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ABSTRACT

Changes to the realization of phonetic cues, such as vowel length or voice onset time, can

have differential effects on the system of phonological categories. In some cases, variability

or bias in phonetic realization may cause a contrast between categories to collapse, while

in other cases, the contrast may persist through the phonologization of a redundant cue

(Hyman, 1976). The goals of this dissertation are to better understand the subphonemic

conditions under which a contrast is likely to survive and when it is likely to collapse, as

well as to understand why certain cues are more likely to be phonologized than others.

I explore these questions by considering the transmission of speech sounds over a noisy

channel (Shannon and Weaver, 1948), hypothesizing that when the precision of a contrast

along one acoustic dimension is reduced, other dimensions may be enhanced to compensate

(the probabilistic enhancement hypothesis). Whether this results in phonologization

or neutralization depends on both the degree to which the contrast is threatened as well as

the informativeness of the cues that signal it.

In order to explore this hypothesis, phonological categories are modeled as finite mixtures,

which provide a natural way to generate, classify, and cluster objects in a multivariate setting.

These mixtures are then embedded in an agent-based simulation framework and used to

simulate the ongoing process of phonologization of pitch in Seoul Korean (Silva, 2006a,b;

Kang and Guion, 2008). The results demonstrate that adaptive enhancement can account

for both cue selection as well as the appearance of cue trading in phonologization. Additional

data from the incomplete neutralization of final voicing in Dutch (Warner, Jongman, Sereno

and Kemps, 2004) are then used to show how variation in phonetic realization can influence

the loss or maintenance of phonological categories. Together, these case studies illustrate

how variation in production and perception of subphonemic cues can impact the system of

phonological contrasts.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 The role of phonetic variation in sound change

Linguists have long recognized variation in phonetic realization as a key component in sound

change (Paul, 1889; Baudouin de Courtenay, 1895; Labov, Yaeger, and Steiner, 1972; Ohala,

1989). The multitude of phenomena known to be phonetic in one language but phono-

logical in another, such as umlaut, palatalization, or nasalization, suggest that structural-

phonological changes may arise via the reanalysis of phonetic variation. For instance, due

to the timing of the necessary oral and velar articulations, vowels adjacent to nasals show

partial nasalization in many languages (including English), conditioned by factors such as

postnasal devoicing, postnasal frication, and vowel duration (Cohn, 1993; Beddor, 2009).

Although these effects are allophonic or otherwise non-contrastive in some languages, in

others, such as Old French and Northern Italian, there is evidence of the development of

phonologically nasal vowels in VNC contexts to be conditioned by the same factors (Hajek,

1997; Sampson, 1999)

Based on the existence of a large number of similar phonetics–phonology ‘doublets’, lin-

guists began to consider how a phonetic property might transition to a phonological one, a

process Hyman (1972, 1973, 1976) dubbed phonologization. Hyman famously illustrated

the process using the example of tonogenesis, the process by which intrinsic fundamental fre-

quency (F0) perturbations conditioned by the voicing specification of a prevocalic consonant

come to be reinterpreted as inherent to the vowel and eventually as lexical tone (Matisoff,

1973; Hombert, Ohala, and Ewan, 1979). On Hyman’s account of tonogenesis, sketched in

Table 1.1, the universal1, physiologically-based differences in vowel F0 (Stage I) first take

1. Note that the intrinsic F0 effect has also been demonstrated for languages with lexical tone contrasts
such as Thai (Gandour, 1974, 1975), Yoruba (Hombert, 1975, 1977a), and Cantonese (Francis, Ciocca, Wong,
and Chan, 2006); however, the perturbations persist for only a short period (10–30ms after vowel onset) as
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on a language-specific form which is no longer strictly mechanical, i.e. they are to some

extent under speaker control. At this point (Stage II), the pitch differences may be regarded

as allophonic, conditioned by the initial consonant, but the stage has been set whereby a

reanalysis may occur following the loss of the voicing contrast in the initials. If such a loss

occurs, the syllabic contrast may be preserved via the phonemicization of F0 (Stage III)2.

Stage I Stage II Stage III

pá [ ] pá [ ] pá [ ]

bá [ ] bǎ [ ] pǎ [ ]

Table 1.1: Phonologization and phonemicization (after Hyman, 1976). Sparklines show the
time course of F0 production for the vowel following the initial consonant.

An example of phonologization in vivo is provided by Seoul Korean, a language which

maintains a three-way distinction between fortis, lenis, and aspirated stops in syllable-initial

position (Table 1.2). While studies of Korean stop acoustics in the 1960s and 1970s found

this contrast to be signaled largely by differences in voice onset time (VOT: Lisker and

Abramson, 1964; Kim, 1965; Han and Weizman, 1970), subsequent studies have reported

that lenis and aspirated stops are no longer distinguished by VOT in either production or

perception, but rather that F0 has come to play a more central role (Kim et al., 2002;

Silva, 2006b; Wright, 2007; Kang and Guion, 2008). In other words, the emergence of F0

as a primary cue to a category-level contrast in Korean may find its origins in what was

originally intrinsic, mechanical, universal phonetic variation.

However, the Korean example illustrates two problems not addressed by the phonologiza-

tion model as originally formulated. First, VOT and F0 are not the only cues relevant for the

perception of this contrast: spectral tilt, the amplitude of the release burst, and the duration

opposed to languages like English, where differences may persist up to 100ms into the vowel (House and
Fairbanks, 1953; Lehiste and Peterson, 1961).

2. Although Hyman’s term for the Stage I > Stage II transition is reminiscent of Phonologisierung (Jakob-
son, 1931), Jakobson’s use referred to the transition from an allophonic property to a phonemic one; thus
(Hyman, 1976) suggests the term phonemicization for this subsequent transition.
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manner 1960s 2000s gloss

fortis 뿔 [p*ul] [púl] ‘horn’

lenis 불 [pul] [phùl] ‘fire’

aspirated 풀 [phul] [phúl] ‘grass’

Table 1.2: Phonologization of F0 in Seoul Korean.

of the stop closure have all been argued to play a role (Ahn, 1999; Cho et al., 2002; Kim

et al., 2002; Wright, 2007). This is problem of cue selection: determining why a certain

cue is targeted in a given instance of phonologization, and not some other. In addition, as F0

has transitioned from a redundant cue to a primary cue, the previously primary cue, VOT,

has been correspondingly less informative. This phenomenon – whereby phonologization of

one cue is invariably accompanied by dephonologization of another – will be referred to as

the problem of cue trading.

voice contrast redundant effect contrastive effect

English /bæt/ [bæt] [bæt] ‘bat’
/bæd/ [bæ:t] [bæ:t] ‘bad’

Dutch /bat/ [bat] [bat] ‘benefit’
/bad/ [bat] [bat] ‘bathe-1sg’

Table 1.3: The evolution of word-final obstruent devoicing in Dutch and English. In English,
the redundant vowel length effect has been phonologized into a contrastive effect in this
position, while in Dutch, the contrast has effectively been neutralized.

While examples like Seoul Korean are numerous, phonologization is not the only outcome

of phonetic variation – merger of segments due to loss of phonetic contrast is of course a wide-

spread phenomenon in sound change. In Dutch, for example, word-final obstruent devoicing

has arguably resulted in homophony between word pairs such as bat ‘benefit’ and bad ‘to

bathe-1sg’ (Lahiri, Schriefers, and Kuijpers, 1987). A similar process of word-final obstruent

devoicing in English has not resulted in the loss of contrast in this position, however, since the
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redundant effect of differences between the length of vowels preceding voiced and voiceless

obstruents has been phonologized as the VOT differences were lost (Table 1.3).

While the English case once again illustrates the problems of selection and trad-

ing, comparison with Dutch raises the additional problem of determining whether or not a

contrast will be preserved or neutralized – the problem of category restructuring.

This dissertation is concerned with explicating these three problems through careful ex-

amination of the empirical instances mentioned above. I propose that satisfying answers to

these questions involves considering how both speaker and listener adapt to variation in their

linguistic experience through optimizing the sometimes competing goals of communicative

reliability and efficiency. In order to address the problems of selection, trading, and

restructuring, a computationally explicit framework is described and tested using empir-

ical data from the Korean and Dutch cases described above. The basic framework adopted

is that of mixture models familiar from machine learning and statistical inference, which

are used to model the production and perception of phonetic categories in a multivariate

setting. In order to explore the influence of phonetic bias factors and cue reliability in sound

change, agent-based simulations are used to model the interaction between members of a

speech community. Finally, predictions about the loss or addition of category labels are

made by way of computing the optimal trade-off between model fit and data coverage.

1.2 Sound change in three stages

Hyman’s characterization of sound change separates the process into two distinct transitions:

one by which universal, mechanical variation becomes language-specific, and a second stage

at which this language-specific variation becomes contrastive (Table 1.4).

Subsequent research has tackled different issues raised by this model. One goal pursued

by many researchers was to identify diagnostics that can be used to demarcate universal,

mechanical, intrinsic phonetic variation (Stage I) from the language-specific, controlled, ex-
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Stage I Stage II Stage III

universal phonetics > language-specific phonetics > phonology

Table 1.4: Three stages in sound change. After Hyman (2008).

trinsic variation (Stage II: Wang and Fillmore, 1961; Ladefoged, 1967; Ohala, 1981b; Solé,

1992, 1995, 2007), as well the language-specific phonetic variation (Stage II) from contrastive

phonological variation (Stage III: Pierrehumbert, 1980; Kiparsky, 1995; Cohn, 1993; Hyman,

2008). Other researchers focused on identifying the set of phonetic precursors – articu-

latory, acoustic, and cognitive factors which constrain what is and isn’t available as the input

to phonologization (Hombert, 1977b; Ohala, 1981a, 1983, 1989, 1993a,b; Blevins, 2004; More-

ton, 2002, 2008), with the goal of helping to define and delimit phonological typology (Ohala,

1989; Kiparsky, 1995; Blevins, 2004).

While many researchers focused on identifying the sources of phonetic variability that

could (potentially) serve as input to phonologization, there remained the question of precisely

how the process might unfold. Writing about the phonologization of F0, for instance, Ohala

hypothesized

[i]f these supposedly small fortuitous pitch contours following consonants can be used as

perceptual cues by listeners, it is a small step beyond that to suppose that eventually

these small pitch differences might be taken by listeners as the major acoustic cue

differentiating the lexical items formerly differentiated by voicing or voice onset time.

(Ohala, 1973: 10–11)

Although much of his research program has been devoted to the cataloging of likely phonetic

precusors and their physiological underpinnings, Ohala took the additional step of develop-

ing a theory of how phonetic precursors, such as a ‘small fortuitous pitch contour’, might be

reinterpreted by a listener. The core of Ohala’s proposal is that sound change on an indi-

5



vidual level (a ‘mini-sound change’) is the result of listener misperception; in particular, of a

listener’s failure to take into account the effects of coarticulation or intrinsic variation (Ohala,

1981a, 1993b; see also Blevins, 2004, 2006). On such an account, the phonologization of a

contextually conditioned feature such as F0 would arise due to a listener failing, for whatever

reason, to perceptually compensate for the fact that the F0 perturbations at vowel onset are

due to the presence of a neighboring consonant, instead reinterpreting them as a feature of

the vowel itself (hypocorrection)3. On this view, phonologization is the result of inno-

cent listener error, and the most common patterns of phonologization observed in the world’s

languages can be traced to universal physiological aspects of the human speech and hear-

ing apparatus, a hypothesis that has received wide-spread empirical support (Ohala, 1981a,

1989, 1990, 1993a,b; Beddor, Krakow, and Goldstein, 1986; Hura, Lindblom, and Diehl,

1992; Guion, 1995; Plauché, Delogu, and Ohala, 1997; Hume and Johnson, 2001; Plauché,

2001; Beddor, Harnsberger, and Lindemann, 2002; Kavitskaya, 2002; Hayes, Kirchner, and

Steriade, 2004; Przezdziecki, 2005).

1.2.1 The multivariate nature of speech

A key aspect of the speech signal highlighted by Ohala’s theory is that of multidimension-

ality. Speech sound categories, be they phonemes or allophones, are not monolithic entities,

bur rather are known to be identified on the basis of multiple acoustic-phonetic dimensions,

which may serve as perceptual cues to the categories (Delattre, Liberman, Cooper, and

Gerstman, 1952; Liberman, Delattre, and Cooper, 1952; Cooper, 1953; Liberman, Cooper,

Shankweiler, and Studdert-Kennedy, 1967; Liberman and Cooper, 1972).4 Lisker (1978)

3. Similarly, Ohala argues that sound changes such as dissimilation are the result of listner hypercor-
rection, whereby a listener reinterprets the effects of intrinsic phonetic context as an extrinsic property of
a sound segment.

4. Throughout this dissertation, the terms cue and acoustic-phonetic dimension will often be conflated.
Strictly speaking, this is an abuse of terminology, since a given acoustic-phonetic dimension may not function
as a perceptual cue for a given speaker, for a given contrast, or in a given language.
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famously catalogued 16 possible cues to the perceptual distinction between English word-

medial voiced and voiceless obstruents, including duration of the preceding vowel, F0 contour

at vowel onset, and the timing of voice onset (VOT). While some cues are truly independent,

others are often redundant, meaning that the value of one cue may be predicted on the

basis of another. For example, in English, the F0 onset frequency of vowels is to some degree

predictable from the VOT of the preceding consonant, with voiced obstruents (with short-lag

VOT) having lower F0 than vowels following voiceless obstruents (with long-lag VOT). This

is illustrated in Figure 1.1, which plots productions of /p/ and /b/ by speakers of American

English. While the distinction between the categories is clear along the y axis (VOT), there

is also some degree of separation along the x axis (F0).
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Figure 1.1: Redundancy between consonantal voice onset time (VOT) and fundamental
frequency (F0) at vowel onset. Vowels following voiced obstruents (/b/) have lower F0 than
vowels following voiceless obstruents (/p/). Based on data from Clayards (2008).

While categories vary in the cues relevant for their perception, the contribution of each

individual cue to the successful perception and identification of a given phonetic category

can also vary, as a function of context, linguistic experience, and perceptual salience. For

7



example, while VOT is a highly robust indicator (or primary cue) of the phonological [voice]

feature of English obstruents in initial position, it is a poor indicator of that same feature

in medial position (Clayards, 2008). Furthermore, in cases where a primary cue is for some

reason uninformative – if it is masked by noise, for instance – attention can be re-focused on

secondary (redundant) cues (Repp, 1982). Attention to cue can be influenced by training

and feedback (Francis, Baldwin, and Nusbaum, 2000), suggesting that the role of a given cue

in signaling a contrast need not be static even over the lifetime of an individual, and may

also be modulated by task, as demonstrated by Gordon, Eberhardt, and Rueckl (1993), who

found that the perceptual role of canonically redundant F0 onset frequency increased when

participants were distracted, while the attention to canonically primary VOT decreased.

1.3 Cue selection in phonologization

The multidimensional nature of the speech signal and the existence of multiple cues to

phonetic contrasts are in some sense the empirical core of the phonologization framework.

A question that naturally arises then is: how and why are particular cues phonologized in a

given instance? This is the problem of cue selection.

1.3.1 Psychophysical salience and linguistic experience

One possible answer to the selection problem is that the likelihood of an acoustic di-

mension being targeted in phonologization is related to its degree of psychophysical salience.

For instance, Holt and Lotto (2006) demonstrated that even when equally informative and

psychophysically discriminable, listeners may still display a preference for categorizing non-

speech stimuli based on one acoustic dimension over another. Francis et al. (2000) have

shown that, prior to receiving instructive feedback, American English listeners relied more

on formant transition cues than on frequency in the noise bursts preceding the transitions

when categorizing obstruents, despite the fact that both cues reliably covaried with conso-
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nant voicing. However, defining cue selection in terms of prelinguistic perceptual salience

does not provide an explanation for the phonologization of those cues which are a priori less

perceptually salient.

Another perceptual factor which may influence cue selection is linguistic experience,

which has also been shown to exert considerable influence over the relative weight afforded

cues in perception. For example, the length of a vowel preceding a medial or final obstruent

is an important cue to the obstruent’s phonological voicing specification in English (Port

and Dalby, 1982; de Jong, 1991, 1995), but not in Arabic (Flege and Port, 1981) or Catalan

(Solé, 2007). Examining this same cue, Nittrouer (2004) found that while native American

English-speaking adults rely heavily on preceding vowel duration as a cue to the identity

of a final consonant, children rely more heavily on dynamic properties of the signal, such

as formant transitions, when making decisions about consonant identity. The relative im-

portance of a cue may also vary by dialect: while Scottish English listeners rely heavily on

vowel length to distinguish the /I/ – /i/ contrast, Southern British English listeners pay

more attention to formant frequency, facts which are also mirrored in their productions of

these vowels (Escudero and Boersma, 2004). That the relative informativeness of acoustic-

phonetic dimensions changes with linguistic experience has perhaps been most conclusively

demonstrated by studies showing that by the first year of life, infants have reorganized their

mapping from the acoustic input space to the categorical perceptual space in accordance

with the input they receive (Werker and Tees, 1984; Kuhl, Williams, Lacerda, Stevens, and

Lindblom, 1992; Kuhl, 2004; Kuhl, Stevens, Hayashi, Deguchi, Kiritani, and Iverson, 2006).

There is also evidence that experience in non-linguistic domains can influence linguistic pro-

cessing: when learning lexical tones, participants with musical training (who tend to give

pitch movements greater perceptual weight) tend to outperform those without (Lee, Perra-

chione, Dees, and Wong, 2007; Wong and Perrachione, 2007; Chandrasekaran, Sampath, and

Wong, 2010).
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1.3.2 Cue selection and differential phonologization

The wide range of psychophysical and experiential effects is also reflected in the fact that

different languages and dialects frequently diverge in their historical treatment of the same

acoustic-phonetic dimensions. Table 1.5 shows the evolution of initial obstruent voicing in

several dialects of Kammu (Khmu’), a Mon-Khmer language of Southeast Asia. Although

F0 appears to have been phonologized to some degree in all three of the Kammu dialects

shown, voice quality was phonologized one Western dialect, aspiration and F0 interact in

another, while in the conservative Eastern dialect, the original voicing distinction has been

preserved (Svantesson, 1983; Suwilai, 2001). Given that all the modern dialects developed

from the same (Eastern) source, it is not at all obvious why the contrast should have evolved

in the ways that it did. If the same phonetic precursors were available to all speakers, why

did some Kammu speakers phonologize one cue and not another?

E. Kammu W. Kammu W. Kammu W. Kammu gloss
(tone 1) (tone 2) (register)

bu:c pù:c phù:c pu
¨
c ‘rice wine’

pu:c pû:c phú:c pûc ‘to take off clothes’

gla:N klà:N khlà:N kla
¨
:N ‘stone’

kla:N klâ:N khlá:N klâ:N ‘eagle’

Table 1.5: Evolution of [voice] in Kammu. After Svantesson (1983); Suwilai (2001).

Kingston (1985, 2005, 2007) considers this question in his discussion of tonogenesis in

the Athabaskan languages, which bears noteable similarities to the Kammu case. Kingston

sought to explain the curious fact that among the tonal Athabaskan languages, which de-

veloped tones following the loss of final glottalic consonants, cognate forms have high tones

in some languages, such as Slave and Chipewyan, but low tones in others, such as Gwichi’in

and Navajo (Table 1.6).

Kingston’s proposal hinges on two ideas, one focused on the listener and one on the

speaker. The first is very much in line with Ohala’s proposals and Blevins’ (2004; 2006)
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Proto- Chipewyan Gwichi’in Hupa
Athabaskan (High) (Low) (non-tonal)

‘smoke’ *ì@d ì@̀r ìád ìid
‘belly’ *w@t’ b@́r vàd m@t’
‘wife’ *Pa;d Pà Pád Pad
‘scab’ *ìu;t’ ìùr ì́ıd ìoh

Table 1.6: Representative Athabaskan cognate sets. t’ = glottalic articulation, á = high
tone, à = low tone, a; = full vowel, a = reduced vowel. (Examples from Krauss, 1979.)

notion of choice: when multiple phonetic variants of a single phonological form are accu-

rately perceived by the listener, the phonetic variant of the category prototype posited by

the listener may differ from that intended by the speaker.5 In the Athabaskan case, the idea

would be that if a listener were to interpret the coarticulatory effect of the laryngeal articu-

lation on F0 as an intended gesture, they would then encode this as part of the underlying

specification for the contrast.6

The second part of Kingston’s proposal differs from that of Ohala and Blevins in that it

involves the speaker as well as the listener. In the Athabaskan case, Kingston proposes that

speakers can and do actively manipulate phonetic cues to the laryngeal contrast in different

ways. Building on earlier work by Krauss (1979) and Leer (1999), Kingston argues that,

since the contraction of the cricothyroid and thyroaryetnoid muscles in the production of

glottal consonants may occur independently (Kingston, 1985; Wright, Hargus, and Davis,

2002). If the glottal closure is affected only by contraction of the thyroarytenoid muscles,

the outer vocal folds will remain slack and the voice quality of the adjacent vowel will be

5. The degree to which this type of reanalysis can be truly regarded as conscious choice on the part of
the listener is not made clear by Blevins, Kingston, or Ohala.

6. While a plausible phonetically-based motivation for the differences in tonal evolution exists for
Athabaskan, there are many well-known instances of similar tone reversals in the history of the Bantu
languages, such as in Ruwund (Nash, 1994), Chiluba (van Spaandonck, 1971; Maddieson, 1976), and Tembo
(Kaji, 1996), which are not so obviously amenable to such an account (Hyman, 2000). In addition, the real-
ization of tone in many Bantu and other African tone systems is affected by a wide variety of phonological,
morphological, and syntactic factors (see Kisseberth and Odden, 2003, for an overview).
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breathy, accompanied by lowered F0. If, on the other hand, speakers simultaneously contract

the cricothyroid muscle, the outer covers of the vocal folds will stretch, resulting in creaky

phonation and heightened F0 on the adjacent vowel. The possibility of independent manip-

ulation of these articulators allows Kingston to explain the fact that while some Athabaskan

languages developed a high tone following the loss of laryngeal contrast, others developed a

low tone, thereby providing a partial explanation of how cases of divergence in phonologiza-

tion, such as seen in Kammu, might come about. Why speakers choose to exercise control

over one cue versus another, however, remains an outstanding problem.

1.4 Category restructuring and licensing by cue

Up to this point, we have been discussing the problem of determining which cue might

be phonologized, but Kingston also raises a slightly different problem: what determines

whether or not a given cue will phonologize in the first place. Kingston notes that in

other languages with phonological circumstances similar to Athabaskan, the loss of laryngeal

contrast in stem-final position was not accompanied by a resulting phonologization, but

simply resulted in positional neutralization. In Lithuanian, for example, a language which,

like Proto-Athabaskan, once distinguished between voiced and voiceless obstruents in final

position, the laryngeal contrast is now supported only before sonorants, as shown in Table

1.7; in other environments, such as word-finally, the obstruent voicing contrast has been

neutralized.

form gloss form gloss

silpnas ‘weak’ skobnis ‘table’
daũg [dauk] ‘much’ kàd [kat] ‘that’
dèg-ti [kt] ‘burn-INF’ mı́elas draũgas [zd] ‘dear friend’

Table 1.7: Positional neutralization in Lithuanian.
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While it involves a different cue (vowel length instead of vowel F0), the fates of the

word-final laryngeal contrasts in Athabaskan/Lithuainian echo the Dutch/English scenario

discussed at the beginning of this chapter. Both are instances of the restructuring

problem: why is phonologization the outcome in one language, but neutralization the

outcome in another?

In discussing the Athabaskan/Lithuanian-type case, Kingston considers, and ultimately

rejects, Steriade’s licensing by cue proposal (Steriade, 1997) as a way of explaining the

different outcomes. Sharing with the work of Ohala and Blevins the idea that common sound

patterns find their source in universal properties of the human speech system, licensing by

cue maintains that phonological contrasts are likely to be maintained in contexts where the

acoustic cues to their identity are robust and easily perceived, and likely to be neutralized

in contexts where they are reduced or otherwise obscured. Thus, the retention of laryngeal

contrasts before sonorants in Lithuanian (Table 1.7) is due to the fact that the release and

transition cues relevant for the [voice] contrast are robustly perceptible in that context;

in word-final position and preceding nonsonorant obstruents, however, they are not, and

neutralization is the result. Kingston points out that while licensing by cue might help to

explain the fact that in Lithuanian, weak perceptual cues to word-final voicing resulted in a

loss of contrast in this position, it sheds no light on the fact that some Athabaskan dialects,

when faced with presumably a similar set of affairs, instead phonologized F0, because

[i]f the phonetic correlates available to act as cues to a particular laryngeal contrast are

the same in all languages where that contrast is found, then Lithuanian and Klamath

speakers and listeners had at their disposal more or less the same materials to convey

these contrasts...as Athabaskan speakers. Yet they failed to use them. The solution to

this problem lies in the idea that speakers choose how they are going to pronounce a

contrast, and therefore which of the available phonetic materials they’re going to use.

(2007:427)

13



Kingston conceives of phonetics not as ‘something that happens to speakers’, but something

that can be actively manipulated to serve a communicative need (ibid). However, accepting

that speakers can exert control over low-level phonetic details of the speech signal simply

raises the selection problem again – explaining how and why speakers wield this control

in certain situations and not in others.

1.4.1 Dephonologization and contrast-driven enhancement

A slightly different approach to solving the selection problem, found in earlier work by

Kingston and colleagues, is based on the auditory enhancement hypothesis: the idea

that cues are enhanced based on the degree to which they contribute to the perception of

an integrated perceptual property, or ipp, which reinforces a phonological contrast

(Diehl and Kluender, 1989; Kingston and Diehl, 1994; Diehl, 2008). In the case of the [voice]

contrast, for example, cues with similar auditory properties, such as F1 and F0, are predicted

to integrate, because both contribute to the amount of low-frequency energy present near a

stop consonant. Cues such as closure duration and F0 would not be predicted to integrate

precisely because they do not both contribute to such a property (Kingston, Diehl, Kirk,

and Castleman, 2008). If cues are enhanced based on the degree to which they contribute to

ipps, this predicts that certain cues, such as closure duration, will not be enhanced, and thus

presumably are less likely to phonologize. A similar view is put forth by Keyser and Stevens

(2001, 2006), who argue that cues are targeted for enhancement as a means of reinforcing

an existing phonological contrast (2001:287).

There are, however, some problems with the idea that phonologization is contingent

on the presence of a contrastive phonological feature, such as [±voice]. First, there are

cases where the phonologization of a feature is not dependent on its contrastiveness. In

Punu, a Niger-Congo language spoken in Gabon, non-contrastive mid-vowel ATR harmony

is phonologized out of what appears to be ‘pure articulatory convenience’ (Hyman, 2008),
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with /E/ > [e] and /O/ > [o] before /i/ and /u/ (Kwenzi-Mikala, 1980). Second, there

is the matter of the trading problem, the rather striking fact that in many instances,

phonologization of one feature is accompanied by dephonologization of another:

the phonologization process...must be interpreted literally: something becomes phono-

logical, and at the expense of something else. (Hyman 1976:410)

This type of scenario is sometimes referred to as transphonologization (Hagège and

Haudricourt, 1978; Hagège, 2004) or rephonologization (Jakobson, 1931):

une opposition ayant valeur distinctive est menacée de suppression; elle se maintient par

déplacement d’un des deux termes, ou de l’opposition entière, un trait pertinent con-

tinuant, de tout manière, à distinguer ces termes 7 (Hagège and Haudricourt, 1978:75)

The trading problem is left unexplained by theories which aim to account for the

selection problem in terms of phonological contrast enhancement. In order to understand

why phonologization is often accompanied by dephonologization, we need a theory of how

cues are targeted for enhancement that takes into account both the functional aspects of

linguistic communication as well as individual variation in linguistic experience.

1.4.2 Category restructuring and inhibited sound change

The restructuring problem has sometimes been addressed in previous literature under

the more general rubric of inhibited sound change. It has often been suggested that

sound change is more likely to be inhibited when it would result in the neutralization of a

lexically or morphologically informative contrast (Martinet, 1952; Campbell, 1996; Blevins

and Garrett, 1998; Kingston, 2007; Blevins and Wedel, 2009; Silverman, 2010). One well-

known example concerns the loss of final –n in Estonian (Anttila, 1989; Campbell, 1998).

7. “An opposition having distinctive value is threatened with suppression; it is maintained by displacement
of one of the two terms, or the entire opposition, a relevant feature continuing, in any manner, to distinguish
these terms” (my translation).
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While final –n was lost throughout Estonian, the loss was inhibited in Northern Estonian

dialects in just those cases when it would have led to homophony between verbal inflections.8

In Southern Estonian dialects, this sound change took place across the board; it was pre-

sumably not inhibited in this same context because retention of –P meant that the verbal

forms could still be distinguished, as shown in Table 1.8.

Northern Estonian Southern Estonian Proto-Balto-Finnic

kannan kanna *kanna-n ‘I carry’
kanna kannaP *kanna-P ‘Carry!’

Table 1.8: Estonian verb forms after loss of P and n. After Campbell (1998).

While the avoidance of what has been termed ‘pernicious homophony’ (Lass, 1980; Camp-

bell, 1998; Blevins and Wedel, 2009) may well play a role in the inhibition of neutralization,

it does not necessarily help to explain the restructuring problem. In the Estonian case,

for instance, the outcomes of interest are retention vs. loss of a morphological contrast, which

is strictly speaking independent of transphonologization vs. loss of a phonological contrast.

In any event, the restructuring problem remains to be explained in those cases where

homophony was not avoided, such as in the history of Mandarin Chinese, where histori-

cal sound changes resulted in a large number of previously distinct lexical items becoming

homophonous (Baxter, 1992; Duanmu, 2000; Silverman, 2006). As illustrated in Table 1.9,

there are no less than six morphemes pronounced sù in modern Mandarin, all but two of

which may be reconstructed as having distinct pronunciations in Old Chinese. The existence

of such cases suggests that homophony avoidance alone cannot explain why restructuring

occurs in some instances but not in others.

