlf ...

’Skull-based’ crlf ...

’x: Transversal (Lateral). Increases from right to left’ crlf ...

’y: Anterior-Posterior. Increases from front to back’ crlf ...

’z: Longitudinal. Increases from low to high (foot to head)’ crlf ...

’===’ crlf];

That means that the traditional sagittal way of looking at speech data is using the y/z dimension of
this coordinate system (as shown in Figure 2). This deviates from the definitions of spatial positions
used by the Carstens system which is shown in Figure 1. The following verbal description of the
Carstens coordinates can be found on the AG500 wiki pages:

“The spatial sensor position is displayed in a right-handed cartesian coordinate system
with the coordinates X, Y and Z, which can be roughly mapped to the subject head
(during rest position). The origin of this coordinate system is in the center of the EMA-
Cube. The positive X direction is where the subject looks to. (anterior-posterior). In the
positive Y axis runs to the subjects left ear.(transversal). The positive Z direction runs
to the top. (longitudinal)”

’x: Anterior-posterior. positive X direction is where the subject looks to’ crlf ...

’y: Transversal (Lateral) positive Y axis runs to the subjects left’ crlf ...

’z: positive Z direction runs to the top’ crlf ...x

’===’];

5.2.2 Create reference object - User interactions

At the MATLAB prompt will give you all the information necessary to set up reference objects. The
usual way to use it is to set up a little wrapper script of the “do-type” providing the necessary input
arguments for makerefobjn.m. Surprisingly this one is called domakerefobjn.m.

commonpath=’’;

matfile=[commonpath ’ampsfiltds/beststartl/rawpos/0002’];

[dataout,descriptor,unit,dimension,slist]=loadpos_sph2cartm(matfile);

slist=slist([1 2 3 4 11 12],:);

http://wiki.ag500.net/Coordinates

EMA Guide 18

Figure 1: Example of the original Carstens coordinate system.

−100 −50 0 50 100

0

50

100

150

X

xy

Y

−100 −50 0 50 100
−50

0

50

X

xz

Z

0 50 100 150
−50

0

50

Y

yz

Z

−100−500
50

−50050

−60−40−200
20

X

3d

Y

Z

headr

nose
headl

upperlip

lowerlip

tonguemid

ref
jaw

Figure 2: Example of a rotated coordinate system frequently used (Phil’s).

EMA Guide 19

vdistance=50; % 5 cm

% vdistance=10; % 1 cm

keyboard

makerefobjn(matfile,slist,vdistance);

After typing return at the k prompt you will be see the following:

>> COM file name (<CR> to ignore) :

This means that you are offered the possibility to provide a file with “canned” transformations read
from a COM file. These will be applied to the data in the successive step. For example, the following
command file will transform the data to a coordinate system like the one shown in Figure 2 on the
basis of a rest trial - given that your sensor names match. This allows you to store a replicable set of
transformations to disk which is helpful in any situation in which you want to apply transformations
repeatedly - like for example to the data of several participants on a series of recordings.

o#ref

r#xy#head_r#head_l#0

r#xz#ref#nose#90

r#yz#ref#nose#90

If you decide not to use precanned transformations, you just type return which will result in a
prompt looking like

% Command :

Just typing h and return gives you the available options. These are

% Command : h

h

o: Choose sensor to locate at origin

O: Choose single sensor coordinate to locate at origin

r: Set second sensor at desired angle relative to first sensor in desired plane

a: Rotate all sensors by desired angle in desired plane

x: Reset sensors to original position

k: Enter keyboard mode

l: List current coordinates

c: Change description of transformed coordinate system

e: Store results and exit

The hash (#) separates commands, for example o#ref in the command file means that the sensor
ref is defined as the new origin of the coordinate system (0,0,0). r#xy#head_r#head_l#0 sets

the sensor head_l angle relative to the first sensor head_r at 0 degree.
In each session the log file is written to the a text file called makerefobjlog.txt, the so-called
diary file (after the built-in matlab function, type help diary at the matlab-prompt to learn
more). This file could likewise be used to generate templates for commandfiles for repeated use with
makerefobjn.

