
Recent Developments in the Emu Speech Database System

Lasse Bombien1, Steve Cassidy2, Jonathan Harrington1, Tina John1, Sallyanne Palethorpe3

1. Institut für Phonetik und Sprachliche Kommunikation, University of Munich, Germany.
2. Department of Computing, Macquarie University, Sydney.

3. Macquarie Centre for Cognitive Science, Macquarie University, Sydney.

Abstract

The Emu Speech Database system is a set of software tools developed to support
research in acoustic phonetics and other corpus based speech research. This paper
describes recent updates that have been made to the latest release of the software.

1. Introduction

The EMU Speech Database System, which has been
developed over a number of years (e.g., McVeigh &
Harrington 1992; Harrington, Cassidy, Fletcher and
McVeigh, 1993; Harrington & So, 1994; Cassidy, 1999;
Cassidy & Harrington, 1996, 2001; Harrington, Cassidy,
John and Scheffers., 2003) is an integrated set of tools for
creating, querying and analysing annotated speech
corpora. In common with many speech software systems, i t
includes facilities for annotating speech data from
synchronized waveform and spectrographic displays, as
well as a library of routines for digital speech processing.
It differs from these, however, in allowing hierarchical and
autosegmental annotations and in providing a query
language for extracting annotations from these structures
and their associated signal files. Since 1988, when it was
first developed as ‘Acoustic Phonetics in S’ at CSTR,
Edinburgh University (Taylor, Caley, Black and King.,
1999), EMU has provided a transparent interface to a
powerful graphical and statistical programming language
(first ‘S’, then ‘Splus’ and since the mid 1990s, the R
programming environment - R Development Core Team,
2006). Another distinguishing feature of EMU is its
organization of a speech database in a so-called template
file, which specifies the physical location of the signal
files and the types of hierarchical and autosegmental
relationships between sets of labels. The template file was
included to facilitate the sharing of speech corpora across
different users, working at different sites, and possibly on
different platforms. Another feature, which is unique to
EMU, is the possibility of building various kinds of
labeling structures automatically using the Tcl scripting
language (Welch, Jones and Hobbs, 2003). More recently,
an interface has been built to Praat, a computational
system for doing phonetics (Boersma & Weenink, 2001),
allowing Praat labeling structures to be converted into
EMU and vice-versa (Harrington et al., 2003).

2. Current EMU structure

In the last three years, EMU 2.0 has been provided with a
new internal structure (Fig. 1) that allows individual
parts of the system to be modified and tested

independently. Both the front-end and the back-end have
been designed in a modular way and can be extended
without much effort.

Figure 1: the new EMU 2.0 structure.

In earlier versions, the EMU back-end consisted of three
parts providing:

(1) the database functionality,
(2) signal processing (trackdata)
(3) signal display (padgraph).

These parts were integrated into the Tcl interpreter
differently depending on the platform, e.g., by loading
shared libraries on Windows while *nix (all unix
derivates) used custom interpreters with built-in
functionality. Subsequently, Snack (Sjölander, 2000) was
used for displaying waveform and spectrographic data.
One of the advantages of Snack is that it is easily
extendable to support, for example, the SSFF file format
frequently used in EMU; another is that it provides the
facility for zoomable spectrograms. Accordingly, the new

EMU back-end consists of the platform independent Tcl
extensions, emucore (database functionality) and snack.
Two more extensions are planned as part of the back-end:

(1) In order to facilitate the use of Praat from
within EMU, an extension tclpraat has been developed.
This extension is used to send commands to Praat via
sendpraat (Boersma and Weenink, 2006)

(2) So far, the emu application tkassp for signal
processing has made use of the assp tools (advanced
speech signal processing) by invoking subprocesses. As
the assp tools are currently being rewritten as a library
supporting 64 bit systems, a new extension tclassp will
be used in future rather than calling subprocesses. The
assp library will also be used to add support for the SSFF
file format in snack.
The EMU front-end has undergone significant changes,
too. While in earlier releases, all applications had to be
invoked separately, EMU 2.0 includes a front-end dbemu
(see Fig. 2) which interfaces with all current EMU
applications and provides an overview of all accessible
databases and their utterances. dbemu constitutes the new
core of all applications while the former core, the EMU
labeller, is now one application among others in the
EMU system. All EMU applications are separate Tcl
packages which can share their functionality. While all of
the applications can be launched from within dbemu,
most of them can still be started on their own.

Figure 2: the new EMU 2.0 frontend – the
dbemu interface.

