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Relationship between Machine Readable (MRPA) and International  Phonetic Alphabet  (IPA) 
for Australian English. 
 
MRPA  IPA  Example 
Tense vowels 
i:  i:  heed 
u:  ʉ:  who'd 
o:  ɔ:  hoard 
a:  ɐ:  hard 
@:  ɜ:  heard 
 
Lax vowels 
I  ɪ  hid 
U  ʊ  hood 
E  ɛ  head 
O  ɔ  hod 
V  ɐ  bud 
A  æ  had 
 
Diphthongs 
I@  ɪә  here 
E@  eә  there 
U@  ʉә  tour 
ei  æɪ  hay 
ai  ɐɪ  high 
au  æʉ  how 
oi  ɔɪ  boy 
ou  ɔʉ  hoe 
 
Schwa 
@  ә  the 
 
Consonants 
p  p  pie 
b   b  buy 
t  t  tie 
d  d  die 
k  k  cut 
g  g  go 
tS  ʧ   church 
dZ  ʤ  judge 
H  h  (Aspiration/stop release) 
 
 
m  m  my 
n  n  no 
N  ŋ  sing 
 
f  f  fan 
v  v  van 
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T  θ  think 
D  ð  the 
s  s  see 
z  z  zoo 
S  ʃ  shoe 
Z  ʒ  beige 
h  h  he 
r  ɻ  road 
w  w  we 
l  l  long 
j  j  yes 
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Relationship between Machine Readable (MRPA) and International  Phonetic Alphabet  (IPA) 
for German. The MRPA for German is in accordance with SAMPA (Wells, 1997), the speech 
assessment methods phonetic alphabet. 
 
MRPA  IPA    Example  
  
Tense vowels and diphthongs   
2:    ø:    Söhne  
2:6  øɐ  stört  
a:    a:    Strafe, Lahm  
a:6   a:ɐ   Haar  
e:    e:    geht  
E:  ɛ:  Mädchen  
E:6  ɛ:ɐ   fährt  
e:6  e:ɐ   werden  
i:     i:    Liebe  
i:6     i:ɐ   Bier  
o:    o:    Sohn  
o:6  o:ɐ  vor  
u:    u:    tun  
u:6  u:ɐ  Uhr  
y:    y:    kühl  
y:6  y:ɐ   natürlich  
aI  aɪ    mein  
aU  aʊ    Haus  
OY  ɔY  Beute 
 
Lax vowels and diphthongs  
 
U  ʊ  Mund  
9  œ  zwölf  
a    a    nass  
a6    aɐ   Mark  
E  ɛ  Mensch  
E6  ɛɐ   Lärm  
I    ɪ  finden  
I6    ɪɐ    wirklich  
O  ɔ  kommt  
O6    ɔɐ  dort  
U6    ʊɐ  durch  
Y    Y   Glück  
Y6    Yɐ   würde  
6     ɐ    Vater  
Consonants  
  
p   p     Panne  
b  b     Baum  
t  t     Tanne  
d  d  Daumen  
k  k  kahl  
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g  g   Gaumen  
pf  pf  Pfeffer  
ts  ʦ  Zahn  
tS  ʧ  Cello  
dZ  ʤ  Job  
Q   ʔ  (Glottal stop)  
h   h      (Aspiration)  
  
  
m  m     Miene  
n   n     nehmen  
N  ŋ  lang  
  
f  f     friedlich  
v  v  weg  
s  s  lassen  
z  z  lesen  
S  ʃ  schauen  
Z  ʒ  Genie  
C  ç  riechen  
x  x  Buch, lachen  
h  h  hoch  
  
r  r, ʁ  Regen  
l  l  lang  
j  j  jemand  
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Downloadable speech databases used in this book 
 
Database 
name 

Description Language/di
alect 

n S Signal 
files 

Annotations Source 

aetobi A fragment of 
the AE-TOBI 
database: Read 
and 
spontaneous 
speech. 

American 
English 

17 various Audio Word, tonal, 
break. 

Beckman et al 
(2005); Pitrelli 
et al (1994); 
Silverman et 
al (1992) 

ae Read 
sentences 

Australian 
English 

7 1M Audio, 
spectra, 
formants 

Prosodic, 
phonetic, 
tonal. 

Millar et al 
(1997); Millar 
et al (1994) 

andosl Read 
sentences 

Australian 
English 

200 2M Audio, 
formants 

Same as ae Millar et al 
(1997); Millar 
et al (1994) 

ema5 
(ema) 

Read 
sentences 

Standard 
German 

20 1F Audio, 
EMA  

Word, 
phonetic, 
tongue-tip, 
tongue-body 

Bombien et al 
(2007) 

epgassim Isolated words Australian 
English 

60 1F Audio, 
EPG 

Word, 
phonetic 

Stephenson & 
Harrington 
(2002); 
Stephenson 
(2003) 

epgcoutts Read speech Australian 
English 

2 1F Audio, 
EPG 

Word. Passage from 
Hewlett & 
Shockey 
(1992) 

epgdorsal Isolated words German 45 1M Audio, 
EPG, 
formants 

Word, 
phonetic. 

Ambrazaitis & 
John (2004) 

epgpolish Read 
sentences 

Polish 40 1M Audio, 
EPG 

Word, 
phonetic 

Guzik & 
Harrington 
(2007) 

first 5 utterances from gerplosives 
gerplosives Isolated words 

in carrier 
sentence 

German 72 1M Audio, 
spectra 

Phonetic Unpublished 

gt Continous 
speech 

German 9 various Audio, f0 Word, 
Break, Tone 

Utterances 
from various 
sources 

isolated Isolated word 
production 

Australian 
English 

218 1M Audio, 
formants. 
b-widths 

Phonetic As ae above 
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kielread Read 
sentences 

German 200 1M, 1F Audio, 
formants 

Phonetic Simpson 
(1998), 
Simpson et al 
(1997). 

mora  Read Japanese 1 1F Audio Phonetic Unpublished 
second Two speakers from gerplosives 
stops Isolated words 

in carrier 
sentence 

German 470 3M,4F Audio, 
formants 

Phonetic unpublished 

timetable Timetable  
enquiries 

German 5 1M Audio Phonetic As 
kielread 
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Preface 
 In undergraduate courses that include phonetics, students typically acquire skills both in 
ear-training and an understanding of the acoustic, physiological, and perceptual characteristics of 
speech sounds. But there is usually less opportunity to test this knowledge on sizeable quantities 
of speech data partly because putting together any database that is sufficient in extent to be able 
to address non-trivial questions in phonetics is very time-consuming. In the last ten years, this 
issue has been offset somewhat by the rapid growth of national and international speech corpora 
which has been driven principally by the needs of speech technology. But there is still usually a 
big gap between the knowledge acquired in phonetics from classes on the one hand and applying 
this knowledge to available speech corpora with the aim of solving different kinds of theoretical 
problems on the other. The difficulty stems not just from getting the right data out of the corpus 
but also in deciding what kinds of graphical and quantitative techniques are available and 
appropriate for the problem that is to be solved. So one of the main reasons for writing this book 
is a pedagogical one: it is to bridge this gap between recently acquired knowledge of 
experimental phonetics on the one hand and practice with quantitative data analysis on the other. 
The need to bridge this gap is sometimes most acutely felt when embarking for the first time on a 
larger-scale project, honours or masters thesis in which students collect and analyse their own 
speech data. But in writing this book, I also have a research audience in mind. In recent years, it 
has become apparent that quantitative techniques have played an increasingly important role  in 
various branches of linguistics, in particular in  laboratory phonology and sociophonetics that 
sometimes depend on  sizeable quantities of speech data labelled at various levels (see e.g., Bod 
et al, 2003 for a similar view). 
 This book is something of a departure from most other textbooks on phonetics in at least 
two ways. Firstly, and as the preceding paragraphs have suggested, I will assume a basic grasp of 
auditory and acoustic phonetics: that is, I will assume that the reader is familiar with basic 
terminology in the speech sciences, knows about the international phonetic alphabet, can 
transcribe speech at broad and narrow levels of detail and has a working knowledge of basic 
acoustic principles such as the source-filter theory of speech production. All of this has been 
covered many times in various excellent phonetics texts and the material in e.g., Clark et al. 
(2005), Johnson (2004), and Ladefoged (1962) provide a firm grounding for such issues that are 
dealt with in this book.  The second way in which this book is somewhat different from others is 
that it is more of a workbook than a textbook. This is partly again for pedagogical reasons:  It is 
all very well being told (or reading) certain supposed facts about the nature of speech but until 
you get your hands on real data and test them, they tend to mean very little (and may even be 
untrue!). So it is for this reason that I have tried to convey something of the sense of data 
exploration using existing speech corpora, supported where appropriate by exercises. From this 
point of view, this book is similar in approach to Baayen (in press) and Johnson (2008) who also 
take a workbook approach based on data exploration and whose analyses are, like those of this 
book, based on the R computing and programming environment. But this book is also quite 
different from Baayen (in press) and Johnson (2008) whose main concerns are with statistics 
whereas mine is with techniques. So our approaches are complementary especially since they all 
take place in the same programming environment: thus the reader can apply the statistical 
analyses that are discussed by these authors to many of the data analyses, both acoustic and 
physiological, that are presented at various stages in this book. 
 I am also in agreement with Baayen and Johnson about why R is such a good 
environment for carrying out data exploration of speech: firstly, it is free, secondly  it provides 
excellent graphical facilities, thirdly it has almost every kind of statistical test that a speech 
researcher is likely to need, all the more so since R is open-source and  is used in many other 
disciplines beyond speech such as economics, medicine, and various other branches of science. 
Beyond this, R is flexible in allowing the user to write and adapt scripts to whatever kind of 
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analysis is needed, it is very well adapted to manipulating combinations of numerical and 
symbolic data (and is therefore ideal for a field such as phonetics which is concerned with 
relating signals to symbols).  

Another reason for situating the present book in the R programming environment is 
because those who have worked on, and contributed to, the Emu speech database project have 
developed a library of R routines that are customised for various kinds of speech analysis. This 
development has been ongoing for about 20 years now1 since the time in the late 1980s when 
Gordon Watson suggested to me during my post-doctoral time at the Centre for Speech 
Technology Research, Edinburgh University  that the S programming environment, a forerunner 
of R,  might be just what we were looking for in querying and analysing speech data and indeed, 
one or two of the functions that he wrote then, such as the routine for plotting ellipses are still 
used today.  
 I would like to thank a number of people who have made writing this book possible. 
Firstly, there are all of those who have contributed to the development of the Emu speech 
database system in the last 20 years. Foremost Steve Cassidy who was responsible for the query 
language and the object-oriented implementation that underlies much of the Emu code in the R 
library, Andrew McVeigh who first implemented a hierarchical system that was also used by 
Janet Fletcher in a timing analysis of a speech corpus (Fletcher & McVeigh, 1991); Catherine 
Watson who wrote many of the routines for spectral analysis in the 1990s; Michel Scheffers and 
Lasse Bombien who were together responsible for the adaptation of the xassp speech signal 
processing system2 to Emu and to Tina John who has in recent years contributed extensively to 
the various graphical-user-interfaces, to  the development of the Emu database tool and  Emu-to-
Praat conversion routines. Secondly, a number of people have provided feedback on using Emu, 
the Emu-R system, or on earlier drafts of this book as well as data for some of the corpora, and 
these include most of the above and also Stefan Baumann, Mary Beckman, Bruce Birch, Felicity 
Cox, Karen Croot, Christoph Draxler, Yuuki Era, Martine Grice, Christian Gruttauer, Phil Hoole, 
Marion Jaeger, Klaus Jänsch, Felicitas Kleber, Claudia Kuzla, Friedrich Leisch, Janine 
Lilienthal, Katalin Mády, Stefania Marin, Jeanette McGregor, Christine Mooshammer, Doris 
Mücke, Sallyanne Palethorpe, Marianne Pouplier, Tamara Rathcke, Uwe Reichel, Ulrich 
Reubold, Michel Scheffers, Elliot Saltzman,  Florian Schiel, Lisa Stephenson, Marija Tabain, 
Hans Tillmann, Nils Ülzmann and Briony Williams. I am also especially grateful to the 
numerous students both at the IPS, Munich and at the IPdS Kiel for many useful comments in 
teaching Emu-R over the last seven years. I would also like to thank Danielle Descoteaux and 
Julia Kirk of Wiley-Blackwell for their encouragement and assistance in seeing the production of 
this book completed, the very many helpful comments from four anonymous Reviewers on an 
earlier version of this book Sallyanne Palethorpe for her detailed comments in completing the 
final stages of this book and to Tina John both for contributing material for the on-line 
appendices and with producing many of the figures in the earlier Chapters. 
 
  
 
 
 
 
 
 
 
 

                                                
1 For example in reverse chronological order: Bombien et al (2006), Harrington et al (2003), Cassidy (2002), 
Cassidy & Harrington (2001), Cassidy (1999), Cassidy & Bird (2000), Cassidy et al. (2000), Cassidy & Harrington 
(1996), Harrington et al (1993), McVeigh & Harrington (1992). 
2 http://www.ipds.uni-kiel.de/forschung/xassp.de.html  
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Notes of downloading software  
Both R and Emu run on Linux, Mac OS-X, and Windows platforms. In order to run the various 
commands in this book, the reader needs to download and install software as follows. 
 
I. Emu 

1. Download the latest release of the Emu Speech Database System from the download 
section at http://emu.sourceforge.net    

2. Install the Emu speech database system by executing the downloaded file and following 
the on-screen instructions. 

II. R 
3. Download the R programming language from http://www.cran.r-project.org    
4. Install the R programming language by executing the downloaded file and following the 

on-screen instructions. 
III. Emu-R 

5. Start up R  
6. Enter install.packages("emu") after the > prompt. 
7. Follow the on-screen instructions.  
8. If the following message appears: "Enter nothing and press return to exit this 

configuration loop." then you will need to enter the path where Emu's library (lib) is 
located and enter this after the R prompt. 

• On Windows, this path is likely to be C:\Program Files\EmuXX\lib where XX 
is the current version number of Emu, if you installed Emu at C:\Program Files. 
Enter this path with forward slashes i.e. C:/Program Files/EmuXX/lib 

• On Linux the path may be /usr/local/lib or  /home/USERNAME/Emu/lib 
• On Mac OS X the path may be /Library/Tcl 

IV. Getting started with Emu 
9. Start the Emu speech database tool. 

• Windows: choose Emu Speech Database System -> Emu from the Start 
Menu.  

• Linux: choose Emu Speech Database System from the applications menu or 
type Emu in the terminal window.  

