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LANGUAGE AND SPEECH, 1993,37(4), 357 - 373 . 351 

DYNAMIC AND TARGET THEORIES OF VOWEL CLASSIFICATION: 
EVIDENCE FROM MONOPHTHONGS AND DIPHTHONGS 

IN AUSTRALIAN ENGLISH* 

JONATHAN HARRINGTON 
and 

STEPHEN CASSIDY 
Mncqunrie University, Sjdiiey, Australia 

Recent studies on the perception of speech have suggested that vowel identification 
depends on dynamic,cues, rather than a single ‘static’ spectral slice at the vowel midpoint. 
The experiments reported in this paper seek both to test the extent to which vowel 
recognition depends on dynamic information, and to identify the nature of the dynamic 
cues on which such recognition might dcpend. Gaussian classification techniques, as well 
as different kinds of neural network architectures, were used to classify some 3000 
vowels in /CVd/ citation-form Australian English words, following training on roughly 
the same number of vowel tokens produced by different talkers. The first set of 
experiments shows that when vowels are classified from three spectral slices taken at the 
vowel margins and midpoint, only diphthongs, but not monophthongs, benefit from the 
additional spectral information at the vowel margins. A further experiment shows that 
vowels are no better classified from a time-delay neural network than from the three-slice 
network in which time is not explicitly represented. At least for the citation-form, 
Australian English vowels in this study, these results are interpreted as being more 
consistent with a target, rather than a dynamic, theory of vowel perception. 

Key words: Vowel classification, diphthongs; Australian English, neural networks 

INTRODUCTION 

In recent years, various experiments, primarily i n  the  speech perception literature, 
have suggested that the phonetic identity o f  vowels is  cued by  information which is  
distributed over  t ime i n  the acoustic speech signal. In the first o f  a series of experiments 
by Strange and her  colleagues, Strange, Verbrugge, Shankweiler, and Edman (1976) 
found that listeners identified vowels more accurately in CVC than in  isolated vowel 
syllables. Strange’s (1987, 1989a) interpretation of this result is that C V C  syllables 
contain transitions, whereas isolated vowels  d o  not, a n d  so the transitions must be 
providing listeners with additional information which cues the vowel’s phonetic identity. 
The importance o f  transitions in  cueing the  vowel was further demonstrated in  a 
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subsequent study by Strange, Jenkins, and Johnson (1983) who presented listeners with 
various kinds of edited syllables. Two of these were silent center (SC) syllables in which 
the central section of the vowel, including the vowel target, was discarded, leaving only 
the initial and final transitions, and variable center (V) syllables in which the transitions 
were discarded, leaving the central section of the vowel. The results of this experiment 
showed that listeners’ identifications of SC syllables were as accurate as those of 
unmodified CVC syllables, but that V syllables were identified more poorly. Despite 
some methodological difficulties with these kinds of experiments (Assmann, Nearey, and 
Hogan, 1982; Diehl, McCusker, and Chapman, 1981; Macchi, 1980), many subsequent 
studies have continued to show that vowels are as well identified from modified SC 
stimuli as from unmodified CVC syllables (e.g., Benguerel and McFadden, 1989; Fox, 
1989; Parker and Diehl, 1984; Rakerd and Verbrugge, 1987; Strange, 1989b; Verbrugge 
and Rakerd, 1986). although the benefit that context provides to vowel identification has 
also been shown to be affected by the phonetic identity of both the consonant and vowel 
(Gottfried and Strange, 1980; Rakerd, Verbrugge and Shankweiler, 1984). 

As Fox (1 989) and more recently Andruski and Nearey (1992) have noted, there are 
various possible interpretations of the results of these experiments. Strangc’s interpreta- 
tion is closely related to theories of the control of speech production which view phonetic 
segments as articulatory gestures that unfold in time. As Strange (1989b) comments: 

“According to this view ... vowels are conceived of as characteristic gestirres having 
intrinsic timing parameters (Fowler, 1980). These dynamic articulatory events give rise 
to an acoustic pattern in which the changing spectrotemporal configuration provides 
sufficient information for the unambiguous identification of the intended vowels.” 

A second possible interpretation is that even ‘monophthongal’ vowels are characterized 
by a changing acoustic pattern which is not attributable to context effects, but which forms 
part of the inherent structure of the vowel, in much the same way that the transition 
between two targets is an inherent aspect of diphthongs. This interpretation of ‘dynamic’ 
is consistent with studies by Nearey and colleagues (Nearey and Assmann, 1986; Andruski 
and Nearey, 1992), who show that at least some monophthongal vowels are characterized 
by inherent formant movement that may also be important for their perceptual 
identification. Compatibly, both the acoustic classifications and perceptual identification 
scores in Huang (1992) show an improved performance when vowels are identified from 
three spectral slices (25% midpoint, 75%) compared with a single slice; and in a study of 
static and dynamic representations of 11 vowels by Zahorian and Jagharghi (1993), higher 
classification scores were obtained from the dynamic representations in both types of 
parameterization (formant and discrete cosine) of the acoustic signal. 