8. In fact, the change did go through in certain parts of the paradigm, but homophony was avoided
through other strategies such as consonant gradation and cliticization; see Campbell, 1998:90.
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character gloss Mandarin Old Chinese

粟 ‘millet’ sù *sjok
肅 ‘solemn’ sù *sjiwk
宿 ‘stay, lodge for the night’ sù *sjuk
夙 ‘morning, early’ sù *sjuk
素 ‘white’ sù *saks
愬 ‘to complain, to tell’ sù *sNaks

Table 1.9: Homophonous morphemes in modern Mandarin and their Old Chinese recon-
structions (following Pulleyblank, 1991; Baxter, 1992). After Rogers (2005).

1.5 An adaptive model of sound change

Solving the selection, trading, and restructuring problems simultaneously requires

us to reconsider the roles of the speaker and listener in sound change, as well as the ways

in which speakers exercise phonetic knowledge in the form of cue enhancement. Here, I

take an functional approach to the problem, where the function of speech is assumed to

be broadly communicative (cf. Liljencrants and Lindblom, 1972; Lindblom, 1990; Boersma,

1998; Flemming, 2001). By modeling changes to both the language-specific and structural

aspects of sound system using a single mechanism, different scenarios which may lead to

sound change may be explored and compared.

1.5.1 The noisy channel

As Jakobson famously remarked, ‘[w]e speak in order to be heard in order to be understood’

(Jakobson, Fant, and Halle, 1951:13). This basic problem faced by language users finds

a useful metaphor in the ‘noisy channel’ familiar from information theory (Shannon and

Weaver, 1949). At one end of the channel is the speaker, who is attempting to send a

message to the listener, the receiver at the other end. However, even under relatively ideal

conditions, speech communication is fraught with difficulties, and a huge number of factors
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– including, but by no means limited to, the influence of physiological, social, and cognitive

constraints on speech production and perception – can introduce variability into the acoustic

realization, potentially obscuring the speaker’s intended message. In this work, asymmetries

in speech production and perception, regardless of their ultimate source, will be collectively

referred to as bias factors (cf. Moreton, 2008; Garrett and Johnson, to appear). Setting

aside for the moment questions about the source, nature, and influence of various bias factors,

it is enough to simply note that many different types of bias can have a similar effect: the

introduction of noise into the channel, much like interference on a telephone line (Figure

1.2).
 

 

sender 

 

receiver 
 

 

noise 

 enhancement 

Figure 1.2: The noisy channel (after Shannon and Weaver, 1949).

To make this a bit more concrete, we may think of the speaker’s (phonological) goal as

being to transmit to the listener a sequence of labels, representing phonetic categories, each

one signaled along multiple acoustic-phonetic dimensions. The listener’s goal is to recover

the speaker’s intended sequence of labels based on the acoustic-phonetic information they

receive9. All else being equal, the speaker’s success is to some extent dependent on the

precision of the contrasts being transmitted – precision being determined based on the

statistical distribution of acoustic-phonetic cues to the contrast in question. Precision may

be reduced for a variety of reasons, including channel noise introduced by bias factors, or

change in the system of contrast at the structural level, which may result in an increase

or decrease in the number of categories competing over some acoustic-phonetic space. The

9. “Minimally, the talker needs to ensure that the linguistic units have sufficient discriminatory power
for making the correct lexical identifications” (Lindblom, Guion, Hura, Moon, and Willerman, 1995:8). The
present work ignores other potential sources of information such as phonotactic and syntactic context.
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question of interest then becomes how language users respond in general to variation in the

degree of contrast precision.

There is considerable evidence that, as listeners, language users are both aware of and

able to adapt to the phonetic circumstances online. Remez, Rubin, Pisoni, and Carrell

(1981) demonstrated that listeners can understand so-called ‘sine-wave speech’ by following

the center frequencies of the first three formants, despite the overall reduction in available

acoustic detail; similar results have been obtained for noise-vocoded normal speech (Shannon,

Zeng, Kamath, Wygonski, and Ekelid, 1995; Davis, Johnsrude, Hervais-Adelman, Taylor,

and McGettigan, 2005). Dupoux and Green (1997) showed that normal hearing listeners

can, with some training, perform at close to normal levels of speech perception when exposed

to severely time-compressed speech. And while the fact that telephone conversations take

place in the 300 to 3000 Hz range might suggest that the most important information in the

signal is contained in this bandwidth, listeners can categorize speech sounds with > 90%

accuracy even when the signal is filtered to contain only frequencies below 800 Hz and above

4000 Hz (Lippmann, 1996).

There is also evidence that speakers adapt to changing communicative circumstances. An

excellent example of this is provided by the study of Kang and Guion (2008), who show that

the acoustics dimensions enhanced by speakers in production are related to those used to

discriminate a contrast in perception. In particular, Korean speakers who distinguish voiced

and voiceless stops on the basis of voice onset time tended to enhance that cue in clear speech,

whereas speakers whose productions are distinguished more by F0 at the onset of a following

vowel tended to enhance that cue. In conversational and citation-form contexts, neither

grouped tended to enhance phonetic targets, suggesting both that degree of enhancement

is (at least partly) a function of a speaker’s assessment of the communicative context, and

that the targets of phonetic enhancement can be modulated by a speaker’s own experience.

This particular example will form the basis of the simulations conducted in Chapter 4.
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All of these studies provide support for the idea that language users are aware of, and

able to compensate for, distortions in the signal. Assuming that speakers (i) have access

to internal phonetic knowledge (Kingston and Diehl, 1994), (ii) equate the internal state of

listeners with that of their own, and (iii) have some knowledge about the ways in which the

communicative context (channel noise) might influence the precision of the contrast they are

trying to transmit, speakers could exert phonetic control in an adaptive fashion by enhancing

just those portions of the signal which would be most likely to ensure robust communication

(Aylett and Turk, 2004; Diehl, 2008).

1.5.2 Probabilistic enhancement

This notion of adaptive enhancement, whereby the speaker plays an active role in driv-

ing sound change, is reminiscent of the h(yper)&h(ypo) theory of Lindblom (1990), in

which the speaker is thought to keep a running estimate of the listener’s need for informa-

tion in the signal and adapts her productions accordingly, while balancing the speaker’s own

tacit preference for exerting the minimum articulatory effort necessary. So, while in general

speakers may coarticulate as a means of reducing articulatory effort, they may hyperartic-

ulate in situations where the listener’s informational needs are estimated to be high. The

exact phonetic form produced in any given situation is thus co-determined by both these

informational assumptions as well as articulatory constraints, such as vocal tract constraints

(Ohala, 1981a, 1989), speaking rate (Moon and Lindblom, 1994) or a general preference for

reduced articulatory effort (Bloomfield, 1933; Zipf, 1949; Lindblom, 1990; Kirchner, 1998;

Flemming, 2001). In other words, the speaker must balance listener-oriented constraints

(‘be understood’) with talker-oriented constraints (‘be efficient’).

It must be noted that quantifying notions such as communicative efficiency or articu-

latory effort has proven notoriously difficult, and that experimental results do not always

corroborate effort-based hypothesis. For example, Kaplan (2010) compared the degree of
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intervocalic consonant lenition (voicing or spirantization) between normal talkers and intox-

icated talkers, on the assumption that the latter group would tend to expend less articulatory

effort. The results indicated that intoxicated subjects were more likely to produce less ex-

treme articulations, but not that their productions were more or less lenited than those of

sober talkers. The interpretation of these results for theories of sound change is complicated,

in part because it is not clear if they should be taken to indicate that processes such as

lenition are not driven by a preference for reduced articulatory effort (contra e.g. Kirchner,

1998), or if intoxicated speech is not an appropriate experimental condition under which to

observe a reduction in such effort. Pouplier (2010) argues that careful or clear speech may be

no more intrinsically effortful than casual speech, but that all speaking styles are equally op-

timal in their given contexts. These types of results suggest that articulatory economy, even

if it can be adequately quantified, may not play a significant role in shaping the evolution of

sound systems.

The basic finding that talkers will enhance certain aspects of the phonetic signal un-

der certain conditions, however, is on firmer experimental ground. For example, Picheny,

Durlach, and Braida (1986) found significant VOT lengthening for word-initial voiceless

stops in English in clear speech conditions. Similarly, vowel intelligibility has been shown

to improve under clear speech conditions in both English (Bradlow, 2002; Ferguson and

Kewley-Port, 2002) and Spanish (Bradlow, 2002), for native as well as non-native listeners

(Bradlow and Bent, 2002). These studies suggest that enhancement of phonetic targets is

very real, even in the absence of a complete understanding of how enhancement might be

modified by a talker’s assessment of communicative efficiency or articulatory effort.

In arguing that talkers hyperarticulate by exaggerating phonetic targets in situations

where intelligibility is degraded, H&H theory aims to explain differences in clear vs. conver-

sational speech, but the same principle may also be applied as a motivating principle driving

sound change (Lindblom et al., 1995). If the acoustic profiles of two speech sounds are

21



highly overlapping, listeners may have difficulty distinguishing between the two categories.

If speakers were interested in improving intelligibility for the listener, they might choose to

hyperarticulate in order to provide the listener with an acoustic target whose category label

could be more accurately recovered. Exactly which cue(s) they choose to hyperarticulate will

depend in large part on the degree to which a cue contributes to the successful perception

and categorization of a phonetic contrast – what will be referred to as reliability (related

to the notion of informativeness from Clayards, 2008).

The measure of experimental evidence suggests that it is unrealistic to assume that speak-

ers are always optimal at assessing the communicative needs of listeners in a given context.

However, the greater the potential loss in precision and the greater the potential increase in

reliability, the more likely (or at least more motivated) a speaker may be to succeed. Evidence

from research in speech perception suggests that the distribution of attention to individual

cues may vary as the speech perception mechanism seeks out cues that are potentially more

diagnostic under suboptimal listening conditions (Nusbaum and Schwab, 1986; Nusbaum

and Magnuson, 1997; Magnuson and Nusbaum, 2007). As a first order approximation of

these findings, this dissertation proposes a probabilistic model of adaptive enhancement

which takes into account both contrast precision as well as cue reliability.

1.5.3 Cue restructuring and category restructuring

These same adaptive principles may be used to motivate a solution to the restructuring

problem as outlined above – determining the conditions under which the number and

structure of phonetic category labels is likely to change. In this instance, the primary agent

of change is argued to be the listener, as suggested by Ohala. Much as the speaker is

thought to keep a running estimate of the informational needs of the listener, so too does

the listener keep a running estimate of the efficiency of the set of category labels. As long as

communication is sufficiently robust, the number of labels will be maintained, but the label
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inventory will be reduced if it is not communicatively justified. In other words, the likelihood

of neutralization is a function of channel noise and contrast precision (itself determined by

the distributional properties of the acoustic-phonetic cues to the contrast). This process is

modeled as adaptive regularization, whereby the number and structure of phonetic

categories is determined by optimally adjudicating between the model’s fit to data as well

as its overall complexity, measured by the number of parameters in the model. Since the

parameterization grows with the number of components, this serves as a bias against large

inventories of phonetic categories which are not justified by an increase in communicative

accuracy.

1.6 Structure of the dissertation

In the preceding, I have identified several questions that arise when considering sound change

from within a phonologization framework. Three challenges in particular stand out:

1. the selection problem: predicting which cue will be the target in a phonologization

process (or explaining why a given cue was targeted and not some other);

2. the restructuring problem: predicting when a contrast will transphonologize and

when it will neutralize (or explaining why a given contrast may be more or less apt to

neutralize);

3. the trading problem: explaining why phonologization is so often accompanied by

dephonologization.

I then proposed that formulating satisfying answers to these questions involves taking

an adaptive perspective on the role of enhancement in sound change. The goal of this

dissertation is to implement this model computationally, and illustrate its efficacy using real

linguistic data. The basic computational framework adopted is that of mixture models
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familiar from statistical machine learning, which are used to model the production and

perception of phonetic categories in a multivariate setting. In order to explore the effects of

different types of bias and cue reliability in sound change, these models are incorporated into

computational agents in an agent-based simulation framework. Finally, the loss or addition

of category labels is modeled by determining the optimal trade-off between model fit and

data coverage.

The framework will then be used to explore two case studies: one illustrating the first

transition in phonologization (the selection and trading problems, or factors influenc-

ing the reorganization of subphonemic cues) and one concerning the second (the restruc-

turing problem, or factors influencing the reorganization of category labels).

1.6.1 The mixture model of phonetic categories

Since the pioneering work at Haskins Labs in the 1950s (e.g. Cooper, Delattre, Liberman,

Borst, and Gerstman, 1952), it is generally recognized that speech sound identification is

influenced by a wide variety of highly variable acoustic dimensions, rather than being de-

fined by a single set of invariant acoustic properties or distinctive features in the tradition

of Jakobson (1931). Mixture models provide a convenient way of encoding this statistical

variability while retaining a structural representation in the form of category labels. In ad-

dition, mixture models provide a natural means of relating speech production and speech

perception (Lisker and Abramson, 1970; Nearey and Hogan, 1986; Pierrehumbert, 2002),

provide a quantitative means of encoding the degree and extent of coarticulation (Recasens,

Pallerès, and Fontdevila, 1997), and can easily model the effects of category frequency (By-

bee, 2001). Chapter 2 begins by discussing two aspects of the speech signal crucial for

understanding sound change, variability and multidimensionality, that any represen-

tation should capture, then continues by laying out the mathematical foundations of mixture

models, illustrating how they can be used to model aspects of speech production and percep-
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tion, and discussing issues relevant to the classification and categorization of speech sound

categories. Chapter 3 describes an agent-based iterated learning environment in which the

mixture model is embedded in computational agents.

1.6.2 Phonologization as adaptive subphonemic restructuring

Chapter 4 explores the selection and trading problems by considering the case of

phonologization of F0 in Seoul Korean in greater detail. While all studies of the Seoul Korean

laryngeal contrast, from the 1960s to the present day, agree that some acoustic feature(s)

other than VOT are crucial for distinguishing the Korean stop series, and while all have

noted a role for F0, a number of other potentially relevant cues have also been observed,

such as the duration of the stop closure, the amplitude of the burst, and the difference

between the amplitude of the first two formants H1 − H2 (Cho et al., 2002; Kim et al.,

2002; Wright, 2007). Indeed, the measurable presence of other potential cues has driven

much of the heated debate in the literature regarding the proper phonological treatment of

the Korean contrast (Kim, 1975; Jun, 1996; Kim, 2000; Ko, 2003; Kim and Duanmu, 2004;

Silva, 2006a). While it appears that F0 already functioned as a redundant cue in the 1960s,

it was not the only redundant cue. So why did it become the primary dimension along which

the lenis/aspirated contrast was maintained? Chapter 4 explores several possible scenarios

by combining the mixture modeling framework from Chapter 2 with the agent-based iterated

learning environment described in Chapter 3 in order to simulate how the interaction of bias

factors and adaptive enhancement effect changes in individuals’ internal representations over

time. The results show that both the selection and trading problems in Korean fall out

of a model where adaptive subphonemic enhancement is itself a response to loss of contrast

precision conditioned by phonetic bias factors.
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1.6.3 Neutralization as adaptive category restructuring

Chapter 5 tackles the restructuring problem by considering how individual variation

in the production and perception of contrasts is reflected in a second type of sound change:

a restructuring of phonetic category labels. The results of the simulations in Chapter 3

lend support to the idea that a language’s inventory of category labels might be reduced

in cases where a contrast has become particularly imprecise, i.e. when its communicative

function is severely impaired. Chapter 5 explores this prediction using production data from

both Korean as well as Dutch, a language in which near or total neutralization of a word-

final voicing contrast is thought to obtain (Lahiri et al., 1987; Warner et al., 2004). While

the contrast between Dutch final /t/ and /d/ can be quite difficult to perceive, it can be

shown instrumentally and listeners show sensitivity to the contrast along several relevant cue

dimensions (Warner et al., 2004), suggesting the possibility that the contrast may persist

covertly (Macken and Barton, 1980; Hewlett, 1988; Scobbie, Gibbon, Hardcastle, and

Fletcher, 2000). This raises the question of just how imprecise a contrast would have to

become before an adaptive listener would consider it neutralized. To explore this issue,

Chapter 5 considers the Dutch case using data from Warner et al. (2004) in the context of

a mixture model where the number of categories is not provided in advance, but instead

determined based on a rational compromise between data coverage and model complexity,

the bayesian information criterion (Schwarz, 1978). The results indicate that while

neutralization is often predicted in cases of low contrast precision, multiple cue dimensions

can interact with one another in such a way that contrasts which may be indiscriminable

along one or more single dimensions may actually be separable in a higher-dimensional space,

and that considerable individual-level variation in phonetic category structure may obtain

in a given population.
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1.6.4 Implications for the phonetics-phonology interface

Finally, Chapter 5 concludes with a discussion of the implications of the simulation results

and the adaptive model for the phonetics-phonology interface more generally. While the

simulation results provide an existence proof for an adaptive approach to the role of speech

production and perception in sound change, this is different from providing experimental

evidence that humans behave in this particular fashion. Chapter 5 discusses the types of

experimental evidence which could be brought to bear on this issue.

In addition, although the mixture modeling approach to phonologization involves tracking

statistics about individual continuous acoustic cue distributions, it does not wholly abandon

the notion of a strict phonetics-phonology divide, since it organizes continuous dimensions

with a set of discrete category labels. This final chapter closes with some thoughts on the

implications of this view for the acquisition and transmission of phonetic categories, the cues

which signal them, and the representation of speech sounds.
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CHAPTER 2

MODELING SPEECH PRODUCTION AND PERCEPTION

This chapter describes the mixture modeling approach to categorization, and illustrates how

it can be integrated into an agent-based simulation architecture to explore the dynamics of

speech production and perception. The goal is to provide a brief technical introduction to

mixture models and show how they map onto the questions of interest in this dissertation.

2.1 Desiderata for a representation of speech sound categories

Before discussing the particulars of the formal model, it is useful to review the properties of

the speech signal that a model should take into consideration in order to provide a useful

approximation of the human speech production and perception systems. Two of the most

important properties are the following:

1. variability: the acoustic realization of speech categories are highly variable.

2. multidimensionality: speech sounds may be distinguished by multiple acoustic-

phonetic dimensions simultaneously.

We will consider each of these properties in turn.

2.1.1 Variability

Speech scientists have long struggled with the presence of variability in the speech signal.

Practically every measurable dimension of speech, acoustic as well as articulatory, has been

shown to vary in its precise realization. For instance, acoustic correlates of the initial [voice]

contrast among obstruents in American English are not produced with exactly the same

values from utterance to utterance, but instead can take on a range of values, which may also

be influenced by a host of factors such as the sex of the speaker and the voicing specification
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of the following consonant. In addition, some cues display more variability than others, as

illustrated by the distributions of four cues (voice onset time, following vowel duration, burst

amplitude, and F0 at vowel onset) to the English word-initial /b/–/p/ contrast shown in

Figure 2.1.

Some variability is clearly crucial to accurate perception of contrasts. As seen in Figure

2.1, voiced and voiceless word-initial consonants in English have rather different distributions

for VOT; the distribution of vowel duration for both categories varies depending on the nature

of the following consonant; and the sex of the speaker is reflected in the distribution of F0

at vowel onset. Similarly, variation in the realization of the first two formants (F1 and F2)

provides a means of distinguishing between different vowel categories.

In addition to variation which distinguishes between categories, however, there is also

considerable variability within a given category; and generally speaking, it is the within-

category variability that has been considered problematic, because it is not immediately

obvious how to determine what portion of the variability constitutes information relevant to

the perception of the contrast, what amount constitutes information about the identity of

the speaker, and what amount is should be discounted as noise. Furthermore, the relative

contribution of each of these individual sources of variance to the overall acoustic variance

of a given dimension can vary considerably with context. For example, the fundamental

frequency (F0) at vowel onset in the syllable /ba/, which is relevant for the distinction

between /ba/ and /pa/, also encodes information about the age and sex of the speaker

(Klatt and Klatt, 1990). However, as shown in panel D of Figure 2.1, the F0 value can

be ambiguous between voiced and voiceless consonants as well as between speaker gender,

leading to confusion regarding the interpretation of a given F0 value. The question of interest

then becomes, how might listeners manage to recover approximations of the true underlying

distributions?
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Figure 2.1: Kernel density plots of the distribution of cues to word-initial productions of /p/
and /b/ in American English. Black lines are instances of /b/, gray lines instances of /p/.
A: voice onset time (VOT). B: vowel duration (solid lines represent voiced offsets, dashed
lines voiceless offsets). C: burst amplitude. D: F0 at vowel onset (solid lines represent female
speakers, dashed lines male speakers). Adapted from Clayards (2008).
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Traditionally in speech perception, within-category acoustic variance was treated as a

nuisance parameter obscuring the ‘true’, invariant acoustic properties which were thought to

define speech sound categories. This is reflected in some of the early work on speech percep-

tion (e.g. Liberman, Harris, Hoffmann, and Griffith, 1957) in which all of the within-category

variation in acoustic realization was considered noise to be stripped away by the perceptual

system prior to speech sound categorization. However, it has since been increasingly rec-

ognized that listeners are extremely sensitive to within-category variability and use it to

make decisions about phonetic category membership. Pisoni and Tash (1974) examined re-

action times between acoustically identical and acoustically different stimuli belonging to the

same phonetic category, and found that listeners responded significantly faster to acoustical

identical instances of the same category. This same effect was replicated in an eye-tracking

study by McMurray, Tanenhaus, and Aslin (2002), who found that within-category variation

along a VOT continuum was mirrored in the length of fixations to cross-boundary lexical

competitors, with fewer looks to alternatives for more prototypical exemplars. Miller and

Volaitis (1989) demonstrated similar results using category goodness ratings. Thus instead

of considering acoustic variance something to be removed from the signal, the focus has now

shifted to better understanding how listeners make use of variability. This suggests that

a model of speech sound categories should retain, rather than discard, information about

acoustic variation within as well as between categories.

2.1.2 Multidimensionality

As reviewed in Chapter 1, speech sounds are not characterized simply by the presence or

absence of a single invariant acoustic feature, but rather by multiple cues which are relevant

(or potentially relevant) for accurate category perception. One reason categories vary across

multiple dimensions is because a single articulatory gesture will often have multiple acoustic

consequences. For example, the timing of the laryngeal gesture in initial stop consonants
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relative to the supraglottal gesture can result in a variety of temporally overlapping acoustic

effects, including the occurrence of glottal pulsing (voicing), aspiration, and F0 (pitch), and

each of these may serve as a cue to the contrast between voiced and voiceless initials (House

and Fairbanks, 1953; Lisker and Abramson, 1964).

A second reason why speech sound categories can vary across multiple acoustic-phonetic

dimensions is because multiple gestures are involved in the production of a contrast. For

example, the production of both voiced and voiceless bilabial stops in medial position in a

language like English, such as in the words ‘rabid’ and ‘rapid’, involve a labial gesture to

momentarily block the flow of air through the oral cavity, as well as vibration of the vocal

folds. However, the relative timing of the events differs: in the case of the voiced stop, the

vocal folds continue to vibrate throughout the oral closure, whereas in the case of the voiceless

stop, glottal vibration is stopped (or at least reduced) during the oral closure. The timing

relationship between these gestures is thus crucial to successful production of the contrast.

In addition, as described above, a gesture may have multiple acoustic consequences: the rate

of glottal vibration affects the F0 frequency going into and out of the closure, but also the

length, while the precise nature of a labial gesture influences the amplitude of the release

burst along with the length of the oral closure (Lisker, 1978).

Multidimensional variability is also accessible to listeners. Repp (1982) summarizes a

number of studies indicating that listeners are sensitive to the multidimensional nature of the

speech signal, and that they employ multiple sources of acoustic information when making

decisions about the phonetic category of a stimulus. Much of this work, conducted at

Haskins Labs in the 1940s and 1950s, concerns the study of what are often called trading

relations. Repp defined a trading relation between two cues as

“... a change in the setting of one cue (which, by itself, would have led to a change in

the phonetic percept) can be offset by an opposed change in the setting of another cue

so as to maintain the original phonetic percept.” (Repp, 1982:87)
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One example of a trading relation is that which exists between F2 at vowel onset and the

amplitude of the release burst in the perception of the labial-alveolar distinction in CV

syllables (Ohde and Stevens, 1983). Both high onset F2 and a high-amplitude release burst

cue an alveolar response, while the opposite holds for the labial response. The trading

relation that Ohde and Stevens demonstrated was that an increase in the value of onset F2

can be offset by a decrease in amplitude of the release burst. A second example comes Mann

and Repp (1980), who demonstrated a trading relation between formant transitions and

spectral center of gravity (COG) in the contrast between the English fricatives /s/ and /S/.

As COG was increased, so too did the proportion of /s/ responses, but this could be offset

by splicing the formant transitions from /S/ into the frication noise of /s/. The existence

of this trading relation indicates that listeners are using both formant transitions as well as

spectral COG in making judgements about the phonetic category of fricatives.

Repp (1982) made a further distinction between trading relations – how the interpretation

of one cue varies based on the value of another relevant for the perception of the same contrast

– and what he termed context effects – how the interpretation of one cue is affected

by preceding or following cues which are relevant for the perception of some other contrast.

What is considered a cue to one contrast may be considered a context effect for another

(Clayards, 2008). For example, the contrast between the vowels /u/ and /i/ is largely cued

by the frequency of the second formant (F2), which is determined both by the degree of lip

rounding as well as the position of the tongue in the oral cavity. Recall that F2 at vowel

onset is also a cue to the /s/∼/S/ contrast. If the formant transitions from a word like ‘see’

are spliced into white noise with a maximally ambiguous spectral COG, participants will

tend to hear this as ‘she’ more often than they will hear ‘shoe’ if formant transitions from a

word like ‘sue’ are spliced in, on account of the contextual effect of vowel rounding.

There is still some debate about whether certain acoustic events, such as the effect of

vowel length on the category of a following vowel or the role of F2 in the perception of frica-
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tive place of articulation, are best described as context effects or cues (Summerfield, 1975).

Other researchers, such as Smits (1996), have instead sought to draw a distinction between

auditory context (the information in the auditory time-frequency representation avail-

able at a given point in time) versus phonological context (the set of phonologically

meaningful elements such as distinctive features, articulatory movements, segments, or sylla-

bles). For present purposes, it is not necessary to resolve this debate, but simply to note that,

however they are described and delineated, phonologically relevant contrasts are signaled by

a multitude of acoustic-phonetic features. However, it is worth noting the similarities that

both trading relations and context effects bear to the phonologization processes described in

Chapter 1. Recall that in Ohala’s theory, one scenario that may lead to phonologization is

when a listeners fails to take context effects (e.g. coarticulation) into account. In adaptive

theories such as Lindblom’s, such effects may be exacerbated by enhancement on the part

of the speaker accommodating the listener’s needs, reminiscent of the Repp’s trading rela-

tions. Most importantly, trading relations mimic the trading problem in that increased

attention to one cue is accompanied by decreased attention to another. The essential idea

that will be developed here is that phonologization constitutes a sort of permanent cue trade

through the reapportioning of relative cue reliability.

2.2 Classification, categorization, and clustering

The above discussion suggests that variability and multidimensionality are crucial aspects

of the speech signal that should be taken into account by an adequate model of speech

production and perception. The motivation here is not purely representational, but practical:

we need to model both how listeners assign novel acoustic events to phonetic categories, as

well as how they determine the set of phonetic category labels in the first place. In machine

learning and statistical inference, the first problem – that of selecting the appropriate label for

a new observation, given an extant set of category labels – is known as classification (also
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referred to as categorization in the psychological tradition), while the second problem –

determining the structure of the categories themselves – is called clustering. The main

difference between the two tasks is that in the case of categorization, the set of category labels

is known (or assumed) from the outset, whereas in clustering, the number and structure of

the category labels are inferred from the available data.
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Figure 2.2: Raw vowel data. What is the underlying category structure?

To see the difference, consider the following example. Imagine you are given the vowel

production data shown in Figure 2.2.1 First, you might ask: are these observations all

instances of a single vowel, or of multiple vowels? In clustering, the task is to determine

the structure of the distribution(s) from which the observed data were drawn. Clustering is

consider to be a type of unsupervised learning, because the algorithm used to determine

the number and structure of the underlying categories is given access only to the observations

1. These data are taken from Hillenbrand, Getty, Clark, and Wheeler (1995), available online at http:
//homepages.wmich.edu/~hillenbr/voweldata.html.
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Figure 2.3: Two different possible clusterings/category structures for the Hillenbrand et al.
vowel data. Panel A: classification based on 9 vowel categories. Panel B: classification based
on two genders.

themselves, without prior knowledge of the category structure that generated them. Thus,

in this example, you would not have access to any a priori knowledge of the underlying

vowel category structure which may have generated the data in this figure.

On the other hand, you may already have some knowledge of the number and structure

of the categories which generated the observations. For instance, you may know (or have

some reason to believe) that the data in Figure 2.2 actually represent vowel productions of

native American English speakers. Now, if you are given a new vowel token, you may want

to assign it to a category based on previously observed data. In classification, the task is to

assign new data to one of the pre-existing classes (or equivalently, to assign the new data

point a class label) using a function known as a classifier. Classification is considered a

type of supervised learning, because the classifier is trained on data where each data

point consists of both an observation and its associated category label.
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Classifiers can be built in a variety of ways, either using a clustering algorithm, or based

on pre-existing, domain-specific knowledge. For example, depending on the purpose of the

investigator, one may be interested in building a classifier to determine if new vowel mea-

surements came from one of several vowels (Figure 2.3A) or from speakers of two different

genders (Figure 2.3B); the form of the resulting classification function will vary accordingly.

In this and the following two chapters, we will be concerned chiefly with classification,

under the assumption that the number of relevant speech sound categories is known in

advance. In Chapter 5, we will return to the issue of clustering in greater detail, as it bears

heavily on the restructuring problem. First, however, we consider various theories of

how human classification behavior might be formalized, and what empirical evidence exists

that might help decide between them.