• Mac OS X: start Emu in the Applications folder. 
V.  Additional software 

10. Praat  
• Download Praat from www.praat.org 
• To install Praat follow the instruction at the download page. 

11. Wavesurfer which is included in the Emu setup and installed in these locations:. 
• Windows: EmuXX/bin. 
• Linux: /usr/local/bin; /home/'username'/Emu/bin 
• Mac OS X: Applications/Emu.app/Contents/bin 

VI. Problems 
12. See FAQ at http://emu.sourceforge.net  
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Chapter 1 Using speech corpora in phonetics research 
 
1.0 The place of corpora in the phonetic analysis of speech  
 One of the main concerns in phonetic analysis is to find out how speech sounds are 
transmitted between a speaker and a listener in human speech communication. A speech corpus 
is a collection of one or more digitized utterances usually containing acoustic data and often 
marked for annotations. The task in this book is to discuss some of the ways that a corpus can be 
analysed to test hypotheses about how speech sounds are communicated. But why is a speech 
corpus needed for this at all? Why not instead listen to speech, transcribe it, and use the 
transcription as the main basis for an investigation into the nature of spoken language 
communication? There is no doubt as Ladefoged (1995) has explained in his discussion of 
instrumentation in field work that being able to hear and re-produce the sounds of a language is a 
crucial first step in almost any kind of phonetic analysis. Indeed many hypotheses about the way 
that sounds are used in speech communication stem in the first instance from just this kind of 
careful listening to speech. However, an auditory transcription is at best an essential initial 
hypothesis but never an objective measure.  
 The lack of objectivity is readily apparent in comparing the transcriptions of the same 
speech material across a number of trained transcribers: even when the task is to carry out a 
fairly broad transcription and with the aid of a speech waveform and spectrogram, there will still 
be inconsistencies from one transcriber to the next; and all these issues will be considerably 
aggravated if phonetic detail is to be included in narrower transcriptions or if, as in much 
fieldwork, auditory phonetic analyses are made of a language with which transcribers are not 
very familiar. A speech signal on the other hand is a record that does not change: it is, then, the 
data against which theories can be tested. Another difficulty with building a theory of speech 
communication on an auditory symbolic transcription of speech is that there are so many ways in 
which a speech signal is at odds with a segmentation into symbols: there are often no clear 
boundaries in a speech signal corresponding to the divisions between a string of symbols, and 
least of all where a lay-person might expect to find them, between words.  
 But apart from these issues, a transcription of speech can never get to the heart of how 
the vocal organs, acoustic signal, and hearing apparatus are used to transmit simultaneously 
many different kinds of information between a speaker and hearer. Consider that the production 
of  /t/ in an utterance tells the listener so much more than "here is a /t/ sound". If the spectrum of 
the  /t/ also has a concentration of energy at a low frequency, then this could be a cue that the 
following vowel is rounded. At the same time, the alveolar release might provide the listener 
with information about whether  /t/ begins or ends either a syllable or a word or a more major 
prosodic phrase and whether the syllable is stressed or not. The /t/ might also convey 
sociophonetic information about the speaker's dialect and quite possibly age group and 
socioeconomic status ( Docherty, 2007; Docherty & Foulkes, 2005). The combination of /t/ and 
the following vowel could tell the listener whether the word is prosodically accented and also 
even say something about the speaker's emotional state.  
 Understanding how these separate strands of information are interwoven in the details of 
speech production and the acoustic signal can be accomplished neither just by transcribing 
speech, but nor by analyses of recordings of individual utterances. The problem with analyses of 
individual utterances is that they risk being idiosyncratic: this is not only because of all of the 
different ways that speech can vary according to context, but also because the anatomical and 
speaking style differences between speakers all leave their mark on the acoustic signal: therefore, 
an analysis of a handful of speech sounds in one or two utterances may give a distorted 
presentation of the general principles according to which speech communication takes place. 
 The issues raised above and the need for speech corpora in phonetic analysis in general 
can be considered from the point of view of other more recent theoretical developments: that the 
relationship between phonemes and speech is stochastic. This is an important argument that has 
been made by Janet Pierrehumbert in a number of papers in recent years (e.g., 2002, 2003a, 
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2003b, 2006). On the one hand there are almost certainly different levels of abstraction, or, in 
terms of the episodic/exemplar models of speech perception and production developed by 
Pierrehumbert and others (Bybee, 2001; Goldinger, 1998; 2000; Johnson, 1997), generalisations 
that allow native speakers of a language to recognize that tip and pit are composed of the same 
three sounds but in the opposite order. Now it is also undeniable that different languages, and 
certainly different varieties of the same language,  often make broadly similar sets of phonemic 
contrasts: thus in many languages, differences of meaning are established as a result of contrasts 
between voiced and voiceless stops, or between oral stops and nasal stops at the same place of 
articulation, or between rounded and unrounded vowels of the same height,  and so on. But what 
has never been demonstrated is that two languages that make similar sets of contrast do so 
phonetically in exactly the same way. These differences might be subtle, but they are 
nevertheless present which means that such differences must have been learned by the speakers 
of the language or community.  
 But how do such differences arise? One way in which they are unlikely to be brought 
about is because languages or their varieties choose their sound systems from a finite set of 
universal features. At least so far, no-one has been able to demonstrate that the number of 
possible permutations that could be derived even from the most comprehensive of articulatory or 
auditory feature systems could account for the myriad of ways that the sounds of dialects and 
languages do in fact differ. It seems instead that, although the sounds of languages undeniably 
confirm to consistent patterns (as demonstrated in the ground-breaking study of vowel dispersion 
by Liljencrants & Lindblom, 1972), there is also an arbitrary, stochastic component to the way in 
which the association between abstractions like phonemes and features evolves and is learned by 
children (Beckman et al, 2007; Edwards & Beckman, 2008; Munson et al, 2005).  
 Recently, this stochastic association between speech on the one hand and phonemes on 
the other has been demonstrated computationally using so-called agents equipped with simplified 
vocal tracts and hearing systems who imitate each other over a large number of computational 
cycles (Wedel, 2006, 2007). The general conclusion from these studies is that while stable 
phonemic systems emerge from these initially random imitations, there are a potentially infinite 
number of different ways in which phonemic stability can be achieved (and then shifted in sound 
change - see also Boersma & Hamann, 2008). A very important idea to emerge from these 
studies is that the phonemic stability of a language does not require a priori a selection to be 
made from a pre-defined universal feature system, but might emerge instead as a result of 
speakers and listeners copying each other  imperfectly (Oudeyer, 2002, 2004). 
 If we accept the argument that the association between phonemes and the speech signal is 
not derived deterministically by making a selection from a universal feature system, but is 
instead arrived at stochastically by learning generalisations across produced and perceived 
speech data, then it necessarily follows that analyzing corpora of speech must be one of the 
important ways in which we can understand how different levels of abstraction such as 
phonemes and other prosodic units are communicated in speech.  
 Irrespective of these theoretical issues, speech corpora have become increasingly 
important in the last 20-30 years as the primary material on which to train and test human-
machine communication systems. Some of the same corpora that have been used for 
technological applications have also formed part of basic speech research (see 1.1 for a summary 
of these). One of the major benefits of these corpora is that they foster a much needed 
interdisciplinary approach to speech analysis, as researchers from different disciplinary 
backgrounds apply and exchange a wide range of techniques for analyzing the data. 
 Corpora that are suitable for phonetic analysis may become available with the increasing 
need for speech technology systems to be trained on various kinds of fine phonetic detail 
(Carlson & Hawkins, 2007). It is also likely that corpora will be increasingly useful for the study 
of sound change as more archived speech data becomes available with the passage of time 
allowing sound change to be analysed either longitudinally in individuals (Harrington, 2006; 
Labov & Auger, 1998) or within a community using so-called real-time studies (for example, by 
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comparing the speech characteristics of subjects from a particular age group recorded today with 
those of a comparable age group and community recorded several years' ago - see Sankoff, 2005; 
Trudgill, 1988).  Nevertheless, most types of phonetic analysis still require collecting small 
corpora that are dedicated to resolving a particular research question and associated hypotheses 
and some of the issues in designing such corpora are discussed in 1.2. 
 Finally, before covering some of these design criteria, it should be pointed out that 
speech corpora are by no means necessary for every kind of phonetic investigation and indeed 
many of the most important scientific breakthroughs in phonetics in the last fifty years have 
taken place without analyses of large speech corpora. For example, speech corpora are usually 
not needed for various kinds of articulatory-to-acoustic modeling nor for many kinds of studies 
in speech perception in which the aim is to work out, often using speech synthesis techniques, 
the sets of cues that are functional i.e. relevant for phonemic contrasts.  
 
1.1 Existing speech corpora for phonetic analysis 
 The need to provide an increasing amount of training and testing materials has been one 
of the main driving forces in creating speech and language corpora in recent years. Various sites 
for their distribution have been established and some of the more major ones include: the 
Linguistic data consortium (Reed et al, 2008)3 , which is a distribution site for  speech and 
language resources and is located at the University of Pennsylvania; ELRA4, the European 
language resources association, established in 1995 and which validates, manages, and 
distributes speech corpora and whose operational body is ELDA5 (evaluations and language 
resources distribution agency). There are also a number of other repositories for speech and 
language corpora including the Bavarian Archive for Speech Signals6 at the University of 
Munich, various corpora at the Center for Spoken Language Understanding at the University of 
Oregon7, the TalkBank consortium at Carnegie Mellon University8 and the DOBES archive of 
endangered languages at the Max-Planck Institute in Nijmegen9.  
 Most of the corpora from these organizations serve primarily the needs for speech and 
language technology, but there are a few large-scale corpora that have also been used to address 
issues in phonetic analysis, including the Switchboard and TIMIT corpora of American English. 
The Switchboard corpus (Godfrey et al, 1992) includes over 600 telephone conversations from 
750 adult American English speakers of a wide range of ages and varieties from both genders 
and was recently analysed by Bell et al (2003) in a study investigation the relationship between 
predictability and the phonetic reduction of function words. The TIMIT database (Garofolo et al, 
1993; Lamel et al, 1986) has been one of the most studied corpora for assessing the performance 
of speech recognition systems in the last 20-30 years. It includes 630 talkers and 2342 different 
read speech sentences, comprising over five hours of speech and has been included in various 
phonetic studies on topics such as variation between speakers (Byrd, 1992), the acoustic 
characteristics of stops (Byrd, 1993), the relationship between gender and dialect (Byrd, 1994), 
word and segment duration (Keating et al, 1994), vowel and consonant reduction (Manuel et al, 
1992), and vowel normalization (Weenink, 2001). One of the most extensive corpora of a 
European language other than English is the Dutch CGN corpus10 (Oostdijk, 2000; Pols, 2001). 
This is the largest corpus of contemporary Dutch spoken by adults in Flanders and the 
Netherlands and includes around 800 hours of speech. In the last few years, it has been used to 
study the sociophonetic variation in diphthongs (Jacobi et al, 2007). For German, The Kiel 

                                                
3 http://www.ldc.upenn.edu/ 
4 http://www.elra.info/ 
5 http://www.elda.org/ 
6 http://www.phonetik.uni-muenchen.de/Bas/BasHomeeng.html 
7 http://www.cslu.ogi.edu/corpora/corpCurrent.html 
8 http://talkbank.org/ 
9 http://www.mpi.nl/DOBES 
10 http://lands.let.kun.nl/cgn/ehome.htm 
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Corpus of Speech11 includes several hours of speech annotated at various levels (Simpson 1998; 
Simpson et al, 1997) and has been instrumental in studying different kinds of connected speech 
processes (Kohler, 2001; Simpson, 2001; Wesener, 2001).  
  One of the most successful corpora for studying the relationship between discourse 
structure, prosody, and intonation has been the HCRC map task corpus12 (Anderson et al, 1991) 
containing 18 hours of annotated spontaneous speech recorded from 128 two-person 
conversations according to a task-specific experimental design (see below for further details). 
The Australian National Database of Spoken Language13 (Millar et al, 1994, 1997) also contains 
a similar range of map task data for Australian English. These corpora have been used to 
examine the relationship between speech clarity and the predictability of information (Bard et al, 
2000) and also to investigate the way that boundaries between dialogue acts interact with 
intonation and suprasegmental cues (Stirling et al, 2001). More recently, two corpora have been 
developed intended mostly for phonetic and basic speech research: these are the Buckeye 
corpus14 consisting of 40 hours of spontaneous American English speech annotated at word and 
phonetic levels (Pitt et al, 2005) that has recently been used to model /t, d/ deletion (Raymond et 
al, 2006). Another is the Nationwide Speech Project (Clopper & Pisoni, 2006) which is 
especially useful for studying differences in American varieties. It contains 60 speakers from six 
regional varieties of American English and parts of it are available from the Linguistic Data 
Consortium. 
 Databases of speech physiology are much less common than those of speech acoustics 
largely because they have not evolved in the context of training and testing speech technology 
systems (which is the main source of funding for speech corpus work). Some exceptions are the 
ACCOR speech database (Marchal & Hardcastle, 1993; Marchal et al, 1993) developed in the 
1990s to investigate coarticulatory phenomena in a number of European languages and which 
includes laryngographic, airflow, and electropalatographic data (the database is available from 
ELRA). Another is the University of Wisconsin X-Ray microbeam speech production database 
(Westbury, 1994) which includes acoustic and movement data from 26 female and 22 male 
speakers of a Midwest dialect of American English aged between 18 and 37 of age. Thirdly, the 
MOCHA-TIMIT15 database (Wrench & Hardcastle, 2000) is made up of synchronized 
movement data from the supralaryngeal articulators, electropalatographic data, and a 
laryngographic signal of part of the TIMIT database produced by subjects of different English 
varieties. These databases have been incorporated into phonetic studies in various ways: for 
example, the Wisconsin database was used by Simpson (2002) to investigate the differences 
between male and female speech and the MOCHA-TIMIT database formed part of a study by 
Kello & Plaut (2003) to explore feedforward learning association between articulation and 
acoustics in a cognitive speech production model. 
 Finally, there are many opportunities to obtain quantities of speech data from archived 
broadcasts (e.g., in Germany from the Institut für Deutsche Sprache in Mannheim; in the U.K. 
from the BBC). These are often acoustically of high quality. However, it is unlikely they will 
have been annotated, unless they have been incorporated into an existing corpus design, as was 
the case in the development of the Machine Readable Corpus of Spoken English (MARSEC) 
created by Roach et al (1993) based on recordings from the BBC. 
 