5.3 Perform Correction

Until so far, only the “gold standard” as defined in the last section exists. The task now is to
superimpose the data frame-by-frame onto this gold standard using the still sensors estimating the
optimal translations and rotations according to a least-squares criterion. Typically you need more
than three sensors in order to avoid arbitrary reflections of the data. The following code listing
demonstrates this procedure:

EMA Guide 20

mypart=’lab1’;

doaddv=0; domakecut=0; dorig=1;

%inpath=’ampsfiltadja/recursevelrepl/rawpos/’

inpath=’ampsfiltadja/velrep/rawpos/’

outpath=[’mat/’ mypart ’_head_’];

triallist=1:84;

%cutfile=[’mca2_’ mypart ’_cut’];

refname=’ampsfiltds/beststartl/rawpos/0012_refobj.mat’

%head right not used, . This version also without ref

%refsensors=str2mat(’ref’,’v_ref’,’nose’,’v_nose’,’head_left’,’v_head_left’);

refsensors=str2mat(’head_right’,’head_left’,’nose’,’ref’, ...

’v_head_right’,’v_head_left’,’v_nose’,’v_ref’);

if dorig

fixed_trafo=refname;

refobj=fixed_trafo;

rigidbodyname=’headrig’;

rigidbodyana(inpath,outpath,triallist,fixed_trafo,refobj,refsensors,rigidbodyname);

end;

At the moment, the doaddv=0; domakecut=0; dorig=1; has no function, same the if-block
containing the actual call to rigidbodyana. These are specific to the matlab segmentation and
data visualization software mtnew and therefore not documented here. A longer code listing can be
found in the appendix though (see Appendix D). The variable mypath is an arbitrary name for
the recording. inpath points to the path of the raw position data to be processed. In the present
example inpath this is the tapad output directory. In future the variable could also point to output
directories of alternative amplitude-to-position conversion methods. outpath is the destination of
the head-corrected data. triallist is self-evident. The variable refname is the filename of the
reference object created in the last step. Its name is always the name of the trial name used as the
basis of the reference object plus an additional _refobj appended. Finally, some words on the
refsensors variable are in place: Variable names like head_right should sound familiar by

now. In contrast variables like v_head_right need explanation. Prefixation of v_ indicates that
these are virtual sensors. These are sensors calculated from x,y,z positions and the orientations and
a constant spherical radius which is currently hardcoded to 5cm.

5.4 Exporting the data to AAA

Here the MATLAB world is left again! AAA software at the moment uses the original Carstens
amplitude files, and so it becomes necessary to convert them back from MATLAB. This can be done
with the script dowriteAAA.m. Needless to say that after copying it to your working directory you
have to edit the triallist you want to process. Feel free to also edit outpath if you want to have write
the data somewhere else or don’t like the directory name. In order to work, you have to adapt the
PD_pilot_sr_1_head_ to match the common part of your filenames containing the positions you

want to export.

EMA Guide 21

%% dowriteAAA: Write position data back to Carstens format for

% use with Articulate Assistant EMA modules.

recpath=’’;

commonpath=’’

%

% Uncomment if Head UNcorrected data are desired

% recpath=[commonpath ’ampsfiltadja’, pathchar ’velrep’, ...

% pathchar,’rawpos’,pathchar];

recpath=[’mat’,pathchar,’PD_pilot_sr_1_head_’]

outpath=[commonpath, ’AAA’];

if ˜exist(outpath),

mkdir([outpath])

end;

doaudio=0

if (doaudio==0)

[status,result] = system(’cp wav/*.wav AAA’);

end

triallist=2:131;

mt2AAA(inpath,outpath,triallist,0)

EMA Guide 22

A Settings regression analysis

=========

Sensor 1

=========

n_data max/min/mean 63 63 63 Anzahl NaN

rms

lolim mean hilim (columns) of stats 1 5 6 (rows) mean values and ntiles

0.6954 1.1834 2.0038 5\% Ntile lolim mean hilim

0.0139 0.0605 0.1330 mean

1.8588 3.1600 5.8279 95\% ntile

Suggested range : 0.013872 5.8279

lolim mean hilim of trial sds

0.5268 0.9127 1.6989

EMA Guide 23

B Code listing: Amplitude Correction

This section is for information purposes only: It consists of code snippets extracted from the M-files
achieving the amplitude correction procedures and illustrates the regression modelling at the core of
amplitude correction. If this is informative for you: The better. Otherwise: Just ignore it!
Setting up the regression model (doampvsposampapc.m)

ampfac=2500; %to work roughly in units of digits / Carstens ad hoc constant

a=loadamp([amppath tts]);

p=loadamp([posamppath tts]);

aa=ones(buflen,ntran)*NaN;

pa=aa;

aa(trialp(iti,1):trialp(iti,2),:)=a(:,:,ii)*ampfac;

pa(trialp(iti,1):trialp(iti,2),:)=p(:,:,ii)*ampfac;

% Interestingly, predictor matrix encoding is done before pca

predmat=x2fx(aa,x2fx_mode);