2.2.1 Prototypes, exemplars, and density estimation

One way to think about the categorization problem is in terms of typicality and generaliza-

tion. For instance, in attempting to categorize a previously unencountered animal as, say, a

bird or a non-bird, we might first develop a list of characteristics that we believe to be inher-

ent to birds, whereby we may define the category bird by the set of features [+has-wings,

+has-feathers, +lays-eggs, +flies, +has-a-beak], etc. However, problems with the

idea of categories as defined by invariant properties begin to arise as soon as observations

match in some, but not all, of the features. For instance, penguins lay eggs and have wings,

beaks, and feathers, but cannot fly. Should penguins be classified as birds? If we decide that

the answer is ‘yes’ even though penguins do not match on all the requisite bird-features, this

seems to imply some sort of structure or hierarchy holds of the features, such that by dint of

possessing certain features, an entity is a better, more canonical, or more typical exemplar

of a category. Fleshing this out requires a theory of how typicality should be assessed.
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Prototype models

One of the first answers proposed to the problem of typicality was to move to a different type

of representation. In a prototype model (Posner and Keele, 1968; Reed, 1972; Rosch,

1973; Smith and Minda, 2000), each category is represented by a single prototype, usually

defined as the most typical member of that category. In some versions of prototype theory,

the prototype is a set of characteristic (binary) features, with new stimuli being assigned

to a category based on the distance between the stimulus and the prototypes in terms of

the number of shared features. For continuous data, the prototype is often defined as the

average of all the members of the category; the probabilities with which a new data point

is assigned a category label are calculated based on the (e.g. Euclidean) distance between

each stimulus and the prototypes in the cue space.

Posner and Keele (1968) demonstrated prototype effect in categorization accuracy in a

series of experiments showing that humans are able to more easily identify a prototype dot

figure (e.g., a triangle) underlying a series of distorted patterns of dots. The more similar

an exemplar to the category prototype, the more easily (accurately) it was classified (Figure

2.4). The similarity-choice model (Shepard, 1958; Luce, 1963) and the Fuzzy Logical Model of

Perception (Oden and Massaro, 1978; Massaro and Oden, 1980; Massaro, 1987) are prototype

models which have been applied to the problem of speech perception. Authors such as Kuhl

(1991) have also shown that more prototypical members of a speech sound category are

rated as better exemplars of that category than those which are less prototypical, and that

typicality may exert a measurable influence on perceptual behavior.

Formally, prototype models may be defined either over a discrete (featural) or continuous

space. In a discrete space, the prototype is a vector of e.g. the most frequent feature values,

and the distance function will be something like edit or Hamming distance. In a continuous

space such as the acoustic-phonetic space of speech, each category k ∈ {1, . . . , K} has

a corresponding prototype µk, defined as the average of all members of that category; a
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Figure 2.4: Categorization of dots (after Posner and Keele, 1968). Panel C represents the
prototype; panels A, B, D, and E are increasingly distorted.

new stimulus x is assigned a category label that minimizes the distance (or maximizes the

similarity) between x and the prototype. The distance function δ is often the Euclidean

distance2 between x and the prototype p in a hyperspace of S dimensions:

2. Other distance functions (e.g. Minkowski, Mahalanobis, quadratic, etc.) are also used; see Wang (2006).
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δ(x, p) =

 S∑
s=1

(xs − ps)2

1/2

(2.1)

While prototype theory accounted for some aspects of Posner and Keele’s experiments, it

failed to account for one extremely interesting one: the fact that, when asked to catego-

rize a previously unseen arrangement of dots, participants were more accurate when that

arrangement was close or identical to a previously seen arrangement, regardless of how far

that arrangement was from the prototype. In other words, categorization accuracy appeared

to be not just a function of typicality, but was based to some extent on previous experience

as well. Furthermore, note that in prototype theories, only the location of the category

prototypes in the cue/feature space is stored, not the measures of spread. This means that

they do not encode information about within-category variability, one of the key aspects of

the speech signal identified in §2.1.

Exemplar models

Both of these issues are addressed to some extent by exemplar models (Nosofsky, 1986,

1990). In an exemplar model, categories are represented by sets of exemplars, represented

as cloud of labelled points in cue space. The probability with which a stimulus is assigned

a category label is based on a comparison with previously categorized exemplars across

all categories, possibly modulated by a category bias. The Generalized Context Model

(Nosofsky, 1986) is a well-known exemplar model defined for stimuli in psychological space;

Lacerda (1995), Goldinger (1996), Johnson (1997), Pierrehumbert (2001), and Wedel (2004,

2006) define exemplar-theoretic models for word recognition.3 The basic formalization of

3. As pointed out by Smits, Sereno, and Jongman (2006), there is no sublexical phoneme layer in many
linguistic exemplar models such as those of Wedel (2004, 2006) or Pierrehumbert (2001). Instead, exemplars
correspond to lexical items, which are stored with all of their fine-grained phonetic detail intact. However,
there is no reason why an exemplar model could not be applied to the problem of identifying sublexical units
(Smits et al., 2006); see also Kirchner, Moore, and Chen, in press.
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categorization in an exemplar model is based on the Luce-Shepard choice rule (Shepard,

1957, 1958; Luce, 1959). Given a set of n stored exemplars y1, y2, . . . , yn, and assuming for

simplicity of exposition that there exist just two categories A and B, a novel stimulus x is

assigned to category A with probability

P (A|x) =

βA
∑
y∈A

ηxy

βA
∑
y∈A

ηxy + βB
∑
y∈B

ηxy
(2.2)

where ηxy is the similarity between exemplars x and y and βA, βB are pre-existing biases for

categories A and B, respectively.4

One reason why exemplar models have been argued to be superior to prototype models is

that they can produce prototypicality effects while predicting the ‘old exemplar’ advantage

found by Posner and Keele. This is due the fact that, because old exemplars will tend to

be near the category center, any new observation that is similar or identical to them will be

predicted to have that category label with high probability. In addition, exemplar models

predict a related effect that prototype models do not: even if an old exemplar is far from the

prototype (category center), a novel observation that is close or identical to an old exemplar

should be assigned the category label of that exemplar with high probability as well.

Density estimation and rational inference

One might assume that deciding between prototype and exemplar models of representation

and categorization would be a strictly empirical matter, but the reality is somewhat more

complex. While exemplar models tend to outperform prototype models in accounting for

the variance in many visual categorization task results such as face recognition (Maddox

and Ashby, 1998; Nosofsky, 1998), there is less empirical evidence available in the domain of

4. Some recent versions of exemplar theory, such as Nosofsky and Zaki (2002), use a deterministic, rather
than a probabilistic decision rule. For more on decision rules, see §2.4.2 below.
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speech. Inspired by experimental results which seemed to provide evidence for the categorical

perception of speech sounds, researchers such as Liberman et al. (1957) modeled categories

by learning a category boundary, which would then be employed in a deterministic fashion

to label incoming acoustic stimuli. This approach is echoed in more recent work in detection

theory (Macmillan and Creelman, 1981) and General Recognition Theory (Ashby and Per-

rin, 1988). Phonetic perception and classification have also been modeled using prototype

theories (Samuel, 1982; Kuhl, 1991) and exemplar models (Pisoni, 1992; Nygaard and Pisoni,

1995). The superiority of the latter approach was argued for in part on the grounds that, as

alluded to above, exemplar models can encode both recency and frequency effects observed

in experimental studies of speech perception and word recognition.

In what may be the only study of its kind to date, Smits et al. (2006) explicitly con-

sidered the predictions of exemplar, prototype, and several related classes of models with

respect to the classification of non-speech auditory stimuli. They noted that while different

models vary in their underlying assumptions and therefore make fundamentally different

claims about various aspects of categorization behavior, it is extremely difficult to distin-

guish between them experimentally, and the little work that has been done in this regard

must be regarded as inconclusive. For instance, while Samuel (1982) takes the results of

a phonetic categorization task using selective adaptation to support a prototype model of

phonetic categories, his findings may also be explained by an exemplar model (a comparison

Samuel did not consider at the time of the original experiment). Smits et al. (2006) conclude

that the results of model fitting to their own experimental data are essentially ambiguous

and are probably best explained by a hybrid model.

There are also theoretical reasons to be somewhat agnostic about making a hard choice

between prototype and exemplar models of categorization. As noted by several authors

(Estes, 1986; Ashby and Maddox, 1993; Ashby and Alfonso-Reese, 1995; Rosseel, 2002; Smits

et al., 2006), both prototype and exemplar models have close analogs to statistical methods
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of probability density estimation. In particular, many models of classification can be shown

to be equivalent to an inductive process by which the observer estimates the likelihood that

a novel stimulus x belongs to one of K categories k = {1, . . . , K} (Ashby and Alfonso-Reese,

1995). The probability that stimulus x is assigned category label k can then be found using

Bayes’ Rule:

P (k|x) =
p(x|k)[(k)∑K
k=1 p(x|k)p(k)

(2.3)

A category label k may then be assigned either probabilistically (i.e. with probability P (k|x))

or deterministically (i.e such that P (k|x) is maximized). This type of approach requires us to

estimate some probability distributions: in particular, p(k) (the prior probability of category

k) as well as p(x|k) (the probability of observing the stimulus if it is an exemplar of category

k). On this view, the relevant distinction to be drawn is thus not between prototype vs.

exemplar representations, but about how the relevant probabilities are best estimated.

It is useful at this juncture to define a distinction between parametric and nonpara-

metric estimators. As used here, a parametric estimator is one which makes strong as-

sumptions about the distribution of the observed data, while a nonparametric estimator

makes no such assumptions. A classifier based on a parametric estimator will accordingly

be referred to as a parametric classifier, while one based on a nonparametric estimator

will be a nonparametric classifier (Ashby and Alfonso-Reese, 1995). On this defini-

tion, both prototype and decision bound models qualify as parametric classifiers, because

they make strong assumptions about the structure of the category space (and as a result

predict only linear or quadratic decision bounds). Exemplar models, on the other hand,

are nonparametric, because they are not constrained by any underlying assumptions about

category structure. Ashby and Alfonso-Reese (1995) show that exemplar models such as

Nosofky’s Generalized Context Model are equivalent to a classifier using a nonparametric

(kernel) estimator (see also Rosseel, 2002).
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Empirically speaking, there exists a considerable body of research (most of it involving

the classification of visual stimuli) which argues for a strongly nonparametric model of hu-

man categorization behavior. McKinley and Nosofsky (1995) demonstrated that humans are

not constrained to use linear or quadratic decision bounds when categorizing novel visual

stimuli, and that categorization behavior was significantly better predicted by a nonpara-

metric (exemplar) model than by a parametric (decision bound) one (see also Ashby and

Waldron, 1999). The problems with taking such studies as evidence that human classi-

fication behavior is inherently nonparametric nonparametric are twofold. First, there are

many empirical domains (such as speech) where the relevant distributions do appear to

follow well-known parameterized distributions, such as the normal (Gaussian) distribution.

Second, nonparametric approaches predict that, given enough training experience, human

classification behavior should eventually come to resemble that of the underlying category

structure, no matter how arbitrary. This is probably not the case, since human classification

behavior clearly is limited, or at least preferentially constrained. For instance, McKinley

and Nosofsky (1995) conducted a second experiment in which they had participants catego-

rize visual stimuli for which the optimal likelihood classification boundary was both highly

nonquadratic and not characterizable as a simple continuous curve. Even with continuous

corrective feedback, only one-third of the participants in this experiment were able to ex-

ceed the classification accuracy of a quadratic (parametric) classifier, and another third were

unable to even perform as well as a simple linear classifier. In a computational study of

English and Japanese vowel category learning, Vallabha, McClelland, Pons, Werker, and

Amano (2007) compared parametric and nonparametric versions of an online mixture es-

timation algorithm. They found the parametric algorithm significantly outperformed the

nonparametric one, which they attribute to the nonparametric estimator’s inherent lack of

constraints on the underlying category structure.

These types of results suggests that, in its most extreme form, nonparametric density

44



estimation is likely too powerful a model of human classification behavior. This is especially

true in the case of speech sounds, where the outstanding evidence reviewed above suggests

that variability in the speech signal is accessible to and used by speakers and listeners. As

the notion of category is ill-defined in exemplar-based approaches – the categories are, in a

very real sense, defined by the experienced tokens themselves – it is not clear how variabil-

ity in the signal should become information for the listener in such a model. Thus, in this

dissertation, I shall restrict myself to a discussion of parametric estimators and classifiers.

Should the balance of future empirical evidence come to favor nonparametric accounts, how-

ever, the computational framework discussed here can easily by modified to accommodate

nonparametric estimators.

2.3 Finite mixture models

As suggested by the studies reviewed above, an accurate representation of speech sounds

should encode both the variability and the multidimensional nature of the speech signal, while

also enabling inference about the category-level (phonological) structure. One way to capture

the distributional variance of a set of categories is with a finite mixture model, which

models a statistical distribution as a weighted sum (or mixture) of other distributions.

Mixture models have a long history in mathematics and statistics, dating back to at least

Pearson (1894). They are popular because they are powerful, flexible, and easy to implement,

providing a natural way to represent the distribution and structure of a finite (although

arbitrarily large) number of categories; provided with a sufficient number of components

and accurate parameter estimates, finite mixture models can approximate any continuous

density to arbitrary accuracy (Rosseel, 2002). The question of how the number of mixture

components (categories) is selected is an important one, which will be considered in detail

in Chapter 5. For now, we will assume that the number of categories which compete in a

given region of multidimensional acoustic space, as well as the relevant dimensionality of
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that space, are known in advance.

Mixture models, or some variation thereof, have been used extensively in previously work

on modeling of speech sound categorization (Lisker and Abramson, 1970; Nearey and Hogan,

1986; Bybee, 2001; Pierrehumbert, 2001; Clayards, 2008; Feldman, Griffiths, and Morgan,

2009), even if they have not always been explicitly identified as such. More recently, mixture

models have appeared under the guise of a mixture of Gaussians (MOG) approach in

work on the perceptual integration of multiple acoustic-phonetic dimensions (Toscano and

McMurray, 2008; McMurray, Aslin, and Toscano, 2009; Toscano and McMurray, 2010) and

the unsupervised induction of phonetic category structure (de Boer and Kuhl, 2003; Vallabha

et al., 2007; see also Chapter 5).

2.3.1 Mixture models

A mixture model is always defined with reference to some set of data points, or observa-

tions5. Let x be an observation represented as D-dimensional vector

x = (x1, . . . , xD) ∈ RD, (2.4)

where each dimension is called a feature. This featural representation is an abstraction of

the observation; in the case of vowels, features might correspond to formants F1, F2, F3...,

while in the case of consonants they might refer to things like voice onset time (VOT), burst

amplitude, and so forth.

Now, assume we are provided with a finite number N of D-dimensional observations X:

X = {xi; i = 1, . . . , N} (2.5)

5. A note on notation: random (discrete or continuous) variables are capitalized (X) and individual values
given in lowercase (x). When necessary, the position of a value in a sequence is indicated by a subscript (xi).
Vectors or matrices are shown in boldface (x).
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In a finite mixture model, we assume that these observations are sampled independently

from an underlying distribution with a probability density function

f(x; π) =
K∑
k=1

πkfk(x), (2.6)

where πk (the component weight or mixing coefficient) represents the probability

that observation xi belongs to the kth category (or component) of the mixture with cor-

responding class-conditional density fk(x). K gives the total number of components

in the mixture, which must obey the constraints that 0 ≤ πk ≤ 1 ∀ k ∈ {1, . . . , K} and∑K
k=1 πk = 1.

2.3.2 Gaussian mixture models

Although nothing requires them to be so, in most cases the class-conditional density functions

are assumed to be parametric, i.e. that the function f(x) can be represented by a specific

functional form containing a few adjustable parameters. The simplest and most widely used

parametric mixture model by far assumes normal or gaussian density functions (Duda,

Hart, and Stork, 2000; McLachlan and Peel, 2000). The (multivariate) Gaussian probability

density function has the form

f(x) = N (x; µ,Σ) (2.7)

=
1

(2π)D/2|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)}, (2.8)

where the parameters are the D-dimensional mean vector µ and the D ×D-dimensional

covariance matrix Σ. The mean vector describes the central tendency of each of the

feature dimensions; the covariance matrix contains the variance of each feature along the

main diagonal, and the covariance between pairs of features of the other matrix positions.
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We may now rewrite the mixture density function (Equation 2.6) as

f(x; θ) =
K∑
k=1

πkN (x|µk,Σk) (2.9)

Equation 2.9 defines a gaussian mixture model (GMM), where x is a D-dimensional

feature vector, πk is the kth component weight, and θ = ((π1,µ1,Σ1), . . . , (πK ,µK ,ΣK)) is

a K(D+2)-parameter structure including the component weights as well as the mean vectors

µk and covariance matrices Σk of the D-variate component Gaussian densities N1, . . . ,NK .

Figure 2.5 gives the visualization of a univariate GMM with two components. The class-

conditional densities (Equation 2.8) are shown in gray, while the mixture density (Equation

2.9) is outlined in black. Although more difficult to visualize, the mixture modeling approach

extends straightforwardly to the multivariate case where D = 2, 3, 4 . . ., as we would like it

to for the representation of speech sounds. Exactly how each dimension contributes to the

overall percept is the subject of ongoing investigation (see §2.4.3–2.4.4 below).
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Figure 2.5: (A) Parameters of a Gaussian distribution for a single component (adapted from
McMurray et al., 2009). (B) Two class-conditional Gaussians (dotted grey lines) and their
mixture (solid black line).
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2.3.3 Parameter estimation

In most statistical and machine learning problems of interest, the parameters θ of a GMM

are not known in advance, but need to be estimated from the data. Traditionally, these

parameters are computed using the expectation-maximizaton (EM) algorithm (Dempster,

Laird, and Rubin, 1977) to obtain maximum likelihood (ML) or maximum a posteriori

(MAP) parameter estimates, although other methods (such as Gibbs sampling) may also

be used (see e.g. Bishop, 2006). Starting from an initial guess about θ, the EM algorithm

alternates between computing a probability distribution over completions of missing data

given the current model (the E-step) and then re-estimating the model parameters using

these completions (the M -step). The E-step computes the conditional probability zik that

observation xi belongs to the kth component:

zik =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µk,Σj)

(2.10)

In the M -step, the parameters θ are then re-estimated based on these conditional probabil-

ities. This process continues until convergence, at which point the data may be partitioned

into clusters or components on the basis of a decision rule (see §2.4.2 below). For more details

on EM-based parameter estimation for multivariate Gaussian mixtures, see e.g. McLachlan

and Peel (2000); Rosseel (2002); Fraley and Raftery (2002); Melnykov and Maitra (2010).

2.4 Modeling speech production and perception using GMMs

2.4.1 Modeling production: sampling from a density

One of the greatest conceptual and practical advantages of the GMM representation of

phonetic categories is that it can be used to model both the production as well as the

perception of phonetic categories, providing a formal and specific link between production

data and categorization behavior (Nearey and Hogan, 1986; Solé, 2003). This allows a
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listener’s experience with instances of a phonetic category to form the basis for both the

production of exemplars of that category as well as for determining the category label of

novel exemplars.

The task of producing an instance of a phonetic category (be it a segment, subsegmen-

tal, or suprasegmental entity) is be modeled as sampling from a continuous multivariate

probability density (technically, taking a point estimate from the approximate cumulative

distribution function of the multivariate density as given in Equation 2.8) or by taking indi-

vidual point estimates from a series of mixture of continuous univariate densities. Because

the cue distributions are continuous, the true probability of any given value of x is in fact 0.

However, we can define the probability of x falling into some interval of the cue space [a, b]:

P [a ≤ X ≤ b] =

∫ b

a
f(x)dx (2.11)

for some arbitrarily small difference between a and b. In practice, the selection of a particular

value is achieved by methods such as inversion sampling (where the cdf is equated to that of

a pseudo random number generator) or rejection sampling; see Devroye (1986) for details.

2.4.2 Modeling perception: the ideal listener

The GMM for a given cue dimension d defines a probability density function f(xd); as

illustrated above, sampling from this density may be used as a coarse approximation of the

output of speech production. The task of the listener can be modeled as the reverse process:

to determine the likelihood of a given category label ck given an observation vector x. If

we consider the task of a listener to be choosing the speaker’s most likely intended message

given a set of cue values, and if we assume that the listener can make use of all of the

information in the speech signal, possibly weighted in some way by its quality or reliability,

we can construct a model of the behavior that would optimize this task. This is sometimes

referred to as an ideal observer model, because the observer (here, the listener) is assumed

50



to behave optimally (ideally). Ideal observer models have been used to successfully model

perception in a variety of domains and contexts including visual discrimination (Geisler,

1989), reading (Norris, 2006), word segmentation (Goldwater, 2006; Goldwater, Griffiths,

and Johnson, 2009) and auditory word recognition (Flemming, 2007; Clayards et al., 2008).

An ideal observer model of speech perception works as follows. When attempting to

identify the speaker’s most likely intended message, the listener is assumed to have access

to two sources of information: x (the information contained in the current speech signal)

and p(ck) (their prior experience with the speech signal). Assuming that listeners track the

statistical distributions of cues in speech (Maye, Werker, and Gerken, 2002; Clayards et al.,

2008), they can use this information to estimate these probabilities. As discussed earlier, the

probability that a given observation was generated by a mixture component may be found

using Bayes rule. If we allow mixture component k to index phonetic category ck, then Bayes

rule may be equivalently used to estimate the probability of a category ck given evidence xd:

p(k|xd) =
p(xd|ck)p(ck)∑K
k=1 p(xd|ck)p(ck)

(2.12)

Equation 2.12 states that the a posteriori probability (APP) that the speaker uttered an

instance of category ck given the evidence that cue d takes on value xd can be calculated

given (i) the probability distribution for xd given ck and (ii) the prior probability of category

ck. The probabilities p(xd|ck) are ML estimates based on the class-conditional Gaussian

densities, and p(ck) may be estimated as the mixing coefficient πk of component k.

Determining the likelihood that a given utterance x is an intended production of category

ck is logically distinct from the decision rule used by the listener to actually assign x a label.

Nearey and Hogan (1986) discuss two possible decision rules, based on the APP of category

membership as given by Equation 2.12. The first (deterministic) rule is

Assign stimulus x to category ck with the highest APP. (2.13)
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while the second (probabilistic) rule is

Assign stimulus x to category ck proportional to its relative strength of group membership.

(2.14)

Nearey and Hogan take ‘strength of group membership’ to be defined over class-conditional

Gaussian densities. To see the difference between the rules, consider a stimulus x which has

probability 0.9 of belonging to category c1 and probability 0.1 of belonging to category c2

(as determined by Equation 2.12). Rule 2.14 will assign x the label c1 90% of the time, and

label c2 10% of the time, while Rule 2.13 will always assign label c1.

Nearey and Hogan (1986) attempted to decide between these rules on the basis of produc-

tion data from Lisker and Abramson (1970). Both models fit the data well, with differences

in goodness of fit too small to decide between them. In what follows, I will following previous

research in assuming a probabilistic version of the decision rule on the grounds that it more

accurately models human classification behavior (Shepard, 1957; Luce, 1959).

2.4.3 Cue independence and information integration

Of course, as discussed in great detail earlier, speech sound categories are defined by multiple

cues. This raises the question of how cues are related to one another, and how listeners

combine and integrate information from multiple cue dimensions. One assumption is that

the distribution of each cue is conditionally independent from that of all others: knowing

the value of one cue does not help in predicting the value of another cue.

Clayards (2008) shows how an ideal observer model may be extended to incorporate

multiple, conditionally independent cues in word recognition, but the same principle may

be applied to the categorization of subword units as well. The probability of a category

ck given a set of N D-dimensional observations {x1, . . . ,xD} is the linear product of the

probabilities of each individual cue, conditioned on the category ck, normalized over all K
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categories c1, . . . , cK (2.15):

P (k|x1, . . . ,xD) =
p(x1|k)p(x2|k), . . . , p(xD|k)p(k)∑K

i=1 p(x1|ki)p(x2|ki), . . . , p(xD|ki)p(ki)
(2.15)

Note that from cue independence, it does not follow that the values of different cues fail to

interact with one another in terms of determining categorization behavior. Figure 2.6 illus-

trates the interaction of two cues in the linear model. Panels A and B show the distribution

of two cues d1 and d2, respectively, for two categories c1 and c2, which are assumed here to

have equal prior probability. Cue d1, having greater separation of means and less overlap

than cue d2, is the more informative cue (more on informativeness below). As a result, the

listener’s certainty about category membership, as indexed by the slope of the identification

function in Panels C and D, is only slightly influenced by variation along dimension d2, but

extremely influenced by variation along dimension d1.

Because this model is based on the assumption of conditional independence, it cannot

capture relationships which can only be represented by multiple dimensions (Clayards, 2008;

Goudbeek, Cutler, and Smits, 2008). There are, however, several empirical reasons to think

that the strong independence assumption is a valid one. Clayards (2008) conducted a study

of the conditional within-category independence of cues to the English stop contrast /p∼b/ in

word-initial and word-medial position by calculating correlation coefficients between VOT,

vowel duration, burst amplitude, voicing amplitude, and F0 onset/offset. In general, she

found that correlation strength decreased with cue strength (as measured by d′). For word-

medial stops, onset and offset F0 were rather more highly correlated (overall R2 = 0.64),

which is not unexpected given the relatively short time window involved. Several other minor

correlations, such as burst amplitude and VOT (R2 = −0.22), may have an articulatory

basis, and did not seem to produce greater separation between the categories themselves.

Although such correlations would need to be empirically established on a case-by-case basis,
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Figure 2.6: Hypothetical likelihood distributions illustrating how different cues combine in
the linear model. Panel A: likelihood distribution of cue d1 for categories c1 (dark line) and
c2 (grey line). Panel B: likelihood distribution of cue d2 for categories c1 (dark line) and c2
(grey line). Panel C: posterior probability of c1 for all values of cue x and five values of y
indicated by the shaded circles in Panel B. Panel D: posterior probability of c1 for all values
of cue d1 and five values of d2 indicated by the shaded circles in Panel A. Adapted from
Clayards (2008).
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the Clayards study is at least suggestive in this regard.6

More suggestive still are studies indicating a general preference for unidimensional so-

lutions to categorization problems in human category learning, both in speech as well as

in other domains. Goudbeek (2006) and Goudbeek et al. (2008) conducted a series of ex-

periments studying the effects of distributional properties on the acquisition of novel (L2)

phonetic categories in speech. Listeners were presented with novel vowel categories whose

distributions varied along either one of two dimensions (duration and frequency) or both

simultaneously. While listeners were clearly sensitive to the distributional properties of the

input, they were better at acquiring and correctly identifying the novel contrast when it

varied along only one dimension as opposed to both simultaneously. In particular, listeners

had difficulty when the category structures to be learned were highly overlapping along indi-

vidual dimensions, even when they were well-separated in higher-dimensional space. These

results suggest a general preference for or sensitivity to unidimensional category solutions

over multidimensional ones. This preference seems to apply not only to speech sound cat-

egorization, but to general stimulus categorization in humans as well. Ashby, Queller, and

Berretty (1999) conducted a series of visual categorization experiments using lines that

varied in either length, orientation, or both. In an unsupervised classification task (i.e.,

without feedback), learners were unable to learn nondimensional (arbitrary) category struc-

tures (although they were able to achieve near-optimal performance in a supervised learning

scenario). Toscano and McMurray (2010) fit both a linear model of cue weighting and a true

multivariate model to the same consonant categorization data, and found that the linear

model provided a better fit. Thus a simple linear model may be sufficient for at least some

categorization tasks, such as categorizing speech sounds.

6. Note that any cue with different means for two categories will be correlated with any other cue that has
different means for the same two categories. These between-category differences can be captured by a model
which assumes conditional independence; it is within-category correlations that are potentially problematic.
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2.4.4 Cue reliability and cue weight

The ideal observer model predicts that listeners should make use of the probability distri-

bution of all relevant cues when attempting to identify the speaker’s intended utterance.

The mere existence of multiple cues to phonetic categories does not, however, imply their

equivalence: some cues provide more information about the perceptual identity of a sound

than do others. This raises the question of how the weight afforded a given cue is to be de-

termined. The weight of an acoustic-phonetic cue is a quantitative measure of how auditory

information is integrated in perception (Holt and Lotto, 2006).

Several models, such as Nearey and colleagues’ normal a posteriori probability (NAPP)

model, estimate a cue’s weight from its distributional statistics, i.e. purely as a function of its

reliability in distinguishing between categories (Nearey and Hogan, 1986; Nearey, 1997;

cf. Clayards et al., 2008; Toscano and McMurray, 2010). Reliability may be operationalized

based on the degree to which the distributions of a cue overlap across categories: the less

distributional overlap, the more reliable the cue; the more reliable the cue, the greater its role

in determining the perceptual identity of an input. In other words, cue reliability is inversely

proportional to cue variance (Clayards et al., 2008). Figure 2.7 illustrates this concept along

a single cue dimension. The response curves in Figure 2.7B were computed using Equation

2.15 for each of the Gaussian mixtures in Figure 2.7A. Note that while the point at which

the probability of categorizing stimulus x as belonging to either category c1 or c2 is equal

(i.e., the point where the function crosses 0.5) is at the same point along the x-axis, the

slope of the function is different, reflecting increased uncertainty in the case of the dashed

distributions in Figure 2.7A.

One means of quantifying cue reliability is to use the detection-theoretic d′ (‘d-prime’)

statistic (Green and Swets, 1966; Ashby, 1992), a ratio of the difference in category means

to the average variance:
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Figure 2.7: (A) Probability distributions of cue d for two categories c1 (dark lines) and c2
(light lines). Solid lines show a mixture where there is little overlap between the components,
dashed lines a mixture with more overlap. (B) Optimal categorization functions given the
distributions in (A). (Adapted from Clayards et al., 2008.)

d′(d) =
(µd|k1

− µd|k2
)2

(σd|k1
+ σd|k2

)/2
(2.16)

By calculating a d′ value for each cue d ∈ {1, . . . , D} and normalizin, each cue can be

assigned a reliability value ωd:

ωd =
d′(d)∑D
d=1 d

′(d)
(2.17)

Strictly speaking, however, a cue’s weight is to some degree independent its reliability. Holt

and Lotto (2006) discuss four types of factors which can influence the perceptual weight of

a cue. The first two are distributional notions of informativeness (the degree of overlap

between categories competing over some cue space) and variance (encompassing both

the degree of within-category as well as between-category variance). Decreased overlap
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between two categories along some cue dimension increases that dimension’s informativeness,

and hence reliability. The overall variance of a cue also has important implications for

perceptual weight. While in general, large overall variance (independent of category) tends

to be indicative of a highly informative perceptual dimension, large within-category variance

can decrease reliability by contributing to increased overlap.