1.2 Designing your own corpus 
 Unfortunately, most kinds of phonetic analysis still require building a speech corpus that 
is designed to address a specific research question. In fact, existing large-scale corpora of the 
kind sketched above are very rarely used in basic phonetic research, partly because, no matter 

                                                
11 http://www.ipds.uni-kiel.de/forschung/kielcorpus.en.html 
12 http://www.hcrc.ed.ac.uk/maptask/ 
13 http://andosl.anu.edu.au/andosl/ 
14 http://vic.psy.ohio-state.edu/ 
15 http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html 
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how extensive they are, a researcher inevitably finds that one or more aspects of the speech 
corpus in terms of speakers, types of materials, speaking styles, are insufficiently covered for the 
research question to be completed. Another problem is that an existing corpus may not have been 
annotated in the way that is needed. A further difficulty is that the same set of speakers might be 
required  for a follow-up speech perception experiment after an acoustic corpus has been 
analysed, and inevitably access to the subjects of the original recordings is out of the question, 
especially if the corpus had been created a long time ago.  
 Assuming that you have to put together your own speech corpus, then various issues in 
design need to be considered, not only to make sure that the corpus is adequate for answering the 
specific research questions that are required of it, but also that it is re-usable possibly by other 
researchers at a later date. It is important to give careful thought to designing the speech corpus, 
because collecting and especially annotating almost any corpus is usually very time-consuming.  
Some non-exhaustive issues, based to a certain extent on Schiel & Draxler (2004) are outlined 
below. The brief review does not cover recording acoustic and articulatory data from endangered 
languages which brings an additional set of difficulties as far as access to subjects and designing 
materials are concerned (see in particular Ladefoged, 1995, 2003). 
 
1.2.1 Speakers 
 Choosing the speakers is obviously one of the most important issues in building a speech 
corpus. Some primary factors to take into account include the distribution of speakers by gender, 
age, first language, and variety (dialect); it is also important to document any known speech or 
hearing pathologies. For sociophonetic investigations, or studies specifically concerned with 
speaker characteristics, a further refinement according to many other factors such as educational 
background, profession, socioeconomic group (to the extent that this is not covered by variety) 
are also likely to be important (see also Beck, 2005 for a detailed discussed of the parameters of 
a speaker's vocal profile based to a large extent on Laver, 1980, 1991). All of the above-
mentioned primary factors are known to exert quite a considerable influence on the speech signal 
and therefore have to be controlled for in any experiment comparing two of more speaking 
groups. Thus it would be inadvisable in comparing, say, speakers of two different varieties to 
have a predominance of male speakers in one group, and female speakers in another, or one 
group with mostly young and the other with mostly older speakers. Whatever speakers are 
chosen, it is, as Schiel & Draxler (2004) comment, of great importance that as many details of 
the speakers are documented as possible (see also Millar, 1991), should the need arise to check 
subsequently whether the speech data might have been influenced by a particular speaker 
specific attribute. 
 The next most important criterion is the number of speakers. Following Gibbon et al. 
(1997), speech corpora of between 1-5 speakers are typical in the context of speech synthesis 
development, while more than 50 speakers are needed for adequately training and testing 
systems for the automatic recognition of speech. For most experiments in experimental phonetics 
of the kind reported in this book, a speaker sample size within this range, and between 10 and 20 
is usual. In almost all cases, experiments involving invasive techniques such as electromagnetic 
articulometry and electropalatography discussed in Chapters 5 and 7 of this book rarely have 
more than five speakers because of the time taken to record and analyse the speech data and the 
difficulty in finding subjects. 
 
1.2.2 Materials 
 An equally important consideration in designing any corpus is the choice of materials. 
Four of the main parameters  according to which materials are chosen discussed in Schiel & 
Draxler (2004) are vocabulary, phonological distribution, domain, and task.  
 Vocabulary in a speech technology application such as automatic speech recognition 
derives from the intended use of the corpus: so a system for recognizing digits must obviously 
include the digits as part of the training material. In many phonetics experiments, a choice has to 
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be made between real words of the language and non-words. In either case, it will be necessary 
to control for a number of phonological criteria, some of which are outlined below (see also 
Rastle et al, 2002 and the associated website16 for a procedure for selecting non-words according 
to numerous phonological and lexical criteria). Since both lexical frequency and neighborhood 
density have been shown to influence speech production (Luce & Pisoni, 1998; Wright, 2004), 
then it could be important to control for these factors as well, possibly by retrieving these 
statistics from a corpus such as Celex (Baayen et al, 1995). Lexical frequency, as its name 
suggests, is the estimated frequency with which a word occurs in a language: at the very least, 
confounds between words of very high frequency, such as between function words which tend to 
be heavily reduced even in read speech, and less frequently occurring content words should be 
avoided. Words of high neighborhood density can be defined as those for which many other 
words exist by substituting a single phoneme (e.g., man and van are neighbors according to this 
criterion).  Neighborhood density is less commonly controlled for in phonetics experiments 
although as recent studies have shown (Munson & Solomon, 2004; Wright, 2004), it too can 
influence the phonetic characteristics of speech sounds. 
 The words that an experimenter wishes to investigate in a speech production experiment 
should not be presented to the subject in a list (which induces a so-called list prosody in which 
the subject chunks the lists into phrases, often with a falling melody and phrase-final lengthening 
on the last word, but a level or rising melody on all the others) but are often displayed on a 
screen individually or incorporated into a so-called carrier phrase. Both of these conditions will 
go some way towards neutralizing the effects of sentence-level prosody i.e., towards ensuring 
that the intonation, phrasing, rhythm and accentual pattern are the same from one target word to 
the next. Sometimes filler words need to be included in the list, in order to draw the subject's 
attention away from the design of the experiment. This is important because if any parts of the 
stimuli become predictable, then a subject might well reduce them phonetically, given the 
relationship between redundancy and predictability (Fowler & Housum, 1987; Hunnicutt, 1985; 
Lieberman, 1963).  
 For some speech technology applications, the materials are specified in terms of their 
phonological distribution.  For almost all studies in experimental phonetics, the phonological 
composition of the target words, in terms of factors such as their lexical-stress pattern, number of 
syllables, syllable composition, and segmental context is essential, because these all exert an 
infuence on the utterance. In investigations of prosody, materials are sometimes constructed in 
order to elicit certain kinds of phrasing, accentual patterns, or even intonational melodies. In 
Silverman & Pierrehumbert (1990), two subjects produced a variety of phrases like Ma Le Mann, 
Ma Lemm and Mamalie Lemonick with a prosodically accented initial syllable and identical 
intonation melody: they used these materials in order to investigate whether the timing of the 
pitch-accent was dependent on factors such as the number of syllables in the phrase and the 
presence or absence of word-boundaries. In various experiments by Keating and Colleagues (e.g. 
Keating et al, 2003), French, Korean, and Taiwanese subjects produced sentences that had been 
constructed to control for different degrees of boundary strength. Thus their French materials 
included sentences in which /na/ occurred at the beginning of phrases at different positions in the 
prosodic hierarchy, such as initially in the accentual phrase (Tonton, Tata, Nadia et Paul 
arriveront demain) and syllable-initially (Tonton et Anabelle...). In Harrington et al (2000), 
materials were designed to elicit the contrast between accented and deaccented words. For 
example, the name Beaber was accented in the introductory statement This is Hector Beaber, but 
deaccented in the question Do you want Anna Beaber or Clara Beaber (in which the nuclear 
accents falls on the preceding first name). Creating corpora such as these can be immensely 
difficult, however, because there will always be some subjects who do not produce them as the 
experimenter wishes (for example by not fully deaccenting the target words in the last example) 
or if they do, they might introduce unwanted variations in other prosodic variables. The general 

                                                
16 http://www.maccs.mq.edu.au/~nwdb 
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point is that subjects usually need to have some training in the production of materials in order to 
produce them with the degree of consistency required by the experimenter. However,  this leads 
to the  additional concern that the productions might not really be representative of prosody 
produced in spontaneous speech by the wider population. 
 These are some of the reasons why the production of prosody is sometimes studied using 
map task corpora (Anderson et al, 1991) of the kind referred to earlier, in which a particular 
prosodic pattern is not prescribed, but instead emerges more naturally out of a dialogue or 
situational context. The map task is an example of a corpus that falls into the category defined by 
Schiel & Draxler (2004) of being restricted by domain. In the map task, two dialogue partners 
are given slightly different versions of the same map and one has to explain to the other how to 
navigate a route between two or more points along the map. An interesting variation on this is 
due to Peters (2006) in which the dialogue partners discuss the contents of two slightly different 
video recordings of a popular soap opera that both subjects happen to be interested in: the 
interest factor has the potential additional advantage that the speakers will be distracted by the 
content of the task, and thereby produce speech in a more natural way. In either case, a fair 
degree of prosodic variation and spontaneous speech are guaranteed. At the same time, the 
speakers' choice of prosodic patterns and lexical items tends to be reasonably constrained, 
allowing comparisons between different speakers on this task to be made in a meaningful way.  
 In some types of corpora, a speaker will be instructed to solve a particular task. The 
instructions might be fairly general as in the map task or the video scenario described above or 
they might be more specific such as describing a picture or answering a set of questions. An 
example of a task-specific recording is in Shafer et al (2000) who used a cooperative game task 
in which subjects disambiguated in their productions ambiguous sentences such as move the 
square with the triangle (meaning either: move a house-like shape consisting of a square with a 
triangle on top of it; or, move a square piece with a separate triangular piece). Such a task allows 
experimenters to restrict the dialogue to a small number of words, it distracts speakers from the 
task at hand (since speakers have to concentrate on how to move pieces rather than on what they 
are saying) while at the same time eliciting precisely the different kinds of prosodic parsings 
required by the experimenter in the same sequence of words. 
 
1.2.3 Some further issues in experimental design 
 Experimental design in the context of phonetics is to do with making choices about the 
speakers, materials, number of repetitions and other issues that form part of the experiment in 
such a way that the validity of a hypothesis can be quantified and tested statistically. The 
summary below touches only very briefly on some of the matters to be considered at the stage of 
laying out the experimental design, and the reader is referred to  Robson (1994), Shearer (1995), 
and Trochim (2007) for many further useful details. What is presented here is also mostly about 
some of the design criteria that are relevant for the kind of experiment leading to a statistical test 
such as analysis of variance (ANOVA). It is quite common for ANOVAs to be applied to 
experimental speech data, but this is obviously far from the only kind of statistical test that 
phoneticians need to apply, so some of the issues discussed will not necessarily be relevant for 
some types of phonetic investigation.  
 In a certain kind of experiment that is common in experimental psychology and 
experimental phonetics, a researcher will often want to establish whether a dependent variable is 
affected by one or more independent variables. The dependent variable is what is measured and 
for the kind of speech research discussed in this book, the dependent variable might be any one 
of duration, a formant frequency at a particular time point, the vertical or horizontal position of 
the tongue at a displacement maximum and so on. These are all examples of continuous 
dependent variables because, like age or temperature, they can take on an infinite number of 
possible values within a certain range. Sometimes the dependent variable might be categorical, 
as in eliciting responses from subjects in speech perception experiments in which the response is 
a specific category (e.g, a listener labels a stimulus as either /ba/ or /pa/). Categorical variables 
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are common in sociophonetic research in which counts are made of data (e.g. a count of the 
number of times that a speaker produces /t/ with or without glottalisation).  
 The independent variable, or factor, is what you believe has an influence on the dependent 
variable. One type of independent variable that is common in experimental phonetics comes 
about when a comparison is made between two or more groups of speakers such as between 
male and female speakers. This type of independent variable is sometimes (for obvious reasons) 
called a between-speaker factor which in this example might be given a name like Gender. 
Some further useful terminology is to do with the number of levels of the factor. For this 
example, Gender has two levels, male and female. The same speakers could of course also 
be coded for other between-speaker factors. For example, the same speakers might be coded for 
a factor Variety with three levels: Standard English, Estuary English and 
Cockney. Gender and Variety in this example are nominal because the levels are not rank 
ordered in any way. If the ordering matters then the factor is ordinal (for example Age could be 
an ordinal factor if you wanted to assess the effects on increasing age of the speakers). 
 Each speaker that is analysed can be assigned just one level of each between-speaker 
factor: so each speaker will be coded as either male or female, and as either Standard 
English, or Estuary English or Cockney. This example would also sometimes be 
called a 2 x 3 design, because there are two factors with two (Gender) and three (Variety) 
levels. An example of a 2 x 3 x 2 design would have three factors with the corresponding number 
of levels: e.g., the subjects are coded not only for Gender and Variety as before, but also for 
Age with two levels, young and old. Some statistical tests require that the design should be 
approximately balanced: specifically, a given between-subjects factor should have equal 
numbers of subjects distributed across its levels. For the previous example with two factors, 
Gender and Variety, a balanced design would be one that had 12 speakers, 6 males and 6 
females, and 2 male and 2 female speakers per variety. Another consideration is that the more 
between-subjects factors that you include, then evidently the greater the number of speakers 
from which recordings have to be made. Experiments in phonetics are often restricted to no more 
than two or three between-speaker factors, not just because of considerations of the size of the 
subject pool, but also because the statistical analysis in terms of interactions becomes 
increasingly unwieldy for a larger number of factors. 
 Now suppose you wish to assess whether these subjects show differences of vowel 
duration in words with a final /t/ like white compared with words with a final /d/ like wide. In 
this case, the design might include a factor Voice and it has two levels: [-voice] (words 
like white) and [+voice] (words like wide). One of the things that makes this type of factor 
very different from the between-speaker factors considered earlier is that subjects produce (i.e., 
are measured on) all of the factor's levels: that is, the subjects will produce words that are both 
[-voice] and [+voice]. Voice in this example would sometimes be called a within-
subject or within-speaker factor and because subjects are measured on all of the levels of 
Voice, it is also said to be repeated. This is also the reason why if you wanted to use an 
ANOVA to work out whether [+voice] and [-voice] words differed in vowel duration, 
and also whether such a differences manifested itself in the various speaker groups, you would 
have to use a repeated measures ANOVA. Of course, if one group of subjects produced the [-
voice] words and another group the [+voice] words, then Voice would not be a repeated 
factor and so a conventional ANOVA could be applied. However, in experimental phonetics this 
would not be a sensible approach, not just because you would need many more speakers, but also 
because the difference between [-voice] and [+voice] words in the dependent variable 
(vowel duration) would then be confounded with speaker differences. So this is why repeated or 
within-speaker factors are very common in experimental phonetics. Of course in the same way 
that there can be more than one between-speaker factor, there can also be two or more within-
speaker factors. For example, if the [-voice] and [+voice] words were each produced at a 
slow and a fast rate, then Rate would also be a within-speaker factor with two levels (slow and 
fast). Rate, like Voice,  is a within-speaker factor because the same subjects have been 