% Principal Component analysis

[xbar,sdev,com,eigval,eigvec,outind,eli,rmserror]=elli(aa,sigma,np,nscore,covflag);

predmat=x2fx(pcscore,x2fx_mode);

resid0=pa(:,jj)-aa(:,jj);

plot(predmat(:,iri),resid0,’.’);

[b,BINT,R,RINT,stats] = REGRESS(resid0,predmat);

%% FIRST FIGURE %%

%% x-axis: GLM CODED PCs using interaction coding

%% y-axis: Residuals (DIVERGENCES) (amps - posamps)

%%

hftmp=figure;

%assume first column of predictor matrix is constant

%assuming no more than 6 further predictors

for iri=2:size(predmat,2)

haxtmp=subplot(2,3,iri-1);

plot(predmat(:,iri),resid0,’.’);

title([’Sens/Trans/Pass/Predictor ’ int2str([ii jj ipass iri])]);

drawnow

end;

yhatres=predmat*b;

ampchange=yhatres;

resid1=resid0-yhatres;

EMA Guide 24

%% SECODND FIGURE %%

%% x-axis: DIFFERENCE BETWEEN AMPS AND POSAMPS

%% ("Residuals of the Magnetic Field Model" (pa-aa)) =resid0

%% y-axis: resid1: Residuals of the predicted Residuals

%% (unexplained ‘‘residuals’’)

%%

%%%

plot(resid0,resid1,’.’);

xlabel(’Old residuals’);

ylabel(’Estimated new residuals’);

title([’Sens/Trans/Pass ’ int2str([ii jj ipass])]);

axis equal

grid on

Actual Prediction (doadjampsapc.m)

da=data(:,:,mysensor);

da=data(:,:,mysensor);

dd=da(:,idim);

predmat=x2fx(da,x2fx_mode);

PC=pc{mysensor};

nscore=PC.pcorder;

eigvec=PC.eigvec;

eigvec=eigvec(:,1:nscore);

pcscore=pcscores(da,eigvec,PC.xbar,sduse);

predmat=x2fx(pcscore,x2fx_mode);

predres=predmat*bc{mysensor,idim}; % bc: regression coefficients

% predmat : Dummy-coded scores

dd=dd+predres; %

data(:,idim,mysensor)=dd; % actual correction: samplitudes + predicted residuals

C Code listing: Creation of reference object

% Command : o

o

% Choose sensor to locate at origin (’?’ for choices) [max] * max

max

% Command : r

r

% Choose plane (’?’ for choices) [xy] * xy

xy

% Choose first sensor (’?’ for choices) [max] * occ_in

occ_in

EMA Guide 25

% Choose second sensor (’?’ for choices) [max] * occ_out

occ_out

% Choose desired angle of sensor2 relative to sensor1 (in deg.) [90] * 90

90

Current angle (deg.) -178.3879

% Command : r

r

% Choose plane (’?’ for choices) [xy] * yz

yz

% Choose first sensor (’?’ for choices) [max] * occ_in

occ_in

% Choose second sensor (’?’ for choices) [max] * occ_out

occ_out

% Choose desired angle of sensor2 relative to sensor1 (in deg.) [90] * 0

0

Current angle (deg.) 7.5499

% Command : r

r

% Choose plane (’?’ for choices) [xy] * xz

xz

% Choose first sensor (’?’ for choices) [max] * max

max

% Choose second sensor (’?’ for choices) [max] * nose

nose

% Choose desired angle of sensor2 relative to sensor1 (in deg.) [90] * 90

90

Current angle (deg.) 89.6796

% Command : l

l

Current sensor coordinates:

max : 0.00 0.00 0.00

left_ear : 65.89 120.98 -8.84

nose : 0.00 11.31 69.60

occ_out : 0.66 17.13 -11.63

occ_in : 0.66 -21.80 -11.63

v_max : 38.93 -30.33 -8.01

v_left_ear: 68.61 150.96 -48.77

v_nose :-47.24 22.69 81.37

v_occ_out : 47.13 3.08 -23.60

v_occ_in : 43.47 -41.06 5.59

% Command : h

h

o: Choose sensor to locate at origin

O: Choose single sensor coordinate to locate at origin

r: Set second sensor at desired angle relative to first sensor in desired plane

a: Rotate all sensors by desired angle in desired plane

x: Reset sensors to original position

k: Enter keyboard mode

l: List current coordinates

c: Change description of transformed coordinate system

e: Store results and exit

% Command : O

O

% Choose sensor to define origin for single coordinate (’?’ for choices) [max] * occ_in