The distributional factors contributing to a cue’s perceptual weight are to some extent

captured by the d′ statistic. However, there are other factors which can influence cue weight-

ing which are not taken into account by d′. First, basic psychophysical considerations, such

as the fact that discontinuities along some acoustic-phonetic dimensions induced a physical

response of greater magnitude than others, may also exert an influence on the weight ac-

corded a particular cue. Second, the informativeness of a cue is, as discussed extensively at

the beginning of this chapter, inherently dynamic. As such, informativeness can also vary

by task – a cue which is highly informative when attempted to identify a talker’s gender

or emotional state may be less informative when attempting to perform speech sound cat-

egorization or lexical decision, for instance. In the present work, we restrict ourselves to

measuring cue reliability, mostly because it is much more obvious and straightforward and

less contentious to operationalize. Thus in this model cue weights per se do not play an

explicit role in speech perception (although cues are implicitly weighted in that their dis-

tributional variance impacts their role in assigning a category label). In general, then, we

shall refer to cue reliability rather than cue weight, but the terms may sometimes be used

interchangeably.

Other means of measuring cue weight have also been proposed. The method used here of

calculating a normalized cue reliability statistic, bound to the interval [0,1], is similar to those

of Holt and Lotto (2006) and Toscano and McMurray (2008, 2010)7. Clayards (2008) uses

nonnormalized d′ to measure cue weights. Escudero and Boersma (2004) and Morrison (2005)

7. Toscano and McMurray (2010) also contrast a cue-weighting model based on a d′-like statistic with a
true multidimensional model in which the full covariance structure between cues is represented.
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employ edge-based and logistic regression methods to determine relative cue weights based

on listener responses to synthesized vowel continua. For present purposes, what is chiefly

important is that (i) a cue’s reliability may be inferred based on distributional properties of

the acoustic input and (ii) reliability can be scaled in such a way as to be proportional to

a probability. For more on modeling of cue weights and cue integration, see Holt and Lotto

(2006); Toscano and McMurray (2010).

2.4.5 Classifier accuracy

Ashby and Maddox (1993) define the optimal classifier as one in which classification accuracy

is maximized. Formally, this means that a given observation vector x is assigned to a category

ck for k ∈ {1, . . . , K} in such a way that P (k|x) is maximized. Assuming that the a priori

probabilities of the category indices k = 1, . . . , K and the class-conditional likelihoods p(x|k)

are known (or can be estimated from the data), the posterior probability of each category

index can be found using Bayes rule in the usual way:

p(k|x1, . . . , xD) =
p(x1, . . . , xD|k)p(k)∑K
k=1 p(x1, . . . , xD|k)p(k)

(2.18)

A deterministic classification rule assigns x = (x1, . . . , xD) the category label ĉk with the

highest maximum a posteriori probability:

ĉk = arg max
k∈K

p(k|x1, . . . , xD)p(k) (2.19)

This classifier is sometimes called a bayes optimal classifier (Duda et al., 2000). The

error rate of this classifier may be expressed as

ε = 1−
K∑
k=1

∫
p(x|k)p(k)dx (2.20)
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Figure 2.8 illustrates this behavior for the univariate case where K = 2 and both categories

have equal prior probabilities.
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Figure 2.8: Bayes optimal decision boundary for two categories with equal prior probabilities.
Light grey area shows the instances of c1 that will be incorrectly labeled as c2; dark grey area
shows instances of c2 that will be incorrectly labeled as c1. Dashed line shows the optimal
decision boundary. The total probability of error is calculated as the ratio of the shaded
regions to the total region under both curves.

As noted by Ashby and Maddox (1993), optimal classifiers make strong assumptions and

their predictions are not always in line with human classification behavior. However, they

provides a useful benchmark against which to test other models, as the accuracy of a Bayes

classifier provides a lower bound on the classification error that can be obtained for a given

classification problem. As such, in this work, the error rate ε of a classifier with respect to a

contrast will be defined as the error rate of the Bayes classifier. When reference is made to

the ‘error rate of a contrast’, this is always restricted to mean between two or more phonetic

categories that compete along the same number and type of acoustic-phonetic dimensions.

Together with the reliability index ω, the error rate ε will figure centrally in the solution to

the selection problem as proposed and implemented in the following chapters.
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2.5 Summary

This chapter has reviewed aspects of the speech signal that a model of speech production and

perception should capture, including aspects which mirror the trading problem. Various

theoretical formalizations of categorization behavior were considered. Parallels were drawn

between problems in speech production/perception and in statistical categorization and cate-

gory learning. The finite mixture modeling approach was advocated as an appropriate model

of speech sound categories on the grounds that it captures both the empirically observed

multidimensionality and variability of acoustic-phonetic cues. A fomal model of speech sound

categorization was described and its application to speech perception illustrated. Finally,

two important quantities were defined: the reliability ω of a cue dimension, defined as its

normalized d′ value, and the error rate ε of phonetic contrast, equivalent to that of a Bayes

optimal classifier.
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CHAPTER 3

AN AGENT-BASED SIMULATION ARCHITECTURE FOR

MODELING SOUND CHANGE

In Chapter 2, I illustrated how speech sound categories may be usefully and to a certain

approximation accurately modeled as finite mixtures, and discussed how these models may

be used to simulate speech production and perception. But how does adopting this set

of representational assumptions help deepen our understanding of sound change in general

and phonologization in particular? In this chapter, I will lay out an agent-based simulation

architecture in which the effects of arbitrary bias and probabilistic enhancement can be

explored. The following chapter will then examine a specific empirical case in some detail,

employing the computational framework to reason about how and why it changed in the way

that it did, and not in some other way.

3.1 Simulating adaptive enhancement

Chapter 1 introduced the notion of adaptive enhancement, the idea that speakers prob-

abilistically enhance certain subphonemic aspects of their productions in response to their

assessment of a listener’s needs. In particular, it was suggested that phonetic bias factors

which induce a loss of contrast precision may drive this type of enhancement. At a minimum,

a computational test of this hypothesis must involve both a speaker, whose utterances are

subject to some type of bias but who is cognizant of the listener’s needs, and a listener,

whose internal state is assumed by the speaker.1 What is then needed is a framework in

which arbitrary error-inducing biases can be introduced into a simulated communicative

process, in order to observe the effects of probabilistic enhancement on the structure of the

subphonemic cue space. By encoding prior beliefs and assumptions about enhancement and

1. In an extreme case, the speaker and listener could in fact be the same (Pierrehumbert, 2001).
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bias into a computational model, we can uncover previously hidden implications of these

assumptions. The study of sound change is particularly suited to computational simulation,

since direct observation of subphonemic change in a population is a rather difficult and po-

tentially labor-intensive process. Simulation allows for broad hypotheses to be tested prior

to a more significant investment of research labor.

3.1.1 Computational models of sound change

Most computational models of sound change fall into one of two groups: analytic models,

which focus on the mathematical properties of dynamic systems, and agent-based models,

in which the internal state of populations change in the course of interactions between indi-

viduals. Analytic models, such as Niyogi and Berwick (1995, 1996), Wang, Ke, and Minett

(2004), or Niyogi (2006), analyze sound changes in terms of dynamic systems, and derive

equilibria (stable states) by considering a small number of parameters. Agent-based models,

such as those of S. Kirby (1999), de Boer (2000, 2001), Wedel (2004, 2006), or de Boer and

Zuidema (2009) are not so much an alternative as a complement to these analytic meth-

ods, in that they can be used to show how equilibria may arise spontaneously through the

interaction of parameterized individuals (agents). Since the individual interactions depend

stochastically on the current parameterization of the agents, the parameters are summarily

stochastically modified by the outcome of the interactions.

Care must be exercised when evaluating the results of agent-based simulations, since the

simple fact that the interaction of agents can result in behavior not obviously programmed

into them is not particularly enlightening (Liberman, 2000). However, agent-based models

can be used to derive more interesting results, such as the fact that, given certain constraints

on the properties of the agents and their interactions, certain types of behavior emerge, but

not others. It is in this spirit that an agent-based model is employed in the present work.
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3.2 An agent-based model

To explore the temporal dynamics of the probabilistic enhancement hypothesis, an iter-

ated learning environment (S. Kirby, 1999) was constructed in which ideal observer agents

equipped with GMM models of phonetic categories could interact. Iterated learning dif-

fers from batch learning in that learning occurs after each input, making it both realistic

and computationally tractable. In its simplest form, iterated learning consists of a single

speaker-hearer (Pierrehumbert, 2001), although it can be easily extended to include multiple

agents (Wedel, 2006; Baker, 2008) in order to address the dynamics of diffusion throughout

a population (Niyogi, 2006; Sonderegger and Niyogi, 2010).

The simulation architecture presented here is employed to model a conversation between

two agents, although the framework may be extended to accommodate arbitrary numbers

of agents. Each agent is initialized as possessing a set of exemplar lists, one for each item in

the lexicon; in the simulations discussed in §4.3, the lexicon consists of a minimal pair /pa ∼

pha/, although this can be increased without loss of generality. The contents of the exemplar

lists at initialization will correspond to whether the agents are meant to represent adults

or infants/children; here, the discussion is restricted to adult learners, who are presumed

to have already acquired the sound system of the language and are aware of the number

and distribution of the relevant speech sound categories. The length of the exemplar lists

at initialization sets a bound on the agents’ memories: as simulation time goes by, older,

weaker exemplars will decay (be deleted from the lists) as newer, stronger exemplars are

experienced (Pierrehumbert, 2001, 2002; Wedel, 2004, 2006).

3.2.1 Relations to exemplar theory

Because category membership in an ideal observer model is itself probabilistic, the simulation

framework used here is closely related to exemplar-theoretic approaches to sound change

(Johnson, 1997; Pierrehumbert, 2001; Wedel, 2004, 2006; Kirchner et al., in press; Garrett
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and Johnson, to appear). In these models, computational agents do not literally store every

token they encounter, but instead map experienced speech tokens onto a granular similarity

space based on the token’s similarity to a stored exemplar prototype; exemplars which fall

between the cracks of this space are then encoded as identical (see also Kruschke, 1992).

Each stored exemplar does not necessarily correspond to a unique perceptual experience per

se, but rather to an ‘equivalence class’ of perceptual experiences (Pierrehumbert, 2001).

In many implementations of exemplar theory, stored exemplars are associated with a

strength value, which decays over time. Exemplar strength may then be used in both

speech production and perception: in production, exemplars of higher strength are more

likely to be selected as production prototypes, while in perception, the probability with

which tokens are mapped to stored exemplars is weighted by exemplar strength. In these

implementations, the fundamental entity is the exemplar list, which again can differ from

the sum total of experienced tokens depending on the granularity of the perceptual mapping.

The implementation described here differs slightly in that stored exemplars are not ac-

cessed directly in production or perception, but are instead used to estimate the parameters

of the cue distributions relevant for some phonetic contrast. Similar to the implementations

of Pierrehumbert and Wedel, experienced tokens are stored together with decay weights, but

instead of directly influencing the selection of exemplars, decay weights are used to deter-

mine when an exemplar should be deleted from the list of tokens associated with a category

label. Once the decay weight of a token falls below a certain threshold, it is deleted from

the list and is no longer referenced during parameter estimation. When simulating speech

production, values for each cue are simply sampled from each conditional density in the

usual fashion. The advantage of this approach (due to the parametric assumptions made by

adopting the GMM representation) is that it avoids several problems which arise when deal-

ing with discrete lists of exemplars, such as implementating entrenchment or the addition

of production noise in order to simulate generalization (Ashby and Maddox, 1993; Pierre-
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humbert, 2001). However, it must be stressed that rigorous comparisons between previous

implementations and the present have not been undertaken to ascertain how, if indeed at

all, they differ in their empirical predictions; in the end, the approaches are grounded in very

similar principles, and likely make very similar empirical predictions (see also Smits et al.,

2006).

One important theoretical assumption made in the present implementation (and shared

by many, but not all, other implementations) is that the same lists of experienced speech

tokens are used by agents for both production and perception; to be more precise, each cue is

represented by a single Gaussian mixture, the parameters of which are maximum likelihood

estimates based on the current exemplar lists. This assumption that speech production and

perception are based on the same set of phonetic exemplars is not universally shared; dual-

route models of speech perception, in which e.g. word and phoneme recognition may take

place using different, parallel mechanisms, have been argued for by phoneticians, psycholin-

guists, and neuroscientists (Liberman et al., 1967; Hickok and Poeppel, 2007; Norris and

McQueen, 2008). Garrett and Johnson (to appear) extend this notion to exemplar-based

models. Further research will be necessary to determine if models assuming separate exem-

plar lists more accurately reflect the empirical findings; the present framework could easily

be modified to accommodate a dual-route architecture.

3.2.2 Conversing agents

Sound change in the agent-based model considered here is simulated as a bidirectional con-

versation between two agents, in which various aspects of the speech signal may be perturbed.

Each round of the simulation is divided into the generation, modification, and classification

of the production target. At each iteration, an agent acts either as a producer (generator) or

as a perceiver (classifier). The roles are automatically reversed in the next iteration, so that

each agent acts as producer and perceiver the same number of times in a given simulation.
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The process repeats for some predetermined number of cycles, and can be interrupted at any

time in order to examine the agents’ current internal states. Agents are assumed to have

equal sociolinguistic status (see Baker, 2008).

Initialization

Let K be a number of mixture components competing over a D-dimensional phonetic cue

space. Each component k ∈ {1, . . . , K} indexes a unique member of a set C of phonetic

category labels C = {c1, . . . , cK}. A phonetic category ck is associated with a list Ek =

(e1, . . . , eN ), an N -length list of exemplars. An exemplar ei is 4-tuple (xi, ck, ti, αi), where

• xi is D-dimensional column vector of phonetic cue values;

• ck is a phonetic category label;

• ti is the time at which ei was added to Ek;

• αi is a dynamic memory weight, defined as

α = exp(−t0 − ti
τ

) (3.1)

where t0 is the current time, ti is the time at which ei was admitted to Ek, and τ is a memory

decay constant. In the simulations reported here, τ = 2000 (Pierrehumbert, 2001).

To begin, K lists E1, . . . , EK are each seeded with N phonetic exemplars, with the values

for each cue d being drawn from Gaussian distributions with parameters µd, σd:

N (ck|µd, σd) =
1

(2πσ2
d)

1
2

exp

{
− 1

2σ2
d

(x− µd)2

}
(3.2)

Note that these are univariate Gaussian densities, a special case of the multivariate Gaussian

densities described in Chapter 2.
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Production

In the production phase of each iteration, the current talker selects a target category ck based

on the mixture weights πk, themselves maximum likelihood estimates based on the length of

the exemplar lists (which are equiprobable at initialization, although they generally do not

remain so). Thus, for the case where K = 2, p(c1) = p(c2) = 0.5 at initialization; for the

case where K = 3, p(c1) = p(c2) = p(c3) = 0.3̄ at initialization, etc. These probabilities may

change throughout the course of the simulation as the frequency of the categories changes,

e.g. due to the addition or loss of lexical items.

Once a target category ck has been selected, a series of values x1, . . . , xD are sampled

from the conditional densities Nd(x|k, θ) (Equation 3.2) for all d ∈ 1, . . . , D, where the

parameters θ are maximum likelihood estimates based on Ek. These values form an D-

dimensional column vector x, the production target:

x = (x1, . . . , xD)T (3.3)

Enhancement

The next step in the generation of the production target involves determining whether or not

to enhance some aspect of the utterance and, if so, precisely which aspect (selection). First,

the talker estimates the listener’s classification error rate ε for the target category based on

the talker’s own current exemplar lists, which are used as the basis for maximum likelihood

estimates of the mean and variance of the GMMs for each cue. ε is defined as the error rate

of a Bayes optimal classifier (cf. Figure 2.8 and §2.4.5):

ε = 1−
K∑
k=1

∫
p(k)p(x|k)dx (3.4)
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The probability that any particular dimension d will be targeted for enhancement is an

exponential function of ε and a bias constant β ∈ [0, 1] which may be used to tune the

system-wide importance or functional load of the contrast (Jakobson, 1941; Martinet,

1952; Hockett, 1955; Kingston, 2007). If β is set to 1, then the probability of enhancement

is simply equal to ε. If the experimenter wishes to manipulate functional load, β can be

reduced (making the probability of enhancement greater than ε) or increased (making the

probability of enhancement less than ε).

P (enhance) = εβ (3.5)

Thus, the likelihood of enhancement at any iteration is inversely proportional to the contrast

precision (ε) scaled by the importance of the contrast (β). In the simulations reported here,

β was arbitrarily fixed (not fit) at 0.5.

In the event that an utterance is selected for enhancement during a given iteration, the

next step is to decide which cue in particular should be enhanced. In these simulations, only

one cue dimension is selected for enhancement per utterance, although one could imagine

a similar scheme in which multiple cues were enhanced, possibly weighted by their current

reliability. Here, cues are selected for enhancement based on their distributionally-defined

reliability ωd:

ωd =
d′(d)∑D
j=1 d

′(dj)
(3.6)

where d′(d) is the difference in means divided by the average standard deviation for the

conditional distributions p(xd|c1), p(xd|c2):

d′(d) =
(µd|c1 − µd|c2)2

(σd|c1 + σd|c2)/2
(3.7)

Once a specific cue has been targeted for enhancement, its production target value xd is
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modified according to its reliability ωd, the range of possible values given the category from

which it was drawn, and the current global enhancement probability εβ . Enhancement is

implemented by sampling from a modified distribution with an exaggerated mean (µ̃) and a

reduced variance (σ̃), i.e. a potentially more reliable category exemplar. A multiplier γd is

calculated as

γd = exp(εβ)ωd (3.8)

and this multiplier is used to generate new estimates for µ̃d and σ̃d. This is done to reflect

the hypothesis that more informative cues (larger ωd) are more likely to be produced with

extreme values and with less overall variance. The enhanced estimate µ̃ is based on the

distance from the current mean µd to one standard deviation above or below the mean, as

appropriate, weighted by γd.

µ̃d = µd ± γd|µd − (µd + σd)| (3.9)

The enhanced estimate of the variance σ̃d is reduced by σdγd:

σ̃d = σd − (σdγd) (3.10)

The enhanced production target x′d is then generated by sampling from a Gaussian

with these new parameters µ̃d, σ̃d:

x′d ∼ N (d|k; µ̃d, σ̃d) (3.11)

As a result, more reliable cues are more likely to be produced with extreme values than less

realiable cues, and cues will be enhanced to a greater extent when error (ε) is high and β is

low (i.e., functional load is high).
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Bias factors

Finally, the production target may also be modified along one or more cue dimensions by

adding or subtracting an appropriate bias term λd, used to represent the sum total of channel

noise introduced by all phonetic bias factors relevant for a given phonetic dimension (Garrett

and Johnson, to appear). In the simulations reported here, the bias term is scaled relative

to the distance between category means, reaching 0 when the means become identical.

λd = log(|(µd|c2)− (µd|c1)|+ 1) (3.12)

Perception

Once the production target x has been appropriately modified, it is presented to the listener

agent for classification. The listener assigns x a category label ck with probability M(ck|x)

(Nearey and Hogan, 1986; Ashby and Alfonso-Reese, 1995):

M(ck|x) = log
p(x1|ck)p(x2|ck), . . . , p(xD|ck)p(ck)∑K
k=1 p(x1|ck)p(x2|ck), . . . , p(xD|ck)p(ck)

(3.13)

Once labeled, x is added by the listener to the appropriate exemplar list, based on the label

assigned. (While it is not implemented in this version of the architecture, tokens uttered

by the speaker agent could also be added to the speaker’s own exemplar list to simulate

the influence of self-production on phonetic realization.) Both agents then recompute the

memory weights α for each exemplar in the lists Ek for all K components using Equation

(3.1); exemplars with a value of α less than some threshold not used when estimating θ at

the beginning of the next iteration.
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3.3 Summary

This chapter has described the implementation of an agent-based architecture the may be

used for the simulation of sound change. The production and perception of phonetic cat-

egories is accomplished using the GMMs introduced in Chapter 2, but the framework also

provides an implementation of the probabilistic enhancement hypothesis – the idea

that subphonemic cues are selected and enhanced in accordance with, and in proportion to,

their contribution to the successful identification of a phonetic category. The framework

also includes parameters to tune the functional load of a contrast and to introduce bias

factors on a cue-by-cue basis.

72



CHAPTER 4

TRANSPHONOLOGIZATION IN SEOUL KOREAN

In this chapter, I will employ the computational modeling framework described in Chapters

2 and 3 to show how a particular case of sound change, the transphonologization of F0 in

Seoul Korean, may be understood as the interaction of adaptive enhancement with bias-

driven loss of contrast precision, but that depending on the particulars of the situation, the

interaction of these factors may not always lead to a reorganization of subphonemic cues. In

particular, I will show how the selection and trading problems introduced in Chapter

1 can be understood by viewing phonologization as the result of bias-driven enhancement,

and that on their own, neither the notions of bias (noise) or enhancement (optimization) on

their own appear to be sufficient.

4.1 Selection and trading in transphonlogization

Chapter 1 identified three questions raised by the phonologization model: the problems of

selection, trading, and restructuring. Here, we focus on the problems of selec-

tion and trading (the restructuring problem will be treated in detail in Chapter

5). Solving the selection problem involves determining which cue is likely to be targeted

by a phonologization process, while solving the trading problem involves explaining why

phonologization is so often (perhaps invariably) accompanied by dephonologization – that

is, why a single cue tends to dominate in the perception of a given phonetic contrast.

The transphonologization of fundamental frequency (F0) in Seoul Korean illustrates both

of these problems quite clearly. Recall that while VOT was the primary acoustic-phonetic

dimension distinguishing lenis /p t k/ from aspirated /ph th kh/ voiceless stops as spoken

by Seoul Korean adults during the 1960s, F0 has taken over as the primary dimension as
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indicated by recordings of Seoul Korean adults taken during the 2000s1. This difference is

can be seen visually in Figure 4.1, which plots 500 exemplars each of /pa/ and /pha/ drawn

from five normally distributed cues with parameters estimated from published data.
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VOT: 0.4, H1−H2: 0.09
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VOT: 0.4, F0: 0.32
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VOT: 0.06, VLEN: 0.03
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VOT: 0.06, F0: 0.61

Figure 4.1: Top row: distribution of lenis /p/ and aspirated /ph/ stops, Seoul Korean, 1960s.

Bottom row: lenis /p/ and aspirated /ph/ stops, Seoul Korean, 2000s. X axes represent
VOT (in ms), y axes represent (left to right) following vowel length (in ms), H1 − H2 (in
dB), burst amplitude (in dB), F0 at vowel onset (in Hz). Based on data from Cho et al.
(2002); Kim et al. (2002); Silva (2006a); Kang and Guion (2008).

While it appears from Figure 4.1 that F0 may have already functioned as a redundant

cue for speakers born during the 1940s and 1950s, it was not the only redundant cue: even

visually, a distinction between the two categories may also be surmised on the basis of

H1 −H2 (column 2) or, to a somewhat lesser degree, closure duration (column 3). So why

was F0 selected as the primary dimension along which to maintain the contrast between

lenis and aspirated stops, and why did VOT become so uninformative in this regard? Can

we better understand the dynamics of how and why such a shift might have taken place?

1. As the production of cues to the fortis series has not changed significantly from generation to generation
(Kang and Guion, 2008), only the lenis and aspirated series are illustrated for clarity.
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By integrating the mixture modeling framework from Chapter 2 in an agent-based it-

erated learning environment described in Chapter 3, we can model how the interaction of

bias factors and an adaptive enhancement strategy results in changes to individuals’ internal

representations over time. The Korean results suggest that while phonologization may result

from the interaction of probabilistic enhancement with bias factors (i.e., channel noise), nei-

ther enhancement nor bias alone is sufficient to explain either the selection or trading

problems.

This chapter is organized in the following fashion. §4.2 reviews previous work on the

phonetics of the Korean laryngeal contrast and the phonologization of F0, and motivates

a potential bias factor which may have contributed to a loss of contrast position among

the initial obstruents. §4.3 describes the results of a number of computational simulations

employing the architecture described in Chapter 3, and §4.4 discusses these results in terms

of a functional-adaptive view of sound change.

4.2 The laryngeal contrast in Seoul Korean

This section provides background to the word-initial stop contrast in Seoul Korean and

reviews previous work relevant to the phonologization of F0 in this language.

4.2.1 Phonetic cues to the laryngeal contrast in Seoul Korean

Korean is typologically unusual among languages of the world in that it distinguishes be-

tween three types of (phonetically) voiceless obstruents: fortis2 (or tense) /p* t* k*/, lenis

(or lax) /p t k/, and aspirated /ph th kh/ (Sohn, 1999). Based on production data such

as that shown in Table 4.1, some authors concluded that VOT was the primary acoustic

2. Following recent work such as Kim et al. (2002); Wright (2007); Kang and Guion (2008), tense stops
are represented with a following asterisk as /p* t* k*/, in part because these diacritics do not have any other
conventionalized phonetic meaning; however, they have also been represented as /p’ t’ k’/, /pp tt kk/ and
/P T K/. Note that the IPA provides no standard means of distinguishing fortis and lenis stops, although
the Extensions do have diacritics for ‘strong’ and ‘weak’ articulations.
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correlate distinguishing the three types of stops. Lisker and Abramson (1964) found that

while there was some degree of overlap between VOT values for categories at the same place

of articulation, separation was more pronounced in strong prosodic positions (e.g. sentence-

initially compared to sentence-medially). Similar results (for speakers born in the 1940s and

1950s) were replicated in studies by C.-W. Kim (1965) and Han and Weizman (1970).

isolated words

p* p ph t* t th k* k kh

x̄ 7 18 91 11 25 94 19 46 126
range 0–15 10–35 65–115 0–25 15–40 75–105 0–35 30–65 85–200
n 15 30 21 16 24 12 16 34 12

sentence-initial

p* p ph t* t th k* k kh

x̄ 7 22 89 11 30 100 20 48 125
range 0–15 15–40 55–115 0–20 15–40 75–130 0–30 35–75 80–175
n 14 28 24 15 21 12 14 35 10

sentence-medial

p* p ph t* t th k* k kh

x̄ 5 13 75 12 22 78 21 44 93
range 0–10 10–20 40–130 0–25 10–45 50–120 10–35 30–65 55–175
n 14 10 23 16 12 10 14 11 10

Table 4.1: Korean VOT data from Lisker and Abramson (1964), from a single Seoul Korean
speaker of unknown age and gender. Durations are listed in milliseconds (ms).

There is also articulatory evidence pointing to differences between the various types of

Korean voiceless stops. Lee and Smith (1972) showed that subglottal pressure for the aspi-

rated series was higher than for the other two stop types. Using an electromyograph (EMG)

in conjunction with fiberoptic observation, Hirose, Lee, and Ushijima (1974) investigated the

intrinsic actions of the laryngeal muscles during the production of Korean stops and found

that the period of glottal width during stop closure to be narrower for fortis and lenis stops
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compared to aspirated stops, accompanied by a slight increase in activity of the interary-

tenoid muscle. They also found patterns of vocalis and lateral cricoarytenoid muscle activity

characteristic of the fortis series, presumably the result of ‘an increase in inner tension of

the vocal folds as well as...constriction of the glottis during or immediately after the articu-

latory closure’ (1974:151), while aspirated stops were characterized by a marked suppression

of all adductor muscles immediately prior to release. These results suggest that that the

production of Korean stops involves differences of glottal tension as well as glottal width.

The Korean initial stops also differ in terms of the intensity of the release burst (Kim,

1965; Han, 1996; Cho et al., 2002). For instance, Cho et al. (2002) found the relative energy

(amplitude) associated of the stop burst to vary with stop type in Korean, with aspirated

stops having considerably higher energy than fortis or lenis stops. The authors attribute

these differences to the aerodynamic effect of intraoral airflow rate: while both the aspirated

and fortis Korean stops have comparable intraoral air pressure, fortis stops are produced with

reduced intraoral airflow, possible a result of increased glottal resistance caused by greater

tension in the vocal tract during production of this stop. While lenis stops have greater

intraoral airflow than fortis stops (but less than aspirated stops), they are also produced

with relatively low intraoral air pressure.

Differences in fundamental frequency (F0) have long been noted for Korean stops. Han

and Weizman (1970) reported that the average F0 for aspirated and fortis stops was higher

than that of lenis stops (Table 4.2). Similar results were reported by Kagaya (1974), Hirose,

Park, Hirohide Yoshioka, and Umeda (1981), and Cho et al. (2002). These differences are

considerably exaggerated when compared to the well-known intrinsic effect of F0 perturba-

tion induced by stop type. Kim (2000) compared the F0 perturbations following Korean

lenis vs. fortis/aspirated stops with those following English voiced vs. voiceless stops and

found that while the F0 differences between vowels following English stops were negligible

by vowel midpoint, F0 differences induced by the Korean stops extended over the course of
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the entire vowel, with F0 of vowels following fortis and aspirated stops 30 Hz higher than

F0 of vowels following lenis stops at vowel offset (see also Jun, 1993, 1996; Ahn, 1999).

p* p ph

speaker 1 x̄ 178 144 185
(male) range 145–215 130–170 150–220

speaker 3 x̄ 308 266 341
(female) range 278–322 250–292 318–369

Table 4.2: F0 at vowel onset from two Korean speakers. From Han and Weizman (1970).

The articulatory mechanism which gives rise to this correlation was the subject of con-

siderable research activity, for while the high F0 for aspirated stops has a clear phonetic

precursor – in that a high rate of airflow gives rise to an increased Bernoulli effect leading to

an increase in the rate of vocal fold vibration (Ladefoged, 1973) – the heightened F0 after

tense stops was rather more puzzling: given that the state of the glottis in the production

of tense stops in Korean bears many of the hallmarks of creaky voice (Laver, 1980), tense

stops might be expected to have a lower F0, even lower than that of lenis stops. However,

as noted by Ahn (1999), the high F0 associated with tense stops finds an explanation in the

heightened activations of the thyroarytenoid and cricothyroid muscles found by Hirose et al.

(1981): the joint action of these muscles increases vocal fold stiffness, promoting high F0,

as does the movement of the thyroid cartilage induced by contraction of the cricothyroid.

Since both of these gestures are independent of the adduction of the arytenoid cartilages, a

characteristically creaky glottal state can occur simultaneously with high F0. This is similar

to the theory advanced by Kingston (2005) advances a similar theory to explain the fact

that the historical loss of laryngealized (creaky voiced) segments in Athabaskan languages

resulted in both high and low tones on the preceding vowel in different daughter languages.