    22 

 

measured once at a slow, and once at a fast rate. 
 The need to use a repeated measures ANOVA comes about, then, because the subject is 
measured on all the levels of a factor and (somewhat confusingly) it has nothing whatsoever to 
do with repeating the same level of a factor in speech production, which in experimental 
phonetics is rather common. For example, the subjects might be asked to repeat (in some 
randomized design) white at a slow rate five times. This repetition is done to counteract the 
inherent variation in speech production. One of the very few uncontroversial facts of speech 
production is that no subject can produce the same utterance twice even under identical 
recording conditions in exactly the same way. So since a single production of a target word could 
just happen to be a statistical aberration, researchers in experimental phonetics usually have 
subjects produce exactly the same materials many times over:  this is especially so in 
physiological studies, in which this type of inherent token-to-token variation is usually so much 
greater in articulatory than in acoustic data. However, it is important to remember that repetitions 
of the same level of a factor (the multiple values from each subject's slow production of white) 
cannot be entered into many standard statistical tests such as a repeated measures ANOVA and 
so they typically need to be averaged (see Max & Onghena, 1999 for some helpful details on 
this). So even if, as in the earlier example, a subject repeats white and wide each several times at 
both slow and fast rates, only 4 values per subject can be entered into the repeated measures 
ANOVA (i.e., the four mean values for each subject of: white at a slow rate, white at a fast rate, 
wide at a slow rate, wide at a fast rate). Consequently, the number of repetitions of identical 
materials should be kept sufficiently low because otherwise a lot of time will be spent recording 
and annotating a corpus without really increasing the likelihood of a significant result (on the 
assumption that the values that are entered into a repeated measures ANOVA averaged across 10 
repetitions of the same materials may not differ a great deal from the averages calculated from 
100 repetitions produced by the same subject). The number of repetitions and indeed total 
number of items in the materials should in any case be kept within reasonable limits because 
otherwise subjects are likely to become bored and, especially in the case of physiological 
experiments, fatigued, and these types of paralinguistic effects may well in turn influence their 
speech production. 
 The need to average across repetitions of the same materials for certain kinds of statistical 
test described in Max & Onghena (1999) seems justifiably bizarre to many experimental 
phoneticians, especially in speech physiology research in which the variation,  even in repeating 
the same materials,  may be so large that an average or median becomes fairly meaningless. 
Fortunately, there have recently been considerable advances in the statistics of mixed-effects 
modeling (see the special edition by Forster & Masson, 2008 on emerging data analysis and 
various papers within that; see also Baayen, in press),  which provides an alternative to the 
classical use of a repeated measures ANOVA. One of the many advantages of this technique is 
that there is no need to average across repetitions (Quené & van den Bergh, 2008). Another is 
that it provides a solution to the so-called language-as-fixed-effect problem (Clark, 1973). The 
full details of this matter need not detain us here: the general concern raised in Clark's (1973) 
influential paper is that in order to be sure that the statistical results generalize not only beyond 
the subjects of your experiment but also beyond the language materials (i.e., are not just specific 
to white, wide, and the other items of the word list), two separate (repeated-measures) ANOVAs 
need to be carried out, one so-called by-subjects and the other by-items (see Johnson, 2008 for a 
detailed exposition using speech data in R). The output of these two tests can then be combined 
using a formula to compute the joint F-ratio (and therefore the significance) from both of them. 
By contrast, there is no need in mixed-effects modeling to carry out and to combine two separate 
statistical tests in this way: instead, the subjects and the words can be entered as so-called 
random factors into the same calculation.   
 Since much of the cutting-edge mixed effects-modeling research in statistics has been 
carried out in R in the last ten years, there are corresponding R functions to carrying out mixed-
effects modeling that can be directly applied to speech data, without the need to go through the 
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often very tiresome complications of exporting the data, sometimes involving rearranging rows 
and columns for analysis using the more traditional  commercial statistical packages. 
 
1.2.4 Speaking style 
 A wide body of research in the last 50 years has shown that speaking style influences 
speech production characteristics: in particular, the extent of coarticulatory overlap, vowel 
centralization, consonant lenition and deletion are all likely to increase in progressing from 
citation-form speech, in which words are produced in isolation or in a carrier phrase, to read 
speech and to fully spontaneous speech (Moon & Lindblom, 1994). In some experiments, 
speakers are asked to produce speech at different rates so that the effect of increasing or 
decreasing tempo on consonants and vowels can be studied. However, in the same way that it 
can be difficult to get subjects to produce controlled prosodic materials consistently (see 1.2.2), 
the task of making subjects vary speaking rate is not without its difficulties. Some speakers may 
not vary their rate a great deal in changing from 'slow' to 'fast' and one person's slow speech may 
be similar to another subject's fast rate. Subjects may also vary other prosodic attributes in 
switching from a slow to a fast rate.  In reading a target word within a carrier phrase, subjects 
may well vary the rate of  the carrier phrase but not the focused target word that is the primary 
concern of the investigation: this might happen if the subject (not unjustifiably) believes the 
target word to be communicatively the most important part of the phrase, as a result of which it 
is produced slowly and carefully at all rates of speech. 
 The effect of emotion on prosody is a very much under-researched area that also has 
important technological applications in speech synthesis development. However, eliciting 
different kinds of emotion, such as a happy or sad speaking style is problematic. It is especially 
difficult, if not impossible, to elicit different emotional responses to the same read material, and, 
as Campbell (2002) notes, subjects often become self-conscious and suppress their emotions in 
an experimental task. An alternative then might be to construct passages that describe scenes 
associated with different emotional content, but then even if the subject achieves a reasonable 
degree of variation in emotion, any influence of emotion on the speech signal is likely to be 
confounded with the potentially far greater variation induced by factors such as the change in 
focus and prosodic accent, the effects of phrase-final lengthening, and the use of different 
vocabulary. (There is also the independent difficulty of quantifying how the extent of happiness 
and sadness with which the materials were produced). Another possibility is to have a trained 
actor produce the same materials in different emotional speaking styles (e.g., Pereira, 2000), but 
whether this type of forced variation by an actor really carries over to emotional variation in 
everyday communication can only be assumed but not easily verified (however see e.g., 
Campbell, 2002, 2004 and Douglas-Cowie et al, 2003 for some recent progress in approaches to 
creating corpora for 'emotion' and expressive speech). 
 
1.2.5 Recording setup17 
 Many experiments in phonetics are carried out in a sound-treated recording studio in 
which the effects of background noise can be largely eliminated and with the speaker seated at a 
controlled distance from a high quality microphone. Since with the possible exception of some 
fricatives, most of the phonetic content of the speech signal is contained below 8 kHz and taking 
into account the Nyquist theorem (see also Chapter 8) that only frequencies below half the 
sampling frequency can be faithfully reproduced digitally, the sampling frequency is typically at 
least 16 kHz in recording speech data. The signal should be recorded in an uncompressed or 
PCM (pulse code modulation) format and the amplitude of the signal is typically quantized in 16 

                                                
17 Two websites that provide helpful recording guidelines are those at  Talkbank and at the Phonetics Laboratory, 
University of Pennsylvania: 
http://www.talkbank.org/da/record.html 
http://www.talkbank.org/da/audiodig.html 
http://www.ling.upenn.edu/phonetics/FieldRecordingAdvice.html 
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bits: this means that the amplitude of each sampled data value occurs at one of a number of 216 
discrete steps which is usually considered adequate for representing speech digitally. With the 
introduction of the audio CD standard, a sampling frequency of 44.1 kHz and its divider 22.05 
kHz are also common. An important consideration in any recording of speech is to set the input 
level correctly: if it is too high, a distortion known as clipping can result while if it is too low, 
then the amplitude resolution will also be too low. For some types of investigations of 
communicative interaction between two or more speakers, it is possible to make use of a stereo 
microphone as a result of which data from the separate channels are interleaved or multiplexed 
(in which the samples from e.g., the left and right channels are contained in alternating 
sequence). However, Schiel & Draxler (2004) recommend instead using separate microphones 
since interleaved signals may be more difficult to process in some signal processing systems - for 
example, at the time of writing, the speech signal processing routines in Emu cannot be applied 
to stereo signals.  
 There are a number of file formats for storing digitized speech data including a raw 
format which has no header and contains only the digitized signal; NIST SPHERE defined by the 
National Institute for Standards and Technology, USA consisting of a readable header in plain 
text (7 bit US ASCII) followed by the signal data in binary form; and most commonly the 
WAVE file format which is a subset of Microsoft's RIFF specification for the storage of 
multimedia files. 
 If you make recordings beyond the recording studio, and in particular if this is done 
without technical assistance, then, apart from the sampling frequency and bit-rate, factors such as 
background noise and the distance of the speaker from the microphone need to be very carefully 
monitored. Background noise may be especially challenging: if you are recording in what seems 
to be a quiet room, it is nevertheless important to check that there is no other hum or interference 
from other electrical equipment such as an air-conditioning unit. Although present-day personal 
and notebook computers are equipped with built-in hardware for playing and recording high 
quality audio signals, Draxler (2008) recommends using an external device such as a USB 
headset for recording speech data. The recording should only be made onto a laptop in battery 
mode, because the AC power source can sometimes introduce noise into the signal18.  
 One of the difficulties with recording in the field is that you usually need separate pieces of 
software for recording the speech data and for displaying any prompts and recording materials to 
the speaker. Recently, Draxler & Jänsch (2004) have provided a solution to this problem by 
developing a freely available, platform-independent software system for handling multi-channel 
audio recordings known as SpeechRecorder19. It can record from any number of audio channels 
and has two screens that are seen separately by the subject and by the experimenter. The first of 
these includes instructions when to speak as well as the script to be recorded. It is also possible 
to present auditory or visual stimuli instead of text. The screen for the experimenter provides 
information about the recording level, details of the utterance to be recorded and which utterance 
number is being recorded. One of the major advantages of this system is not only that it can be 
run from almost any PC, but also that the recording sessions can be done with this software over 
the internet. In fact, SpeechRecorder has recently been used just for this purpose (Draxler & 
Jänsch, 2007) in the collection of data from teenagers in a very large number of schools from all 
around Germany. It would have been very costly to have to travel to the schools, so being able to 
record and monitor the data over the internet was an appropriate solution in this case. This type 
of internet solution would be even more useful, if speech data were needed across a much wider 
geographical area. 
  The above is a description of procedures for recording acoustic speech signals (see also 
for Draxler, 2008 for further details) but it can to a certain extent be extended to the collection 
physiological speech data. There is articulatory equipment for recording aerodynamic, laryngeal, 
and supralaryngeal activity and some information from lip movement could even be obtained 
                                                
18 Florian Schiel, personal communication. 
19 See http://www.phonetik.uni-muenchen.de/Bas/software/speechrecorder/ to download SpeechRecorder 
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with video recordings synchronized with the acoustic signal. However, video information is 
rarely precise enough for most forms of phonetic analyses. Collecting articulatory data is 
inherently complicated because most of the vocal organs are hidden and so the techniques are 
often invasive (see various Chapters in Hardcastle & Hewlett, 1999 and Harrington & Tabain, 
2004 for a discussion of some of these articulatory techniques). A physiological technique such 
as electromagnetic articulometry described in Chapter 5 also requires careful calibration; and 
physiological instrumentation tends to be expensive, restricted to laboratory use, and generally 
not easily useable without technical assistance. The variation within and between subjects in 
physiological data can be considerable, often requiring an analysis and statistical evaluation 
subject by subject. The synchronization of the articulatory data with the acoustic signal is not 
always a trivial matter and analyzing articulatory data can be very time-consuming, especially if 
data are recorded from several articulators. For all these reasons, there are far fewer experiments 
in phonetics using articulatory than acoustic techniques. At the same time, physiological 
techniques can provide insights into speech production control and timing which cannot be 
accurately inferred from acoustic techniques alone. 
 
