
PART II                         
Practical problems in the          
spectral analysis of speech signals



We have now seen how the Fourier analysis recovers   
the amplitude and phase of an input signal consisting
of a superposition of multiple components.           
                                                     
In speech, we are not usually interested in phase as 
such, so the most useful display is usually amplitude
as a function of frequency.                          
                                                     
This is what we will examine in most of the following
examples.                                            



For a practical example we will use a signal consisting
of sines at 100, 500, 1500, 2500 and 3500Hz.           
(A kind of very primitive approximation to schwa       
with a fundamental frequency of 100Hz.)                
The amplitudes were chosen to be                       
1, 1, 0.5, 0.25, 0.125 respectively.                   
                                                       
We will now also use a dB scale for amplitude as it is 
more appropriate for most speech signals, and will also
make it easier to see an important issue in spectral   
analysis.                                              
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Fourier analysis of one pitch period of ’pseudo−schwa’



We will use the spectrum in the previous figure as a   
reference. For it, we were able to select precisely    
one pitch period for analysis.                         
However, in the majority of cases with speech signals  
we will not know in advance the pitch of the signal    
to be analyzed, and in any case the pitch will be      
changing over time.                                    
So we will not be able to analyze the data in segments 
corresponding exactly to one pitch period (and it is   
often preferable to calculate the FFT with a signal    
length (in samples)that is a power of two (that is what
makes the FFT "fast")).                                
                                                       
So what will the spectrum look like if we analyze the  
previous signal over 128 samples (instead of 100)?     
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Pseudo−schwa using 128 point FFT



This looks very messy!                            
                                                  
The relative amplitudes of the sine components    
have changed, and the valleys between the peaks   
are much more shallow.                            
In short, the structure of the spectrum has been  
considerably smeared.                             
                                                  
To understand why this happens, we need to look at
the signal actually seen by the Fourier analysis  
(a segment of 128 samples of data)                
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Fourier analysis treats the signal as if it is    
periodic.                                         
However, there is a big discontinuity between     
the last sample and the first sample if we imagine
this signal being periodically repeated.          
                                                  
Remember that an impulse has a flat spectrum.     
Since a discontinuity is a kind of impulse we find
a smearing of energy across the spectrum to       
frequencies not present in the original signal.   



Another way of thinking of this is that the
FFT here analyses the signal at frequencies
that are multiples of samplerate/128.      
                                           
These frequencies do not necessarily       
correspond to the frequencies in the       
input signal.                              
                                           
Let us now see what happens when we use a  
longer FFT (512 points).                   
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Pseudo−schwa using 512 point FFT



This is a bit better, but corresponds to using a 
window length of about 50ms, which is already    
quite long for analyzing speech (where the       
spectrum may change a lot even within 10 or      
20ms).                                           
So a further increase in the length of the window
is not really feasible.                          
                                                 
Faced with the present problem, the standard     
procedure is to use a window function      



The next figure shows a typical window function 
(known as a Hamming window), and the effect of  
multiplying the input signal point by point with
the corresponding point in the window function. 
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The key feature is that the signal is tapered
smoothly towards zero at the start and end,  
so there will be much less of a discontinuity
if this signal is regarded as repeating      
periodically.                                



Note, however, that a windowed version of a single
sinusoidal signal will no longer be a pure sine   
wave.                                             
Thus the result of the Fourier analysis will      
inevitably contain further frequency components   
in addition to the frequency of the input signal  
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Pseudo−schwa using 512 point FFT and Hamming window



This certainly gives a tidier picture.    
                                          
There are many different window functions.
The next figure shows the same analysis,  
but now performed with a Blackman window. 
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Pseudo−schwa using 512 point FFT and Blackman window



The Blackman window obviously gives much lower    
valleys between the peaks than the Hamming window.
                                                  
But this comes at a price: The peaks are wider.   
                                                  
So while the Blackman window will show the peaks  
more clearly above the background noise, it may   
result in very closely−spaced peaks becoming      
merged.                                           
                                                  
Thus, the best choice of window depends to some   
extent on the kind of signal that is to be        
analyzed.                                         



In the previous example the pitch period of the
signal was an integer number of samples:       
                                               
With F0=100Hz and samplerate=10000,            
one pitch period corresponds to exactly        
100 samples.                                   
                                               
What happens when one pitch period does not 
correspond to an integer number of samples? 



We will examine this with another "pseudo−schwa"     
but now based on a fundamental frequency of 107Hz.   
(The other frequencies are the same multiples of F0  
as in the previous example based on F0=100Hz.)       
                                                     
Precise length (in samples) of pitch period = 93.4579



For the Fourier analysis we have to round this
to the nearest integer.                       
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Fourier analysis over 93 samples



Clearly, this also results in an unsatisfactory   
analysis: The height of the peaks relative to the 
valleys is very low.                              
                                                  
This should not come as a surprise:               
We have in effect once again introduced a         
discontinuity into the signal.                    
                                                  
Even the apparently slight difference between the 
true length of a pitch period, and the length used
in the analysis is enough to cause problems.      



The following slides show in turn       
                                        
128 point FFT without window            
512 point FFT without window            
512 point FFT with Blackman window      
                                        
Once again, only in the last case does a
reasonably tidy picture of the spectrum 
emerge.                                 
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Pseudo−schwa (107 Hz) using 128 point FFT
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Pseudo−schwa (107 Hz) using 512 point FFT
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Pseudo−schwa (107 Hz) using 512 point FFT and Blackman window



These examples show that for practical analysis 
of speech use of a window function is essential.
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