Another vocalic effect that has been reported for Korean is that duration of the vowel

following the stop is inversely related to degree of aspiration. For instance, Cho (1996)
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reports that vowels following tense tops are longer than those following lax stops, which in

turn are longer than those following aspirated stops. Table 4.3 gives the the means and

ANOVA results for Cho’s three male speakers, born in the 1950s or early 1960s, in two

conditions: normal and ‘slow’ (careful) speech. Comparable results for a female speaker

born in the late 1960s or early 1970s are reported by Kim et al., shown in Table 4.4, which

gives both the duration of the vowel /a/ as well as the duration of the entire CVN syllable

in which it occurred. These authors provide similar data for the vowel /i/ and alveolar and

velar stops, noting that while the results are broadly in agreement with Cho’s data, the lenis

and aspirated categories overlap considerably (2002:82).

Informant 1 Informant 2 Informant 3
normal slow normal slow normal slow

p* 155.39 420.18 126.65 449.99 179.76 477.41
p 152.05 401.05 107.02 451.14 131.02 439.73

ph 124.73 393.68 80.20 410.88 89.41 407.77

p .0003 .1796 .0001 .0045 .0084 .0001
F 11.784 1.8459 17.907 6.8193 5.8665 16.143

Table 4.3: Mean vowel length (in ms) following fortis, lenis, and aspirated bilabial Korean
stops in two conditions. After Cho (1996).

p* p ph

vowel duration 168(166-171) 157(143–177) 110(100-117)
syllable duration 337(322-355) 369(337–388) 339(327–356)

Table 4.4: Vowel and total syllable duration (in ms) of the vowel /a/ following fortis, lenis,
and aspirated stops, in the format mean(range). From Kim et al. (2002).

Finally, phonation type (manifested as relative harmonic intensity, or H1−H2) has been

argued by several authors to be a reliable indicator of stop type in Korean, or at least to

distinguish the tense stops from other types of stops (Ahn, 1999; Kim et al., 2002; Kim and
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Duanmu, 2004). Fiberoptic studies such as Kim (1965) and Kagaya (1974) observed that

glottal apertures at voice onset were comparable for the lenis and aspirated stops, whereas

fortis stops evidenced complete contact at voice onset. The expected acoustic consequence

of this difference would be a more dominant first harmonic (H1) for lenis and aspirated stops

as compared to tense stops (Stevens, 2000). In terms of a normalized H1*−H2* measure,

Ahn (1999) found significant differences between fortis and both lenis and aspirated stops,

but not between lenis and aspirated stops. Conversely, Cho et al. (2002) found that H1−H2

values for fortis, lenis, and aspirated stops all differ significantly from one another in post

hoc pairwise comparisons. The results of the Kim et al. (2002) study, given in Table 4.5,

provide further support for an H1 −H2 difference between all three stop types.

fortis lenis aspirated

labial −6.2(−6.6 to− 6.0) 1.2(−0.9 to 3.5) 4.3(2.1 to 6.0)
velar −7.1(−9.1 to− 6.0) 4.0(3.5 to 4.8) 0.2(−4.3 to 3.3)

Table 4.5: Mean difference (in dB) in the amplitude of the first and second harmonics (H1−
H2) at vowel onset following fortis, lenis, and aspirated stops at two places of articulation,
in the format mean(range), for a single female speaker of Seoul Korean. From Kim et al.
(2002).

Based on the studies reviewed above, it is clear that multiple temporal and spectral

properties serve to differentiate fortis, lenis, and aspirated stop in Seoul Korean. Although

some of these properties are events that occur during the production of the stop itself and

some occur during the production of the following vowel, we might reasonably consider them

all to be cues to the stop contrast (and not the vocalic contrast) as they persist to varying

degrees regardless of the quality of the following vowel. More convincing still, however, are

demonstrations of the perceptual relevance of these significant differences in cue production.
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4.2.2 Perceptual studies of the Korean laryngeal contrast

Kim (1965) argued that VOT differences alone could not be the sole characteristic distin-

guishing fortis from lenis stops in Korean, due to the still considerable degree of overlap

even in strong prosodic positions. This was supported by subsequent perceptual studies:

Han and Weizman (1970) found that manipulating VOT using edited natural /ph/ stimuli

cued only a two-way lenis/aspirated distinction; Abramson and Lisker (1972), employing a

synthetic VOT continuum, found inconsistent response patterns across listeners (while some

reported a three-way distinction, others reported only two, while one unexpectedly reported

tense stops in the middle of the continuum).

The failure of VOT to unilaterally distinguish between stops led researchers to investigate

the potential role of other acoustic dimensions in the perception of Korean stops. Han

(1996) created a continuum of F0 at vowel onset over a range of 35 Hz, and found that as

F0 increased, listeners were more likely to identify the preceding stop as fortis (vs. lenis).

Francis and Nusbaum (2002) investigated how native Korean speakers weight vocalic and

consonantal cues to the initial stop contrast as part of a study on the acquisition of novel

(L2) phonetic contrasts. They determined that native speakers make phonetic decisions

about natural stimuli based not only on VOT, but also on F0 at vowel onset, the clarity

of formant structure at the onset of phonation, and the elapsed duration from the onset of

vocalic formant activity to the peak vowel amplitude.

Cho (1996) asked listeners to identify initial stops on the basis of CV syllable fragments

with a constant vocalic portion from which all aperiodic information and the first two pitch

periods had been removed (to avoid including any coarticulatory information in the form

of e.g. formant transitions). Overall identification accuracy across stop types was 67%, but

accuracy for aspirated stops was at chance, suggesting that vocalic portion of the signal

holds particularly strong cues to the distinction between fortis and aspirated stops. This

paradigm was replicated and extended by Kim et al. (2002) in two experiments. In the
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first, stimuli were created by cross-splicing the vocalic portion of one syllable (e.g., the /a/

from fortis-onset /p*a/) with the consonantal portion of another (e.g., the aspirated /ph/

from /pha/). When presented with conflicting cues as to the identity of the initial stop,

participants tended to base their decision more on vocalic information such as H1 − H2

and F0 than on cues located in the consonantal portion: a consonant followed by a ‘lenis

vowel’ was generally perceived as lenis, regardless of its other spectral or temporal properties,

for instance. In the second experiment, Kim et al. investigated whether information in the

vocalic portion of the syllable alone could serve as a cue to the identity (or at least phonation

type) of the initial consonant by present listeners with only the relevant vocalic portions of

the signal. While the presence of a ‘lenis vowel’ was generally sufficient to recover a deleted

lenis stop, in the absence of consonantal cues such as VOT, fortis and aspirated stops were

often confused and labeled as fortis.

4.2.3 Changes in the production and perception of Korean stops

The perceptual studies reviewed above suggest that Korean listeners attend to multiple cues

when making decisions about the identity of an initial stop, and that neither consonantal

nor vocalic information alone is sufficient to convey the three-way distinction between initial

stops. However, as Kim et al. note, the distinction between lenis stops and ‘other’ stops

is quite robustly cued by F0 at vowel onset, which is ‘sufficiently perceptually robust as to

uniquely specify lax stops in the absence of any consonantal information prior to voice onset’

(2002:99). A comparison of studies conducted during the 1960s with those conducted 30 to

40 years later suggests that this is a more recent development, accompanied by a decrease in

the informativeness of VOT as a cue distinguishing lenis from aspirated stops. Speakers born

in the 1960s tend to produce lenis stop with more aspiration (∼40-70ms) while aspirated

stops are produced with slightly less (∼85-105ms) compared to speakers born in the 1940s

and 1950s (Kim, 1965; Han and Weizman, 1970; Silva, 1993; Cho et al., 2002; Wright, 2007).
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This trend has now been well-established by a number of apparent time production studies

including those of Silva (2006a), Wright (2007), and Kang and Guion (2008). Silva (2006a)

reports VOT and F0 data from recordings of 36 adult native Seoul Korean speakers born

between 1943 and 1982. He found that the degree to which VOT serves to differentiate

lenis from aspirated stops decreases as a quadratic function of age. Wright (2007) examined

VOT and closure duration of aspirated and lenis stops in the speech of 20 Seoul Korean

speakers born between 1955 and 1987. In the aggregate, older speakers tended to produce

lenis and aspirated stops with distinct VOT and closure duration values, whereas these cues

were produced with more similar or even identical values by younger speakers.

However, as VOT has become increasingly less informative in distinguishing between lenis

and aspirated stops in Seoul Korean, F0 appears to have become more informative. Silva

(1992) demonstrated that differences in F0 appeared to be being exaggerated as differences

in VOT diminished – a clear instance of thetrading problem. While Silva (2006a) failed

to find an effect of speaker age on F0 values (although F0 did generally distinguish lenis

from fortis and aspirated stops for speakers of all ages), the apparent time study by Kang

and Guion (2008) presents evidence that younger and older Korean speakers do in fact

treat cues to the initial stop contrast differently. In their first experiment, Kang and Guion

sought to establish that younger and older Seoul Korean speakers produce cues to the initial

laryngeal contrast differently, and to ascertain whether these differences are more pronounced

in some speaking styles than in others. The results of this experiment are shown in Figure

4.2. Older speakers made clear distinctions between lenis and aspirated stops in terms of

VOT in conversational, citation, and clear speech conditions, whereas younger speakers only

made this distinction in the clear speech condition, and then only to a very small degree.

Kang and Guion also examined differences in the production of H1−H2 and F0 between age

groups and across speech conditions. While H1−H2 productions varied somewhat by speech

condition, with differences between fortis and other stops begin somewhat more exaggerated

83



in clear speech, the differences were largely comparable across age groups. For F0, on the

other hand, an interaction between speech condition and age group was observed: younger

speakers tended to expand the F0 distance between lenis stops and fortis/aspirated stop

types, especially in clear speech.

In a second experiment, Kang and Guion tested whether the expanded F0 productions

observed for the younger group were for the purpose of enhancing the phonological lenis

vs. aspirated contrast, or simply the result of an expanded F0 range in clear speech. They

found that while the difference between the stops /t/ and /th/ increased substantially in clear

speech for younger speakers, the difference in F0 between the segments /h/ (a ‘high-tone

trigger’) and /n/ (a ‘low-tone trigger’: Jun, 1993) was not particularly greater in clear speech

as compared to citation-form speech. This suggests that the expanded F0 range between

lenis and aspirated stops for younger speakers is related to maintenance of the phonological

contrast between lenis and fortis/aspirated stops, rather than simply as e.g. an aerodynamic

by-product of some other articulation.

In short, the empirical facts of subphonemic sound change affecting lenis and aspirated

stops in clear speech conditions in Seoul Korean most relevant to the present work can be

summarized as follows:

1. Lenis stops are produced with greater VOT, and aspirated stops are produced with

reduced VOT, compared to productions in similar speech conditions by older speakers.

2. The difference in F0 between lenis stops and fortis/aspirated stops is increased in clear

speech in just those cases where it helps to differentiate the phonological stop contrast.

One account of this shift is that as VOT became less informative in terms of helping to

categorize these stops, F0 became more important. However, this raises at least two further

questions: first, why VOT summarily became less informative in the first place (the trading

problem) as well as why F0, and not some other cue (say, closure duration, or H1 −H2),

became the primary indicator of the phonological contrast (the selection problem).
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However, because the F0 increase in clear speech for vowels
following aspirated and fortis stops was relatively larger than
that of lenis stops, the F0 distance between lenis stops and
the other two stop types was expanded in clear speech.

2. Older group

For the older group, univariate tests returned significant
interactions of speaking style by stop type for each of VOT,
H1-H2, and F0 !VOT "F1!1,65#=14.717, p!0.001,
F2!2,15#=7.867, p=0.005$, H1-H2 "F1!1,65#=5.826, p
=0.019, F2!2,15#=5.850, p=0.013$, and F0 "F1!1,65#
=12.208, p=0.001, F2!2,15#=19.223, p!0.001$#. Interac-
tions between speaking style and stop type are displayed in
Fig. 2.

Figure 2!a# shows that the VOT distance between aspi-
rated and lenis stops was expanded in clear speech. Mean
VOT for lenis stops decreased substantially, whereas that for
aspirated stops was roughly the same between conversational
and clear speech.

As for the H1-H2 measure "see Fig. 2!b#$, the interaction
was due to the substantial reductions found in citation-form
and clear speech for fortis stops. These results indicate that
fortis stops were produced with creakier voicing on the fol-
lowing vowels in these speaking styles, whereas the other
two stop types showed little effect of speech style.

Finally, for the F0 measure, the interaction was prima-
rily reflected in the patterning in citation-form speech "see
Fig. 2!c#$. The mean F0 for aspirated and fortis stops de-
creased vis-a-vis the other two speaking styles. Also, in clear
speech, mean F0 for aspirated stops slightly decreased com-
pared to conversational speech, whereas mean F0’s for lenis
and fortis stops increased. Consequently, the overall F0 dis-
tance among the stop categories was slightly reduced in clear
speech.

F. Discussion

The results of the analyses suggest that the phonological
contrasts between the Korean stops are enhanced in clear
speech production for both the younger and older speakers,
but in a different manner. The younger speakers produced
Korean aspirated and lenis stops with merged VOT values in
the conversational condition. However, in clear speech, the
two stops were differentiated with a small VOT difference of
10 ms. In addition, the H1-H2 difference between the fortis
and the other two stop types was more exaggerated in clear
speech, as the following vowels became even creakier in the
context of fortis stops, but not in other stop contexts !the
difference between aspirated and fortis stops in conversa-
tional speech was 7.9 dB, and 10.7 dB in clear speech#. The
F0 difference between the lenis and the other two stop types
was also enhanced in clear speech by a greater F0 increase in
the vowels following the aspirated and fortis stops than the
lenis stops !the difference between aspirated and lenis stops
in conversational speech was 68 Hz, and 81 Hz in clear
speech#.

For the older speakers, a VOT difference between aspi-
rated and lenis stops was found in conversational speech, but
the difference became even greater in clear speech !18 ms
difference in conversational speech and 31 ms difference in
clear speech#. As for the H1-H2 measure, fortis stops and the
other two stop types, aspirated and lenis, became more dis-
tinctive from each other in clear speech due to enhanced
creaky voicing on the vowels following fortis stops !the dif-
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FIG. 1. Mean values with standard errors for the production of Korean stops
!aspirated, lenis, and fortis# in conversation, citation-form, and clear speech
styles by the younger group !n=11# for three acoustic correlates "!a# VOT,
!b# H1-H2, and !c# F0$.
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ference between aspirated and fortis stops in conversational
speech was 9 dB, and 10.7 dB in clear speech!. Finally, in
contrast to the case of the younger speakers, the F0 differ-
ence between the stop categories reduced in clear speech

production "the difference between aspirated and lenis stops
in conversational speech was 84 Hz, and 68 Hz in clear
speech!. As a result, F0 did not enhance any phonological
distinctions in clear speech production in the case of the
older speakers.

To sum up, these results indicate that there is a differ-
ence in the use of VOT and F0 to enhance the aspirated and
lenis stop contrast between the two age groups. The older
group used VOT, whereas the younger group used both VOT
and F0, with F0 being a stronger correlate. However, inter-
preting the difference in F0 enhancement in clear speech
between the two groups requires closer examination. One
question that arises is whether the greater F0 difference in
clear speech for the younger speakers was induced by the
enhancement of a phonetic target used to realize the phono-
logical contrast of aspirated and lenis stops, or whether it
was due to an overall greater F0 use by the younger speakers
in the clear speech style. That is, an alternative interpretation
of the results may be that the younger speakers generally use
F0 more robustly than older speakers, and that the F0 en-
hancement in clear speech is simply attributable to a larger
F0 range in clear speech.1 In order to test this alternative
possibility, another experiment was conducted with a sepa-
rate set of test items containing nonstop consonants.

III. EXPERIMENT 2

Experiment 2 examines F0 variation of aspirated conso-
nants as a function of speaking style in comparison with
lenis consonants. The purpose was to investigate the question
of whether the F0 enhancement of the younger speakers in
experiment 1 was due to a phonological contrast enhance-
ment between the aspirated and lenis stops or an expanded
F0 range in clear speech. Specifically, the phrase initial tonal
contrast between the high-tone associated Korean aspirated
and fortis stops and the low-tone associated lenis stops "Cho
et al., 2002; Jun, 1993! was investigated in comparison with
other nonstop consonants showing a similar tonal specifica-
tion phrase initially. Thus, a high-tone triggering voiceless
fricative /h/ and a low-tone triggering voiced nasal /n/ were
examined for their F0 realization in citation-form and clear
speech. If the larger F0 difference in clear speech for the
younger speakers were induced by a generally greater pitch
enhancement regardless of segment type, the F0 difference
for the vowels following /h/ and /n/ would be greater in clear
speech than in citation-form speech, similar to the pattern
found for the aspirated and lenis stops. On the contrary, if the
F0 differentiation was part of the enhancement strategy for
the phonological contrast of the aspirated and lenis stops, the
F0 difference between the vowels following /h/ and /n/
would not be enhanced in clear speech for either the younger
or the older speakers.

A. Participants

Twenty native Korean speakers who did not participate
in experiment 1 were recruited. The participants were
grouped separately based on their age. The ten younger
speakers were 19–29 years old "mean of 23 years! and the
ten older ones were 40–58 years old "mean of 47 years!. All
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FIG. 2. Mean values with standard errors for the production of Korean stops
"aspirated, lenis, and fortis! in conversation, citation-form, and clear speech
styles by the older group "n=11! for three acoustic correlates #"a! VOT, "b!
H1-H2, and "c! F0$.
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Figure 4.2: Figures 1 and 2 from Kang and Guion (2008) showing the differences in the
production of VOT, H1 − H2, and F0 in three speech conditions for a group of younger
speakers (Fig. 1, column 1) compared to a group of older speakers (Fig. 2, column 2).
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Although historically shown to employ a pitch-based accentual system, most varieties of

modern Korean are not considered tonal in the usual sense (see Silva, 2006a and references

therein). However, other dialects, such as the Kyungsang dialects spoken outside of Seoul,

have been argued to retain the Middle Korean tone system (Chung, 1991; Chang, 2007;

Hong, 2007). Given the influx of immigrants to Seoul in the years following the Korean War,

contact with a tonal dialect may have precipitated the shift in the production of cues among

Seoul speakers. I will not explore that hypothesis here, but the architecture developed in

the remainder of this chapter could certainly be used to simulate such a scenario.3

4.2.4 Phonetic bias factors in the production of Korean stops

In terms of accounting for the increasingly similar VOTs of lenis and aspirated stops produced

by younger Seoul Korean speakers, one account in particular points to systemic phonological

factors as a possible source of phonetic production bias. Silva (1992, 1993, 2006a) makes the

case that ‘any non-sonorant singleton consonant...in phrase initial position is realised with

aspiration’ (2006a:302) by demonstrating that the duration of VOT during the production of

‘non-sonorant singleton’ stops (i.e. non-fortis) at the edge of a prosodic phrase is considerably

longer (∼60ms) than at the edge of a word (∼20ms) or word-internally (∼3ms: see Table

4.6). This may have led to lenis and aspirated stops being produced with similar VOT in

initial position, which would lead to increased distributional overlap over time. On Silva’s

account, fortis stops would not be subject to this same bias, since they are phonologically

geminate (2006a:303).4

That Korean fortis stops may be treated as phonologically geminate, or in any event dif-

3. Related to this is the question of who to determine whether or not a language has a lexical tone contrast
or something else, or when a phoneme-level prosodic distinction has become lexicalized. I will not pursue
this question here, but see Wright (2007); Hyman (2009) for some recent discussion and references.

4. Since this proposed bias factor would not have affected the production of fortis stop series, the following
simulations focus on the lenis/aspirated contrast in the interest of expository clarity.
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φ-Edge ω-Edge ω-Internal

Voicing during closure 10 ms 17 ms 33 ms
% of closure that is voiced 23% 36% 77%
Post-release VOT 60 ms 22 ms 3 ms

Table 4.6: Degree of voicing during closure and post-closure release aspiration (VOT) of
Korean lenis stops in three prosodic positions: minor-phrase (φ) edge, word (ω) edge, and
word-internal. From Silva (1993).

ferently from non-fortis stops, is also supported by acoustic data. In examining the recordings

of two subjects in conjunction with electromyographic data, Hirose et al. (1981) found that

the closure period of word-initial fortis stops were considerably longer than those of lenis

or aspirated stops (Table 4.7). The function of this length increase may be to build up air

pressure behind the closure, in order to compensation for the relatively small glottal opening

characteristic of Korean fortis stops.

k* k kh

speaker P x̄ 207 146 145
s.d 1.1 1.1 0.7
n 15 15 16

speaker C x̄ 150 115 143
s.d 0.5 0.7 0.7
n 12 12 12

Table 4.7: Duration of stop closure (in ms) for word-initial velar stops /k* k kh/ from two
Seoul Korean speakers (n = number of tokens). Adapted from Hirose et al. (1981).

There is also some evidence of a gender imbalance in the production of VOT. Data from

6 Seoul Korean speakers born in the 1960s and 1970s collected by Kim (1994) suggests that

female speakers may have begun to produce lenis and aspirated stops with similar VOT

patterns prior to males (Table 4.8). While certainly not conclusive, these data suggest a
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possible pathway through which this innovation may have spread to a younger generation

(see e.g. Labov, 1990, 2001 for more on the role of women as leaders of linguistic change).

p* p ph

male 8.7(3.2) 45.6(18.2) 76.7(18.2)
female 7.8(1.9) 77.7(18.4) 71.2(20.7)

Table 4.8: Means and standard deviations (in ms) of VOT data based on 3 male and 3
female speakers of Seoul Korean, aged 25–35 (born 1962–1974) at the time of data collection.
Adapted from M.-R. Kim (1994).

Together, these studies suggest higher-level factors which may be exerting a bias on the

phonetic realization of VOT in Seoul Korean in the production of lenis and aspirated stops.

This bias factor will be crucial in explaining the shift in relative reliability from VOT to F0

in this language.

4.2.5 An adaptive account of sound change in Seoul Korean

From the studies reviewed above, it is clear that both the production and perception of cues

to the Korean stop contrast have changed over time, possibly precipitated by the influence

of a particular phonetic bias factor. Without loss of generality, we might arbitrarily divide

the period from the 1960s to the 2000s into two periods, a ‘before’ and an ‘after’. Our task

then becomes to explain the role played by this the bias factor in the subphonemic evolution

of the contrast.

As reviewed in Chapter 1, adaptive theories such the H & H theory (Lindblom, 1990;

Lindblom et al., 1995) hypothesize that speakers modify their productions in response to

their estimates of the listener’s perceptual needs. If the listener’s need is estimated to be

high, the speaker is more likely to enhance (hyperarticulate) some aspect of the speech

signal. The prosodically-conditioned VOT bias discussed above may have conditioned a loss

in the precision of the lenis/aspirated stop contrast in Korean, and the cue targeted for
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enhancement clearly seems to have shifted from VOT to F0 over time. But why F0, as

opposed to some other cue? Cue selection can be (at least probabilistically) predicted in a

model in which the representation of speech sound categories allows for reliability of cues

to be quantified (such as the GMM representation laid out in Chapter 2). Based on their

assessment of the listener’s needs, an adaptive speaker will, by hypothesis, enhance cues in

proportion to their reliability: the more reliable a cue dimension, the more likely it will be

enhanced.

In the Seoul Korean case, that cue would appear to be VOT. Table 4.9 compares the cue

reliability ω for five of the cues discussed in §4.2.1 above – note that F0 (ω = 0.32) is (was)

nearly as reliable as VOT (ω = 0.4). This state of affairs suggests at least three hypotheses

as to how the sound change might have occurred. First, if cue enhancement is probabilistic,

rather than deterministic, it is conceivable that F0 may have been enhanced often enough,

or by e.g. socially prominent enough speakers, to become more reliable than VOT over time.

On this account, the sound change would be driven entirely by (probabilistic) enhancement.

Alternatively, if the reliability of VOT were somehow reduced – as a result of the phonetic

bias discussed above, for instance – the relatively reliability of F0 would increase (as ω is

normalized measure). Finally, the transphonologization of F0 may have been the result of

some interaction of these two factors.

Category vot vlen h1−h2 ba f0

lenis 35 (11) 337 (8) 6 (2) 48 (8) 162 (14)
1960s aspirated 93 (15) 340 (15) 7.5 (1) 64 (9) 227 (21)

ω 0.4 0.03 0.09 0.16 0.32

Table 4.9: Parameter values and weights for cues to Korean stops among the older (1960s)
generation, taken or estimated from data in Cho (1996), Kim et al. (2002), Silva (2006a),
and Kang and Guion (2008). Standard deviations are given in parenthesis. vot = voice
onset time; vlen = vowel length; ba = burst amplitude; f0 = F0 at vowel onset.
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4.3 Simulating phonologization in Seoul Korean

Data from the apparent time studies reviewed above suggest that while the distinction be-

tween lenis and aspirated stops in Seoul Korean of the 1960s was mainly cued by VOT, this

distinction is now cued chiefly by F0 of the following vowel and has been accompanied by

a loss of contrast along the VOT dimension. As detailed in §4.2.5, this kind of change is

consistent with an adaptive theory of phonetic enhancement, whereby a shift in cue weights

involves loss of contrast along a once primary cue dimension concomitant with (probabilis-

tic) enhancement along a previously redundant dimension. In what follows, it will be shown

that probabilistic enhancement accurately predicts both the cue enhanced (F0) as well as

the degree of enhancement in Seoul Korean.

In order to explore how language users choose among competing cues in phonologization

(the selection problem), the Korean stop contrast was modeled in five acoustic-phonetic

dimensions: voice onset time (VOT), F0 and duration of the following vowel, the difference

in amplitude between the first two formants of the vowel (H1 − H2), and the amplitude

of the release burst. Agents’ lexica consisted solely of the syllables /pa/ and /pha/5. In

each simulation, two ideal observer agents were seeded with initial distributions for each of

these cues estimated from data reported in Cho (1996), Kim et al. (2002), Silva (2006b), and

Kang and Guion (2008) given in Table 4.10; two-dimensional scatterplots showing the joint

distributions of VOT (the primary cue) and each of the other cues are given in Figure 4.3.

Table 4.10 also gives the distributions and reliability scores ω for these five cues for younger

speakers of Seoul Korean, which were estimated from the above sources. Since increased

reliance on F0 in Korean has been accompanied by a reduction in reliance on VOT (the

trading problem), the second goal of the simulations was to see if it was possible to

replicate this transition using the current implementation, and if so, under what conditions.

5. Although no contextual or lexical effects were considered in these simulations, this should not be taken
to imply that these effects play no role in the process of sound change; the focus of the present study was
simply on the subphonemic dynamics.
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In order to simulate the effects of the prosodically-conditioned aspiration bias described in

§4.2.4, the bias factor λ implemented here affected the VOT dimension only.
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VOT: 0.4, H1−H2: 0.09
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VOT: 0.4, F0: 0.32

20 40 60 80 100 120

30
0

32
0

34
0

36
0

38
0

40
0

VOT (ms)

vo
w

el
 le

ng
th

 (
m

s)

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●
●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●●

●●

●

● ●
●

●
●

●

●

●

● ● ●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

VOT: 0.06, VLEN: 0.03

20 40 60 80 100 120

0
2

4
6

8
10

12

VOT (ms)

H
1−

H
2 

(d
B

)

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ●
●

●

●
●●

●

●

●

●

●

●

●

● ●●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●●

●

●
●

●
●

●●●
● ●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●
●

●

● ●●

●

●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●●
● ●

●
●

● ●

●

●

●
●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

● ●

● ●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

● ●

●●

●

● ●●● ●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●●

●

●
●

●●

●

●

●

●

●● ●
●

VOT: 0.06, H1−H2: 0.16

20 40 60 80 100 120

30
40

50
60

70
80

VOT (ms)

bu
rs

t a
m

pl
itu

de
 (

dB
)

● ●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

VOT: 0.06, BA: 0.14

20 40 60 80 100 120

10
0

15
0

20
0

25
0

30
0

VOT (ms)

F
0 

(H
z)

●

●

●

●

●

●

●

●● ●

●

● ● ●

●

●

●
●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●●

●● ●
●

●

●

●
●

●
●

●
●●

●

●

●●●

●

●

●
●
●

●●●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
● ●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ●●●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●
●

●

● ●
●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●
● ●

●
●

●

● ●●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●
● ●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

● ●
●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
● ●

● ●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●

●
●

●

●

●

● ●

●
●●

●
●
●

●
●●

●
●
●

●

●

●

●

●

●
●●

● ●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●●●
●

● ●
●

●

●●●

●

●
●

●

●

●● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●●
● ●

●

●

●

●●●
●

●

●
●●

●

●●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

● ●

●

●
●

●
●●

●
● ●

●
●

● ●

● ●
●

●

●

● ●
●

●

●

●
●

●

●
● ●

●

●
●

●●● ●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●●

● ●●

● ●

●

●

●

●
●●

●

●
●●

●

●
●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●

●

●

●
● ●

● ●

●
●

●

● ●

●

● ●● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●

●

●
●● ●

● ●

●

●
●

●

●

● ●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

● ●

●

●

●●

●
●

●

●
●

●

●

● ●

●

●●
●

●● ●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●● ●
●

● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●●

●

●

●
●

●
●

●

●●

●
●

●
●●

●
●

●

●
●

●

●●
●

●

●
● ●

●●

●

●
●

●

●
●●

●

●

●
●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●● ●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●●

●
● ●

●

●● ●●

●

●

●

●

●
●

●

●
● ●

●●

●● ●

●

●

●●

●
●

●

●

● ●●●

● ●

●●

●

●

●
● ●

●
●●

●
●

●

●●●
●

●

●

●

●

●

●

●●

●

●

VOT: 0.06, F0: 0.61

Figure 4.3: Row 1: distribution of five cues to the laryngeal contrast in Korean used to seed
the simulations. Row 2: modern distribution of the same cues. Data estimated from Cho
(1996), Kim & Beddor (2002), Silva (2006a), Kang and Guion (2008). Captions give cue
reliability ω as computed by Equation (2.17). vot = voice onset time; vlen = vowel length;
ba = burst amplitude.