1.2.6 Annotation 
 The annotation of a speech corpus refers to the creation of symbolic information that is 
related to the signals of the corpus in some way. It is always necessary for annotations to be 
time-aligned with the speech signals: for example, there might be an orthographic transcript of 
the recording and then the words might be further tagged for syntactic category, or sentences for 
dialogue acts, with these annotations being assigned any markers to relate them to the speech 
signal in time.  In the phonetic analysis of speech, the corpus usually has to be segmented and 
labeled which means that symbols are linked to the physical time scale of one or more signals. 
As described more fully in Chapter 4, a symbol may be either a segment that has a certain 
duration or else an event that is defined by a single point in time. The segmentation and labeling 
is often done manually by an expert transcriber with the aid of a spectrogram. Once part of the 
database has been manually annotated, then it can sometimes be used as training material for the 
automatic annotation of the remainder. The Institute of Phonetics and Speech Processing of the 
University of Munich makes extensive use of the Munich automatic segmentation system 
(MAUS) developed by Schiel (1999, 2004) for this purpose. MAUS typically requires a 
segmentation of the utterance in words based on which statistically weighted hypothesis of sub-
word segments can be  calculated and then verified against the speech signal.  Exactly this 
procedure was used to provide an initial phonetic segmentation of the acoustic signal for the 
corpus of movement data discussed in Chapter 5.  
 Manual segmentation tends to be more accurate than automatic segmentation and it has 
the advantage that segmentation boundaries can be perceptually validated by expert transcribers 
(Gibbon et al, 1997): certainly, it is always necessary to check the annotations and segment 
boundaries established by an automatic procedure, before any phonetic analysis can take place.  
However, an automatic procedure has the advantage over manual procedures not only of 
complete acoustic consistency but especially that annotation is accomplished much more 
quickly. 
 One of the reasons why manual annotation is complicated is because of the continuous 
nature of speech: it is very difficult to make use of external acoustic evidence to place a segment 
boundary between the consonants and vowel in a word like wheel because the movement 
between them is not discrete but continuous. Another major source of difficulty in annotating 
continuous or spontaneous speech is that there will be frequent mismatches between the phonetic 
content of the signal and the citation-form pronunciation. Thus run past might be produced with 
assimilation and deletion as [ɹʌmpɑ:s], actually as [aʃli] and so on (Laver, 1994). One of the 
difficulties for a transcriber is in deciding upon the extent to which reduction has taken place and 
whether segments overlap completely or partially. Another is in aligning the reduced forms with 
citation-form dictionary entries which is sometimes done in order to measure subsequently the 
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extent to which segmental reduction has taken place in different contexts (see Harrington et al, 
1993 and Appendix B of the website related to this book for an example of a matching algorithm 
to link reduced and citation forms and Johnson, 2004b for a technique which, like Harrington et 
al 1993, is based on dynamic programming for aligning the two types of transcription).  
 The inherent difficulty in segmentation can be offset to a certain extent by following 
some basic procedures in carrying out this task. One fairly obvious one is that it is best not to 
segment and label any more of the corpus than is necessary for addressing the hypotheses that 
are to be solved in analyzing the data phonetically, given the amount of time that manual 
segmentation and labeling takes. A related point (which is discussed in further detail in Chapter 
4) is that the database needs to be annotated in such a way that the speech data that is required 
for the analysis can be queried or extracted without too much difficulty. One way to think about 
manual annotation in phonetic analysis is that it acts as a form of scaffolding (which may not 
form part of the final analysis) allowing a user to access the data of interest. But just like 
scaffolding, the annotation needs to be firmly grounded which means that segment boundaries 
should be placed at relatively unambiguous acoustic landmarks if at all possible. For example, if 
you are interested in the rate of transition between semi-vowels and vowels in words like wheel,  
then it is probably not a good idea to have transcribers try to find the boundary at the juncture 
between the consonants and vowel for the reasons stated earlier that it is very difficult to do so, 
based on any objective criteria (leading to the additional problem that the consistency between 
separate transcribers might not be very high). Instead, the words might be placed in a carrier 
phrase so that the word onset and offset can be manually marked: the interval between the word 
boundaries could then be analysed algorithmically based on objective acoustic factors such as the 
maximum rate of formant change.  
 For all the reasons discussed so far, there should never really be any need for a complete, 
exhaustive segmentation and labeling of entire utterances into phonetic segments: it is too time-
consuming, unreliable, and is probably in any case not necessary for most types of phonetic 
analyses. If this type of exhaustive segmentation really is needed, as perhaps in measuring the 
variation in the duration of vowels and consonants in certain kinds of studies of speech rhythm 
(e.g., Grabe & Lowe, 2002), then you might consider using an automatic method of the kind 
mentioned earlier. Even if the boundaries have not all been accurately placed using the automatic 
procedure, it is still generally quicker to edit them subsequently rather  than placing boundaries 
using manual labeling from scratch. As far as manual labeling is concerned, it is once again 
important to adhere to guidelines especially if the task is carried out by multiple transcribers. 
There are few existing manuals that provide any detailed information about how to segment and 
label to a level of detail greater than a broad, phonemic segmentation (but see Keating et al, 1994 
for some helpful criteria in providing narrow levels of segmentation and labeling in English 
spontaneous speech; and al also Barry & Fourcin, 1992 for further details on different levels of 
labeling between the acoustic waveform and a broad phonemic transcription). For prosodic 
annotation, extensive guidelines have been developed for American and other varieties of 
English as well as for many other languages using the tones and break indices labeling system: 
see e.g, Beckman et al, (2005) and other references in Jun (2005). 
 Labeling physiological data brings a whole new set of issues beyond those that are 
encountered in acoustic analysis because of the very different nature of the signal. As discussed 
in Chapter 5, data from electromagnetic articulometry can often be annotated automatically for 
peaks and troughs in the movement and velocity signals, although these landmarks are certainly 
not always reliably present, especially in more spontaneous styles of speaking. 
Electropalatographic data could be annotated at EPG landmarks such as points of maximum 
tongue-palate contact, but this is especially time-consuming given that the transcriber has to 
monitor several contacts of several palatograms at once. A better solution might be to carry out a 
coarse acoustic phonetic segmentation  manually or automatically that includes the region where 
the point of interest in the EPG signal is likely to be, and then to find landmarks like the 
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maximum or minimum points of contact automatically (as described in Chapter 7), using the 
acoustic boundaries as reference points.  
 Once the data has been annotated, then it is important to carry out some form of 
validation, at least of a small, but representative part of the database. As Schiel & Draxler (2004) 
have noted, there is no standard way of doing this, but they recommend using an automatic 
procedure for calculating the extent to which segment boundaries overlap (they also point out 
that the boundary times and annotations should be validated separately although the two are not 
independent, given that if a segment is missing in one transcriber's data, then the times of the 
segment boundaries will be distorted). For phoneme-size boundaries, they report that phoneme 
boundaries from separate transcribers are aligned within 20 ms of each other in 95% of read 
speech and 85% of spontaneous speech. Reliability for prosodic annotations is somewhat lower 
(see e.g. Jun et al, 2000; Pitrelli et al, 1994; Syrdal  & McGory, 2000; Yoon et al, 2004 for 
studies of the consistency of labeling according to the tones and break indices system).  
Examples of assessing phoneme labeling consistency and transcriber accuracy are given in Pitt et 
al (2005), Shriberg & Lof (1991), and Wesenick & Kipp (1996). 
 
1.2.7 Some conventions for naming files  
  There are various points to consider as far as file naming in the development of a speech 
corpus is concerned. Each separate utterance of a speech corpus usually has its own base-name 
with different extensions being used for the different kinds of signal and annotation information 
(this is discussed in further detail Chapter 2). A content-based coding is often used in which 
attributes such as the language, the varieties, the speaker, and the speaking style are coded in the 
base-name (so EngRPabcF.wav might be used for English, RP, speaker abc who used a  fast 
speaking style for example). The purpose of content-based file naming is that it provides one of 
the mechanisms for extracting the corresponding information from the corpus. On the other 
hand, there is a limit to the amount of information that can be coded in this way, and the 
alternative is to store it as part of the annotations at different annotation tiers (Chapter 4) rather 
than in the base-name itself.  A related problem with content-based file names discussed in 
Schiel & Draxler (2004) is that  there may be  platform- or medium dependent length restrictions 
on file names (such as in ISO 9960 CDs).  
 The extension .wav is typically used for the audio data (speech pressure waveform) but 
other than this there are no conventions across systems for what the extensions denote although 
some extensions are likely to be specific to different systems  (e.g, .TextGrid is for 
annotation data in Praat; .hlb for storing hierarchical label files in Emu). 
 Schiel & Draxler (2004) recommend storing the signal and annotation data separately, 
principally because the annotations are much more likely to be changed that the signal data. For 
the same reason, it is sometimes advantageous to store separately the original acoustic or 
articulatory sampled speech data files obtained during the recording  from other signal files 
(containing information such as formants of spectral information) that are subsequently derived 
from these. 
  
1.3 Summary and structure of the book 
 The discussion in this Chapter has covered a few of the main issues that need to be 
considered in designing a speech corpus. The rest of this book is about how speech corpora can 
be used in experimental phonetics. The material in Chapters 2-4 provides the link between the 
general criteria reviewed in this Chapter and the techniques for phonetic analysis of Chapters 5-
9.  
 As far as Chapters 2-4 are concerned,  the assumption is that you may have some 
digitized speech data that might have been labeled and the principal objective is to get it into a 
form for subsequent analysis. The main topics that are covered here include some routines in 
digital signal processing for producing derived signals such as fundamental frequency and 
formant frequency data (Chapter 3) and structuring annotations in such a way that they can be 
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queried, allowing the annotations and signal data to be read into R (Chapter 4). These tasks in 
Chapters 3 and 4 are carried out using the Emu system: the main aim of Chapter 2 is to show 
how Emu is connected both with R and with Praat (Boersma & Weenink, 2005) and Wavesurfer 
(Sjölander, 2002). Emu is used in Chapters 2-4 because it includes both an extensive range of 
signal processing facilities and a query language that allows quite complex searches to be made 
of multi-tiered annotated data. There are certainly other systems that can query complex 
annotation types of which the NITE-XML20 system (Carletta et al, 2005) is a very good example 
(it too makes use of a template file for defining a database's attributes in a way similar to Emu). 
Other tools that are especially useful for annotating either multimedia data or dialogues are 
ELAN21 (EUDICO Linguistic Annotator) developed at the Max Planck Institute for 
Psycholinguistics in Nijmegen,  and Transcriber22 based on the annotation graph toolkit (Bird & 
Liberman, 2001;  see also Barras, 2001)23.  However, although querying complex annotation 
structures and representing long dialogues and multimedia data can no doubt be more easily 
accomplished in some of these systems than they can in Emu, none of these at the time of writing 
includes routines for signal processing, the possibility of handling EMA and EPG data, as well as 
the transparent interface to R that is needed for accomplishing the various tasks in the later part 
of this book.  
 Chapters 5-9  are concerned with analysing phonetic data in the R programming 
environment: two of these (Chapters 5 and 7) are concerned with physiological techniques, the 
rest make use of acoustic data. The analysis in Chapter 5 of movement data is simultaneously 
intended as an introduction to the R programming language. The reason for using R is partly that 
it is free and platform-independent, but also because of the ease with which signal data can be 
analysed in relation to symbolic data which is often just what is needed is analyzing speech 
phonetically. Another is that, as a recent article by Vance (2009) in the New York Times made 
clear24, R is now one of the main data mining tools used in very many different fields. The same 
article quotes a scientist from Google who comments that 'R is really important to the point that 
it’s hard to overvalue it'. As Vance (2009) correctly notes, one of the reasons why R has become 
so popular is because statisticians, engineers and scientists without computer programming skills 
find it relatively easy to use. Because of this, and because so many scientists from different 
disciplinary backgrounds contribute their own libraries to the R website, the number of functions 
and techniques in R for data analysis and mining continues to grow. As a result, most of the 
quantitative, graphical, and statistical functions that are needed for speech analysis are likely to 
be found in one or more of the libraries available at the R website. In addition, and as already 
mentioned in the preface and earlier part of this Chapter, there are now books specifically 
concerned with the statistical analysis of speech and language data in R (Baayen, in press; 
Johnson, 2008) and much of the cutting-edge development in statistics is now being done in the 
R programming environment.

                                                
20 http://sourceforge.net/projects/nite/ 
21 http://www.lat-mpi.eu/tools/elan/ 
22 http://trans.sourceforge.net/en/presentation.php 
23 Plans are currently in progress to build an interface between ELAN and Emu annotations. There was an interface 
between Transcriber and Emu in earlier versions of both systems (Barras, 2001; Cassidy & Harrington, 2001). Since 
at the time of writing, Transcriber is being redeveloped, the possibility of interfacing the two will need to be 
reconsidered. 
24 My thanks to Andrea Sims and Mary Beckman for pointing this out to me. The same article in the NYT also 
makes a reference to Emu. 
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Chapter 2.  Some tools for building and querying annotated speech 
databases25 
 
2.0. Overview 
 As discussed in the previous Chapter, the main aim of this book is to present some 
techniques for analysing labelled speech data in order to solve problems that typically arise in 
experimental phonetics and laboratory phonology. This will require a labelled database, the 
facility to read speech data into R, and a rudimentary knowledge of the R programming 
language. These are the main subjects of this and the next three Chapters.  
 
Fig. 2.1 about here 
 
The relationship between these three stages is summarised in Fig. 2.1. The first stage involves 
creating a speech database which is defined in this book to consist of one or more utterances 
that are each associated with signal files and annotation files. The signal files can include 
digitised acoustic data and sometimes articulatory data of various different  activities of the vocal 
organs as they change in time. Signal files often include derived signal files that are obtained 
when additional processing is applied to the originally recorded data – for example to obtain 
formant and fundamental frequency values from a digitised acoustic waveform. Annotation files 
are obtained by automatic or manual labelling, as described in the preceding chapter. 
 Once the signal and annotation files have been created, the next step (middle section of 
Fig. 2.1) involves querying the database in order to obtain the information that is required for 
carrying out the analysis. This book will make use of the Emu query language (Emu-QL) for this 
purpose which can be used to extract speech data from structured annotations. The output of the 
Emu-QL includes two kinds of objects: a segment list that consists of annotations and their 
associated time stamps and  trackdata that is made up of sections of signal files that are 
associated in time with the segment list. For example, a segment list might include all the /i:/ 
vowels from their acoustic onset to their acoustic offset and trackdata the formant frequency data 
between the same time points for each such segment.  
 A segment list and trackdata are the structures that are read into R for analysing speech 
data. Thus R is not used for recording speech data, nor for annotating it, nor for most major 
forms of signal processing. But since R does have a particularly flexible and simple way of 
handling numerical quantities in relation to annotations, then R can be used for the kinds of 
graphical and statistical manipulations of speech data that are often needed in studies of 
experimental phonetics. 
 
Fig. 2.2 about here 
 
2.1 Getting started with existing speech databases 
 When you start up Emu for the first time, you should see a display like the one in Fig. 
2.2. The left and right panels of this display show the databases that are available to the system 
and their respective utterances. In order to proceed to the next step, you will need an internet 
connection. Then, open the Database Installer window in Fig. 2.3 by clicking on 
Arrange tools and then Database Installer within that menu. The display contains 
a number of databases that can be installed, unzipped and configured in Emu. Before 
downloading any of these, you must specify a directory (New Database Storage) into 
which the database will be downloaded. When you click on the database to be used in this 

                                                
25 Much of the material in this Chapter is based on Bombien et al. (2006),  Cassidy & Harrington (2001), and 
Harrington et al. (2003). 
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Chapter,  first.zip, the separate stages download, unzip, adapt, configure should 
light up one after the other and finish with the message: Successful (Fig. 2.3). Once this is 
done, go back to the Emu Database Tool (Fig. 2.2) and click anywhere inside the 
Databases pane: the database first should now be available as shown in Fig. 2.4. Click on 
first, then choose Load Database in order to see the names of the utterances that belong 
to this database, exactly as in the manner of Fig. 2.4. 
 
Figs. 2.3 and 2.4  
 
Now double click on gam001 in Fig. 2.4 in order to open the utterance and produce a display 
like the one shown in Fig. 2.5.  
 The display consists of two signals, a waveform and a wideband spectrogram in the 0-
8000 Hz range. For this mini-database, the aim was to produce a number of target words in a 
carrier sentence ich muss ____ sagen (Lit. I must ____ say) and the one shown in Fig. 2.4 is of 
guten (good, dative plural) in such a carrier phrase produced by a male speaker of the Standard 
North German variety. The display also shows annotations arranged in four separate labelling 
tiers. These include guten in the Word tier marking the start and end times of this word and three 
annotations in the Phonetic tier that mark the extent of velar closure (g), the release/frication 
stage of the velar stop (H), and the acoustic onset and offset of the vowel (u:). The annotations 
at the Phoneme tier are essentially the same except that the sequence of the stop closure and 
release are collapsed into a single segment. Finally, the label T at the Target tier marks the 
acoustic vowel target which is usually close to the vowel's temporal midpoint in monophthongs 
and which can be thought of as the time at which the vowel is least influenced by the 
neighbouring context (see Harrington & Cassidy, 1999, p. 59-60 for a further discussion on 
targets).  
 