occ_in

% Choose coordinate to adjust (1/2/3 = x/y/z) [1] * 3

EMA Guide 26

3

% Command : e

e

Translation and rotation from input to output

Translation: -16.4027 82.6018 28.9699 Rotation (deg.): 88.3314 -7.5377 0.536721

Final sensor coordinates:

max : 0.00 0.00 11.63

left_ear : 65.89 120.98 2.78

nose : 0.00 11.31 81.22

occ_out : 0.66 17.13 -0.00

occ_in : 0.66 -21.80 0.00

v_max : 38.93 -30.33 3.61

v_left_ear: 68.61 150.96 -37.14

v_nose :-47.24 22.69 93.00

v_occ_out : 47.13 3.08 -11.97

v_occ_in : 43.47 -41.06 17.21

return

% Enter brief description of the reference object : siehe occ_Daten_S3

siehe occ_Daten_S3

Full description of transformation:

Coordinate system resulting from transformation:

Skull-based

x: Transversal (Lateral). Increases from right to left

y: Anterior-Posterior. Increases from front to back

z: Longitudinal. Increases from low to high (foot to head)

===

Brief description of reference object and transformation:

siehe occ_Daten_S3

D Code listing: Rigid body analysis, extended example

%do_rigidbodyana

mypart=’lab1’;

doaddv=0; domakecut=0; dorig=1;

inpath=’ampsadj\merge\rawpos\’;

outpath=[’mat\mca2_’ mypart ’_head_’];

triallist=1:121;

cutfile=[’mca2_’ mypart ’_cut’];

refname=’..\mca2_cv1_0012_refobj’;

%head right not used, . This version also without ref

refsensors=str2mat(’ref’,’v_ref’,’nose’,’v_nose’,’head_left’,’v_head_left’);

[cutdata,cutlabel,agtrialnum,mttrialnum,trialnumS]=parselogfile(’mca2_lab_ran_log_lab1_adj’);

if doaddv

%best to do this before setting up a references object?

%add item_id and comment to input data

addvariable2mat([inpath ’0’],’item_id’,cutlabel,triallist);

addcommentfromfile([inpath ’0’],’..\mca2_comment.txt’,triallist);

EMA Guide 27

end;

if dorig

fixed_trafo=refname;

refobj=fixed_trafo;

rigidbodyname=’headrig’;

rigidbodyana(inpath,outpath,triallist,fixed_trafo,refobj,refsensors,rigidbodyname);

end;

if domakecut

%makecutfile can only be done after rigidbodyana has been done

% (or base it on input files if no changes in trial numbers are to be made)

makecutfile([outpath ’0’],cutfile,triallist)

valuelabel=mymatin(cutfile,’valuelabel’);

valuelabel.trial_number=trialnumS;

addvariable2mat(cutfile,’valuelabel’,valuelabel);

end;

EMA Guide 28

E TAPADM Processing Steps

Step Name: Prepare scripts
Purpose: Copy matlab scripts from the template directory to the top of the new data directory
ready for editing.
Function(s):
dovelocityrepair.m

dofilteramps.m

doeucdist2pos.m

doampvsposampapc.m

doadjampsapc.m

do_tapad_full.m

do_tapad_ds.m

do_do_comppos.m

Doc Ref : none

Step Name: Prepare downsampled data
Purpose: Convert raw amps to MATLAB format with filtering and down sampling for determining
processing parameters.
Function(s):

do_filteramps.m

Doc Ref: ??

Step Name: Estimate Start Position
Purpose: Estimate the approximate starting position for each sensor to give subsequent start posi-
tion calculations a reasonable starting point.
Function(s): do_tapad_ds.m

stats2start.m, MATLAB save command
Doc Ref: 4.4.1

Step Name : Perform initial position calculations
Purpose: Calculate the sensor positions from the downsampled data using the estimated start
positions.
Function(s): do_tapad_ds.m

Doc Ref: 4.4.2

Step Name: Compute Regression coefficients
Purpose: Work out a set of values to use for adjusting the sensor amps data to reduce invalid
positional data.
Function(s):

do_do_comppos.m

parsestats.m

doampvsposampapc.m

Doc Ref: 4.4.3

EMA Guide 29

Note: Check results and repeat this step if required.