Three series of simulations are reported, each seeded from the same initial parameter-

ization. The first round of simulations considered the effects of applying a probabilistic

enhancement strategy without systemic bias (§4.3.1). The second round of simulations con-

sidered the effect of applying systemic bias to the production of a single cue, but without

enhancement (§4.3.2). The third round of simulations explored the effects of applying both

systemic bias and probabilistic enhancement (§4.3.3). Simulations were run for varying

lengths of time; those reported here are representative runs of 25,000 iterations, at which
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Category vot vlen h1−h2 ba f0

lenis 35 (11) 337 (8) 6 (2) 48 (8) 162 (14)
1960s aspirated 93 (15) 340 (15) 7.5 (1) 64 (9) 227 (21)

ω 0.4 0.03 0.09 0.16 0.32

lenis 65 (11) 338 (10) 5.5 (1) 48 (8) 170 (10)
2000s aspirated 73 (15) 343 (12) 7.5 (1) 64 (9) 250 (11)

ω 0.06 0.03 0.16 0.14 0.61

Table 4.10: Parameter values and weights for cues to Korean stops, taken or estimated from
data in Cho (1996), Kim et al. (2002), Silva (2006a), and Kang and Guion (2008). Standard
deviations are given in parenthesis. vot = voice onset time; vlen = vowel length; ba =
burst amplitude.

point neutralization along the primary cue dimension tended to become complete and/or

probability of enhancement approached zero. All simulations reported here utilized an ex-

emplar pruning threshold of 0.3 and a value for the β exponent of 0.5.

In order to quantify the goodness of fit between the target distributions and the results

of the various simulations, the relative entropy or kullback-leibler divergence (KL

divergence: Kullback and Leibler, 1951) between each target and simulated cue dimension

was calculated. Since the cue distributions here are continuous, KL divergence between

distributions F and G with densities f(x) and g(x) is estimated as

KL(F ||G) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx (4.1)

KL divergence provides a (non-symmetric) measure in bits of the dissimilarity between two

distributions; KL(F ||G) is equal to zero when two distributions F and G are identical,

and grows with the dissimilarity between them. Although a multivariate formulation of KL

divergence also exists, summed univariate distances are reported here in keeping with the

overall independence assumptions.
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4.3.1 Enhancement, no bias

Based on the cue weights in Table 4.10, it would appear that a contrast along the F0

dimension already existed in Seoul Korean of the 1960s, albeit covertly, in that while it

may have played a role in native speaker perception of the contrast, it may not have been

obvious even to the trained ear of linguists (Scobbie et al., 2000; Yu, to appear). One

interpretation of Hyman’s characterization of phonologization is that active enhancement

of cues on the part of speakers itself conditions the transition of a cue from covert to overt

indicator of contrast: in other words, an existing contrast is neutralized as a result of a covert

contrast becoming overt. One way to test this assumption is to consider the application

of probabilistic enhancement in the absence of any external bias. If enhancement alone

drives phonologization, then as one cue dimension becomes more informative, another should

become less informative.

The enhancement-without-bias simulations proceeded as follows. At each iteration i, a

cue dimension d was enhanced with probability p(εβωd) by sampling d from a distribution

with parameters µ̃d, σ̃d as described in §3.2.2 above. The results of a representative simu-

lation run are shown in the first row of Figure 4.4. In all such simulations, the cue with

the highest initial reliability ω (here, VOT) maintained its relative dominance throughout.

The degree of enhancement was extremely small, reflecting the fact that the precision of the

contrast is never jeopardized, although as shown in Figure 4.5, the error rate is generally

seen to increase. These simulation results suggest that probabilistic enhancement alone,

at least enhancement driven by loss of contrast precision, is probably insufficient to induce

phonologization of an existing covert contrast, although if two cues were more or less equally

reliable, an enhancement-only model would predict each of them to become dominant with

roughly equal frequency. In addition, the enhancement-only model makes the prediction

that enhancement along one cue dimension need not entail a reduction in the reliability of

another.
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4.3.2 Bias, no enhancement

It is also worth considering the inverse of the scenario described above. If a covert contrast

already exists, it is possible that enhancement is unnecessary, and that a redundant, sec-

ondary cue will simply become primary through the continuous application of systemic bias

to the appropriate cue dimension. To test this hypothesis, simulations were run in which a

bias was applied to productions of VOT at each timestep, such that VOT values for category

c2 (e.g., [ph]) were produced with slightly shorter VOTs, while values for category c1 (e.g.,

[p]) were produced with slightly higher VOTs. The motivation for this bidirectional bias is

as follows. In many instances where VOT productions are biased, only one of the two or

more VOT distributions change as a result: in a study of the effects of speech rate on stop

production, Kessinger and Blumstein (1997) found that long lag and prevoiced VOTs, but

not short lag VOTs, changed as a function of speaking rate for speakers of Thai, French,

and English; Kang and Guion (2008) observed similar effects for Korean. However, in the

modern Korean case, average VOT values of lenis and aspirated stops have clearly converged

at a midpoint; it is not the case that lenis stops are produced as aspirated or vice versa.

The bidirectional bias factor implemented here is consistent with the possible precursor of

this convergence discussed in §4.2.4. Values were modified as in Equation (3.12). In these

simulations, no enhancement was applied.

The results of a representative simulation run are shown in the second row of Figure

4.4. The VOT contrast has been neutralized, and due to the normalization of cue weights,

F0 has emerged as the primary indicator of the contrast. However, this is slightly different

from the attested modern Korean situation, in part because the F0 distributions have not

changed: F0 is the most informative cue simply because all other cues have been made highly

uninformative. This suggests that a phonetic bias factor can result in the phonologization

of a previously redundant cue, so long as the distribution of cue was already sufficient

to distinguish between the relevant categories. In the empirical distributions for modern
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Korean, however, the category means for both aspirated and lenis obstruents have shifted

slightly away from one another, suggesting that they have been enhanced (Figures 4.2 and

4.3, row 2), and indeed Kang and Guion (2008) found different patterns of enhancement

behavior for younger and older Korean speakers with respect to the cues they targeted.

Thus, while the covert F0 contrast may have been exposed by a systemic production bias,

it seem unlikely that this was the only factor at play in this transphonologization.

4.3.3 Bias and enhancement

The third series of simulations considered the effect of applying both systemic VOT bias and

probabilistic enhancement. Representative simulation results are shown in the third row of

Figure 4.4. These results most closely resemble the empirical results, as seen in Table 4.11.

Note that continued application of systemic bias has again resulted in the VOT dimension

becoming completely uninformative. While overall F0 variance has been reduced, it still falls

short of the empirical variance along this dimension, suggesting a more aggressive model of

variance reduction may be warranted.

Note that while the KL divergences reported in Table 4.11 are generally quite small, so

too are the the KL divergences between the initial and final (target) distributions, as seen

in the last line of Table 4.11. The KL divergences for various dimensions should thus not be

interpreted in an absolute sense, but instead relative to other values for the same dimension.

4.3.4 Summary

Table 4.11 gives an overview of the combined simulation results, showing the distribution

parameters and weights for each cue after a representative simulation run. The empirical tar-

gets, repeated from Table 4.10, are given at the bottom. Figure 4.4 gives a graphical overview

of the results, while Figure 4.5 compares contrast precision (ε) at simulation timestep for

each of the three scenarios.

95



20 40 60 80 100 120

30
0

32
0

34
0

36
0

38
0

40
0

VOT (ms)

vo
w

el
 le

ng
th

 (
m

s)

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●
●

●●●

●

●
●

●

●
● ●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●
● ●

● ●

●

●

●

● ●

●

●

●

●

●

●
●●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●●

●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●

●●

●
●

●
●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

● ●
●

●
●●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
● ●

●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●● ●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●
●●

●
●

●

●●

●

●
●

●

●

●●

●

●

●●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●
●

●

● ●

●

●

●●

●●

●

●

●

●

● ●

●●

●●
●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

VOT: 0.4, VLEN: 0.06
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VOT: 0.4, F0: 0.31
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VOT: 0, BA: 0.19
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VOT: 0.06, F0: 0.61

Figure 4.4: Cue distributions after 25,000 iterations for lenis /p/and aspirated /ph/ stops.
Row 1: enhancement without bias. Row 2: bias without enhancement. Row 3: bias and
enhancement. Row 4: empirical targets. Captions give cue reliability ω as computed by
Equation (2.17).
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Source Category vot vlen h1−h2 ba f0

lenis 36 (10) 336 (8) 5.6 (2.4) 48 (7.4) 159 (15)
enhancement only aspirated 92 (13) 342 (10) 7.6 (0.9) 62 (8.7) 225 (20)

ω 0.4 0.06 0.1 0.14 0.31
KL 0.2 0.002 0.27 0.05 0.01

lenis 65 (11) 340 (8) 6.3 (1.8) 48 (7) 162 (12)
bias only aspirated 65 (16) 340 (9) 7.7 (0.9) 64 (8) 227 (20)
ω 0.02 0.01 0.22 0.28 0.46

KL 0.09 0.002 0.16 0.05 0.01

lenis 66 (12) 338 (7) 4.7 (2.5) 49 (7.6) 152 (12)
bias + enhancement aspirated 67 (19) 341 (10) 7.3 (0.9) 65 (9.6) 248 (17)

ω 0 0.04 0.16 0.19 0.62
KL 0.09 0.002 0.09 0.06 0.008

lenis 65 (11) 338 (10) 5.5 (1) 48 (8) 170 (10)
target aspirated 73 (15) 343 (12) 7.5 (1) 64 (9) 250 (11)

ω 0.06 0.03 0.16 0.14 0.61
(cf. initial) KL 0.16 0.002 0.12 0.06 0.008

Table 4.11: Comparison of means, standard deviations, cue weights, and KL divergences from
three simulation scenarios with attested values estimated from modern Korean data.vot =
voice onset time; vlen = vowel length; ba = burst amplitude (in dB); h1−h2 (in dB); f0
(in Hz). KL divergence measured in bits.

4.4 General discussion

The simulation results presented above suggest that cases of (trans)phonologization in which

promotion of a redundant cue is accompanied by decreased informativeness of a primary cue

may be accounted for in a model where probabilistic enhancement is an adaptive response to

bias threatening the primary cue to an existing contrast. This is not to say that phonologiza-

tion must always be driven exclusively by bias, or that the presence of bias will invariably
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Figure 4.5: Comparison of contrast precision as measured by classification error rate at each
simulation timestep for simulations reported in §4.3.1–4.3.3.

result in phonologization. To be sure, there are cases in which phonetic bias can condition

the neutralization of the phonological contrast (see Chapter 5). Nevertheless, these results

indicate that at least some cases of phonologization in which the relative balance of cue re-

liability has shifted may be the result of enhancement in response to a systemic production

bias. As measured by KL divergence, the distributions resulting from the application of

both enhancement and bias are more similar to the target distributions than those resulting

from the application of only enhancement or only bias. The present account goes beyond

the observation that a system biased against one cue will choose another to suggest that

which cue takes over can be predicted with at least some degree of accuracy. Crucially, this

account assumes that the speaker plays an active role in sound change, actively enhancing

phonetic cues in order to accommodate the communicative needs of listeners.

The present account also suggest answers to the selection and trading problems laid

out in Chapter 1. In this model, the selection of cues as potential targets of phonologization

is probabilistically related to their distributionally-defined reliability ω. As a result, cues

which are, all else being equal, more reliable are more likely to be enhanced by speakers.

While it is not impossible for a relatively uninformative cue to become the primary indicator
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of a contrast, it is highly unlikely, as the cumulative effect of incremental enhancements

makes it less and less likely that the balance of cue reliability will shift significantly (barring

additional bias factors which may affect their realization or perception, of course).

There are two ways to view the trading problem on the present account. One is

that, if cue reliability is a normalized measure, an increase in the reliability of one cue

will result in a decrease in reliability of all other cues (if reliability is taken to be purely

distributionally-defined). The problem with this view is that it allows for scenarios in which

a phonological contrast can be reliably differentiated along any number of individual cue

dimensions which nonetheless of wildly varying levels of reliability. This fails to reflect

the oft-observed empirical fact that phonologization of a once redundant cue tends to be

accompanied by a loss of contrast along the previously primary cue dimension, in the sense

that the contrast can no longer be reliably differentiated along that dimension alone. For

this reason, I propose here that, at least for some cases (such as the Seoul Korean case),

trading instead results from the interaction of one or more bias factors with the propensity

for adaptive enhancement.

4.4.1 Bias factors

While the preceding simulation results illustrate a possible pathway by which F0 was phonol-

ogized in Seoul Korean, it also raises a number of questions and leaves unresolved a number

of important issues. One of the most obvious questions concerns the nature of the bias

factors. The model here says nothing about why a bias should be present; it is only able to

predict the likely outcome given a bias of some magnitude. Specifying the full range and

source of bias factors is of course an ongoing research effort in its own right (Ohala, 1981a

et seq.; Blevins, 2004; Garrett and Johnson, to appear). Nevertheless, it is useful to have a

highly explicit framework such as that presented above, with which the potential effects of

arbitrary biases on the system of phonological contrasts can be explored.
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In addition, the effects of different degrees of bias have yet to be fully explored within

the current framework. How does the likelihood of phonologization vary when bias is imple-

mented for different categories and different cues? What are the effects of intergenerational

biases, as opposed to the intragenerational ones explored here? These are important ques-

tions, because as the model is currently specified, there is actually nothing privileged about

bias itself: it is just one way to decrease contrast precision, which is what fundamentally

modulates the likelihood of enhancement. Other factors which could decrease classifier ac-

curacy, such as phonetic context, should be considered in future extensions of this model.

Related to the issue of bias is the role of the β exponent specifying the system-wide

importance of the contrast. Along with ε, the measure of classifier accuracy, β can be used

to tune both the rate at which enhancement will occur as well as the degree of phonetic

exaggeration of means and restriction of variance. While the theoretical motivation for this

parameter is the notion that some contrasts are more lexically or morphologically informative

than others, its value in these simulations was not systematically manipulated. Ideally, its

value could be derived by external principles, e.g. in the information-theoretic quantification

of functional load proposed by Surendran and Niyogi (2003, 2006).

4.4.2 Cue relations and speaker control

A crucial assumption made in the present model is that cues are conditionally independent.

While not wholly unmotivated (Clayards, 2008), such independence assumptions are almost

certainly not warranted in every case: that is, there are some cues which are not independent

by dint of physiological (articulatory or perceptual) factors (such as (perceived) vowel length

and pitch, or amplitude reduction and formant bandwidth). An example of this is the fact

that, in empirical studies of sound change in Korean, F0 actually increased for both categories

as VOT became neutralized. If bias in VOT productions only affected one category (say,

lenis stops), the F0 values of lenis stops might also be increasing because of a physiological
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correlation of VOT and F0.

On the other hand, for some pairs of cues (closure duration and F1 at vowel onset, for

instance) the independence assumption is probably warranted. One way to capture these

dependencies would be to model categories using a multivariate normal distribution in a

higher-dimensional space. Such a representation would allow for possibly complex covariance

relations between different cue dimension; however, the sparse data space could result in poor

parameter estimates (Toscano and McMurray, 2010). In terms of the general architecture

proposed here, however, nothing prohibits moving from multiple, independent univariate

GMMs to a single multivariate GMM representation.

This account also makes certain assumptions about the degree of speaker control over in-

dividual cues: in particular, that anything used as a perceptual cue is, in principle, amenable

to active, targeted enhancement in speech production. Laboratory work on enhancement,

however, suggests that speakers may employ a variety of methods to increase intelligibility

of speech, and that the phonetics of ‘clear speech’ are highly complex. In several studies

of the enhancement of stop contrasts, for instance, researchers have observed enhancement

of VOT, but only for one member of a two-way contrast (Kessinger and Blumstein, 1997;

Kang and Guion, 2008; Smiljanić and Bradlow, 2008). Kingston and colleagues (Kingston

and Diehl, 1994; Kingston et al., 2008) have argued that cues are enhanced based on the

degree to which they contribute to the perception of an integrated perceptual prop-

erty (or ipp) which reinforces an existing phonological contrast. In the case of the [voice]

contrast for initial stops, for example, cues with similar auditory properties, such as F1 and

F0, are predicted to integrate, while cues such as closure duration and F0 are not, because

they do not both contribute to the amount of low-frequency energy present near a stop

consonant (Kingston et al., 2008). If cues are enhanced based on the degree to which they

contribute to IPPs, cues such as closure duration should not be enhanced. While the core

notion of probabilistic enhancement is not dependent on the assumption that speakers can

101



in principle exert active control over the realization of any and all phonetic cues, the model

as implemented here makes different empirical predictions than previous accounts which

deserve further investigation.

4.4.3 Phonologization, neutralization, and subphonemic reorganization

It is important to not dismiss cases like Korean as not constituting ‘true’ instances of phonol-

ogization on the grounds that subphonemic reorganization has not (yet) resulted in the emer-

gence of a new phonological contrast. On such an understanding of the term, cases such

as the emergence of vowel length as a cue to word-final obstruent voicing in English would

similarly be rejected from consideration on the grounds that English does not distinguish

minimal pairs solely on the basis of vowel length. Although the question of how and when

acoustic-phonetic cues become phonological features – or if this is even the proper analysis

of the situation – is undoubtably important, so too is understanding how the stage for such a

phase transition is set. A framework for modeling shifts in phonetic cue weights such as that

presented here is critical for understanding why such phase transitions take place in some

languages and not others, and under certain distributional circumstances and not others.

Although the focus in this chapter has been on the internal dynamics of contrast preser-

vation through transphonologization, one might reasonably ask how (or if) the present model

handles cases of neutralization. Neutralization is possible within the present framework and

is in fact predicted under certain circumstances: if a bias factor is strong enough (and/or the

enhancement constant β is large enough, implying a contrast with a low functional load),

the prediction is complete neutralization the contrast. This is because even if probabilistic

enhancement is applied in such cases, it may not be strong enough to counteract the effects

of bias. This is likely to be the case when a covert contrast does not already exist, i.e. when

a contrast is maintained essentially by a single cue dimension. By allowing the number of

mixture components to vary, a distinction between two categories is predicted to collapse
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when the optimal model contains just a single mixture component. Chapter 5 discuss this

type of scenario in greater detail.

The nature of iterated learning framework proposed here – in which an agent’s internal

state can change over time – assumes that intragenerational sound change is possible. While

Harrington, Palethorpe, and Watson (2000a,b) show that the phonetic targets of older mem-

bers of a speech community may subconciously shift in response to broader changes taking

place in the community, it is almost certainly true that phonetic change also occurs during

intergenerational transmission, either as a function of learning and induction mechanisms

(S. Kirby, 1999; S. Kirby and Hurford, 2002; McMurray et al., 2009) and/or as a result of

listener misperceptions (Ohala, 1981a; Blevins and Garrett, 1998; Blevins, 2004). Indeed,

the main source of the data used in the simulations reported here, Kang and Guion (2008),

is an apparent time study, suggesting that the the production targets for speakers may not

change significantly over the course of that speaker’s lifetime. Thus, it is worth considering

the possibility that, in addition to (or in place of) enhancement as a response to systematic

bias, phonologization may result from a dynamic shift in the course of intergenerational

transmission (Niyogi, 2006). In order to test this, the simulation architecture will need to be

extended to cover multiple agents in several generations. Similarly, the architecture should

be expanded to allow for lexical factors such as frequency and neighborhood density to influ-

ence the dynamics of sound change (Wang et al., 2004; Wedel, 2006; Martin, 2007; Blevins

and Wedel, 2009).

4.5 Conclusion

This chapter has explored the role of probabilistic enhancement in phonologization, introduc-

ing an iterated learning framework for simulating the production and perception of phonolog-

ical contrasts along with the results of a number of simulations making use of this framework.

The results of applying a strategy of probabilistic enhancement in addition to a phonetic bias
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factor were found to most closely mirror an attested instance of phonologization in which a

systemic production bias exposed an existing covert contrast. This strategy addresses two

of the challenges faced by a phonologization model of sound change, dubbed the selection

problem and the trading problem. The answer proposed to the selection problem

(‘which cue(s) are targeted for phonologization?’) is that the enhancement of cues is a prob-

abilistic function of their reliability. Thus, a cue which may be informative (and therefore

targeted for enhancement) in one language may be ignored in another. The answer proposed

to the trading problem (‘why is phonologization accompanied by neutralization?’) is

that attention to cues is relative: if the cue space is perturbed in such a way as to reduce

the reliability of one cue dimension, others will be enhanced proportionally. Depending on

the nature and degree of enhancement, the result can set the stage for a reorganization of

the system of phonological contrasts.
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CHAPTER 5

PHONETIC CATEGORY RESTRUCTURING

The preceding chapter demonstrated how loss of contrast precision induced by phonetic bias

might drive the transphonologization of a previously redundant phonetic cue. Empirically

speaking, however, contrasts do not always survive a bias-induced loss of precision. The

collapse of a contrast between previously distinct categories is called merger; a contrast

which does not obtain in a certain context is said to be neutralized in that context.

In many dialects of American English, for example, it has been claimed that the contrast

between /t/ and /d/ is neutralized to [R] when followed by an unstressed vowel, leading

to homophony between pairs such as metal–medal and cuttle–cuddle (Giegerich, 1992). In

Dutch, the voicing contrast between obstruents in word-final position has been argued to

result in homophony between word pairs such as those in Table 5.1 (Lahiri et al., 1987).

voiceless voiced
baat /bat/ ‘benefit’ baad /bad/ ‘bathe-1sg’
noot /not/ ‘nut’ nood /nod/ ‘necessity’
voet /vut/ ‘foot’ voed /vud/ ‘feed-1sg’

Table 5.1: Dutch minimal pairs differing in underlying voicing of final obstruent.

In terms of the mixture model of phonetic categories, neutralization or merger may be

thought of as a reduction in the total number of category labels. Up to this point, we

have been assuming that the set of phonetic category labels is given in advance. In order

to understand how the number of labels might change (grow or shrink), it is necessary to

consider how the label set might be inferred in the first place. This chapter will introduce

a method for inducing both the number of components of a mixture model as well as their

parameterization, and illustrate how and under what conditions it predicts an adaptive

restructuring of the phonetic category system.
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5.1 Unsupervised induction of phonetic categories

The previous chapters have focused on classifying vectors of acoustic-phonetic cues: that is,

selecting an appropriate label for a new observation, given an extant set of category labels.

However, it is also worth considering the issue of where the category labels themselves

come from, and how they might be inferred from unlabeled data. Work on the acquisition

of phonological contrasts has demonstrated that while human infants are initially quite

sensitive to a wide variety of speech sound contrasts, this ability quickly becomes lost in the

course of early development (Werker, Gilbert, Humphrey, and Tees, 1981; Best, McRoberts,

and Sithole, 1988; Bosch and Sebastián-Gallés, 2003; Kuhl et al., 2006). This suggests that

phonetic category structures may be formed and solidified on the basis of acoustic input

alone, formed in response to the distribution of acoustic cues in the input. This has inspired a

growing number of researchers to apply computational techniques of clustering and pattern-

recognition to the problem of phonological category induction in considering how human

infants might learn the phonological categories or words from the ambient language without

explicit instruction (de Boer and Kuhl, 2003; Lin, 2005; Vallabha et al., 2007; Feldman et al.,

2009; McMurray et al., 2009).

Here, the same general approach is applied to the study of category restructuring in

adults. Adult listeners are constantly being exposed to new data, and so constantly have

the opportunity to revise their set of category labels. Given the assumptions about memory

decay implemented in Chapters 3 and 4, inferences about the structure of the cue space

are predicted to change over time in accordance with linguistic experience. The goal of the

present chapter is to better understand how changes in the structure of the cue space impact

the adaptive restructuring of the category label space. First, I will discuss the technical

aspects of the clustering procedure, and then illustrate the predictions it makes regarding

category restructuring with reference to data from Korean and Dutch.
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5.2 Model-based clustering

Model-based clustering (Fraley and Raftery, 2002, 2007) is a powerful unsupervised

learning technique which allows for information or assumptions about the underlying distri-

bution of the observation data to be modeled directly, usually in the form of a finite mixture

model of the type introduced in Chapter 2, where each cluster (component) is assumed to

have its own likelihood and underlying probability distribution. The clustering procedure

described here builds on the gaussian mixture model (GMM) of speech categories. Re-

call that in a GMM, an observed data point x = (x1, . . . ,xN ) is assumed to be generated

by a mixture model with density

f(x; θ) =
K∑
k=1

πkN (x|µk,Σk) (5.1)

where πk is the kth component weight and θ = (θ1, . . . , θK) = ((π1,µ1,Σ1), . . . , (πK ,µK ,ΣK))

is a K(D+2)-parameter structure containing the component weights πk as well as the mean

vectors µk and covariance matrices Σk of the D-variate component Gaussian densities

N (x|µk,Σk) =
1

(2π)D/2|Σk|1/2
exp

{
−1

2
(x− µk)TΣ−1

k (x− µk)

}
(5.2)

where the component weights π1, . . . , πK sum to 1.

As mentioned in Chapter 2, expectation maximization (EM) can be used to obtain ML

estimates of GMM parameters. Starting from an initial guess about θ, the EM algorithm al-

ternates between computing a probability distribution over completions of missing data given

the current model and then re-estimating the model parameters using these completions.

While an iterative process such as EM is useful for finding the parameters θ of a GMM, in a

truly unsupervised learning scenario there remains an additional problem: how to determine

the best value of K. The criterion of maximum likelihood in and of itself is of little use

here, as maximum likelihood may be achieved by associating each observation with its own
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Gaussian, so that the final model has as many Gaussians as it does data points. What is

needed is some means of constraining the number of components K in the model, a process

termed regularization (McLachlan and Peel, 2000; Hastie, Tibshirani, and Friedman,

2008).

In practice, regularization is often achieved through a process called cross-validation.

In cross-validation, a separate set of data not seen in training is used to evaluate the accuracy

of some other number of models. An advantage of cross-validation, in addition to the fact

that it often achieves good estimates in practice, is that it makes no assumptions about either

the underlying model (i.e., is it parametric or non-parametric) or the task (it may be applied

to problems of regression or density estimation in the same fashion as classification and

clustering). The primary drawback of using cross-validation is that it requires a gold standard

or ground truth in order to determine a meaningful measure of error. In the unsupervised

learning of linguistic units such as phonemes or morphemes, these standards are usually

constructed by hand. For instance, Singh, Raj, and Stern (2000) use the phoneme sequences

from the CMUdict pronunciation dictionary (CMUdict, 1998) as the standard against which

to test an unsupervised model of subword unit acquisition; the clustering experiments of

Lin (2005), along with most automatic phone recognition systems, are evaluated using the

hand-labeled TIMIT database (Garofalo et al., 1993). The optimality of the best solution is

thus constrained by one’s conviction in the appropriateness of the chosen gold standard.

Approaches which seek an optimal trade-off between data likelihood and model complex-

ity represent a different type of regularization. Three of the most well-known criteria of

this type are the akaike information criterion (AIC: Akaike, 1974), the bayesian in-

formation criterion (BIC: Schwarz, 1978; Fraley and Raftery, 2007), and the minimum

description length principle (Rissanen, 1978; Grünwald, 2007). All of these criteria are

closely related and contain two core terms, one measuring goodness of fit and one measuring

model complexity.
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Both the AIC and the BIC are derived from the log-likelihood of the observation data and

the number of parameters of a proposed model. Given a series of N independent, identically

distributed D-dimensional observations X = x1, x2, . . ., xN , let L be the maximized log-

likelihood of a GMM with K D-dimensional components characterized by parameters θ, and

let Q stand for the number of independent parameters in that model:

L = lnP (X|θmax) (5.3)

Q = K(D +D(D + 1)/2) +K − 1 (5.4)

The AIC is then defined as

AIC = −2L+ 2Q (5.5)

and the BIC is defined as

BIC = −2L+ ln(N)Q (5.6)

In both calculations, fit is measured negatively by −2L; the larger the value, the worse the

fit. Complexity is measured positively, either by 2Q (AIC) or ln(N)Q (BIC). Given two

models fit on the same data, the model with the smaller AIC or BIC value is considered

superior in terms of the fit-complexity trade-off. As N increases, the BIC tends to favor

simpler models than the AIC, due to stronger penalty imposed by the BIC for increased

model parameters.

The Minimum Description Length (MDL) approach to model selection penalizes the

complexity of a model based on its encoding length. Given an encoding of length ` bits

representing a model with parameters θ, the MDL principle says to pick the model with the

minimum description length D:
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D(X, θ) = lnL+ `(θ) (5.7)

Here, the code length ` plays the role of the penalized likelihood penalties in AIC and BIC.

MDL has connections to both the AIC (in that KL divergence plays a crucial role in both

approaches) as well as to the BIC (which can be interpreted as a special case of MDL under

certain circumstances: see Hansen and Yu, 1999, 2001).

Some previous researchers who fit mixture models to speech data using EM, such as

de Boer and Kuhl (2003) and Lin (2005), assumed a fixed K and did not address the

issue of regularization. Analytic criteria such as the BIC build on these works by offering

a theoretically principled approach to model selection. A different approach is taken by

researchers such as Vallabha et al. (2007) and McMurray et al. (2009), who employed a

‘winner-takes-all’ approach to model selection: starting from some suitably large K, the

mixture parameters are updated after each input, but the component weight is updated only

for the most likely component. This type of model has the important property that it can

learn online, as opposed to the batch learning of BIC-based model selection, but requires

setting a threshold below which categories are eliminated from further consideration.

Feldman et al. (2009) take an explicitly non-parametric Bayesian approach to the prob-

lem of phonetic category induction, allowing a potentially infinite number of components

K but imposing a prior that is biased toward mixtures with smaller numbers of categories

(Rasmussen, 2000; Teh, Jordan, Beal, and Blei, 2006). While conceptually and computa-

tionally elegant, this approach has the potential drawback that the degree of bias is a free

parameter of the model.

In what follows, we will use the BIC because of its computational tractability, because

it imposes a stronger penalty on model complexity than the AIC, and because it does not

require a gold standard for comparison. Since all approaches to regularization embody the

notion that the communicative code should be maximally robust while remaining as compact
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as possible, the choice of one method over another is in practice largely driven by trying

multiple approaches and choosing the one with the best performance; from a conceptual

standpoint, there may not be a compelling theoretical reason to choose one over another.

That having been said, it must be recognized that the results using a different form of

regularization could potentially be quite different, but an explicit comparison between the

various approaches will not be attempted here. In addition, no claims are made regarding

the accuracy of the BIC or any other methods at modeling human performance data (but

see Pothos and Chater, 2002; Pothos and Close, 2008; Pothos and Bailey, 2009).