Whatever the exact interpretation of ‘dynamic’, there is considerable evidence from 
these studies in the last 10 - 15 years that the vowel’s phonetic identity is not just cued by 
formant values at the vowel midpoint, as suggested by the more ‘traditional’ method of 
vowel classification, dubbed the ‘target theory of speech perception’ (Jenkins, 1987). 
Instead, under the dynamic theory of vowel perception, speech production is inherently 
dynamic and, compatibly, listeners extract dynamic information distributed throughout 
the segment in decoding the speech signal. 

The aim of the present set of experiments was to use various acoustic classification 
techniques to test the extent to which vowels are dynamic, and to try to characterize more 
precisely the nature of the dynamic information. As an initial hypothesis, we reasoned that 
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TABLE 1 

Australian English vowels used in the study. Note: The transcription system, which is 
based on Mitchell and Delbridge (1965) indicates /€a/ to be diphthongal. However, /€a/ 
is monophthongal for most Australian English speakers, and certainly for the speakers 

used in this study. 

Monophthongs Example Monophthongs Example Diphthongs Example 
(10%) (short) 

i heed I hid 
U who’d U hood 
Ea hair E head eI say 

3 saw D Pod 31 boy 
3 heard ou so 

a hard 32 had ai high 
A mud au how 

if the vowel’s phonetic identity is cued by information that is temporally distributed in the 
acoustic signal, then classifications from combined spectral slices in the transitions and 
close to the vowel target should be better than a comparable classification from a single 
spectral slice at the vowel midpoint. On the other hand, under target theories of speech 
perception, since monophthongal vowels are sufficiently specified by information at the 
vowel midpoint, only diphthongs, but not monophthongs, should benefit from the spectral 
information close to the vowel margins. The predictions of the two theories were tested in 
the first experiment in which Australian English monophthongs and diphthongs were 
classified from single and multiple spectral slices. 

EXPERIMENT 1 
Method 

Moteriuls. Ten adult speakers of Australian English (five men, five women) read a 
list of CVd words in a carrier phrase, where C was /p t k b d g f 8 S J  tJ/ combined with 17 
vowels (Table 1). The speakers’ accents can be described as intermediate between 
Cultivated and General Australian (Bernard, 1970; Mitchell and Delbridge, 1965). Five of 
the voyels are ‘traditionally’ considered to be diphthongal in Australian English, i.e., to 
consist of two targets with a transition between them. Most of the other vowels in the 
speakers’ accents are monophthongal; there is a tendency for the Australian English close 
vowels /i u/ (heet, boor) to bc produced with a long onglide starting from a position close 
to a schwa vowel, but this is predominantly characteristic of a Broad Australian accent, 
rather than of the speakers’ accents in this study. Some further details on the phonetic 
characteristics of Australian vowels are given in thc appendix. 

The word lists were read twice on separate days thereby giving a total of 10 talkers 
x 12 contexts x 17 vowels x 2 readings = 4080 tokens. These materials, which form part 
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of the Australian National Database of Spoken Language (Croot, Fletcher and Harrington, 
1992) were recorded in a sound-treated room using high quality recording equipment at 
Macquarie University and digitized at 20 kHz. Phonetic segmentation and labeling of all 
the materials were carried out using Waves by trained phoneticians at Macquarie. The 
boundaries of the vowels'were marked at the first and last glottal pulses respectively, as 
judged from a combination of displayed speech waveforms and spectrograms. After 
removing a number of tokens which had been misread, 1889 tokens remained from the 
first reading and 1892 from the second. 

Acoirsric pnrnniefers. For each vowel, summed energy values in critical (Bark) 
bands 4 - 19 (roughly 300 - 5250 Hz) were calculated from 5 12 point FFTs (25.6 msec 
window) centered at 2096, 50%, and 80% time points relative to the vowel boundaries. 
The frequency ranges for the Bark bands were taken from Zwicker (1961). Hamming 
windows were used. N.0 pre-emphasis was applied. The energy above the upper limit of 
5250 Hz was ignored, since it was considered unlikely to benefit vowel separation. The 
motivation for the lower cut off frequency of Bark band 4 was to avoid, as far as possible, 
the confounding effects due to the male - female differences in fundamental frequency. 

It is of course difficult to separate transitions from vowel targets on a principled 
basis (see, e.g., the remarks in Benguerel and McFadden, 1989, and Nearey and Assmann, 
1986), and so the assumption was made that 20% and 80% would be sufficiently close to 
the vowel margins to be influenced by the surrounding context and to form part of the 
consonant-vowel and vowel-consonant transitions. The 50% time point was assumed to 
be closest to the vowel target for most monophthongal vowels. 

