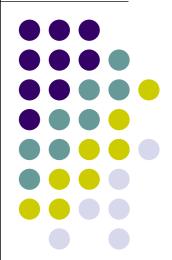
Ein Vortrag von Meral Akyol im Rahmen des Seminars Sprecherunterschiede bei Prof. Harrington VIU 18.10.2007

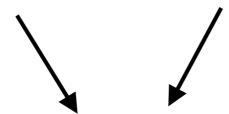


Grundlagen der Spracherkennung

Mensch <-> Maschine

Analog <-> Digital

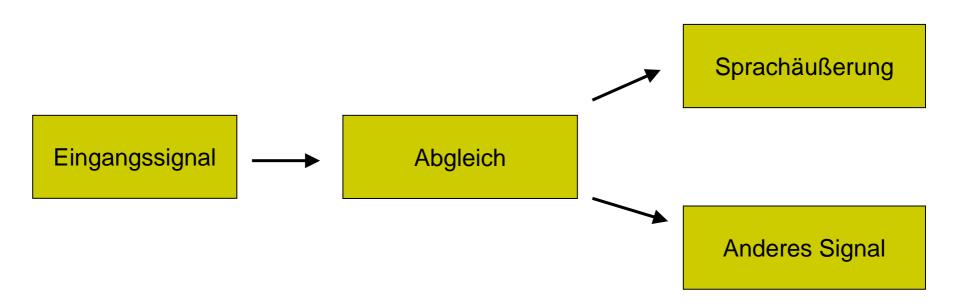
Autonom <-> Abhängig



Gemeinsamkeiten?

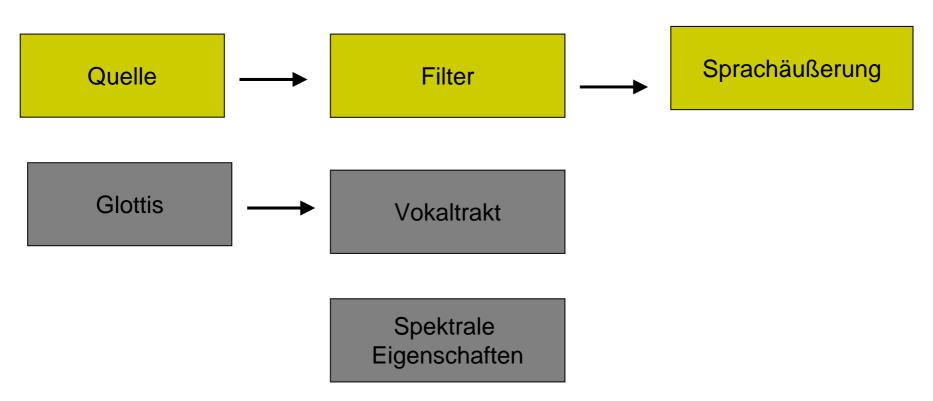
Grundlagen der Spracherkennung

Wie erkennt die Maschine Sprache?



Grundlagen der Spracherkennung

Wie erkennt die Maschine Sprache?



Grundlagen der Spracherkennung

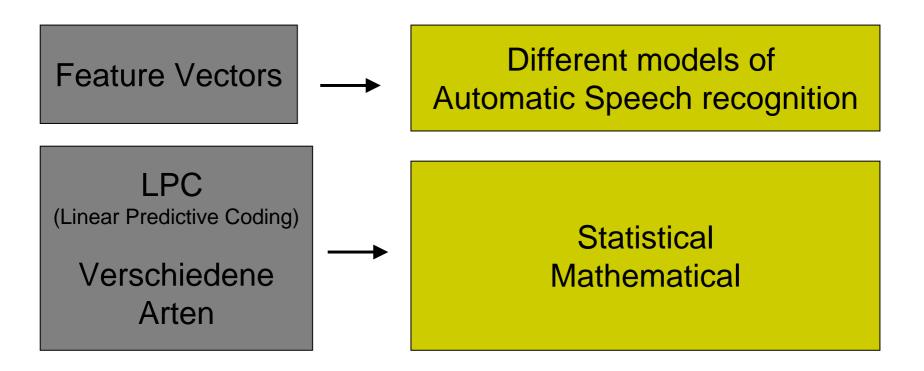
Wie erkennt die Maschine Sprache?

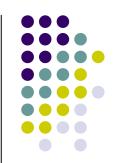
Formanten

Merkmalsextraktion für Automatische Spracherkennung Feature Vectors oder Merkmalsvektoren

Grundlagen der Spracherkennung

Wie erkennt die Maschine Sprache?





Welche **Template Muster** eignen sich am besten zur Erkennung des Geschlechts?

TABLE I. Four recognition schemes.

plate from
vel
/el
/el
vel

Aus: Childers et al. (1991). Gender recognition from speech: Part I. Coarse analysis.

Welche Feature Vectors eignen sich am besten zur Erkennung des Geschlechts?

TABLE IV. Results for the Euclidean distance measure for recognition scheme SG for various filter orders and the four acoustic feature vectors.

