Modelling tongue position in German vowels

Philip Hoole
Institut für Phonetik und Sprachliche Kommunikation
Ludwig-Maximilians-Universität München
Schellingstr. 3
D-80799 Munich
Germany

"A hybrid PARAFAC and Principal Component model of tongue configuration in vowel production"

Two-Mode Principal Component Analysis

Two-dimensional data matrix:
m observations (e.g 15 vowels) on n variables (e.g 8 articulators)

Each factor extracted represents a weighted sum of the 8 articulators Each vowel has a score with respect to each factor

Problem: Rotational indeterminacy of factor axes

Three-Mode Analysis (PARAFAC)

(e.g Harshman et al., 1977)

Systematic exploitation of a third dimension to solve the indeterminacy problem In this work the speakers represent this third dimension
Analogy: Simultaneous equation
$x+y=20$
$2 x+3 y=55$
Model prediction for speaker k : $\quad \mathbf{Y}_{k}=\mathbf{A S}_{k} \mathbf{V}^{\top}$
where \mathbf{V}, \mathbf{A} and \mathbf{S} are 3 loading matrices (for vowels, articulators and speakers, respectively), and where \mathbf{S}_{k} is a matrix with the k th row of \mathbf{S} on the main diagonal and zero elsewhere

Hence very strong assumptions on possible speaker-specific behaviour
If assumptions are met
Very parsimonious representation
Close relationship of factors to the underlying behavioural dimensions

Material

15 German vowels (monophthongs)
3 consonant contexts ($\mathrm{p} V \mathrm{p}, \mathrm{tVt}, \mathrm{kVk}$)
7 speakers
2 speech rates (separate recording sessions)
8 articulatory coordinates (x / y for 4 fleshpoints on tongue)

Preprocessing

Data averaged over 5 repetitions of each token
Data converted to deviations from each subject's mean articulatory position

A bumpy road

A reliable 3-factor model could not be extracted
2-factor models:

	RMS error (mm)
p-context only	1.2
t-context only	!model unreliable!
k-context only	1.1
p and k contexts	1.5
p, t and k contexts	1.9

All the reliable 2-factor models were very similar to each other

Tongue configuration: Factor 1

Tongue configuration: Factor 2

Speaker H, /te:t/ vs. /ke:k/

Speaker P, /tœt/ vs. /tot/

Extending the model

Can the failure of the 3-factor model (and of the 2-factor t-context model) be explained?
Procedure:
Subject-specific principal-component analysis of the PARAFAC model error
Result:
The first principal component shows in all subjects an alternation between tongueblade and tongue-dorsum raising
It explains about 50% of the variance

Subject C

Subject M

Subject C

Subject B

Subject T

Subject P

Subject T

Subject P

Subject H

Subject S

Subject H

Subject S

Boring brute-force approach
Simply retain for each subject the 45 vowel weights (15 vowels * 3 contexts) and the 8 articulator weights

RMS error 1.1 mm
"Spirit of PARAFAC" approach
Use subject-specific articulator weights (as above)
but
retain only 1 set of vowel weights (averaged over subjects)
RMS error 1.2 mm

Combined PARAFAC and error-analysis model

Final Model

2 PARAFAC factors
1 factor derived from subject-specific principal component analysis of the PARAFAC model error
using
vowel scores averaged over speakers
but
speaker-specific articulator weights

Conclusions

1. The basic PARAFAC approach gives a succinct and physiologically plausible account of vowel articulation
2. Consonantal articulation requires a more complex subject-specific mapping between underlying articulatory component and observable fleshpoint coordinates