Total segment duration was also determined for each vowel since it is an important 
parameter in distinguishing long from short vowels of similar quality (e.g.. /i/ IT. /I/). 

Since the data included male and female speakers, a basic form of speaker normali- 
zation was carried out by subtracting speaker centroids from the data. A speaker centroid 
is a vector of mean values, one per Bark band, calculated across all the vowel tokens for 
each speaker separately. Subtracting speaker centroids in this way has been shown to be 
an effective and simple way of reducing speaker specific effects (Chan and Cheung, 1986; 
Klein, Plomp, and Pols, 1970). In addition, to ensure that the variance of the duration 
dimension was comparable to the variance of the spectral dimensions, duration was 
expressed in tenths of a second. This normalization is necessary to ensure that duration 
does not dominate the principal components analysis used in the Gaussian classification 
experiment. Duration was not included in the per-speaker normalization. 

Trainhg. testiiig. arid ei~nlimfion All of the results reported in this paper are based 
on dividing the data into training, evaluation, and testing sets. The training set was used to 
build a model, or set of models, to identify the 17 vowels using one of two classification 
techniques (Gaussian classification and neural networks). The evaluation set was used to 
choose one of the possible models generated in the training stage: the one which identifies 
most vowels correctly. The test set was used for the final evaluation of this chosen model. 
In this way, the data used to train the model and those used to test it were kept separate: 
The model was not tuned in any way for its performance on the test set. The test results 
should therefore represent a true open test of the model's performance. 

In order to provide as much data as possible to evaluate the model, each experiment 
was performed twice on different sets of training and test data. The 10 talkers of this study 
were allocated to three groups (groups A, B, and C). Groups A and C consisted of four 
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talkers each (two males and two females) and were used as both training and testing sets. 
Group B consisted of the remaining two talkers (one male, one female) and was used as 
the evaluation set. Each experiment was run twice: firstly, by training on Group A, 
evaluating on Group B, and testing on Group C; and secondly, by training on Group C, 
evaluating on Group B: and testing on Group A. The results from both runs were 
combined to give results for eight talkers in each experiment. 

Therefore, in all of the experiments reported in this paper, training and testing were 
carried out on different tokens produced by different sets of talkers. The purpose of 
including two runs with different talkers in the training and testing sets is to ensure, as far 
as possible, that the results are not biased by speaker-specific effects. 

Classifmtioii algoritltms. Two types of classification algorithms were used. The 
first is based on principal components analysis and Gaussian classification. The second 
uses a neural network architecture. Each of these two classifications was applied to two 
different spaces, defined as nridpoirtt, and concatenated. The azidpoirit space is based on 
critical band values at the 50% time point plus total segment duration (17 parameters); the 
coricaterrared space includes critical band values at the three time points under considera- 
tion plus total segment duration (49 parameters). 

In Gaussian classification, the centroid and covariance matrix of the training set are 
estimated for each vowel class, A token from the testing set is then classified based on the 
Mahalanobis distance to each of the class centroids. The Mahalanobis distance is defined 
as the Euclidean distance weighted by the covariance matrix (see O’Shaughnessy, 1987, for 
a more detailed mathematical discussion). 

The space in which Mahalanobis distance calculations are made is the critical 
(Bark) band space transformed by principal components analysis (PCA). The transformed 
spaces are obtained by matrix multiplying (weighting) the critical band values of a token 
from the testing set with the eigenvectors calculated from the training set. The motivation 
for the PCA on the critical band space is that at least as good, and sometimes better, 
classification scores can be obtained from a smaller number of transformed dimensions 
than from the original, untransformed dimensions. 

The training, evaluation, and testing stages of the Gaussian classifier were carried 
out as follows. Models were constructed using the first two, first three ..., first 11 trans- 
formed dimensions, where 11 is the number of original dimensions (17 and 49 in the 
nridpoirit and coricaferzatecf conditions respectively). Each model was then tested on the 
evaluation data; the model which gave the best classification score on these data was 
chosen and tested on the test data. 

The technique of Gaussian classification from transformed dimensions is limited in 
various ways: Specifically, each class is modeled by a single centroid and covariance 
matrix, and the transformed space is obtained from a linear combination of the original 
dimensions. In a neural network with one hidden layer, the transformation from input to 
hidden nodes (via the weight matrix) performs an operation similar to PCA. However, it 
performs a nonlinear computation and is not limited to extracting orthogonal dimensions. 
The hidden nodes can be said to extractfeatru-es from the input spectrum which are then 
combined by the hidden-to-output weight matrix to give the output classification. Since 
the most active output node is chosen as the response, the output layer can be said to be 
performing a distance measurement based on the hidden layer feature set and choosing 
the closest category as the winner. The neural network may, if it is appropriate, model a 
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single category as a disjoint region in its feature space. 
The networks used in this experiment consisted of a set of input units (17 for the 

midpoitit condition, 49 for the coltcatenated condition) fully connected to a set of hidden 
units which were again fully connected to one output unit per vowel class. During 
training, the correct output unit for each input vector was turned on while all other units 
were turned off. The networks were tested periodically on an independent set of items (the 
evaluation set) and when performance on these items began to degrade, training was 
halted. This technique was used to avoid over-learning of the training set which results in 
poor generalization to other examples. 