		Co	Correct recognition rate in %			
		Order = 8	Order = 12	Order = 16	Order = 20	
Sustained vowels	ARC	78.8	78.8	78.8	82.7	
	LPC	73.1	78.8	80.8	80.8	
	FFF	N/A	98.1	N/A	N/A	
	RC	88.5	100.0	100.0	100.0	
	CC	82.7	92.3	90.4	90.4	
Unvoiced fricatives	ARC	75.0	75.0	75.0	75.0	
	LPC	80.8	69.2	71.2	71.2	
	RC	80.8	80.8	80.8	80.8	
	CC	71.2	75.0	84.6	82.7	
Voiced fricatives	ARC	86.5	88.5	86.5	88.5	
	LPC	92.3	92.3	92.3	90.4	
	RC	94.2	96.2	96.2	96.2	
	CC	94.2	98.1	98.1	96.2	

Aus: Childers et al. (1991). Gender recognition from speech: Part I. Coarse analysis.

Welche Methode eignet sich am besten zur Erkennung des Geschlechts?

TABLE VI. Summary of the most effective feature vector and distance measure combinations for scheme SG (except as noted).

		Correct recognition rate in % Filter order			
		8	12	16	20
	LPC (pdf)		98.1		
Sustained	RC (pdf)		98.1		
vowels	FFF (EUC)		98.1		
	RC (EUC)		100.0	100.0	100.0
Unvoiced	LPC (pdf)		86.5		
fricatives	CC (EUC) ^a		88.5	90.4	88.5
	LPC (LLD)			96.2	98.1
Voiced	LPC (LLD) ^a	98.1	96.2	96.2	
fricatives	CC (EUC)		98.1	98.1	96.2
	RC (EUC)		96.2	96.2	96.2

By using recognition scheme SS.

Aus: Childers et al. (1991). Gender recognition from speech: Part I. Coarse analysis.

Welche Kombination eignet sich am besten zur Erkennung des Geschlechts?

RC-Merkmalsvektoren

Euklidscher Abstand

Speaker vs. Gender

Welche Charakteristika eignen sich am besten zur Erkennung des Geschlechts?

Spektrale Charakteristika sind ausschlaggebend zur Erkennung des Geschlechts

Welche Formanten eignen sich am besten zur Erkennung des Geschlechts?

	Childers II	Perry et. al
F ₀	96.2%	N. Signifikant
F ₁	90.4%	Signifikant
F ₂	98.1%	Hoch Sig.
F ₃	94.2 %	Signifikant
F ₄	96.2	Signifikant
F _{0+Spek.}	98.1%	-

M.Akyol

Welche Erklärung lässt sich für diese Ergebnisse in Bezug auf F0 finden?

Perry et al.

VPN: Kinder

haben annähernd den selben F0

-> Trotzdem konnten die Probanten

Geschlechter unterscheiden

	4	8	12	16
m	67%	74%	82%	99.7%
f	62%	56%	56%	95%

Childers et al.

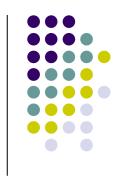
VPN: Erwachsene

klar unterscheidbare F0 -> Erkennungrate bei 96.2 % (m: 100% - f: 92%)

Ergebnisse

- Frauen haben eine etwas größere Variabilität in den Spektralen Eigenschaften
- Männer werden insgesamt etwas leichter erkannt
- F0 alleine scheint ausreichend zu sein um das Geschlecht erkennen zu können (ab 16 Jahren)
- Kombination von Formanten mit anderen Spektralen Charakteristika (Formant + Amplitude, Bandbreite) erhöht die Erkennungsrate Nicht.
- F2 scheint der stärkste Schlüssel zur Erkennung des Sprechergeschlechts zu sein

Folgerungen



- Frauen und Männer unterscheiden sich in ihren Spektalen Merkmalen
- Sowohl Maschinelle (ASR) als auch Humane (Perzeption) Erkennung des Geschelchts scheint von F0 & F2 abhängig zu sein
- Für die Automatische Sprechererkennung scheinen andere Spektrale Merkmale wie Amplitude und Bandbreite keine Signifikante Rolle zu spielen

Ausblick

- Man könnte nun mittels Perzeptionstests ermitteln ob für Menschen Amplitude und Bandbreite Auswirkungen auf das pezipierte Geschlecht haben
- Man könnte die Experimente von Childers mit Jugendlichen Stimmen nachstellen, um den Schwellwert (Alter) der Erkennungsmöglichkeit des Geschlechts herauszufinden

Quellen

Wu, K. and D.G. Childers (1991). Gender recognition from speech: Part I. Coarse analysis. *Journal of the Acoustical Society of America*, 90, 1828–40.

Childers, D.G. and K. Wu (1991). Gender recognition from speech: Part II. Fine analysis *Journal of the Acoustical Society of America*, 90, 1841–56.

Perry, T., Ohde, R. & Ashmead, D. (2001). 'The acoustic bases for gender identification from children's voices.' *Journal of the Acoustical Society of America*, 109, 2988–2998.