5.3 Category restructuring as model selection

In sound change, neutralization (merger) is said to occur when the productions of two (or

more) phonological categories become acoustically (and perhaps articulatorily) identical,

presumably because at this stage, listeners can no longer perceptually distinguish between

categories. The result of a merger can be either structure-preserving, if listeners ana-

lyze productions of one extant category as intended instances of another) or structure-

creating, if listeners restructure the label space in such a way that observations that

previously received distinct labels are assigned a new label on the basis of a cue distribution

that does not conform to either the distributions of the original categories.

Given the mixture model of categories developed in Chapter 2 combined with the regu-

larization and model selection techniques discussed above, this theory might be implemented

in the simulation framework described in §3.1 by having agents compute the likelihood and

number of parameters of models with some range of components (and potentially with differ-

ent parameter structures) at the end of each simulation iteration. If the BIC-optimal number

of categories differs from that of the previous iteration, the listener re-labels the contents of

its memory accordingly.

Of the three simulation scenarios considered in Chapter 4, two (enhancement only and
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enhancement + bias) resulted in outcomes in which the Korean lenis/aspirate category con-

trast was well-separated along several acoustic dimension, while the outcome of §4.3.2, in

which phonetic bias was implemented but adaptive enhancement was not, was argued to be

the most likely candidate for neutralization. As such, we will first use the output of this

simulation to test the predictions of model-based clustering using the BIC. The internal state

of the agents after 25,000 simulation iterations are replicated in Figure 5.1 and Table 5.2.

Figure 5.1: Cue distributions after 25,000 iterations for lenis /p/and aspirated /ph/ stops,
VOT bias-only simulation condition. Captions give cue reliability ω.

Category vot vlen h1−h2 ba f0

lenis 65 (11) 340 (8) 6.3 (1.8) 48 (7) 162 (12)
aspirated 65 (16) 340 (9) 7.7 (0.9) 64 (8) 227 (20)
ω 0.02 0.01 0.22 0.28 0.46

Table 5.2: Means, standard deviations, and cue weights after 25,000 iterations of a bias-only
simulation scenario discussed in Chapter 4. vot = voice onset time; vlen = vowel length;
ba = burst amplitude (in dB); h1 − h2 (in dB); f0 (in Hz).

To determine if neutralization of /p/ and /ph/ would be predicted under these conditions,

we must consider several scenarios. First, we need to limit how many components Kmax we

would be willing to allow a model to have. For present purposes, we will consider models

with K in the range 1 to 5. Five different models were fit to the contents of one agent’s

memory after 25,000 simulation iterations.1 Given the α memory weight value used in these

simulations, the agent’s memory contained 2,408 exemplars at the end of the simulation

(1,167 labeled /p/ and 1,241 labeled /ph/), so N = 2408 in this example.

1. The volume, shape and orientation of the covariance matrices were allowed to vary in model fitting;
only the best (i.e. BIC-optimal) results are reported here. See Fraley and Raftery (2006, 2007) for details.
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Figure 5.2: Symmetric pair plot showing BIC-optimal classification of contents of agent
memory after 25,000 simulation iterations in which bias was applied to VOT productions
but enhancement was not implemented. Gray squares show predicted instances of lenis /p/,

black triangles aspirated /ph/ stops.
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K BIC error
1 84825 0.49
2 84096 0.02
3 84175 0.02
4 84250 0.03
5 84316 0.05

Table 5.3: BIC scores and classification error rates for models of 1-5 components, VOT bias
only condition. Optimal solution given in bold. Bayes error of an optimal two-component
classifier = 0.02. Error rates correspond to a minimum error mapping between the predicted
classification and the ground truth.

The results are shown in Figure 5.2 and Table 5.3. Despite the high degree of overlap

along almost all of the cue dimensions, the BIC-optimal model in this case still has two

categories, not one as would be predicted if neutralization was the expected result. The

pair plots shown in Figure 5.2, which give the predicted categorization of the contents of the

agent’s memory at the end of the simulation, suggest that the resulting model is still quite

accurate at distinguishing between instances of lenis and aspirated stops, and indeed the

resulting accuracy of the optimal two-component model confirm this, achieving the Bayes

error rate of a two-component classifier.

This result seems to suggest that, if along just a single acoustic-phonetic dimension, even

considerable overlap may not be sufficient to induce a restructuring of phonetic categories.

It is then worth considering the question of just how much overlap between cue dimensions

is necessary to predict neutralization. To test this, a similar bias-only Korean simulation

was conducted in which the bias factor affected all cues simultaneously. As in previous

simulations, this bias affected both the difference between categories means and the variances,

to make productions of one category more similar to instances of the other (or less dissimilar

from) with probability and to a degree relative to the cue’s reliability and the precision of

the contrast, as in Chapter 3.
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VOT: 0.008, F0: 0.363

Figure 5.3: Cue distributions after 25,000 iterations for lenis /p/and aspirated /ph/ stops,
across-the-board leniting bias simulation condition. Captions give cue reliability ω.

Category vot vlen h1−h2 ba f0

lenis 65 (11) 337 (8) 6 (1.2) 58 (8) 192 (13)
aspirated 67 (15) 340 (9) 7 (1) 54 (9) 207 (17)
ω 0.05 0.12 0.31 0.16 0.35

Table 5.4: Means, standard deviations, and cue weights after 25,000 iterations of a bias-only
simulation scenario in which all five cues (including F0) are subject to leniting bias. vot =
voice onset time; vlen = vowel length; ba = burst amplitude (in dB); h1 − h2 (in dB); f0
(in Hz).

Given the α memory weight value used in this simulation, the agent’s memory again

contained 2,408 exemplars at the end of the simulation (1,209 bearing the label /p/ and 1,199

bearing the label /ph/). The resulting distributions are given in Figure 5.3 and Table 5.4; the

results of model-based clustering are shown in Table 5.5. In spite of almost complete overlap

along all cue dimensions, the optimal model on the BIC metric is once again a model with

two components: in other words, neutralization is still not the predicted optimal outcome.
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Figure 5.4: Symmetric pair plot showing optimal classification of contents of agent memory
after 25,000 simulation iterations in which bias was applied to production of all cues. Gray
squares show predicted instances of lenis /p/, black triangles aspirated /ph/ stops.
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K BIC error
1 34072 0.50
2 34021 0.35
3 34058 0.40
4 34084 0.39
5 34117 0.37

Table 5.5: BIC scores and classification error rates for models of 1-5 components, pure leni-
tion. Bayes error rate of an optimal two-component classifier = 0.23. Error rates correspond
to a minimum error mapping between the predicted classification and the ground truth.

5.3.1 Separability in high dimensionality

Despite considerable overlap along multiple dimensions, neutralization is not predicted in

either of the Korean scenarios discussed above. This might be taken as evidence that BIC-

based model selection is an inappropriate means of predicting whether or not a contrast will

neutralize. However, it may also be the case that, although the categories do not appear

well-separated when considering any individual cue dimension, they are well-separated in a

higher-dimensional space.

To see how this is trivially true, consider the data in Figure 5.5, which is based on a

subset of data from an acoustic study of the voiced Dutch stops /b/ and /d/ (Smits, ten

Bosch, and Collier, 1996a,b). Figure 5.5(A) shows F2 frequency at voicing onset of a male

Dutch talker for tokens of /bV/ and /dV/, where V = {/a i y u/}. Given just this single

cue dimension, an optimal classifier (boundary indicated by the dashed line in Figure 5.5A)

would misclassify 25% of the tokens, but when provided with information about F2 at the

nucleus of the following vowel (Figure 5.5B), the classification error rate drops to 12.5%.

Smits (1996) uses this example to illustrate several important points. First, the more

acoustic dimensions the classifier has access to, the lower the classifier’s potential (if not

actual) classification error rate. Thus, large within-category variability for a given cue may

only be problematic inasmuch as it is the only cue available on which to make a categoriza-
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Figure 5.5: Instances of Dutch /b/ and /d/ in onset position in (A) one and (B) two acoustic
dimensions. Dashed lines give the optimal class boundaries. Adapted from Smits (1996).

tion decision. Second, utterances that are acoustically very different along several phonetic

dimensions may receive the same label, while utterances that are acoustically very similar

may receive different labels, as can be seen in Figure 5.5. Finally, the potential contribution

of a cue in distinguishing a contrast can only be established given the total set of cues that

are deemed relevant for perception of the contrast (Port and Crawford, 1989).

All of these observations underscore the point that separability cannot be predicted from

consideration of a single acoustic dimension. This may seem a trivial observation from a

statistical standpoint, but as Smits notes,

it does steer phonetic problem formulations away from classical questions like

“what is the best or most disambiguating cue” towards issues like “what is the

cue space dimensionality” and “what set of cues leads to good or human-like

classification.” (1996)
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Note that from the standpoint of the statistical classifiers discussed so far, all cue di-

mensions are potentially of equal reliability: it is their distributional properties alone that

give rise to the observed differences. As noted in §2.4.4, however, cue informativeness can be

modulated by attention and context (Gordon et al., 1993; Francis, Kaganovich, and Driscoll-

Huber, 2008) as well as by task (Iverson, Hazan, and Bannister, 2005; Holt and Lotto, 2006),

and the predictions about diagnosticity vary with theories of how cues are integrated in per-

ception (Garner, 1974; Gordon et al., 1993; Francis et al., 2008; Kingston et al., 2008; Toscano

and McMurray, 2010). A complete solution to the restructuring problem will need to

provide a dynamic mechanism to address these factors.

5.4 The effects of cue availability on category restructuring

Section 5.3 demonstrated how the separability of phonetic categories may be heavily de-

pendent on cue availability. It follows that cue availability may also impact the clustering

of the acoustic-phonetic space. This section reports on two types of experiments that were

conducted to explore the effects of cue availability on category restructuring. First, how

does varying the number and combination of cue dimensions available to a statistical learner

influence the (BIC-)optimality of a given solution? Second, how typical is any individual

solution given a set of model parameters and a (sub)set of available cues?

5.4.1 Series 1: Optimality

The first set of experiments varied the number and type of cue dimensions made available to

the learner in order to determine the predictions made by model-based clustering using the

BIC about the restructuring of phonetic categories. Since model-based clustering can only

usefully compare models fit to a single set of observations, the experiments in Series 1 fit a

series of GMMs to a single set of N = 500 5-dimensional observation vectors generated from a

Gaussian mixture with the parameters given in Table 5.3 (the maximum likelihood parameter
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estimates based on agent memories after 25,000 simulation iterations of a full-spectrum bias

with no enhancement) using the EM-based estimator implemented in Fraley and Raftery

(2006). The BIC scores of models with access to all possible unordered combinations of cue

dimensions were then compared. The model-fitting procedure and observation data were

identical in all experiments; only the number of cue vector columns available to the learner

changed.

An overview of the results for a single set of simulations is given in Table 5.6. Since

models of K > 2 were never BIC-optimal, BICs and classification error rates for models with

K = 3 components are provided for comparison only.

The first thing that is clear from Table 5.6 is that (BIC-)optimality is not the same as

accuracy: in roughly half the models tested, a simpler model (with a single component)

was preferred to a more complex model (with two or more components), despite the fact

that the single-component models all necessarily perform at chance.2 Second, the presence

or absence of any single cue dimension as an available column in the observation vector

does not appear to determine the optimal number of categories, regardless of the (relative)

reliability of that dimension (i.e., the degree to which it covaries with the underlying category

distinction). However, note that when two of the most reliable dimensions (h1−h2 and f0)

were included, two categories were always BIC-optimal. Finally, note that the best accuracy

was not achieved by a model with access to all five cue dimensions: the most accurate model

among those considered here had access to just three (vot, h1−h2, and f0).3

2. In some cases, accuracy may also be improved by considering different covariance structures, but these
models are similarly suboptimal based on the BIC.

3. Note that the accuracy of a classifier containing multiple cues (say, h1−h2 and ba) is not always
monotonically decreasing relative to a classifier containing a proper subset of those cues (say, h1−h2). This
is because only the BIC-optimal model accuracy is shown here, which may differ from the model with the
maximum log-likelihood. Even though the same set of observations is used in all cases, the log-likelihood of
those observations differs depending on how many vector columns are exposed to the learner.
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cue dimension K = 1 K = 2 K = 3
d1 d2 d3 d4 d5 BIC err BIC err BIC err

vot 8004 0.50 8018 0.44 8031 0.45
vlen 7263 0.50 7278 0.42 7282 0.45
h1−h2 3181 0.50 3184 0.34 3198 0.41

ba 7070 0.50 7084 0.49 7098 0.47
f0 8554 0.50 8546 0.42 8558 0.40

vot vlen 15267 0.50 15289 0.42 15309 0.46
vot h1−h2 11183 0.50 11180 0.32 11190 0.50
vot ba 15074 0.50 15093 0.48 15105 0.45
vot f0 16558 0.50 16553 0.32 16570 0.33
vlen h1−h2 10444 0.50 10460 0.32 10480 0.42
vlen ba 14333 0.50 14347 0.45 14365 0.45
vlen f0 15810 0.50 15802 0.33 15821 0.36
h1−h2 ba 10251 0.5 10271 0.47 10293 0.45
h1−h2 f0 11704 0.50 11697 0.32 11703 0.34

ba f0 15625 0.50 15631 0.32 15641 0.38

vot vlen h1−h2 18447 0.50 18445 0.39 18462 0.46
vot vlen ba 22337 0.50 22363 0.50 22385 0.45
vot vlen f0 23821 0.50 23810 0.38 23836 0.45
vot h1−h2 ba 18255 0.50 18264 0.32 18289 0.39
vot h1−h2 f0 19712 0.50 19689 0.25 19727 0.30
vot ba f0 23628 0.50 23630 0.31 23657 0.43
vlen h1−h2 ba 17514 0.50 17540 0.48 17565 0.49
vlen h1−h2 f0 18964 0.50 18955 0.27 18986 0.32
h1−h2 ba f0 18786 0.50 18780 0.27 18789 0.42

vot vlen h1−h2 ba 25518 0.50 25521 0.33 25547 0.45
vot vlen h1−h2 f0 26979 0.50 26941 0.28 26981 0.34
vot vlen ba f0 30891 0.50 30886 0.40 30919 0.42
vot h1−h2 ba f0 26801 0.50 26764 0.28 26790 0.31
vlen h1−h2 ba f0 26051 0.50 26036 0.36 26048 0.40

vot vlen h1−h2 ba f0 34072 0.50 34021 0.35 34058 0.40

Table 5.6: BIC scores and error rates for models in 2–5 dimensions. K = number of categories
(components); columns show the cue dimensions made available in the observation data.
Bold items indicate the optimal solutions. BIC values rounded to nearest integer value.
Bayes optimal error rate for a two-component model: 0.226 (see §2.4.5).
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cue dimension
d1 d2 d3 d4 d5 K = 1 K = 2 K = 3

vot 1.00
vlen 0.99 0.01
h1−h2 0.90 0.10

ba 1.00
f0 0.64 0.36

vot vlen 1.00
vot h1−h2 0.80 0.20
vot ba 1.00
vot f0 0.41 0.59
vlen h1−h2 0.94 0.06
vlen ba 0.99 0.01
vlen f0 0.57 0.43
h1−h2 ba 1.00
h1−h2 f0 0.35 0.65

ba f0 0.85 0.15

vot vlen h1−h2 0.86 0.14
vot vlen ba 1.00
vot vlen f0 0.42 0.58
vot h1−h2 ba 1.00
vot h1−h2 f0 0.42 0.58
vot ba f0 0.79 0.21
vlen h1−h2 ba 1.00
vlen h1−h2 f0 0.13 0.87
h1−h2 ba f0 0.29 0.71

vot vlen h1−h2 ba 0.90 0.10
vot vlen h1−h2 f0 0.02 0.98
vot vlen ba f0 0.60 0.39 0.01
vot h1−h2 ba f0 0.10 0.90
vlen h1−h2 ba f0 0.10 0.90

vot vlen h1−h2 ba f0 0.04 0.96

Table 5.7: Proportion of BIC-optimal category solutions for Korean data in terms of per-
centage of 1,000 fits. Most-typical (≥ 0.50) solution percentages given in bold.
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5.4.2 Series 2: Typicality

Since the BIC is computed for models fit to a given set of observations, different sets of

observations generated from the same distributional parameters could potentially lead to

different solutions being BIC-optimal.4 This means that the contents of a particular agent’s

memory at some particular point during a simulation might lead it to posit more or fewer

categories, but that this could vary by individual. In order to assess the typicality of the

solutions shown in Table 5.6, the experiments described in Series 1 were repeated 1,000 times

for each combination of cue vectors, with a new set of N = 500 observations generated from

the parameters given in Table 5.4 each time.

The results are given in Table 5.7. Over half the possible combinations of cue dimensions

are characterized by some type of variability. However, there were no cases in which a two-

component solution was always preferred (although several combinations tended to heavily

favor two-component solutions, such as four-dimensional combinations containing both f0

and h1 − h2, as well as when all five columns were present in the observation data). Three-

component solutions were almost never optimal, except in a few instances for a single cue

combination.

5.4.3 Discussion

The experiments described above suggest that model selection based on the BIC, a particular

method of adjudicating between model fit and model complexity, may be an appropriate

means of modeling and predicting phonetic category restructuring, but that the results

depend heavily on the number, combination, and distribution of the cue dimensions used as

input. Thus, on its own, the method simply provides a way to determine if a contrast could

be learned from data in an unsupervised fashion, but does not establish that contrasts are

4. Observations sets of different size could similarly impact BIC-optimality; this factor was not system-
atically manipulated here, but is the subject of ongoing investigation.
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in fact learned by such a method.

The cues to the lenis/aspirate contrast in the second set of Korean simulation results used

as input to the experiments were highly overlapping in all five dimensions. This highlights

the fact that the learnability or recoverability of a contrast may not always be obvious from

the consideration of any single cue dimension in isolation. That is to say, even if a contrast

does not appear to be separable along any individual cue dimension, it may still be separable

when multiple dimensions are considered in concert. Empirically, one might then ask how

many dimensions, and what combination, are necessary to achieve learnability.

The results of the replications in Series 2 demonstrate that even in cases where a contrast

is relatively (im)precise, its fate cannot be predicted with absolute certainty; the outcome de-

pends on the particular data set used for parameter estimation. In terms of the agent-based

simulations conducted in the previous chapter, since different agents will have slightly differ-

ent experiences, the contents of their memories will differ accordingly, as will the likelihood

that they will posit changes to the overall structure of phonetic categories at a given point

in time. If this is an accurate representation of the variation present in a speech community,

it predicts that, empirically speaking, we should expect to find situations in which one a

contrast is neutralized for some speakers but not for others. In the following section we will

turn our attention to just such a case.

5.5 Covert contrast: the case of Dutch final devoicing

One empirical domain in which individual variation of this sort has been reported are cases

of so-called incomplete neutralization or covert contrast (Hewlett, 1988; Scobbie

et al., 2000; Yu, 2007), also referred to in the sociohistorical tradition as near mergers

(Labov et al., 1972; Labov, Karen, and Miller, 1991). These are instances in which contrasts

which appear to be neutralized to the naked ear of a linguist may in fact be distinguished

by subtle yet statistically significant differences in production and perception. Reports of
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incomplete neutralization and near merger often note that these changes tend not to be

uniformly distributed throughout a population. That is to say, some members of population

may still distinguish a contrast in production and/or perception, whereas others may not

(Labov et al., 1991; Labov, 1994). If a restructuring of phonetic categories takes place on

an individual level, and can be modeled as a type of model selection, then we might expect

to find empirical variation among members of a speech community is reflected in different

model-based clustering predictions about phonetic category structure.

Dutch is a case where a contrast has alternatively claimed to be both neutralized (Lahiri

et al., 1987) and incompletely neutralized (Warner et al., 2004), suggesting that this may be a

case where considerable individual variation obtains. Compelling evidence for the incomplete

neutralization of this contrast is provided by the studies of Warner et al., who show that the

contrast between word-final /t/ and /d/ is not only distinguished by small but statistically

significant differences in the realization of acoustic cues such as the duration of the stop

burst, but that listeners are able to identify forms such as those in Table 5.1 on the basis

of other cues which appear to overlap significantly in production, such as vowel duration

and the degree of voicing during closure. Figure 5.6 shows the distribution of four temporal

cues to the voicing contrast in final position for words with the long, non-high vowels /a e

o/ preceding the final stop: duration of preceding vowel, duration of the stop closure, the

length of the voicing period during the closure, and duration of the burst itself.

Warner et al. (2004) compared the realizations of cues to the /t/ ∼ /d/ contrast in word-

final (neutralizing) position to their realizations in word-medial (non-neutralizing) position.

They found that vowel duration was a significant predictor of underlying voicing in both

environments, while burst duration was a significant predictor in the supposedly neutralizing

environment only in cases where the preceding vowel was long. Neither duration of voicing

during the closure nor of the closure itself emerged as significant predictors of underlying

voicing in either environment; however, listeners were able to use these cues to discriminate
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Figure 5.6: Distribution of 4 acoustic cues to Dutch underlying /t/, /d/ in final position for
items containing long non-high vowels. Black lines give distribution of underlyingly voiceless
stops, gray lines underlyingly voiced stops. Based on data from Warner et al. (2004).

between categories in a two-alternative forced choice perception experiment when all other

predictors were held constant. These results suggest that while cues which strongly covary

with an underlying phonological contrast will be important for a learner attempting to

recover that contrast, other cues which covary less strongly nonetheless play a role in category

formation and maintenance.

Warner et al. (2004) also found considerable variation in the individual productions of
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these cues, and considered the possibility that an individual speaker’s tendency to produce

a cue value which covaried with the underlying distinction in production would be related to

their ability to use that cue to distinguish the contrast in perception. While the results were

not statistically significant, they suggested that listeners who themselves produce larger or

more consistent differences in one cue may be more sensitive to the distinction as produced

by others. This is consistent with findings that show individual speakers of a given language

and even a given speech community vary in their ability to distinguish lexical items based on

the degree to which the merger obtains in an individual’s own speech (Labov et al., 1991).

To the extent that BIC-based model selection makes accurate predictions about human

categorization behavior, we should expect to find variation when fitting models to individual

speaker data.

5.5.1 The data: Dutch final devoicing

To explore the effects of individual experience on the likelihood of phonetic category restruc-

turing, the experiments described in the previous section were repeated for a subset of the

Warner et al. (2004) data.5 The original data set consists of 1,080 Dutch words, represent-

ing two repetitions each by 15 native speakers of 76 Dutch lexical items forming 38 minimal

pairs. The production data set contained 300 items with phonologically short and 300 items

with phonologically long vowels differing in the underlying voicing of a final obstruent (the

neutralization context) and 180 items with phonologically short vowels and 300 items

with phonologically long vowels differing in the underlying voicing of a medial obstruent (the

distinction context). Since the phonologically long vowels /i/ and /u/ are phonetically

realized as short (Booij, 1999), only data from non-high long vowels in the neutralization

context were used in the simulations discussed here; these are shown in Table 5.8.

5. All data used in experiments of §5.5 were collected by Natasha Warner, Allard Jongman, Joan Sereno,
and Rachèl Kemps, original discussed and analyzed in Warner et al. (2004). Their willingness to provide
these data for analysis here is gratefully acknowledged; however, any errors in the presentation or analysis
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orthography UR gloss orthography UR gloss

baat /bat/ ‘benefit’ baad /bad/ ‘bathe 1st-sg’
boot /bot/ ‘boat’ bood /bod/ ‘offered 1st-sg’
eet /et/ ‘eat sg.’ eed /ed/ ‘oath’
meet /met/ ‘measure sg.’ meed /med/ ‘avoided 1st-sg’
noot /not/ ‘nut’ nood /nod/ ‘necessity’
smeet /smet/ ‘threw sg.’ smeed /smed/ ‘forge 1st-sg’
zweet /zwet/ ‘sweat’ Zweed /zwed/ ‘Swede’

Table 5.8: Experimental items from Warner et al. (2004) used in clustering experiments.

Warner et al. (2004) took acoustic temporal measurements of four cues to underlying

final stop voicing: the duration of the release burst (burst), the duration of the preceding

vowel (vdur), the duration of the closure (cdur), and the duration of the voiced period of

the closure (vgcl). The means, standard deviations, and cue reliability scores ωd for the

subset of the data considered here are shown in Table 5.9.

Category burst vdur vgcl cdur

voiced 118 (36) 207 (39) 27 (16) 69 (18)
voiceless 130 (34) 208 (40) 28 (17) 71 (19)
ω 0.25 0.37 0.12 0.26

Table 5.9: Parameter values and reliability scores ω for cues to Dutch final stops, non-high
neutralization context of Warner et al. (2004) data, all speakers. burst = burst duration,
vdur = preceding vowel duration, vgcl = duration of voiced period during stop closure,
cdur = duration of closure.

5.5.2 Series 1: Optimality

The first set of simulations was designed to assess the learnability of the Dutch voicing

contrast on the basis of the pooled non-high long vowel data from all of the participants in

discussed here should be attributed solely to the present author.
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the Warner et al., data set. The procedure was identical to that described in §5.4.1. A series

of GMMs were fit to a single set of N = 500 5-dimensional observation vectors generated

from a Gaussian mixture with the parameters given in Table 5.9; the BIC scores of models

with access to all possible unordered combinations of cue dimensions were then compared.

The model-fitting procedure and observation data were identical in all experiments; only the

number of cue vector dimensions available to the learner changed.

The results, shown in Table 5.10, indicate that a single-component model is preferred

on the BIC metric in all cases, despite marginal improvements in classification accuracy for

models with more components.

cue dimension K = 1 K = 2 K = 3
d1 d2 d3 d4 BIC err BIC err BIC err

burst 1615 0.50 1679 0.48 1664 0.49
vdur 1510 0.50 1530 0.49 1521 0.49
vgcl 2242 0.50 2481 0.47 2497 0.39
cdur 2146 0.50 2134 0.47 2123 0.49

burst vdur 3137 0.50 3217 0.44 3227 0.48
burst vgcl 3857 0.50 4133 0.46 4155 0.40
burst cdur 3767 0.50 3832 0.49 3822 0.46
vdur vgcl 3784 0.50 4021 0.47 4034 0.49
vdur cdur 3656 0.50 3672 0.49 3665 0.48
vgcl cdur 4389 0.50 4616 0.47 5069 0.47

burst vdur vgcl 5405 0.50 5689 0.45 5719 0.47
burst vdur cdur 5286 0.50 5346 0.47 5345 0.47
burst vgcl cdur 6003 0.50 6222 0.47 6297 0.46
vdur vgcl cdur 5924 0.50 6146 0.47 6176 0.48

burst vdur vgcl cdur 7548 0.50 7756 0.48 7846 0.45

Table 5.10: BIC scores and error rates for models in 1–4 dimensions, full Dutch non-low long
vowel final neutralization environment. K = number of categories (components); columns
show the cue dimensions made available in the observation data. Bold items indicate the
optimal solutions. BIC values rounded to nearest integer value. Bayes error=0.40.
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5.5.3 Series 2: Typicality

The results of the experiments in §5.5.2 appear to run counter to the Warner et al. (2004)

results showing that listeners were able to distinguish between the categories with greater-

than-chance accuracy. Given that the optimal number of clusters in a model was shown

to vary with the particular set of observations to which it was fit for the Korean data, the

typicality experiments of §5.4.2 were repeated for the pooled Dutch data to determine if

the results of §5.5.2 should be interpreted as indicative of the overall optimality of a single-

category solution or perhaps reflect an idiosyncratic statistical property of the particular

observation data to which the models were fit. The general model fitting procedure was the

same as in §5.4.2; each model parameterization was fit to 1,000 different series of observation

vectors drawn from a GMM with parameters again determined from Table 5.9. The BIC-

optimal number of model components was recorded for each fit.

The results of the Series 2 typicality experiments confirm the results of §5.5.2: the optimal

solution was a single-component model in all cases except for the cue combination burst +

vgcl + cdur, where K = 1 models were selected 90% of the time and K = 2 models just

10% (because of the consistency of the results, no tabular representation is provided).

5.5.4 Series 3–4: Individual optimality and typicality

The results of the model-fitting experiments in §5.5.2 and §5.5.3 predict complete neutral-

ization of the Dutch voicing contrast in final position, contra the results of Warner et al.

(2004), who found that listeners were able to distinguish between voicing categories with

greater-than-chance accuracy. One possible explanation for this discrepancy is individual

differences.6 As Warner et al. (2004) pointed out, there was a certain amount of variability

present in their data among speakers; by pooling the production data for all speakers, this

6. Another possible explanation may be the use of the BIC as a model selection criterion. Future expan-
sions of this work will explicitly compare the results presented here with those based on other approaches to
model selection.
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individual variation may be lost. In an experiment testing the perceptibility of final voicing,

using productions of a subset of their full data set as stimuli, Warner et al. (2004) found that

the accuracy with which participants were able to distinguish items differing in underlying

voicing varied with the degree to which the categories were distinguished in the stimuli with

which they were presented, as might be expected. This is consistent with the hypothesis

that phonetic restructuring takes place on an individual level, rather than (or in addition

to) at a population level. To explore the range of individual variability in this data, the

optimality and typicality experiments were repeated for each of the speakers singled out in

Warner et al. (2004) (subjects 3, 5, 6, and 14).

Table 5.11 gives the means, standard deviations, and cue reliability statistics for these

speakers; Figure 5.7 gives the individual density plots. The BIC scores and accuracy (error)

rates for various combinations of cue dimensions were computed for each of the four subjects.