The neural network simulations for these experiments were performed with the 
GRADSIM package (Watrous, 1988, 1990). GRADSIM provides a number of training 
algorithms including the well-known back-propagation algorithm. We chose to use one of 
the quasi-Newton optimization algorithms, known as BFGS, which performs the same 
function as back-propagation, but which is much'more efficient, because it takes a global 
view of the error surface which is being minimized. BFGS, as with all neural network 
learning algorithms, adjusts the weights in the network to minimize the error between the 
true output and that produced by the network for a set of training examples. 

An important variable in neural network experiments is the number of hidden units 
in the network. For these experiments we initially built three networks with 7, 14 and 20 
hidden units in each. There was an increase in performance across all conditions as the 
number of hidden units was increased. Since the change between 14 and 20 hidden units 
was small, and since the absolute performance of the networks was very good, we decided 
not to increase the number of hidden units further. We will report only the results from the 
20 hidden unit network as those with fewer hidden units follow the same general pattern. 

Resirlts 
As mentioned earlier, all results in this paper are based on pooling the classification 

scores from the two separate runs (run 1: training on talker set A, testing on talker set C; 
run 2: training on talker set C, testing on talker set A). 

The results of these experiments were compared using a I-test on the data broken 
down on a per speaker basis. 

Gaiissiari classification. The comparisons between the midpoint and concatenated 
spaces were made on the peak scoring dimensions, as determined from the evaluation set. 
For the first run, peak scores were obtained on 10 (midpoint) and 13 (concatenated) 
dimensions; for the second run, peak scores were obtained on 1 1  (midpoint) and 12 
(concatenated) dimensions. 

Based on the total number of vowels correctly classified, classifications were more 
accurate in the concatenated than in the midpoint condition. In the concatenated space, 
88.6% of vowels were correctly classified, which is significantly greater [ t  (7) = -7.3, 
p < 0.0011 than the corresponding score from the midpoint space (73.2%). 

A two-way condition (midpoint 1's. concatenated) by vowel type (monophthong 1's. 
diphthong) repeated measures ANOVA was performed on the vowel scores. The 
results show significant effects of both condition [ F  (1,7) = 9.2, p c 0.0051 and type 
[I: (1,7) = 5.0, p < 0.051 and an interaction between condition and type which just 
fails to attain significance at the 0.05 level [ F  (1.7) = 4.0, p c 0.11. The interaction 
between condition and type suggests that the improvement between the midpoint and 
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TABLE 2 

Scores for Gaussian and neural network classification methods. Stars (**) mark vowels 
where the two sets of scores differ significantly 0, < 0.05) 

363 

GAUSSIAN NETWORK 

a 
E 
I 
D 
U 

A 
3 

a 
Ea 
i 
3 
U 
ou 
ai 
au 
er 

All 
51 

Single 
77.6 
96.6 
96.4 
87.5 
91.5 
87.4 
59.7 
52.0 
39.1 
87.5 
92.6 
88-2 
42.3 
55.1 
42.9 
66.5 
79.5 
73.2 

Concat 
92.7 
96.6 
93.8 
92.0 
96.6 
75.9 
85.6 
92.1 
66.7 
88.1 
92.0 
89.3 
84.6 
84.7 
81.7 
95.5 
97.7 
88.6 

** 

** 
** 
** 

** 
** 
** 
** 
** 
** 

Single 
75.0 
92.0 
92.7 
79.5 
92.0 
74.7 
54.1 
71.8 
55.2 
81.2 
80.1 
80.9 
54.9 
70.5 
63.4 
63.6 
38.1 
71.9 

Concat 
95.8 
98.9 
81.2 
88.1 
97.7 
87.9 
75.1 
85.3 
92.5 
97.2 
86.9 
79.8 
82.3 
79.5 
88.0 
94.3 
96.6 
88.6 

** 

** 

** 
** 

** 
** 

** 

** 
** 
** 
** 

concatenated conditions is mainly due to the improved performance of diphthongs in the 
latter condition. 

Table 2 shows a vowel-by-vowel analysis of the scores from the two spaces. All 
diphthongs performed significantly better in the concatenated than the midpoint condi- 
tion, but only four out of 12 monophthongs (/a 3 a €4) had significantly better scores on 
the concatenated condition. 