Fig. 2.5 about here 
 
 In Emu, there are two different kind of labelling tiers: segment tiers and event tiers. In 
segment tiers, every annotation has a duration and is defined by a start and end time. Word, 
Phoneme, Phonetic are segment tiers in this database. By contrast, the annotations of an 
event tier, of which Target is an example in Fig. 2.5, mark only single events in time: so the T 
in this utterance marks a position in time, but has no duration. 
 In Fig. 2.6, the same information is displayed but after zooming in to the segment marks 
of Fig. 2.5 and after adjusting the parameters, brightness, contrast and frequency range in order 
to produce a sharper spectrogram. In addition, the spectrogram has been resized relative to the 
waveform. 
 
Fig. 2.6 about here 
 
2.2 Interface between Praat and Emu 
 The task now is to annotate part of an utterance from this small database. The annotation 
could be done in Emu but it will instead be done with Praat both for the purposes of 
demonstrating the relationship between the different software systems, and because this is the 
software system for speech labelling and analysis that many readers are most likely to be familiar 
with.  
 Begin by starting up Praat, then bring the Emu Database Tool to the foreground and 
select with a single mouse-click the utterance gam002 as shown in Fig. 2.7. Then select Open 
with… followed by Praat from the pull-out menu as described in Fig. 2.7 (N.B. Praat must be 
running first for this to work). The result of this should be the same utterance showing the 
labelling tiers in Praat (Fig. 2.8). 
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Fig. 2.7 about here 
 
The task now is to segment and label this utterance at the Word tier so that you end up with a 
display similar to the one in Fig. 2.8. The word to be labelled in this case is Duden (in the same 
carrier phrase as before). One way to do this is to move the mouse into the waveform or 
spectrogram window at the beginning of the closure of Duden; then click the circle at the top of 
the Word tier; finally, move the mouse to the end of this word on the waveform/spectrogram and 
click the circle at the top of the Word tier again. This should have created two vertical blue lines, 
one at the onset and one at the offset of this word. Now type in Duden beween these lines. The 
result after zooming in should be as in Fig. 2.8. The final step involves saving the annotations 
which should be done with Write Emulabels from the File menu at the top of the display 
shown in Fig. 2.8.   
 
Fig. 2.8 about here 
 
 If you now go back to the Emu Database Tool (Fig. 2.7) and double click on the 
same utterance, it will be opened in Emu: the annotation that has just been entered at the Word 
tier in Praat should also be visible in Emu as in Fig. 2.9.    
 
Fig. 2.9 about here 
  
2.3 Interface to R 
 We now consider the right side of Fig. 2.1 and specifically reading the annotations into R 
in the form of a segment list. First it will be necessary to cover a few background details about R.  
A more thorough treatment of R is given in Chapter 5. The reader is also encouraged to work 
through 'An Introduction to R' from the webpage that is available after entering 
help.start() after the prompt. A very useful overview of R functions can be downloaded 
as a four-page reference card from the Rpad home page - see  Short (2005).  
 
2.3.1 A few preliminary remarks about R 
 When R is started, you begin a session. Initially, there will be a console consisting of a 
prompt after which commands can be entered: 
 
> 23 
[1] 23 
 
The above shows what is typed in and what is returned that will be represented in this 
book by these fonts respectively. The [1] denotes the first element of what is returned and it can 
be ignored (and will no longer be included in the examples in this book). 
 Anything following # is ignored by R: thus text following # is one way of including 
comments.  Here are some examples of a few arithmetic operations that can be typed after the 
prompt with a following comment that explains each of them (from now on, the > prompt sign 
will not be included): 
 
10 + 2  # Addition 
2 * 3 + 12 # Multiplication and addition 
54/3   # Division 
pi   # π 
2 * pi * 4 # Circumference of a circle, radius 4 
4^2   # 42 

pi * 4^2  # Area of a circle, radius 4 
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During a session, a user can create a variety of different objects each with their own name using  
either the  <- or = operators: 
 
newdata  = 20 
 
stores the value or element 20 in the object newdata so that the result of entering newdata 
on its own is: 
 
newdata 
20 
 
newdata <- 20 can be entered instead of newdata = 20 with the same effect.  In R, the 
contents of an object are overwritten with another assign statement. Thus: 
 
newdata = 50 
 
causes newdata to contain  the element 50 (and not 20). 
 
Objects can be numerically manipulated using the operators given above: 
 
moredata = 80 
moredata/newdata 
4 
 
As well as being case-sensitive, R distinguishes between numeric and character objects, with 
the latter being created with " " quotes. Thus a character object moredata containing the 
single element phonetics is created as follows: 
 
moredata = "phonetics" 
moredata 
"phonetics" 
 
It is very important from the outset to be clear about the difference between a name with and 
without quotes. Without quotes, x refers to an object and its contents will be listed (if it exists); 
with quote marks "x" just means the character x. For example: 
 
x = 20   Create a numeric object x containing 20 
y = x   Copy the numeric object x to the numeric object y 
y    y therefore also contains 20 
20 
y = "x"   Make an object y consisting of the character "x" 
y    y contains the character "x" 
"x" 
 
 
 Throughout this book use will be made of the extensive graphical capabilities in R. 
Whenever a function for plotting something is used, then a graphics window is usually 
automatically created. For example: 
 
plot(1:10) 
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brings up a graphics window and plots integer values from 1 to 10. There are various ways of 
getting a new graphics window: for example,  win.graph() on Windows, quartz() on a 
Macintosh, and X11() on Linux/Unix. 
 A function carries out one or more operations on objects and it can take zero or more  
arguments that are delimited by parentheses. The functions ls() or objects() when 
entered with no arguments can be used to show what objects are stored in the current workspace.  
The function class() with a single argument says something about the type of object: 
 
newdata = 20 
class(newdata) 
"numeric" 
 
newdata = "phonetics" 
class(newdata) 
"character" 
 
Successive arguments to a function have to be separated by a comma. The function rm(), which 
can  take an indefinite number of arguments, removes as many objects as there  are arguments, 
for example: 
 
rm(moredata)   Removes the object moredata 
rm(moredata, newdata) Removes the objects moredata and newdata 
 
Notice that entering the name of the function on its own without following parentheses or 
arguments prints out the function's code: 
 
sort.list 
function (x, partial = NULL, na.last = TRUE, decreasing = FALSE,  
    method = c("shell", "quick", "radix"))  
{ 
    method = match.arg(method) 
    if (!is.atomic(x))  
     
… and so on. 
 
 To get out of trouble in R (e.g., you enter something and nothing seems to be happening), 
use control-C or press the ESC key and you will be returned to the prompt.   
 In order to quit from an R session, enter q(). This will be followed by a question: Save 
Workspace Image? Answering yes means that all the objects in the workspace are stored in 
a file .Rdata that can be used  in subsequent sessions (and all the commands used to create 
them are stored in a file .Rhistory)  – otherwise all created objects will be removed. So if you 
answered yes to the previous question, then when you start up R again, the objects will still be 
there (enter ls() to check this). 

The directory to which these R-Data and history of commands is saved is given by 
getwd() with no arguments.  

One of the best ways of storing your objects in R is to make a file containing the objects 
using the save() function. The resulting file can then also be copied and accessed in R on 
other platforms (so this is a good way of exchanging R data with another user). For example, 
suppose you want to save your objects to the filename myobjects in the directory c:/path. 
The following command will do this: 
 
save(list=ls(), file="c:/path/myobjects") 
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Assuming you have entered the last command, quit from R with the q() function and answer no 
to the prompt Save workspace image, then start up R again. You can access the objects 
that you have just saved with: 
 
attach("c:/path/myobjects") 
 
In order to inspect which objects are stored in myobjects, find out where this file is positioned 
in the so-called R search path: 
 
search() 
[1] ".GlobalEnv"                       "file:/Volumes/Data_1/d/myobjects" 
[3] "tools:RGUI"                       "package:stats"                    
[5] "package:graphics"                 "package:grDevices" 
 
Since in the above example myobjects is the second in the path, then you can list the objects 
that it contains with ls(pos=2). 
 The previous command shows that many objects and functions in R are pre-stored in a set 
of  packages. These packages are available in three different ways. Firstly, entering search() 
shows the packages that are available in your current session. Secondly, there will be packages 
available on your computer but not necessarily accessible in your current session. To find out 
which these are enter: 
 
library() 
 
or 
 
.packages(all.available = TRUE) 
 
You can make a package from this second category available in your current session by passing 
the name of the package as an argument to library(): thus library(emu) and 
library(MASS) make these packages accessible to your current session (assuming that they 
are included when you enter the above commands). Thirdly, a very large number of packages is 
included R archive network (http://cran.r-project.org/) and, assuming an internet 
connection, these can be installed directly with the install.packages() function. Thus, 
assuming that e.g. the package AlgDesign is not yet stored on your computer then26: 
 
install.packages("AlgDesign")  
library(AlgDesign) 
 
stores the package on your computer and makes it available as part of your current session. 

R comes with an extensive set of help pages that can be illustrated in various ways. Try 
help(pnorm) or ?pnorm,  example(density), apropos("spline"), 
help.search("norm"). As already mentioned, the function help.start() on its own 
provides an HTML version of R's online documentation.  
 
2.3.2 Reading Emu segment lists into R 
 Start up R and then enter library(emu) after the R prompt. The function for making a 
segment list is emu.query() and it takes three arguments that are:  
 

• the name of the database from which the segments are to be extracted. 
                                                
26 On some systems: install.packages("AlgDesign", "path", "http://cran.r-
project.org") where path is the name of the directory for storing the package. 
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• the utterances in the database over which the search is to be made. 
• the pattern to be searched in terms of a labelling tier and segments.  

 
The two labelled segments guten from gam001 and Duden from gam002 can be extracted with 
this function as follows: 
 
emu.query("first", "*", "Word = guten | Duden") 
Read 2 records 
segment  list from database:  first  
query was:  Word = guten | Duden  
  labels  start    end   utts 
1  guten 371.64 776.06 gam001 
2  Duden 412.05 807.65 gam002 
 
The meaning of the command is: search through all utterances of the database first for the 
annotations guten or Duden at the Word tier. The next command does the same, but additionally 
saves the output to an object, w: 
 
w = emu.query("first", "*", "Word = guten | Duden") 
 
If you enter w on its own, then the same information about the segments shown above is 
displayed after the prompt.  
 As discussed more fully in Chapter 5, a number of functions can be applied to segment 
lists, and one of the simplest is dur()for finding the duration of each segment, thus: 
 
dur(w) 
404.42 395.60 
 
shows that the duration of guten and Duden are 404 ms and 396 ms respectively. 
 
2.4 Creating a new speech database: from Praat to Emu to R 
 You may already have labelled data in Praat that you would like to convert into Emu in 
order to read it into R. This section explains how to do this and will also provide some 
information about the way that Emu controls the attributes of each database in the form of a 
'blueprint' known as a template file. It will be assumed for the purposes of this section that you 
have some familiarity with how to segment and label speech data using Praat. 
 
Fig. 2.10 about here 
 
 Begin by finding the directory to which you downloaded the database first.zip and 
the file msajc023.wav. If you downloaded first.zip to the directory x, then you will find 
this file in x/first/msajc023.wav. It should be pointed out that this audio file has nothing 
to do with the database first that was labelled in the preceding section: it has simply been put 
into that directory as a convenient way to access an audio file for analysing in further detail the 
relationship between Praat and Emu. 
 Start up Praat and load the file msajc023.wav and create a TextGrid file with a 
segment tier called Word in the manner of Fig. 2.10.  
 
Fig. 2.11 about here 
 
Now segment and label this file into its words as shown in Fig. 2.11 and save the TextGrid to the 
same directory in which the audio file is located. 
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 The task will be to convert this TextGrid file into a format that can be read by Emu (and 
therefore also by R). To do this, start up Emu and choose Convert Labels from the 
Arrange Tools pull down menu. Then select Praat 2 Emu from the labConvert 
(graphical label convertor) window and convert the TextGrid in the manner shown 
and described in Fig. 2.12. 
 
Fig. 2.12 about here 
 
If you saved the TextGrid file to the same directory first that contains the audio file 
msajc023.wav, then the directory will now contain the files shown in Fig. 2.13. The file 
msajc023.Word is a plain text file that contains the same information as 
msajc023.TextGrid but in a format27 that can be read by Emu. The extension is always the 
same as the name of the annotation tier: so the extension is .Word in this case because the 
annotation tier in Praat was called Word (see Fig. 2.10). If there had been several annotation 
tiers in Praat, then the conversion in Fig. 2.12 would have produced as many files as there are 
annotation tiers, each with separate extensions and with the same base-name (msajc023). The 
file p2epreparedtpl.tpl (Praat-to-Emu prepared template) is the (plain text) Emu 
template file that is the output of the conversion and which defines the attributes of the database.  
 An important change now needs to be made to the template file before the database is 
accessible to Emu and this together with some other attributes of the template are discussed in 
the next section. 
 
2.5 A first look at the template file 
 If you carried out the conversion of the Praat TextGrid in the same directory where the 
audio file msajc023.wav is located, i.e. in the first directory that was downloaded as part 
of the initial analysis in this Chapter, then a template file called p2epreparedtpl should be 
available when you open the Emu Database Tool. However, it is a good idea to re-name the 
template file to something else so that there is no conflict with any other data, should you carry 
out another conversion from Praat TextGrids at some later stage. When you rename 
p2epreparedtpl.tpl in the directory listing in Fig. 2.13 to something else, be sure to keep 
the extension .tpl. I have renamed the template file28 jec.tpl so that opening the Emu 
Database Tool shows the database with the corresponding name, as in Fig. 2.14.  
 
 
Fig. 2.13 about here 
 
 Fig. 2.14 about here 
 
At this stage, Emu will not be able to find any utterances for the jec database because it does 
not know where the audio file is located. This, as well as other information, needs to be entered 
in the template file for this database which is accessible with Edit Template from the 
Template Operations… menu (Fig. 2.14). This command activates the Graphical 
Template Editor which allows various attributes of the database to be incorporated via the 
following sub-menus: 
 
Levels:  The annotation tiers (in this case Word). 
Labels:  Annotation tiers that are parallel to the main annotation tiers (discussed 
   in further detail in Chapter 4). 

                                                
27 In fact, for historical reasons it is in the format used by ESPS/Waves. 
28 After the first author, John Clark  of Clark et al (2007) who produced this utterance as part of the Australian 
National Speech Database in 1990. 
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Labfiles:  Information about the type of annotation tier (segment or event) 
   and its extension. 
Legal Labels: Optionally defined features for annotations of a given tier. 
Tracks:  The signal files for the database, their extension and location. 
Variables:  Further information including the extension over which to search 
   when identifying utterances. 
View:   The signals and annotation tiers that are viewed upon opening an  
   utterance. 
 