These results are shown in Tables 5.12 – 5.15. Table 5.16 gives an overview of the typicality

of solutions for all four individual subjects.

burst vdur
s3 s5 s6 s14 s3 s5 s6 s14

voiced 159 (30) 183 (39) 105 (29) 124 (16) 216 (24) 211 (19) 174 (13) 118 (14)
voiceless 109 (29) 149 (60) 104 (18) 113 (16) 224 (21) 223 (28) 176 (18) 183 (18)
ω 0.22 0.16 0.20 0.25 0.46 0.43 0.44 0.40

vgcl cdur
s3 s5 s6 s14 s3 s5 s6 s14

voiced 26 (8) 21 (7) 25 (10) 19 (8) 82 (11) 73 (11) 69 (12) 94 (13)
voiceless 24 (10) 23 (6) 23 (10) 21 (8) 86 (30) 70 (14) 75 (14) 88 (10)
ω 0.13 0.15 0.11 0.08 0.19 0.26 0.25 0.27

Table 5.11: Parameter values and reliability scores ω for cues to Dutch final stops, individual
speakers.
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Figure 5.7: Distribution of 4 acoustic cues to underlying /t/, /d/ in final position for items
containing long non-low vowels for 4 individual Dutch speakers. Black lines give distribution
of underlyingly voiceless stops, gray lines underlyingly voiced stops.
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cue dimension K = 1 K = 2 K = 3
d1 d2 d3 d4 BIC err BIC err BIC err

burst 15233 0.50 15223 0.20 15241 0.47
vdur 13680 0.50 13691 0.43 13701 0.47
vgcl 10922 0.50 10938 0.46 10952 0.44
cdur 13626 0.50 13509 0.28 13530 0.35

burst vdur 29806 0.50 28896 0.20 28918 0.19
burst vgcl 26154 0.50 26126 0.24 26133 0.40
burst cdur 28859 0.50 28517 0.16 28551 0.16
vdur vgcl 24601 0.50 24620 0.44 24641 0.42
vdur cdur 27299 0.50 27187 0.31 3665 0.34
vgcl cdur 24548 0.50 24425 0.28 24460 0.41

burst vdur vgcl 39834 0.50 39796 0.19 39838 0.41
burst vdur cdur 42539 0.50 42187 0.14 42229 0.36
burst vgcl cdur 39781 0.50 39401 0.15 39452 0.18
vdur vgcl cdur 38228 0.50 38103 0.27 38151 0.30

burst vdur vgcl cdur 53460 0.50 53071 0.15 53129 0.24

Table 5.12: BIC scores and error rates for models in 1–4 dimensions, subject s3. K =
number of categories (components); columns show the cue dimensions made available in the
observation data. Bold items indicate the optimal solutions. BIC values rounded to nearest
integer value. Bayes error = 0.14.

5.5.5 Discussion

The results of the Series 3 and 4 model fitting procedures indicate that both the number of

components in the BIC-optimal solutions as well as the typicality of those solutions may vary

on a speaker-by-speaker basis. In some cases, the results highlight the potential fragility of

the category distinction even for speakers for which it appears to be relatively robust. For

instance, consider speaker 3, for whom 2-category solutions are typically BIC-optimal across

a range of cue combinations. While the differences in accuracy between 1 and 2-category

solutions is typically quite large, as are the differences in BIC, the optimal solutions shown
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cue dimension K = 1 K = 2 K = 3
d1 d2 d3 d4 BIC err BIC err BIC err

burst 16196 0.50 16151 0.41 16164 0.42
vdur 13906 0.50 13916 0.38 13926 0.43
vgcl 9967 0.50 9982 0.44 9983 0.44
cdur 11907 0.50 11923 0.44 11932 0.45

burst vdur 30103 0.50 30051 0.29 30075 0.38
burst vgcl 26163 0.50 26140 0.35 16164 0.37
burst cdur 28104 0.50 28058 0.34 28085 0.49
vdur vgcl 23873 0.50 23894 0.40 23914 0.49
vdur cdur 25814 0.50 25818 0.39 25853 0.47
vgcl cdur 21874 0.50 21895 0.45 21916 0.44

burst vdur vgcl 40069 0.50 40032 0.33 40055 0.39
burst vdur cdur 42010 0.50 41955 0.40 41968 0.31
burst vgcl cdur 38070 0.50 38037 0.39 38049 0.40
vdur vgcl cdur 35781 0.50 35807 0.50 35836 0.41

burst vdur vgcl cdur 51977 0.50 51918 0.30 51974 0.31

Table 5.13: BIC scores and error rates for models in 1–4 dimensions, subject s5. K =
number of categories (components); columns show the cue dimensions made available in the
observation data. Bold items indicate the optimal solutions. BIC values rounded to nearest
integer value. Bayes error = 0.26.

in Table 5.12 for combinations such as burst + vdur, where the contrast is particularly

well-separated along the dimension burst, are relatively untypical. While this once again

underscores both the role of individual experience as well as the importance of considering

higher-dimensional separability in predicting phonetic category restructuring, it also high-

lights the stochastic nature of the restructuring process.

In addition, note that while a category contrast may be predicted to be neutralized

(i.e., the BIC-optimal solution is K = 1) when a single cue dimension is considered, that

prediction is often reversed as more cue dimensions are considered. However, this is not

always the case: for some speakers, while training on two-dimensional observations may
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cue dimension K = 1 K = 2 K = 3
d1 d2 d3 d4 BIC err BIC err BIC err

burst 13864 0.50 13862 0.39 13864 0.43
vdur 12977 0.50 12987 0.48 13003 0.48
vgcl 11212 0.50 11228 0.46 11243 0.47
cdur 12043 0.50 12058 0.39 12067 0.45

burst vdur 26842 0.50 26865 0.48 26867 0.44
burst vgcl 25706 0.50 25089 0.47 25106 0.49
burst cdur 25907 0.50 25904 0.41 25921 0.46
vdur vgcl 24188 0.50 24204 0.47 24226 0.41
vdur cdur 25020 0.50 25034 0.48 25051 0.40
vgcl cdur 23254 0.50 23270 0.40 23289 0.44

burst vdur vgcl 38053 0.50 38074 0.50 38099 0.44
burst vdur cdur 38884 0.50 38907 0.48 38927 0.46
burst vgcl cdur 37119 0.50 37116 0.38 37158 0.40
vdur vgcl cdur 36231 0.50 36252 0.49 36281 0.48

burst vdur vgcl cdur 50096 0.50 50117 0.46 50145 0.48

Table 5.14: BIC scores and error rates for models in 1–4 dimensions, subject s6. K =
number of categories (components); columns show the cue dimensions made available in the
observation data. Bold items indicate the optimal solutions. BIC values rounded to nearest
integer value. Bayes error = 0.35.

typically result in BIC-optimal solutions where K = 2, adding a third dimension can cause

a reversal, resulting in a preponderance of K = 1 solutions (compare e.g. speaker 5 burst

+ cdur with burst + vgcl + cdur, Table 5.16). More generally (and consistent with

the Korean and pooled Dutch data considered above), access to a cue dimension that, when

considered on its own, predicts a K-category solution to be optimal does not necessarily

imply that a K-category solution will be optimal when considered simultaneously with other

dimensions.
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cue dimension K = 1 K = 2 K = 3
d1 d2 d3 d4 BIC err BIC err BIC err

burst 12811 0.50 12825 0.37 12838 0.41
vdur 12642 0.50 12655 0.42 12669 0.44
vgcl 10649 0.50 10664 0.42 10679 0.46
cdur 11708 0.50 11724 0.39 11729 0.46

burst vdur 25447 0.50 25455 0.39 25473 0.45
burst vgcl 23460 0.50 23484 0.43 23505 0.42
burst cdur 24519 0.50 24536 0.39 24548 0.41
vdur vgcl 23288 0.50 23305 0.42 23326 0.44
vdur cdur 24350 0.50 24365 0.41 24386 0.47
vgcl cdur 22356 0.50 22374 0.39 22380 0.45

burst vdur vgcl 36100 0.50 36102 0.42 36130 0.42
burst vdur cdur 37161 0.50 37169 0.40 37192 0.47
burst vgcl cdur 35168 0.50 35180 0.39 35207 0.40
vdur vgcl cdur 34999 0.50 35009 0.44 35036 0.44

burst vdur vgcl cdur 47810 0.50 47811 0.40 47847 0.439

Table 5.15: BIC scores and error rates for models in 1–4 dimensions, subject s14. K =
number of categories (components); columns show the cue dimensions made available in the
observation data. Bold items indicate the optimal solutions. BIC values rounded to nearest
integer value. Bayes error = 0.30.

5.6 General discussion

The model-based clustering experiments conducted in this chapter suggest that the likelihood

of phonetic category restructuring may not be solely a function of accuracy (model fit), but

may represent an adaptive trade-off between accuracy and model complexity. To the extent

that BIC-based model selection may be assumed as an adequate model of human clustering

behavior, this means that neutralization of a contrast is not a foregone conclusion simply

because accuracy is compromised.

The results of the optimality experiments fitting to both the Dutch and Korean data also
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s3 s5
cue dimension number of components number of components

d1 d2 d3 d4 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3
burst 0.66 0.34 0.19 0.81
vdur 0.98 0.02 0.75 0.25
vgcl 1 0.99 0.01
cdur 1 0.99 0.01

burst vdur 0.81 0.18 0.01 0.04 0.96
burst vgcl 0.64 0.32 0.04 0.39 0.61
burst cdur 0.98 0.02 0.35 0.65
vdur vgcl 1 0.82 0.18
vdur cdur 0.99 0.01 0.71 0.29
vgcl cdur 0.98 0.02 1

burst vdur vgcl 0.55 0.44 0.01 0.20 0.80
burst vdur cdur 0.98 0.02 0.03 0.97
burst vgcl cdur 1 0.58 0.42
vdur vgcl cdur 0.98 0.02 0.91 0.09

burst vdur vgcl cdur 0.99 0.01 0.19 0.80 0.01

s6 s14

burst 0.88 0.12 1
vdur 0.99 0.01 0.99 0.01
vgcl 1 1
cdur 0.99 0.01 0.92 0.08

burst vdur 0.98 0.02 1
burst vgcl 0.98 0.02 1
burst cdur 0.86 0.14 0.97 0.03
vdur vgcl 1 0.98 0.02
vdur cdur 1 0.93 0.07
vgcl cdur 0.98 0.02 0.98 0.02

burst vdur vgcl 1 0.95 0.05
burst vdur cdur 0.95 0.05 0.91 0.09
burst vgcl cdur 0.93 0.06 0.01 0.97 0.03
vdur vgcl cdur 1 0.99 0.01

burst vdur vgcl cdur 0.97 0.03 0.88 0.12

Table 5.16: Typicality of BIC-optimal category solutions for individual Dutch speakers,
non-low long vowel neutralization environment data in terms of percentage of 1,000 fits.
Most-typical (≥ 0.50) solution percentages given in bold.
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illustrate the point that statistical separability of a contrast cannot necessarily be inferred

from separability along individual acoustic-phonetic dimensions. While this is unsurpris-

ing from a statistical standpoint, it is important to highlight it in the context of phonetic

classification and categorization, because it underscores the need to consider not just sensi-

tivity to individual acoustic dimensions, but also to determining which cue dimensions are

relevant and how those dimensions are weighted by individual listeners. As shown by the

typicality experiments, however, small variations in the distribution of the observation data

to which the statistical learner is exposed can have a considerable impact on the number of

the components in the optimal solution. In the case of the pooled Dutch data considered

in §5.5.2–5.5.3, for instance, while K = 1 solutions were generally preferred for observation

data which included only burst and vdur information, K = 2 solutions were more likely to

be optimal for other types of 2-dimensional observation data, such as that containing only

burst and vgcl information. When burst information (the dimension which covaried most

robustly with the underlying voicing specification) was unavailable, a model with a single

component was nearly always optimal. As the number of cue dimensions made available to

the learners is increased, however, interpretation of the results becomes less straightforward.

The factors affecting the relative typicality of selecting a BIC-optimal model with one or

two components for 3- and 4-dimensional data are not immediately obvious; the relative

typicality of solutions did not appear to vary with the presence or absence of any single cue

dimension.

The typicality results thus suggest that while access to additional cues may assist learners

in recovering a covert contrast, there is no guarantee that this will be the case: the higher

accuracy afforded models with access to more cue dimensions is only justified if the increase

in model complexity is not too great, and the outcome of model selection is heavily influenced

by distributional parameters as well as fit/complexity considerations. From the standpoint of

human speech perception, this raises the question of if the distributions of cues which overlap
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in isolation could nonetheless assist a listener in the classification and clustering of phonetic

categories. Furthermore, it suggests the possibility that some experimental findings showing

that human listeners cannot discriminate between supposedly neutralized categories at above

chance levels may be misleading, in that their design may not allow for a positive outcome. If

categories are only recoverable when learners have access to a wide range of varying acoustic

cues, then failure of participants to discriminate categories in a traditional two-alternative

forced choice paradigm, where one acoustic dimension is varied while all others are held

constant, cannot be taken as evidence that the categories are in fact indiscriminable, or even

that the acoustic dimension tested plays no role in category discrimination, since a given cue

dimension may only prove informative in discriminating a contrast for some particular value

of all other relevant cues. Future laboratory exploration of the present results may need

to consider alternative experimental approaches to more accurately assess the integration

of cues in human categorization and category learning (Plauché, 2001; Pothos and Chater,

2002; Pothos and Close, 2008; Pothos and Bailey, 2009; Goudbeek et al., 2008).

5.6.1 The role of individual variation

Individual speakers of a given language and even a given speech community are known to vary

in their productions of the same contrast. In some cases, these are differences in production

strategies that produce the same acoustic output, but variation in acoustic output is also

frequently observed (see e.g. Newman, Clouse, and Burnham (2001) for differences in the

distribution of spectral center of gravity or Allen, Miller, and DeSteno (2003) for differences

in the distribution of VOT).

This type of individual variation if clearly present in the production data of Warner

et al. (2004). The results of the computational model-fitting experiments using the produc-

tion data of the individual Dutch subjects highlight the importance of considering the impact

of differences in individual speaker experience on phonetic category perception and restruc-
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turing. The results presented here are consistent with the findings that some members of a

speech community can show covert contrast/near mergers in production, perception, or both,

while others neither produce nor perceive such contrasts (Labov et al., 1991). If perceptual

separability can be predicted from production in the manner suggested in this dissertation,

and if BIC-based model selection is an accurate model of human behavior, then this predicts

exactly this type of variability in a population.

There is some experimental evidence that individual-level differences in production may

impact the perceptual dimensions attended to by listeners. In assessing the perceptual

weight of release bursts and formant transitions taken from syllable-initial voiced stops of

two American English speakers, Dorman, Studdert-Kennedy, and Raphael (1977) found

significant differences in the perceptual weight accorded the burst between speakers. While

the authors interpreted their results in terms of the ‘functional invariance’ debate, their

results also suggests that the set of perceptual cues potentially relevant for discrimination of

a contrast may not be attended to, or accorded equal perceptual weight, by all members of a

speech community. A similar conclusion may be drawn based on the work of Chandrasekaran

et al. (2010), who have shown that listeners’ ability to learn lexical tones was a function not

only of training to attend to the relevant cues (pitch height and pitch direction) but also

to individuals’ pre-training ability to attend to those cues. These studies suggest that the

restructuring problem is in some sense an individual-level issue, and understanding

when phonetic category contrasts are more or less likely to collapse involves a detailed

understanding of the perceptual weight different individuals afford to the relevant acoustic

dimensions. In terms of the model selection procedure described in this chapter, this means

that some individuals, exposed to the same observation data, may attend to different aspects

(columns) of that data, and that this in and of itself can lead to different predictions about

the overall category structures they may posit.
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5.6.2 The restructuring problem

The stated goal of this chapter was to address the restructuring problem as laid out in

Chapter 1: under what conditions will loss of contrast precision induce (trans)phonologization,

and in what cases will it lead to neutralization? The Korean simulation results of Chap-

ter 4 suggested that the answer would be mainly distributional: if two categories came to

overlap considerably along multiple of the acoustic-phonetic dimensions relevant for their

accurate perception, this would result in neutralization of the contrast. To test this hypoth-

esis, the internal states of agents where neutralization of categories seemed a priori likely

were submitted to model-based clustering using the BIC regularization criterion.

At first glance, the results presented here do not appear to support the hypothesis:

the BIC-optimal model fit to the output of the enhancement-only Korean simulations had

two categories, not one. However, further computational simulations revealed considerable

variation in the number of BIC-optimal categories as the number and combination of cue di-

mensions was manipulated, suggesting that individual variation may play an important role,

a conclusion further supported by the results of model-based clustering using the individual

Dutch data of Warner et al. (2004).

The results of model-based clustering using both Korean and Dutch data suggest that

the restructuring problem actually consists of at least two distinct subproblems: the

problem of predicting category restructuring for a given individual in a given situation with

given experience; and the problem of determining to what degree adaptive enhancement will

ameliorate the effects of phonetic biases of the type discussed in Chapter 4. While the Dutch

experiments in particular underscore the important role of individual variation, thus speaking

to the first subproblem, they do not directly address the second. Put slightly differently,

we might ask: why has Korean transphonologized in the face of contrast elimination, while

Dutch has allowed a (near) merger?

One line of explanation lies in the idea that the word-final voicing contrast in Dutch
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bears less functional load than the word-initial voicing contrast in Korean, and therefore that

positional neutralization in the Dutch case has less impact on the system of phonological

contrasts than it would in Korean (Kingston, 2007). In terms of the modeling approach

taken here, these differences would be accounted for by differences in the β parameter used

to indicate functional load. At present, however, this is a free parameter of the model,

and moreover, it is unclear how functional load should be measured. A major challenge for

future research will be to determine how to empirically ground the β parameter in much the

same way that the ω and ε parameters have been empirically grounded in distributional cue

statistics.

It is also important to point out that although factors such as functional load are in

some sense outside the purview of the present model, they are not incompatible with it.

In other words, we must recognize that are other factors relevant to this aspect of the

restructuring problem, such as population dynamics and lexical idiosyncrasies, that

will impact the degree to which enhancement compensates for bias. These types of factors

are not addressed by the current model, which is focused on the perceptual-distributional

aspects of category formation. This is not to imply in any way that extraperceptual factors

are not important, but simply to note that this indeterminacy on the part of the present

model should not be regarded as a fatal flaw: it provides only a partial answer to a larger

and more complex question.

5.7 Conclusion

This chapter has proposed a model-based clustering approach to the restructuring prob-

lem, whereby the structure of the phonetic category space is determined by a trade-off

between model fit and model complexity. The results of a number of experiments fitting

models to empirical data were used to illustrate that the likelihood of phonetic category

restructuring, as modeled by number of categories posited by an unsupervised statistical

142



learner, is dependent on the type and number of cues provided in the observation data.

When given access only to cues which individually covaried reliably in production with an

underlying phonological contrast, statistical learners were in some cases unable to learn the

underlying distribution; in some (but not all) cases, access to additional cue dimensions fa-

cilitated category learning. This suggests that a given individual’s phonetic experience may

lead them to predict different category-level structures, leading in turn to variation within

a speech community. Taking a view of category induction as a statistical learning problem

is a useful means of parameterizing the factors involved in determining when the number of

phonetic categories may change for a given learner, and can help to better understand how

those factors interact.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Summary

This dissertation has considered three questions raised by the phonologization model of

sound change, termed the selection, trading, and restructuring problems. Chap-

ter 1 identified and described these problems. The selection problem was defined as

determining which of a number of subphonemic cues is likely to be targeted in phonologiza-

tion; the closely related trading problem involves determining why phonologization of a

redundant cue is invariably accompanied by dephonologization of a primary cue. Finally,

the restructuring problem was concerned with changes to higher-level category struc-

tures as a result of subphonemic reorganization. It was argued that these questions can be

answered by taking an approach to sound change in which the enhancement of phonetic cues

and the induction of phonetic categories are both driven by broadly adaptive considerations

of robustness (accuracy) and complexity (efficiency).

Chapters 2 and 3 then laid out the details of a formal model in which these adaptive

hypotheses could be implemented, in order to gain a better sense of the range of empirical

phenomena they would predict. After considering aspects of the speech signal known to be

important for auditory perception and classification, Chapter 2 described the framework of

finite mixture models, illustrating their application to the production and perception

of phonetic categories. Chapter 3 detailed an agent-based iterated learning environment

in which to model the interaction of multiple speaker/listeners, using the mixture models

described in the previous chapter. Chapter 4 employed this simulation framework to imple-

ment the probabilistic enhancement hypothesis and to determine its potential role in

explaining the selection and trading problems in a particular case of phonologization,

the transphonologization of F0 in Seoul Korean. In simulations where probabilistic enhance-
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ment was implemented in the absence of any threat to contrast precision, the results did not

resemble the empirical findings, nor did simulations in which contrast precision was reduced

in the absence of a probabilistic enhancement strategy. However, when both factors were

simulated, the results closely resembled the empirical findings.

Chapter 5 addressed the restructuring problem by way of analogy with the problem

of regularization in model selection. In truly unsupervised learning scenarios, the number of

category labels is not given in advance, but must be inferred based on distributional prop-

erties of the observed data, subject to some type of criterion. Using one particular criterion,

Chapter 5 demonstrated that contrasts may not be as threatened by distributional over-

lap along multiple cue dimensions as may be supposed, on account of a contrast remaining

separable in a higher-dimensional space, and that this may account for certain cases of in-

complete neutralization. To further explore this possibility, mixture models were fit

to production data from a putative instance of incomplete neutralization in Dutch. Con-

siderable diversity in the typicality of the number of components in optimal models across

individuals was discovered, consistent with sociolinguistic findings, highlighting a crucial role

for individual variation in addressing the restructuring problem.

Overall, the results demonstrate that adaptive enhancement can account for both cue

selection as well as the appearance of cue trading in phonologization, and illustrate how

changes at the category level may be modeled using the same representational framework as

changes at the subphonemic level. This framework was used to model both the transpho-

nologization of F0 in Seoul Korean and the incomplete neutralization of voicing in Dutch

word-final obstruents. While by no means proving that these are the definitive means by

which these sound change took place, the results demonstrate that it is possible to account

for some instances sound change via gradual, adaptive processes of subphonemic reorgani-

zation, in which any and all phonetic dimensions are in principle accessible to enhancement,

and in which both communicative accuracy and efficiency play a role.

145



6.2 Outstanding questions and future directions

6.2.1 Individual variation and population dynamics

The focus of this dissertation has been on properties of the individual speaker, and how

those properties change over time in response to input and subject to certain perceptual and

communicative constraints. In the general case, however, speakers exist and interact within

the context of a larger speech community, and the dynamics of population interaction and

evolution will necessarily influence the nature of the input to any given individual. While

the results of Chapter 5 highlight the potential impact of individual variation on phonetic

category restructuring, the magnitude of such impact will be mitigated and influenced by

the range of individuals that a given agent comes into contact with. Thus the fate of a

contrast, or the informativeness of a cue, must be considered both at the individual level,

but also at the population level, and it must be recognized that differences in population

dynamics may have an impact on the typicality of the results present here (Niyogi, 2006;

Niyogi and Berwick, 2009). From the present perspective, it is interesting to consider the

possibility that apparent stability in the acoustic realization of phonetic categories may arise

at the population level rather than at the level of the individual.

6.2.2 Induction of acoustic-phonetic cues

Although this dissertation briefly considers the problem of inducing phonetic category labels

in an unsupervised fashion, the relevant acoustic-phonetic cue dimensions are still assumed

to be available a priori. It is interesting to consider for a moment the problem of cue

induction, that is, learning to identify regions of the phonetic record which are likely to

act as perceptual cues to high-level contrastive units.

Much that we currently know about perceptual cues comes from the work conducted

by Pierre Delattre, Franklin Cooper, Alvin Liberman and their colleagues at Haskins Labs
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beginning in the 1950s (see Liberman and Cooper, 1972 for a summary and references). These

researchers identified acoustic-phonetic dimensions essentially by manipulating parameters

of an early speech synthesizer (Cooper, 1953) and determining if the results would elicit a

perceptual response. On this view, a cue is ‘a portion of the signal that can be isolated

visually, that can be manipulated independently in a speech synthesizer constructed for that

purpose, and that can be shown to have some perceptual effect’ (Repp, 1982). From the

standpoint of the unsupervised identification of perceptually salient units, this definition is

rather problematic, in that it presupposes perceptual salience. It would be interesting to try

and identify such acoustic parameters on the basis of more general principles, at which point

the accuracy of such a system could be assessed by comparison to the formidable baseline

assembled by the Haskins team.

One line of research that takes steps in this direction is the work of Ken Stevens and

colleagues on landmark detection (Stevens and Blumstein, 1981; Stevens, 1985, 1995; Liu,

1995; Halberstadt and Glass, 1997; Halberstadt, 1998; Juneja, 2004; Hasegawa-Johnson et

al., 2005). However, a landmark-based speech recognizer is built on prior domain knowledge

of what types of acoustic events will be relevant for the perception and identification of

certain classes of sounds; the challenge is to determine how to induce this set of events

from properties of the acoustic signal. Some of the recent work of Jont Allen and colleagues

addresses itself to this latter problem (Allen and Li, 2009; Allen et al.,2009; Li et al., 2010).

In addition, while the present work proposes that the set of category labels may undergo

restructuring in response to changes to the distributions of the individual cue dimensions,

Chapter 5 also demonstrated how restructuring may be impacted by changes to the number

and combination of distributions. In future work, it will be important to consider the factors

that may lead to the restructuring of the cue space itself, in terms of selective attention to

different dimensions, and the impact this may have on the space of category labels (Francis

and Nusbaum, 2002).
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6.2.3 Stage transitions and symbolic representation

The finite mixture representations advocated in the present work, while not at all uncommon

in many areas of speech science, are not yet commonplace in the post-generative linguistics

literature. From the standpoint of sound change, mixture model representations allow for

new types of explanations such as those offered here, which make crucial reference to varia-

tion along multiple acoustic-phonetic dimensions, and directly encode the idea that certain

dimensions may contribute more to the maintenance of a contrast than others.

However, this representation retains a rather traditional view of the phonetics-phonology

interface, in that a set of cues (features) is associated with a particular symbolic unit in an

autosegmental sense (Goldsmith, 1976). This brings up the issue of determining whether the

gradient, variable subproperties of the symbolic unit (category label) should be reflected in

the discrete properties of the label itself.

Stage I Stage II Stage III

pá [ ] pá [ ] pá [ ]

bá [ ] bǎ [ ] pǎ [ ]

Table 6.1: (Trans)phonologization and phonemicization (after Hyman, 1976). Sparklines
show the time course of F0 production for the vowel following the initial consonant.

To see how this is problematic, consider again Hyman’s three-stage conception of phonol-

ogization, reproduced here in Table 6.1. At issue is the difference between Stage II and Stage

III; in particular, the choice of the representation [pǎ] versus [bǎ]. In Chapter 1, Stage II

was described as a point at which ‘the pitch differences may be regarded as allophonic, con-

ditioned by the initial consonant, but the stage has been set whereby a reanalysis may occur

following the loss of the voicing contrast in the initials’ (2). But how are we to determine

when this reanalysis has occurred? When, precisely, does the voicing contrast in the initials

become ‘lost’? If the choice of symbolic representation is arbitrary, then the difference be-

tween Stage II and Stage III is not really captured by using a different symbol for the initial
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segment; but if the difference is not arbitrary, then exactly what subsymbolic properties are

embodied in those representations, and how are they relevant at the phonological level?

It is not immediately clear how to resolve this problem. One possible response is suggested

by the gestural representations of Articulatory Phonology (Browman and Goldstein, 1986,

1989; Gafos, 2002), which provide a natural way of expressing non-segmental, continuous,

and gradient aspects of phonetic realization. However, as noted by Ladd (to appear), it is

not clear if these aspects need to be embedded in phonological abstractions, or how these

representations capture many of the cross-linguistic symmetry in phonological patterning

that has been central to much of post-Structuralist theoretical phonology; in addition, there

are outstanding questions about how this type of gestural representation might be reconciled

with many of the perceptual confusion results (Plauché et al., 1997; Plauché, 2001; Guion,

1998). A major challenge for the modern phonological enterprise will be to reconcile what is

known about the continuous and variable nature of the phonetic signal with what is known

about the behavior of symbolic processes in a representationally consistent fashion.

6.2.4 Sound change in the laboratory

The strategy of this dissertation has been to explore the predictions of certain hypotheses

through concrete mathematical formalization and computational simulation. The results

form a sufficiency proof in that they demonstrate that such a path to these types of sound

changes is in principle possible. Additional supporting evidence may be sought in labora-

tory experiments with human subjects. Here, I briefly describe some possible experimntal

extensions of the present work.

It is well known that listeners are able both to redistribute attention to cues both ac-

tively (Francis and Nusbaum, 2002) as well as passively (Kraljic and Samuel, 2006). On the

adaptive approach to phonetic change taken in this dissertation, perceptual reorganization is

predicted to take place proportional to the distributions of cues in the input. One additional
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Figure 6.1: Distributions of VOT and F0 for nonnative Korean learners, prior to receiving
instruction (top row) and after 5 weeks of instruction (bottom row). From Kirby and Yu (in
prep.).

assumption made in this dissertation, however, is that this reorganization will be reflected

both in perception as well as in production. This hypothesis has been investigated by Kirby

and Yu (in prep.), in which 17 native speakers of American English with no prior knowl-

edge of Korean performed perception and production tasks at regular interval during their

participation in a 10-week intensive Korean language course. Each week, the participants

were recorded producing items differing in initial stop place and manner. While participants
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Figure 6.2: Distributions of VOT and F0 for nonnative Korean learners after 5 weeks of
instruction (top row) compared to native Korean controls (bottom row). From Kirby and
Yu (in prep.).

initially failed to distinguish the three-way Korean stop contrast in production in a man-

ner consistent with the input they were receiving, over time their cue distributions came to

approximate those of the input to a greater and greater degree. In particular, separation be-

tween lax and aspirated/tense categories increased along the F0 dimension, while separation

between lax and aspirated categories decreased along the VOT dimension, as illustrated in

Figures 6.1 and 6.2. This result demonstrates that listeners are able to reorganize their cue
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space in a manner consistent with the input even without the presence of explicit feedback,

and that this reorganization is reflected in their own productions of those categories.

In addition, the probabilistic enhancement hypothesis seems particularly well-

suited for laboratory investigation. Here, it would need to be demonstrated not simply that

participants produce categories in a manner consistent with the subphonemic structure of

the input, but that they enhance aspects of the signal proportional to their reliability. The

challenge will be to demonstrate that those portions of the signal are enhanced based on their

informativeness, as opposed to being able to attribute enhancement to some other factor.

6.3 Conclusions

This dissertation has proposed a framework for modeling and exploring sound change using a

multidimensional representation which retains rather than discards within-category variation

in order to address three problems of selection, trading, and restructuring. The

answer to the problem of cue selection is that cues are targeted and enhanced based on

their reliability; the appearance of cue trading emerges as a byproduct of finite and relative

attentional resources; and category restructuring takes place on the basis of changes to

distributional subphonemic properties. By providing several examples of how this type of

representation can be applied, it is hoped that this work may serve as a template for others

to improve upon in addressing trenchant problems in linguistic theory and sound change.
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