Neriral Network. 88.6% of vowels were correctly classified on the concatenated 
network compared with 7 1.8% correct on the midpoint network: These results are 
significantly different [t (7) = -7.4, p < 0.0021. A vowel-by-vowel analysis (Table 2) 
shows that all diphthongs except /ad, and six out of 12 monophthongs, have significantly 
higher scores on the concatenated network. 

A similar two-way ANOVA was carried out on these results showing again main 
effects of condition [F (1,7) = 20.9, p c 0.00011 and type [F (1,7) = 7.9, p < 0.011 and a 
significant interaction between condition and type [ F  (1,7) = 5.0, p <-0.05]. Again this 
interaction suggests that the improvement between the midpoint and concatenated 
conditions is mainly due to the improved performance of diphthongs in the concatenated 
condition. 

Discrissioir 
On the measure of total number of correctly classified vowels, Experiment 1 has 

shown that scores are higher from the concatenated than the midpoint space. However, an 
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examination of the results in terms of the separate vowel types shows that most 
diphthongs, but only a small number of monophthongs, benefit from the inclusion of the 
spectral slices close to the vowel margins. 

These results lend only limited support to the dynamic theory and are in fact 
consistent with prediction5 of the target theory: Diphthongs perform better on multiple 
spectral slices because they have multiple targets distributed in time, but classifications of 
monophthongs, which have a single target close to the vowel midpoint, are generally no 
better from three spectral slices than from one. 

Nevertheless, an explanation is needed for the small number of monophthongs 
which performed better in the concatenated space. Under one interpretation, their im- 
proved performance might be attributed to their inherent dynamic structure which aids 
phonetic identification. Another interpretation might attribute the better performance of 
these monophthongs entirely to the improvement in the performance of diphthongs: 
That is, since diphthongs are more clearly delineated in the concatenated space, 
monophthongs are less likely to be confused with them. 

If these monophthongs are inherently dynamic (first interpretation), then better 
scores should be obtained in a concatenated space in which training and testing are carried 
out 011 monoplrthoirgs only If, on the other hand, the presence of diphthongs accounts for 
the improvement in the' classification of these monophthongs (second interpretation), 
then concatenated and midpoint scores should be the same when training and testing are 
carried out on monophthongs only. The next experiment sought to adjudicate between 
these hypotheses. 

EXPERIMENT 2 
Method 

The methodology was exactly parallel to that of Experiment 1. The only difference 
was that training and testing were carried out on the 12 monophthongs only. For this 
experiment, the numbers of tokens in the three talker groups were: Group A, 1076; Group 
B, 535; Group C, 1072. 

Resrrlts 
As before, the results are based on pooling the classification scores from the two 

separate runs (run 1: training on talker set A, testing on talker set C; run 2: training on 
talker set C ,  testing on talker set A). 

Garrssian classification. As in the first experiment, the comparisons between the 
midpoint and concatenated spaces were made on the peak scoring dimensions, as 
determined from the evaluation set. For the first run, peak scores were obtained on 
8 (midpoint) and 15 (concatenated) dimensions; for the second run, peak scores were 
obtained on 7 (midpoint) and 19 (Concatenated) dimensions. 

Based on the total number of vowels correctly classified, classifications were no 
more accurate in the concatenated than in the midpoint space. In the concatenated space, 
90.2% of vowels are correctly classified, and the corresponding score in the midpoint 
space was 92.4%: These scores are not significantly different [ t  (7) = 1.82, p > 0.051. A 
subsequent vowel-by-vowel analysis (Table 3) showed that there were no significant 
differences in the performance of the individual monophthongs in the two conditions, 
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TABLE 3 

Scores for Gaussian (with and without noise) and neural network classification 
methods, monophthongs only. Stars (**) mark vowels where the two sets of scores 

j differ significantly 0, < 0.05) 

GAUSSIAN GAUSSIAN WITH NOISE NETWORK 
j' 

ze 
E 

I 
D 
U 
A 
3 

a 
ea 
i 
3 

U 
All 

Single 
91.1 
96.6 
97.9 
88.1 
98.3 
89.1 
85.6 
97.7 
85.1 
93.2 
99.4 
86.5 
92.4 

Concat 
93.8 
96.6 
94.3 
91.5 
94.3 
77.6 
91.2 
98.3 
63.8 
90.3 
93.8 
95.5 ' 
90.2 

Single 
85.4 
77.8 
87.5 
71.0 
96.6 
83.3 
60.2 
87.6 

** 54.6 
72.2 
88.1 
85.4 
79.2 

Concat 
83.3 
77.3 
91.7 
80.1 
93.2 
76.4 
67.4 
79.1 
44.8 
78.4 
80.1 
78.7 
77.7 

Single 
89.1 
96.6 
93.8 
79.0 
93.2 
78.7 
83.4 
93.9 
76.4 
93.2 
93.2 
90.4 
88.6 

Concat 
91.7 
98.3 
91.7 
83.0 
94.9 
94.8 ** 
80.1 
98.9 
91.4 
98.3 
94.9 
88.8 
92.2 

with the exception of /€a/ which performed significantly better in the midpoint than the 
concatenated condition. 