A major problem for collaborative work between groups
of researchers on the same database was in how to store
the template file and the speech data and annotations. For
EMU 2.0, template files can be stored anywhere that the
computer has access to. Thus, neither the speech data and
annotations nor the template file needs to be stored on
the machine that runs the EMU system. The various paths
to the template files are accessible and can be defined
using a new gui emu-conf, while the location of the
different databases is viewable directly from the dbemu
database list. The new internal structure of the EMU
system removes the limitations of the earlier system on
the size of signals that can be annotated with EMU.
From dbemu there is an interface to a gui
GTemplateEditor for creating template files in which the
user fills in information about the location of the signal
and annotation files of the database, provides
information about the type of annotation structure, and

specifies both the types of display that should appear
when the database is accessed as well as any Tcl scripts
for building annotation structures. After a database
template has been written, it shows up as the
corresponding database name in dbemu.

3. Signal Processing

While in other speech processing systems, parametric
data such as formants and pitch are often calculated on
the fly, EMU makes use of the assp tools or their
graphical interface tkassp for calculating derived signal
files. The assp tools include routines for filtering, and for
pitch, formant, and spectral analysis. A library with these
functions is currently in development to replace the
present command line programs. tkassp can be launched
either in standalone mode, or else dbemu can be used to
pass a list of utterances from the database to tkassp for
signal processing. tkassp offers multiple types of input
selection: single files, directories, file and directory lists,
EMU utterance lists, and EMU segment lists. The output
files can be stored by either specifying a single output
directory but also by maintaining the directory structure
of the input. The latter is specifically useful for complex
database structures. The output files of tkassp can easily
be added to the database as additional tracks using the
database template. There is also a tcl-script for
conversion of raw EPG3 (electropalatographic) files to
the SSFF format that can be interpreted by EMU. Finally,
EMU allows both formant and fundamental frequency
tracks to be manually corrected with a mouse and
updated.

4. Annotation

Loading the database causes all that database’s utterances
to appear. These utterances can be opened by the EMU
labeller tool, in which annotation is supported by the
Tcl/Tk programming language (Welch et al., 2003), or
else they can be opened by the other integrated tools
wavesurfer and praat.
The EMU labeller supports an annotation model that
allows hierarchical relations between labels. EMU
distinguishes timeless annotation levels from time-
bounded Event and Segment annotation levels. All levels
can have hierarchical relations to each other; this enables
rich annotation structures (Cassidy and Harrington,
2001; Harrington et al., 2003).
Further development will introduce new annotation
views that are more suitable to larger scale annotations
that are needed, for example, in dialogue analysis, while
retaining the same ability to integrate detailed phonetic
or prosodic annotations into a hierarchical structure.
All annotation levels, their hierarchical relationships,
view options and relationship to time are defined in the
database template using a graphical template editor
(GTemplateEditor). The template editor also allows legal
labels to be specified as well as labels to be decomposed
into features.
In previous versions, it was possible to edit EMU
annotations only using the EMU labeller, but in this
most recent version, all time-dependent levels can be
edited in Praat (Boersma and Weenink, 2001) and in
WaveSurfer (Sjölander & Beskow, 2005) without losing
the hierarchical structure of the EMU annotation. While

WaveSurfer innately supports the label format produced
by ESPS, Waves+ and EMU, for Praat the label files are
converted to textgrids (and back) on the fly. Label levels
that are not directly anchored in time, i.e. that inherit
their times from other labels, are necessarily disregarded
when editing in Praat/WaveSurfer (since they can only
deal with time-bound labels). However, on quitting
Praat/WaveSurfer, the EMU hierarchy will be updated
and where necessary rearranged.
The EMU system has provision for including custom Tcl
scripts for automatic annotation (AutoBuild-Scripts) or
more complex modules by appropriate definitions in the
database template. Some predefined scripts are integrated
in the EMU system as well as two complete modules:
epgdisplay for palatogram visualization and
hier2sigview for displaying timeless annotation levels in
the signal view of the EMU labeler.
AutoBuild-Scripts are used to automatically build
hierarchical relations between annotation levels using
temporal alignment, dictionaries etc. A new graphical
tool, the AutoBuild wizard, facilitates an easy
deployment of AutoBuild-Scripts over an entire database
or selected parts of it, eliminating the need to load each
utterance for this task. Any AutoBuild-Script can be used
from within the wizard, that is, not necessarily the one
defined in the database template.

5. Querying the database

The EMU query language (Cassidy & Bird, 2000) enables
researchers to isolate speech segments based on both
sequential and hierarchical context. There can be simple
queries such as ‘return all segments from the Phonetic
level’ but also complex queries like ‘return all segments
from the Phonetic level that precede a vowel nasal
sequence in intermediate phrase-initial words following
the definite article’.
The EMU 2.0 Query Tool provides a graphical query tool
queryGUI that assists the user by creating a query string,
thus removing the need for the user to learn the syntax
and semantics of the query language itself. With a few
simple mouse clicks, a query string can be created and
sent to the EMU Query Tool that runs the queries over the
chosen utterances of the database.
Each query results in an utterance list where all query
matching segments are listed with their onset and offset
times and the utterance they belong to. For these
segments, signals can be extracted from within the EMU
Query Tool. All the results can be saved to files for
further analysis. The EMU Query Tool and thus the
queryGUI are accessible from the dbemu interface.