The two sub-menus that are important for the present are Tracks and Variables. These need 
to be changed in the manner shown in Fig. 2.15. 
 
Fig. 2.15 about here 
 
Changing the Tracks pane (Fig. 2.15) has the effect of saying firstly what the extension is of 
the audio files (wav for this database) and secondly where the audio files are located. Setting 
the primary extension to wav in the Variables pane is the means by which the base-names 
are listed under Utterances in the Emu Database Tool. (More specifically, since for this 
example the primary extension is set to wav and since files of extension wav are found in 
x/first according to the Tracks pane, then any files with that extension and in that directory 
show up as base-names i.e. utterance-names in the Emu Database Tool). 
 The effect of changing the template in this way is to make the utterance available to Emu 
as shown in Fig. 2.16: when this utterance is opened, then the audio signal as well as the labels 
that were marked in Praat will be displayed.  
 
Fig. 2.16 about here 
 
Finally, the database and utterance should now be also accessible from R following the 
procedure in 2.3.2. The following commands in R can be used to obtain the word durations29: 
 
words = emu.query("jec", "*", "Word!=x") 
words 
labels   start     end     utts 
1       *    0.00   97.85 msajc023 
2    I'll   97.85  350.94 msajc023 
3   hedge  350.94  628.72 msajc023 
4      my  628.72  818.02 msajc023 
5    bets  818.02 1213.09 msajc023 
6     and 1213.09 1285.11 msajc023 
7    take 1285.11 1564.95 msajc023 
8      no 1564.95 1750.14 msajc023 
9   risks 1750.14 2330.39 msajc023 
10      * 2330.39 2428.25 msajc023 
 
dur(words) 
97.85 253.09 277.78 189.30 395.07  72.02 279.84 185.19 580.25  97.86 
 
2.6 Summary 
 This introductory Chapter has covered some details of file structure in a database, the 
organisation of annotations, an Emu template file, the interface between Praat, Emu, and R, and 
some of the different Emu tools for accessing and annotating data. A summary of the salient 
points within these main headings is as follows. 
 
                                                
29 Remember to enter library(emu) first. 
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File structure 
 Emu makes a sharp distinction between a database, the utterances of which a database is 
composed, and the data that is associated with each utterance, as follows: 
 

• Each database has a name and a corresponding template file which has the same name 
followed by the extension .tpl. Thus, if there is a database called simple, then there 
will also be a template file with the name simple.tpl. If Emu finds the template file 
simple.tpl, then the database name simple will appear under databases in the Emu 
Database Tool (Figs 2.2, 2.4, 2.14). 

• Each utterance has a name or base-name that precedes any prefix. Thus the base-name of 
a.wav, a.fms, a.epg, a.hlb, a.lab, a.TextGrid  is in each case a and the files 
with various extensions are different forms of data for the same utterance.  The base-
names of the utterances appear in the right of the display of Figs. 2.2, 2.4, 2.14 after a 
database is loaded and there is always one base-name per utterance. 

• The different variants of an utterance (i.e., the different extensions of a base-name) can 
be divided into signal and annotation files. A signal file is any digitised representation of 
the speech. The types of signal file typically include an audio file (often with extension 
.wav), and signal files derived from the audio file. An annotation file includes one or 
more annotations with time-markers linked to the signal files.  

 
Organisation of annotations 
   

• There is a basic distinction between segment tiers (each annotations has a certain 
duration) and event or point tiers (each annotation marks a single point in time but is 
without duration).  

• Annotations are organised into separate tiers. 
• In Emu, there is one annotation file (see above) per segment or point tier. Thus if an 

utterance is labelled in such a way that words, phonemes, and tones are each associated 
with their separate times, then in Emu there will be three annotation files each with their 
own extension for that utterance. In Praat all of this information is organised into a single 
TextGrid. 

 
Template file 
 An Emu template file defines the attributes of the database. A template file includes 
various kinds of information such as the annotation tiers and how they are related to each other, 
the types of signal file in the database, where all of the different signal and annotation files of a 
database are physically located, and the way that an utterance is to be displayed when it is 
opened in Emu. 
 
Praat-Emu interface 
 The Praat-Emu interface concerns only annotations, not signals.  The time-based 
annotations  discussed in this Chapter are inter-convertible so that the same utterance and its 
annotation(s) can be viewed and edited usually with no loss of information in Praat and Emu.   
 
Emu-R interface 
 R is a programming language and environment and the Emu-R library is a collection of 
functions for analysing speech data that is accessible within R using the command 
library(emu). Emu annotations are read into R using the Emu query-language (Emu-QL)  in 
the form of segment lists. Praat TextGrids can also be read into R as segment lists via the Praat-
Emu interface defined above. 
 
Emu tools discussed in this Chapter 
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 Various Emu tools associated with different tasks have been made use of in this Chapter. 
These and a number of other tools are accessible from the Emu Database Tool which is also 
the central tool in Emu for listing the databases and for opening utterances. The other tools that 
were discussed include: 
 

• The Database Installer for installing via an internet link existing annotated 
databases for use in this book (accessible from Arrange Tools). 

• The graphical template editor for inspecting and editing the template file of a 
database (and accessible from Template Operations). 

• the graphical label convertor  for inter-converting between Praat TextGrids 
and Emu annotations (accessible from Arrange Tools). 

 
2.7 Questions 
 This question is designed to extend familiarity with annotating speech data in Emu and 
with Emu template-files. It also provides an introduction to the Emu configuration 
editor which is responsible for making template files on your system available to Emu. The 
exercise involves annotating one of the utterances of the first database with the two different 
annotation tiers, Word and Phoneme, as shown in Fig. 2.17. Since the annotation tiers are 
different, and since the existing annotations of the first database should not be overwritten, a 
new template file will be needed for this task.  
 
(a) Begin by creating a directory on your system for storing the new annotations which will be 
referred to as "your path" in the question below. 
 
(b) Start up the Emu Database Tool and choose New template from the Template 
Operations… menu. 
 
(c) Enter the new annotation tiers in the manner shown in Fig. 2.17. Use the Add New Level 
button to provide the fields for entering the Phoneme tier. Enter the path of the directory you 
created in (a) for the so-called hlb or hierarchical label files. (This is an annotation file that 
encodes information about the relationship between tiers and is discussed more fully in Chapter 
4). 
 
Fig. 2.17 about here  
 
(d) Select the Labfiles pane and enter the information about the annotation tiers (Fig. 2.18). 
To do this, check the labfile box, specify both Word and Phoneme as segment tiers, enter 
your chosen path for storing annotations from (a), and specify an extension for each tier. Note 
that the choice of extension names is arbitrary: in Fig. 2.18, these have been entered as w and 
phon which means that files of the form basename.w and basename.phon will be created 
containing the annotations from the Word and Phoneme tiers respectively. 
 
Fig.2.18 about here 
 
 (e) Select the Tracks pane (Fig. 2.19) and enter the path where the sampled speech data (audio 
files) are stored. In my case, I downloaded the database first.zip to 
/Volumes/Data/d/speech so the audio files, gam001.wav – gam009.wav are in  
/Volumes/Data/d/speech/first/signals which is also the path entered in the 
Tracks pane in Fig. 2.19. The location of these files in your case depends on the directory to 
which you downloaded first.zip. If you downloaded it to the directory x, then enter 
x/first/signals under Path in Fig. 2.19. The extension also needs to be specified as wav 
because this is the extension of the speech audio files. 
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Fig. 2.19 about here 
 
 
 (f) Select the Variables pane (Fig. 2.20) and choose wav as the primary extension. This will 
have the effect that any files with .wav in the path specified in Fig. 2.20 will show up as 
utterances when you open this database. 
 
Fig. 2.20 about here 
 
 (g) Save the template file (see the top left corner of Figs. 2.17-2.20) with a name of your choice, 
e.g. myfirst.tpl and be sure to include the extension .tpl if this is not supplied 
automatically. For the purposes of the rest of this question, I will refer to the path of the directory 
to which you have stored the template as pathtemplate. 
 
(h) The location of the template now needs to be entered into Emu. To do this, make sure Emu is 
running and then open the configuration editor from inside the file menu of the Emu Database 
Tool which will bring up the display in Fig. 2.21. This display should already include at least 
one path which is the location of the template file for the database first.zip that was 
downloaded at the beginning of this chapter. Select Add Path then enter the path in (g) where 
you stored myfirst.tpl (which I have indicated as temppath in Fig. 2.21). 
 
Fig. 2.21 about here 
 
(i) If you have entered the above information correctly, then when you next click in the 
databases pane of the Emu Database Tool, your database/template file should appear as 
in Fig. 2.22. If it does not, then this can be for various reasons: the path for the template file was 
not entered correctly (h); the paths for the signal files have not been entered correctly (c-e); 
.tpl was not included as an extension in the template file;  the primary extension (f) has not 
been specified.   
 
Fig. 2.22 about here 
 
 Assuming however that all is well, double-click on gam007 to bring up the display 
(initially without labels) in Fig. 2.23 whose spectrogram image was also manually sharpened as 
described earlier in Fig. 2.6. 
 
Fig. 2.23 about here 
 
(j) There is a way of segmenting and labelling in Emu which is quite similar to Praat and this 
will be the form that is explained here. Position the mouse either in the waveform or in the 
spectrogram window at the beginning of the first word ich and click with the left mouse button. 
This will bring up two vertical blue bars in the Word and Phoneme tiers. Move the mouse to 
the blue vertical bar at the Word tier and click on it. This will cause the blue bar at the Word tier 
to turn black and the one at the Phoneme tier to disappear. Now move the mouse back inside 
the waveform or spectrogram window to the offset of ich and click once to bring up two blue 
vertical bars again. Move the mouse to the blue bar you have just created at the Word tier and 
click on it. The result should be two black vertical bars at the onset and offset of ich  and there 
should also be a grey rectangle between them into which you can type text: click on this grey 
rectangle, enter ich followed by carriage return. Proceed in the same way until you have 
completed the segmentation and labelling, as shown in Fig. 2.23. Then save your annotations 
with File → Save. 
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(j) Verify that, having saved the data, there are annotation files in the directory that you specified 
in (a). If you chose the extensions shown in Fig. 2.18, then there should be three annotation files 
in that directory: gam007.w, gam007.phon, and gam007.hlb containing the annotations at 
the Word tier, annotations at the Phoneme tier, and a code relating the two respectively.  
 
(k) The task now is to convert these annotations into a Praat TextGrid. To do this, start up the 
Emu Database Tool then select Arrange Tools → Convert Labels followed by 
Emu 2 Praat in the labConvert window (Fig. 2.24). 
 
Fig. 2.24 about here 
 
 (l) Verify that gam007.TextGrid has been created in the directory given in (a) and then 
open the TextGrid and the audio file in Praat as in Fig. 2.25. 
 
Fig. 2.25 about here 
 



    42 

 

 
Chapter 3 Applying routines for speech signal processing 
 
3.0 Introduction 
 The task in this Chapter will be to provide a brief introduction to the signal processing 
capabilities in Emu with a particular emphasis on the formant analysis of vowels. As is well-
known, the main reason why listeners hear phonetic differences between two vowels is because 
they have different positions in a two-dimensional space of vowel height and vowel backness. 
These phonetic dimensions are loosely correlated respectively with the extent of mouth opening 
and the location of the maximum point of narrowing or constriction location in the vocal tract. 
Acoustically, these differences are (negatively) correlated with the first two resonances or 
formants of the vocal tract: thus, increases in phonetic height are associated with a decreasing 
first formant frequency (F1) and increasing vowel backness with a decreasing F2. All of these 
relationships can be summarized in the two-dimensional phonetic backness x height space shown 
in Fig. 3.1. 
 
Fig. 3.1 about here 
  
The aim in this Chapter is to produce plots for vowels in the F1 x F2 plane of this kind and 
thereby verify that when plotting the acoustic vowel space in this way, the vowel quadrilateral  
space emerges. In the acoustic analysis to be presented in this Chapter, there will be several 
points, rather than just a single point per vowel as in Fig. 3.1 and so each vowel category will be 
characterized by a two-dimensional distribution. Another aim will be to determine whether the 
scatter in this vowel space causes any overlap between the categories. In the final part of this 
Chapter (3.4) a male and female speaker will be compared on the same data in order to begin to 
assess some of the ways that vowel formants are influenced by gender differences (an issue that 
is explored in more detail in Chapter 6); and the procedures for applying signal processing to 
calculating formants that will be needed in the body of the Chapter will be extended to other 
parameters including fundamental frequency, intensity, and zero-crossing rate. 
 Before embarking on the formant analysis, some comments need to be made about the 
point in time at which the formant values are to be extracted. Vowels have, of course, a certain 
duration, but judgments of vowel quality from acoustic data are often made from values at a 
single time point that is at, or near, the vowel's acoustic midpoint. This is done largely because, 
as various studies have shown, the contextual influence from neighbouring sounds tends to be 
least at the vowel midpoint. The vowel midpoint is also temporally close to what is sometimes 
known as the acoustic vowel target which is the time at which the vocal tract is most 'given over' 
to vowel production: thus F1 reaches a target in the form of an inverted parabola near the 
midpoint in non-high vowels, both because the vocal tract is often maximally open at this point, 
and because the increase in vocal tract opening is associated with a rise in F1 (Fig. 3.2). In high 
vowels, F2 also reaches a maximum (in [i]) or minimum (in [u]) near the temporal midpoint 
which is brought about by the narrowing at the palatal zone for [i] and at labial-velar regions of 
articulation for [u]. Fig. 3.2 shows an example of how F2 reaches a maximum in the front 
rounded vowel [y:] in the region of the vowel's temporal midpoint30.  
 
Fig. 3.2 about here 
 
3.1 Calculating, displaying, and correcting formants 
 Start up Emu and download the database second.zip exactly in the manner described in 
Fig. 2.3 of the preceding Chapter and then load the database as described in Fig 2.4. This 
database is a larger version of the one downloaded in Chapter 2 and contains utterances from a 
                                                
30 However, the acoustic vowel target need not necessarily occur at the midpoint, as the example from Australian 
English in the exercises to Chapter 6 shows. 
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female speaker (agr) and a male speaker (gam). The materials are the same as for the first 
database and include trochaic words of the form /CVC(ә)n/ such as baten, Duden, geben and so 
on. It is the formants of the vowels that are the subject of the analysis here. The main initial task 
will be to analyse those of the male speaker whose utterances can be accessed by entering gam* 
as a pattern in the Emu Database Tool, as shown in Fig. 3.3. 
 