The total correct scores reported above for the midpoint and concatenated 
conditions are close to 100%, and in order to ensure that the differences between the 
conditions are not obscured by ceiling effects, the same classifications were carried out 
a second time, but with added noise. Specifically, each of the dimensions of the training 
and testing data were multiplied by a random value between 0 and 1 prior to 
classification. The same number of dimensions were used in the classifications-with- 
noise as in the no-noise classifications. Total correct scores were 77.7% correct for the 
concatenated condition, and 79,2% correct for the midpoint condition (i.e., a reduction 
of 12.5% and 13.2% compared with the no-noise midpoint and concatenated conditions 
respectively). These total correct classification scores are once again not significantly 
different [ t  (7) =1.07, p > 0.11. A subsequent vowel-by-vowel analysis showed no 
significant differences between the midpoint and concatenated noise conditions. Table 3 
compares the no-noise and noise conditions. 

Neiiral tietwork. Using the neural network, 88.6% of vowels were correctly 
classified from the midpoint space compared with 92.2% from the concatenated space, 
a nonsignificant difference [t  (7) = -1.53, p > 0.11. A vowel-by-vowelanalysis (Table 3) 
showed no significant difference between the two cases except for /A/ which scored 
significantly better on the concatenated space [ I  (7) = -3.04, p < 0.051. 

Discirssiori 
The results from Experiment 2 favor the interpretation that diphthongs are respon- 

sible for the improved scores of some monophthongs when classifications are made from 
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multiple spectral slices. With the exception of / A I, none of the vowels performed better 
in the concatenated than in the midpoint conditions when training and testing were carried 
out on monophthongs only. With regard to / A  /, the evidence is equivocal for two 
reasons: Firstly, because the Gaussian and neural network classifications produced 
different results; secondly, because an examination of the two separate training and 
testing runs of the neural network experiment showed that significantly better scores were 
obtained in the concatenated condition for / A / only on one run (training on group C, 
testing on group A), but not on the other (training on group A, testing on group C). 

Since scores from monophthongs are in general no better from three, compared with 
a single, spectral slice, the evidence suggests that spectral change does not benefit 
monophthong identification. An alternative interpretation might be that the spectral 
change for monophthongs between the three spectral slices is negligible: if classifications 
are being made from three nearly identical spectral slices, it follows that three-slice 
classification will be no better than one. In order to test this second hypothesis, two 
Euclidean distance calculations were made in the 16-dimensional, normalised Bark 
space, for each vowel token: From the spectral slice at the 20% time-point to the midpoint 
spectral slice; and from the midpoint spectral slice to the spectral slice at the 80% time 
point. These two Euclidean distance calculations were summed to give a spectral change 
measure for each of the 378 1 vowel tokens. The results of this exercise showed that, while 
the spectral change is certainly less for monophthongs than diphthongs, it is far from 
negligible: Indeed, for some monophthongs the extent of spectral change is 
similar to that of diphthongs (Figure 1). In order to qualify the interpretation that spectral 
change in monophthongs does not benefit their identification, a comparison was made 
between the average magnitude of spectral change for each of the 12 monophthong 
classes and the differences between their scores on the three-slice and the single-slice 
classifications (in the monophthong-only classifications of Experiment 2): If spectral 
change per se is beneficial to monophthongal identification, then those monophthongs 
which showed the greatest improvement on the three-slice compared with the single-slice 
classifications should also have the greatest magnitude of spectral change. The correla- 
tions between magnitude of spectral change and score differences (three-slice 1's. single 
slice) are very close to zero for both the Gaussian (r  = 0.05) and neural network (I' = 0.10) 
classifications. Since a greater magnitude of spectral change does not imply superior 
classification scores on three, compared with a single, spectral slice, the evidence further 
suggests that spectral change does not benefit monophthong identification. 

Taken together, Experiments 1 and 2 have shown that diphthongs behave separately 
as a class from monophthongs, and also that there is very limited evidence to suggest that 
monophthongs are inherently dynamic. 

However, it would be premature to reject the considerable perceptual and acoustic 
evidence in favor of vowels as dynamic for the reason that the concatenated condition 
does not adequately represent vowels as a siiccessiori of spectral slices in time. 
Specifically, by treating the spectral data from the three time points as separate 
dimensions, the concatenated condition does not encode the fact that the spectral slices 
follow each other in a particular temporal order. 

In an attempt to address this issue, a further experiment was carried out using a 
neural network (henceforth the reciu'rerzt network) with an architecture that is sensitive to 
the temporal order of the spectral slices in the speech signal. 
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spectral change (summed Euclidean distances) 

Fig. 1. The distribution of an index of spectral change (summed Euclidean distance 
between three successive time slices) for the monophthongs and diphthongs 
used in the study. 