Step Name: Adjust Down Sampled Amplitudes
Purpose: Perform adjust of the amplitudes of the down sampled sensor data using the computed
regression coefficients to reduce invalid data, saving the new data in a separate directory.
Function(s):

doadjampsapc.m

Doc Ref: 4.4.3

Step Name: Perform Adjusted Position Calculations On Down Sampled Data
Purpose: Calculate the sensor positions based on the adjusted amplitudes using the previously
estimated start positions.
Function(s): do_tapad_ds.m

Doc Ref: 4.4.4

Step Name: Check Adjustment Quality
Purpose: Check the quality of the adjustments that have been made to the data to ensure it has
satisfactorily improved the position data.
Function(s):

do_do_comppos.m

Doc Ref: 4.5.1
Note: Redo adjustment calculation and procedure if required.

Step Name: Adjust Full Amplitudes
Purpose: Perform adjust of the amplitudes of the full sensor data using the computed regression
coefficients to reduce invalid data, saving the new data in a separate directory.
Function(s):

doadjampsapc.m. (dofilteramps.m)

Doc Ref: 4.5.1

Step Name: Perform Position Calculations On the Full Data Set (first run)
Purpose: Calculate the sensor positions based on the full amplitudes using the previously calculated
down sampled start positions.
Function(s): do_tapad_full.m

Doc Ref: 4.5.2

Step Name: Perform Velocity Repair Procedure
Purpose: only performed if necessary. (consult do_do_comppos.m!): fix bad data by regression
modelling.
Function(s): dovelocityrepair.m

Doc Ref: 4.5.3

Step Name: Perform Position Calculations On the Full Data Set (second run)

EMA Guide 30

Purpose: Calculate the sensor positions based on the full amplitudes using start positions from
velocity-repaired data (full samplerate).
Function(s): do_tapad_full.m

Doc Ref: 4.5.4

Step Name: Inserting distance measures
Purpose: Insert the distance between velocity-repaired position data and positions using these as
start values in the previoulsy empty parameter7b field.
Function(s): doeucdist2pos.m

Doc Ref: 4.5.5

F Subversion code repository

G Form

st
ep

d
on

e
re

m
ar

k
s

1.
d
at

a
d
ir

ec
to

ry
p
re

p
ar

ed
,
’d

o.
..
’-
sc

ri
p
ts

an
d

A
G

50
0-

d
at

a
co

p
ie

d

2.
d
o
f
i
l
t
e
r
a
m
p
s

(d
o
d
ow

n
)

3.
d
o
f
i
l
t
e
r
a
m
p
s

(f
u
ll

re
s.

)

4.
st

ar
t

p
os

it
io

n
s

(d
o
\
_
t
a
p
a
d
\
_
d
s
,
d
ow

n
sa

m
p
le

d
d
at

a)

5.
st

ar
t

p
os

it
io

n
s

fe
as

ib
le

?
(c

h
ec

k
m

an
u
al

ly
)

6.
p
os

it
io

n
s

ca
lc

u
la

te
d

fo
r

co
m

p
le

te
tr

ai
ll
is

t
(d
o
_
t
a
p
a
d
_
d
s
,
2.

ru
n
)

7.
am

p
li
tu

d
es

ad
ju

st
ed

(d
o
_
d
o
_
c
o
m
p
p
o
s
)

8.
p
os

it
io

n
s

ca
lc

u
la

te
d

fo
r

ad
ju

st
ed

am
p
li
tu

d
es

(d
o
_
t
a
p
a
d
_
d
s
,
2.

ru
n
)

T
ab

le
1:

E
M

A
da

ta
pr

oc
es

si
ng

fo
rm

	Preface
	Equipment and experimental setup
	Preliminary thoughts
	Setting up the AG500
	Potential error sources

	Computer environment
	Required software
	Storage issues
	Using the Linux workstations for EMA processing

	Calibration
	Attaching the sensors

	Data acquisition
	Data Preprocessing
	Setting up the MATLAB scripts
	Conversion and filtering of the AG500 data
	dofilteramps.m

	Slicing up long trials
	Working on the downsampled data
	Estimating start-values with do_tapad_ds.m
	Position calculation for the complete trial-list
	Adjusting the amplitudes(1)
	Checking the adjustment by a new position calculation run

	Working on the full resolution data
	Adjusting the amplitudes(2)
	Position calculation for the complete trial-list, full sample rate (1)
	dovelocityrepair
	Position calculation for the complete trial-list, full sample rate (2)
	Insert Euclidean distance measure of similarity between runs

	Head Correction
	Processing occlusal plane trials
	Construction of reference objects
	Coordinate Systems
	Create reference object - User interactions

	Perform Correction
	Exporting the data to AAA

	Settings regression analysis
	Code listing: Amplitude Correction
	Code listing: Creation of reference object
	Code listing: Rigid body analysis, extended example
	TAPADM Processing Steps
	Subversion code repository
	Form