6. Analysis- R statistical
Environment

The EMU system provides a package within the R
programming language for statistical computing. R i s
similar to the S language and environment which was
developed at Bell Laboratories (formerly AT&T, now
Lucent Technologies) by John Chambers and colleagues.
The EMU-R package enhances R by including the facility
for querying annotations and extracting signal data from
EMU databases (see Harrington, forthcoming, for
numerous examples of formant, spectral, and EPG
analyses in R). Querying can be done either directly from
within R or by loading stored output files of the
graphical query tool. Query results and signal data can be

further manipulated, displayed and statistically
evaluated in R. Additional functions for plotting and
signal processing are also included. In future, it will be
possible to make use of R's Tcl/Tk interface, in order to
launch (graphical) EMU tools from within R.

7. Conclusions

EMU 2.0 provides a user-friendly access to all EMU
functions using graphical user interfaces, a new internal
structure in the programming code, and the integration of
other third part tools Praat and Wavesurfer. EMU runs on
Windows and UNIX platforms and can be downloaded
from the EMU sourceforge website
(http://emu.sourceforge.net) together with some
databases (see also Harrington, forthcoming). Current
development includes completing the port to the
Macintosh OS X platform.

8. References

Boersma, P. and Weenink D. (2001), Praat, a system for
doing phonetics by computer, Tech. Report 132, Inst.
Phonetic Sciences, Univ. Amsterdam. Retrieved on
2006-11-21 from http://www.praat.org/

Boersma, P. and Weenink D. (2006), Sendpraat:
sending messages to a Praat shell program (Code
Version February17, 2006) [Computer Program],
Retrieved on 2006-11-21 from
http://www.fon.hum.uva.nl/praat/sendpraat.html.

Cassidy, S. (1999), Compiling multi-tiered speech
databases into the relational model: experiments with
the EMU system. In Proc. Eurospeech, 2238-2242.
Budapest, Hungary.

Cassidy, S. and Bird S. (2000), Querying databases of
annotated speech. In Proc. Eleventh Australasian
Database Conference, 22, 12-20. Canberra, Australia.

Cassidy, S. and Harrington, J. (1996). EMU: an enhanced
hierarchical speech database management system. In
Proc. Sixth Australian International Conference on
Speech Science and Technology, 361-366. Adelaide,
Australia.

Cassidy, S. and J. Harrington (2001), Multi-level
annotation in the Emu speech database management
system, Speech Communication, 33, 61-77.

Harrington, J. (forthcoming). The Phonetic Analysis of
Speech Corpora. Blackwell. Retrieved on 2006-11-21
from http://www.phonetik.uni-
muenchen.de/~jmh/research/emupapers/pasc.htm

Harrington J., Cassidy S., Fletcher J. and McVeigh A.
(1993), The mu+ system for corpusbased speech
research, Computer Speech and Language, 7, 305-331.

Harrington, J., Cassidy, S., John, T. and Scheffers, M.
(2003). Building an interface between EMU and Praat:
a modular approach to speech database analysis.
International Congress of Phonetic Sciences.
Barcelona, Spain.

Harrington, J. & So, L. (1994). Some design criteria in
segmenting and labelling a database of spoken
Cantonese. In Proc. Fifth Australian International

Conference on Speech Science and Technology. 215-
220. Perth, Australia.

McVeigh, A. and Harrington, J. (1992). The mu+ system
for speech database analysis. In Proc. Fourth
Australian International Conference on Speech
Science and Technology. 548-553. Brisbane, Australia

R Development Core Team (2006). R: A Language and
Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Sjölander, K. (2000), The Snack sound extension for
Tcl/Tk, Retrieved on 2006-11-21 from
http://www.speech.kth.se/snack/

Sjölander, K. and Beskow, J. (2005). WaveSurfer - an open
source speech tool, Retrieved on 2006-11-21 from
http://www.speech.kth.se/wavesurfer/

Taylor, P., Caley R., Black A. W., and King S. (1999).
Edinburgh Speech Tools Library, System
Documentation Edition1.2. CSTR, University of
Edinburgh.

Welch, B. B., Jones K., and Hobbs J. (2003). Practical
Programming in Tcl and Tk (4 ed.) Englewood Cliffs,
N.J.: Prentice Hall.