The hypothesis that was tested was as follows. If spectral information, as it evolves 
in time, is crucial to vowel identification, then we would predict that scores should be 
higher from the time-delay recurrent network than from the concatenated network. 

EXPERIMENT 3 
Method 

The recurrent network that was used in this Experiment incorporates directly the 
temporal nature of the signal into its architecture with the use of time-delayed links between 
units. Tenipornl Floic* networks (Watrous 1988, 1990) were developed specifically to solve 
the problem of the representation of time in neural networks for speech processing. Watrous 
(1990) showed that these networks are capable of a series of phonetic discrimination tasks 
including place and manner of articulation, voicing and formant trajectories. Two strategies 
can be used to encode temporal aspects of the signal with these networks. Firstly, delay links 
from one layer to the next allow the later layer to see the first over a given temporal window 
and allow “the formation of general filters which can be used for feature detection and 
pattern matching” (Watrous, 1990, Section 11). Secondly, delayed links within the same 
layer, called recurrent links, “can be used to condition unit responses by temporal context, in 
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order to generate and decode sequential events” (op. cil.). 
Since the performance of a network can be artificially affected by the degrees of 

freedom of the network, the number of time-delay links in the hidden layer of the 
recurrent network was chosen such that the total number of links of the recurrent network 
matched, as far as possibl,c, that of the concatenated network: That is, each hidden unit 
sees activation from the .&urrent input units plus the hidden units (including itself) one 
time-slice ago. Each output unit (one per vowel as before) is then connected to every 
hidden unit with links of zero delay. This network has 1080 links (links between 17 input 
units and the 20 hidden units, between the 20 hidden units and themselves, and between 
the 20 hidden units and 17 output units), which is similar to the number of links in the 
concatenated network. 

Training and testing were carried out on the same sets of data as described in the 
Method section of Experiment 1 using the same critical band values as input to the 
networks. The networks were again trained until performance on an open test began to 
degrade. 

For the recurrent condition, the input to the network consisted of three separate 
spectral slices (20%,50%,80% time points) plus total vowel duration (17 dimensions per 
time slice) presented in sequence together with the appropriate output for each vowel. In 
this case, the unit  corresponding to the correct vowel was turned on for the duration of the 
vowel while all other units were turned off. 

Resirlts 
86.5% of vowels were correctly identified on the recurrent network compared with 

88.6% on the concatenated network. These results are not significantly different [ t  = 1.57, 
df= 7, p > 0.11. A vowel-by-vowel analysis showed that there were no significant 
differences between the two conditions. 

Given this result, the hypothesis that the temporal order of the three spectral slices 
is important to vowel identification is not supported. 

GENERAL DISCUSSION 

The series of experiments that has been carried out in this study has sought to 
investigate the extent to which vowels are dynamic under two different interpretations of 
‘dynamic’. The first of these is closely related to the concept of the compound target 
theory as discussed in Nearey and Assmann (1986) and more recently Andruski and 
Nearey (1992), which suggests that some monophthongs exhibit a consistent formant 
movement which is not attributable to context effects. The results of the studies by Huang 
(1992) and Zahorian and Jagharghi (1993), both of which show superior classifications 
from multiple spectral slices compared with a single slice, are consistent with the position 
that transitional information contributes to vowel identification. The second position is 
more closely related to the various dynamic theories of speech production (e.g. Fowler, 
1986, Saltzman and Munhall, 1989) which imply that articulatory movement, and there- 
fore the changing acoustic signal as it unfolds in time, provides listeners with the prime 
cues to vowel identification. 

Under the first interpretation (that vowels are consistently characterized by inherent 
spectral change), we would expect classifications from multiple spectral slices to be 
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better than those from a single spectral slice taken from the spectral midpoint. Our results 
have shown that diphthongs clearly benefit from the spectral information provided by 
additional spectral slices, but that monophthongs do not. When training and testing are 
carried out only on monophthongs, classifications are no better from multiple spectral 
slices than from a single spectral slice at the midpoint. These results are entirely consist- 
ent with a target thehy of speech perception: Diphthongs perform better in 
classifications from multiple spectral slices because they have at least two targets, but 
since monophthongs are cued by a single target close to the midpoint, the additional 
information in the transitions makes no difference to their recognition scores. 

A separate implication of this first set of results is that monophthongs and diph- 
thongs are two distinct acoustic phonetic categories. This result is inconsistent with the 
dynamic theory of vowels as developed by Strange and her colleagues, not only because 
all vowels are presumed to be dynamic in this theory, but also because the concept of a 
‘vowel target’, which is crucial to defining the distinction between monophthongs and 
diphthongs (one target vs. two),is presumed to be irrelevant, or of secondary importance. 
Whatever their significance for the dynamic theory of vowels, the results from these 
experiments suggest that future perceptual experiments which seek to determine the 
relevant saliency of transitions and targets for vowel identification, should be undertaken 
separately for monophthong and diphthong categories. 

Under the second interpretation of ‘dynamic’ (that the temporal development of the 
acoustic signal is crucial to vowel identification), we would expect that vowel recognition 
should benefit from a knowledge of the temporal order of spectral information taken at 
different time points in the acoustic signal. In order to test this hypothesis, we 
compared the scores from two kinds of networks. In the first, vowels were classified by 
concatenating spectral slices, which provides no direct information about the temporal 
order in which they occur. In the second, vowels were classified from a network in which 
the dynamically changing features of the vowel are preserved. Since a comparison 
between these two networks showed nonsignificant differences, we can conclude that 
the temporal order of the spectral slices is not important for distinguishing between 
Australian English vowels. 

In summary, our results are more consistent with a target theory of vowels. 
Diphthongs are clearly dynamic because the relevant phonetic information is distributed 
across the vowel. However, the fact that this phonetic information occurs in a particular 
temporal order seems to be irrelevant to the identification of the vowels in this study. The 
results of this study provide little evidence that monophthongs are dynamic, since spectral 
information in the transitions does not generally improve recognition scores. 

The conclusion that favors the target theory of vowel specification rests on the 
caveat that only Australian English vowels have been tested, and that different results 
may well be produced for vowels in other accents. We also stress that these networks have 
only tested two of the many possible interpretations of dynamic, and that vowels may well 
be cued by other kinds of dynamic information that we have not investigated. Neverthe- 
less, the results do suggest that the theory that vowels arc inherently dynamic warrants 
further investigation. 

(Received November 22,1993; accepied July 13,1994) 
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APPENDIX: AUSTRALIAN ENGLISH 

It is generally considered that there are three main accent groups of Australian 
English which are, for the most part, unaffected by regional variation. The accents are 
Cultivated, General, arid Broad Australian. It is also usual to consider these three groups 
as points on a continuum extending from Cultivated, which bears the strongest resem- 
blance to British English Received Pronunciation (RP), to Broad, which shares some 
similarities with London Cockney English (although there are also many differences). 
These three accent groups do not take account of the many migrant-A'ustralian accents 
which are spoken by roughly 20 - 25% of the population, nor of AboriEinal-Australian 
accents. 

From aplionemic point of view, there is more or less systemic equivalence between 
the vowel systems of most Australian accents and British English RP. Additionally, both 
Australian English (AE) and British English RP are non-rhotic. 

The salient pliortctic differences between the AE and RP vowels are partly 
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Fig. 2. A comparison of the FI/F2 plane for British English and Australian English. 

illustrated by a plot of the vowels in the formant plane in Figure 2. Ten vowels are 
represented per accent. For the Australian accent, each vowel is an average of 110 tokens 
taken from /CVd/ citation-form words (C = /b d g p t k f s t h/) produced by the same five 
male speakers who participated in this study (thus 22 tokens per speaker). A basic form of 
speaker normalization was applied prior to averaging, in which a speaker’s centroid 
values (mean of FI and mean of F2) were subtracted from each of the same speaker’s F1 
and F2 values. The normalized F1 and F2 values were then rescaled by adding the mean of 
F1 and the mean of F2 across all five speakers to the normalized values. The RP vowels 
are taken from Henton (1983). These are based on 10 male speakers’ productions of /hVd/ 
citation-form words. 

The plot illustrates some of the principal differences between these two accent 
groups that have been previously noted (Bernard, 1970). Firstly, the front AE vowels /I€/ 

are closer than their RP counterparts. Secondly, some of the RP back vowels, notably /u /  
(wlzo’d ) and /a/ (hard, transcribed as /a/ in AE), have fronted co’unterparts in AE. 
Thirdly, some of the RP back vowels, in particular /3/ (saw) and /U/ (hood) have raised 
equivalents in AE. 

Concerning the categorization of vowels as monophthongs and diphthongs, both 
AE and RP have rising diphthongs /er ou a1 au 31 /. Some AE talkers also have three 
centering diphthongs /Ia 3.3 vat (here. there, cure), although there is a strong tendency, 
particularly in younger AE talkers for these to be produced as monophthongs (the /ua/ 
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phoneme is now replaced by /D/ for most Australian talkers). The remaining vowels are 
presumed to be monophthongal in AE, with the possible exception of /i u/, which in some 
AE accents, particularly Broad Australian, can sometimes be produced with a long 
onglide from schwa (Mitchell and Delbridge, 1965). In the Macquarie University text-to- 
speech system of Australian English (Clark, 1981; Mannell and Clark, 1987), all the 
rising and centering diph(hongs are currently specified by two targets; the monophthongs 
are all specified by a single target with the exception of / i /  which can be realized with an 
optional long onglide. 
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