Fig. 3.3 about here 
 
 Opening any of these utterances produces a waveform, spectrogram and annotation tiers at 
various levels, exactly as described in the previous Chapter. The task is now to calculate the 
formant frequencies for the speaker gam and this is done by entering the corresponding pattern 
in the Emu Database Tool to select those utterances for this speaker and then passing them 
to the tkassp routines in the manner shown in Fig. 3.3. The resulting tkassp window (a 
Tcl/Tk interface to acoustic speech signal processing) shown in Fig. 3.4 includes a number of 
signal processing routines written by Michel Scheffers of the Institute of Phonetics and Speech 
Processing, University of Kiel. Selecting samples as the input track causes the utterances to be 
loaded. The formants for these utterances can then be calculated following the procedure 
described in Fig. 3.4.  
 
Fig. 3.4 about here 
 
 The result of applying signal processing in tkassp is as many derived files as input files 
to which the routines were applied. So in this case, there will be one derived file containing the 
formant frequencies for utterance gam001, another for gam002 and so on. Moreover, these 
derived files are by default stored in the same directory that contain the input sampled speech 
data files and they have an extension that can be set by the user, but which is also supplied by 
default. As Fig. 3.4 shows, formants are calculated with the default extension .fms and so the 
output of calculating the formants for these utterances will be files gam001.fms, 
gam002.fms… corresponding to, and in the same directory as, the audio files gam001.wav, 
gam002.wav… 
 Fig. 3.4 also shows that there are other parameters that can be set in calculating formants. 
Two of the most important are the window shift and the window size or window length. The 
first of these is straightforward: it specifies how many sets of formant frequency values or 
speech frames are calculated per unit of time. The default in tkassp is for formant frequencies 
to be calculated every 5 ms.  The second is the duration of sampled speech data that the 
algorithm sees in calculating a single set of formant values. In this case, the default is 25 ms 
which means that the algorithm sees 25 ms of the speech signal in calculating F1-F4. The 
window is then shifted by 5 ms, and a quadruplet of formants is calculated based on the next 25 
ms of signals that the algorithm sees. This process is repeated every 5 ms until the end of the 
utterance.  
 The times at which the windows actually occur are a function of both the window shift 
and the window length. More specifically, the start time of the first window is (tS - tL)/2, where tS 
and tL are the window shift and size respectively.  Thus for a window shift of 5 ms and a window 
size of 25 ms, the left edge of the first window is (5 - 25) / 2 = -10 ms and its right edge is 15 ms 
(an advancement of 25 ms from its left edge)31. The next window has these times plus 5 ms, i.e. 
it extends from -5 ms to 20 ms, and so on. The derived values are then positioned at the centre of 
each window. So since the first window extends in this example from -10 ms to 15 ms, then the 

                                                
31 All of the signal's values preceding its start time are presumed to be zero: thus the first window is 'buffered' with 
zeros between its left edge at t = -10 ms and the actual start time of the signal at t = 0 ms (see Chapter 8 for some 
details of zero padding). 
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time at which the first quadruplet of formants occurs is (-10 + 15)/2 = 2.5 ms. The next 
quadruplet of formants is 5 ms on from this at 7.5 ms (which is also (-5 + 20)/2), etc. 
 Although formant tracking in Emu usually works very well from the default settings, one 
of the parameters that you do sometimes need to change is the nominal F1 frequency. This is set 
to 500 Hz because this is the estimated first formant frequency from a lossless straight-sided tube 
of length 17.5 cm that serves well as a model for a schwa vowel for an adult male speaker. The 
length 17.5 cm is based on the presumed total vocal tract length and so since female speakers 
have shorter vocal tracts, their corresponding model for schwa has F1 at a somewhat higher 
value. Therefore, when calculating formants from female speakers, the formant tracking 
algorithm generally gives much better results if nominal F1 is set to 600 Hz or possibly even 
higher.  
 There are still other parameters that for most purposes you do not need to change32. Two 
of these, the prediction order and the pre-emphasis factor are to do with the algorithm for 
calculating the formants, linear predictive coding (LPC33). The first is set both in relation to the 
number of formant frequencies to be calculated and to the sampling frequency; the second is to 
do with factoring in 'lumped' vocal tract losses in a so-called all-pole model. Another parameter 
that can be set is the window function. In general, and as described in further detail in Chapter 8 
on spectra, there are good reasons for attenuating (reducing in amplitude) the signal 
progressively towards the edges of the window in applying many kinds of signal processing 
(such as the one needed for formant calculation) and most of the windows available such as the 
Blackman, Hanning, Hamming and Cosine in tkassp have this effect. The alternative is not to 
change the amplitude of the sampled speech data prior to calculating formants which can be done 
by specifying the window to be rectangular.  
 
Fig. 3.5 about here 
 
 In order to display the formants, it is necessary to edit the template file (Figs. 2.14 and 
2.15) so that Emu knows where to find them for this database. The relevant panes that need to be 
edited are shown in Fig. 3.5. The same path is entered for the formants as for the audio files if 
the default setting (auto) was used for saving the formants (Fig. 3.4).  The track (name) should 
be set to fm because this tells Emu that these are formant data which are handled slightly 
differently from other tracks (with the exception of formants and fundamental frequency, the 
track name is arbitrary). The track extension should be fms if the defaults were used in 
calculating the formants (see Fig.3.3) and finally the box fm is checked in the View pane which 
is an instruction to overlay the formants on the spectrogram when an utterance is opened. 

                                                
32 Some further points on the relationship between accuracy of formant estimation, prediction order, and nominal F1 
frequency (Michel Scheffers pers. comm.) are as follows. Following Markel & Gray (1976), the prediction order for 
accurate estimation of formants should be approximately equal to the sampling frequency in kHz based on an adult 
male vocal tract of length 17.5 cm (taking the speed of sound to be 35000 cm/s). In tkassp, the default prediction 
order is the smallest even number greater than p in: 
 
(1) p = fs / (2F1nom) 
 
where fs is the sampling frequency and F1nom the nominal F1 frequency in kHz. Thus, for a sampling frequency of 
20 kHz and nominal F1 of 0.5 kHz, p = 20 and so the prediction order is 22, this being the smallest even number 
greater than p. (The extra two coefficients are intended for modeling the additional resonance often found in 
nasalized vowels and/or for compensating for the fact that the vocal tract is not a lossless tube).  (1) shows that 
increasing the nominal F1 frequency causes the prediction order to be decreased, as a result of which the lossless 
model of the vocal tract is represented by fewer cylinders and therefore fewer formants in the same frequency range 
(which is appropriate for shorter vocal tracts).  Should two formants still be individually unresolved after adjusting 
F1nom, then the prediction order could be increased in the forest pane, either by entering the prediction order 
itself, or by selecting 1 from incr/decr: this second action would cause the default prediction order for a 
sampling frequency of 20 kHz  to be increased by 2 from 22 to 24.  
33 LPC is not covered in this book - see Harrington & Cassidy (1999) Chapter 8 for a fairly non-technical treatment. 
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 When you open the Emu Database Tool tool, reload the second database and then 
open the utterance gam002. The result should now be a waveform and spectrogram display with 
overlaid formants (Fig. 3.6). 
 
Fig. 3.6 about here 
 
As Fig. 3.6 shows, there is evidently a formant tracking error close to 0.65 seconds which can be 
manually corrected in Emu following the procedure shown in Fig. 3.7. When the manual 
correction is saved as described in Fig. 3.7, then the formant file of the corresponding utterance 
is automatically updated (the original formant file is saved to the same base-name with extension 
fms.bak).  
 
Fig. 3.7 about here 
 
3.2. Reading the formants into R 
 The task now is to read the calculated formants and annotations into R in order to 
produce the F1 × F1 displays for the separate vowel categories. The procedure for doing so is 
sketched in Fig. 3.8, the top half of which also represents a more general procedure for getting 
signals and annotations from Emu into R.  
 
Fig. 3.8 about here 
 
 As Fig. 3.8 shows, signals (in this case formant data) are read into R in the form of  what 
is called trackdata but always from an existing segment list: as a result, the trackdata consists of 
signals (formants) between the start and end times of each segment in the segment list. A 
function, dcut() is then used to extract formant values at the segment's midpoint and these 
data are combined with annotations to produce the required ellipse plots. The procedure for 
creating a segment list involves using the emu.query() function which has already been 
touched upon in the preceding Chapter. In the following, a segment list (vowels.s) is made of 
five of speaker gam's monophthong categories, and then the formant data (vowels.fm) are 
extracted from the database relative to these monophthongs' start and end times (remember to 
enter library(emu) after starting R): 
 
vowels.s = emu.query("second", "gam*", 
"Phonetic=i:|e:|a:|o:|u:") 
vowels.fm = emu.track(vowels.s,  "fm") 
 
The summary() function can be used to provide a bit more information on both of these 
objects: 
 
summary(vowels.s) 
segment  list from database:  second  
query was:  Phonetic=i:|e:|a:|o:|u:  
 with 45 segments 
 
Segment distribution: 
 
a: e: i: o: u:  
 9  9  9  9  9  
 
summary(vowels.fm) 
Emu track data from 45 segments 
 
Data is  4 dimensional from track fm  
Mean data length is  29.82222  samples 
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From this information,  it can be seen that the segment list consists of 9 of each of the 
monophthongs while the trackdata object is said to be four-dimensional (because there are four 
formants), extracted from the track fm, and with just under 30 data frames on average per 
segment. This last piece of information requires some further qualification. As already shown, 
there are 45 segments in the segment list and their average duration is: 
 
mean(dur(vowels.s)) 
149.2712 
 
i.e., just under 150 ms. Recall that the window shift in calculating formants was 5 ms. For this 
reason, a segment can be expected to have on average 149/5 i.e. a fraction under 30 sets of 
formant quadruplets  (speech frames) spaced at intervals of 5 ms between the segment's start and 
end times.  
 It is important at this stage to be clear how the segment list and trackdata relate back to 
the database from which they were derived. Consider for example the fourth segment in the 
segment list. The information about its label, start time, end time, and utterance from which it is 
was taken is given by:  
 
vowels.s[4,] 
 
segment  list from database:  second  
query was:  Phonetic=i:|e:|a:|o:|u:  
  labels   start    end   utts 
4     i: 508.578 612.95 gam006 
 
A plot34 of the extracted formant data between these times (Fig.  3.9, left panel) is given by: 
 
plot(vowels.fm[4,]) 
 
or equivalently with plot(vowels.fm[4,], type="l") to produce a line plot. These 
are the same formant values that appear in Emu between 508 ms and 613 ms in the utterance 
gam006, as the panel in the right of Fig. 3.9 shows.  
 
Fig. 3.9 about here 
 
 Another important point about the relationship between a segment list and trackdata is 
that the speech frames are always extracted between or within the boundary times of segments in 
a segment list. Therefore the first speech frame in the 4th segment above must be fractionally 
after the start time of this segment at 508 ms and the last speech frame must be fractionally 
before its end time at 613 ms. This is confirmed by using the start() and end() functions to 
find the times of the first and last data frames for this segment: 
 
start(vowels.fm[4,]) 
512.5 
end(vowels.fm[4,]) 
612.5 
 

                                                
34 For the sake of simplicity, I have reduced the command for plotting the formants to the minimum. The various 
options for refining the plot are discussed in Chapter 5. The plot command actually used here was 
plot(vowels.fm[4,], bty="n", ylab="Frequency (Hz)", xlab="Time (ms)", col=F, 
pch=1:4) 
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Thus the times of the first (leftmost) quadruplet of formants in Fig. 3.9 is 512.5 ms and of the 
last quadruplet 612.5 ms. These times are also found in tracktimes(vowels.fm[4,]) 
which returns the times of all the data frames of the 4th segment: 
 
tracktimes(vowels.fm[4,]) 
512.5 517.5 522.5 527.5 532.5 537.5 542.5 547.5 552.5 557.5 562.5 567.5 572.5 
577.5 582.5 587.5 592.5 597.5 602.5 607.5 612.5 
 
The above once again shows that the times are at intervals of 5 ms. Further confirmation that the 
start and end times of the trackdata are just inside those of the segment list from which it is 
derived is given by subtracting the two: 
 
start(vowels.fm) - start(vowels.s) 
end(vowels.s) - end(vowels.fm) 
 
The reader will see upon entering the above instructions in R that all of these subtracted times 
from all 45 segments are positive (thus showing that the start and end times of the trackdata are 
within those of the segment list from which it was derived). 
 As discussed at the beginning of this Chapter, the task is to plot the ellipses at the 
temporal midpoint of the vowels and to do this, the dcut() function is needed to extract these 
values from the trackdata (Fig. 3.8). This is done as follows: 
 
mid = dcut(vowels.fm, 0.5, prop=T) 
 
The object mid is a matrix of 45 rows and 4 columns containing F1-F4 values at the segments' 
temporal midpoints. Here are F1-F4 at the temporal midpoint in the first eight segments (i.e., the 
formants at the midpoints of the segments in vowels.s[1:8,] ): 
 
mid[1:8,] 
       T1   T2   T3   T4 
542.5 260  889 2088 2904 
597.5 234  539 2098 2945 
532.5 287  732 2123 2931 
562.5 291 1994 2827 3173 
512.5 282 1961 2690 2973 
532.5 291  765 2065 2838 
562.5 595 1153 2246 3262 
592.5 326  705 2441 2842 
 
It looks as if there are five columns of formant data, but in fact the one on the far left is not a 
column in the sense that R understands it but a dimension name containing the times at which 
these formant values occur. In order to be clear about this, the fourth row (highlighted above) 
shows four formant values,  F1 = 291 Hz, F2= 1994 Hz, F3 = 2827 Hz, and F4 = 3173 Hz that 
occur at time 562.5 ms. These are exactly the same values that occur just after 560 ms identified 
earlier in the utterance gam006 and marked at the vertical line in the left panel of Fig. 3.9. 
 
Fig. 3.10 about here 
  
 A plot of all these formant data at the vowel midpoint could now be given by 
plot(mid[,1:2]) or equivalently plot(mid[,1], mid[,2]), where the integers after 
the comma index the first and second column respectively. However, in order to differentiate the 
points by vowel category, a vector of their labels is needed and, as the flow diagram in Fig. 3.8 
shows, the vector can be obtained from the segment list using the label() function. Here the 
segment labels are stored as a vector vowels.lab: 
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vowels.lab = label(vowels.s) 
 
The command plot(mid[,1:2], pch=vowels.lab) now differentiates the points by 
category label. However, these data are not the right way round as far as the more familiar vowel 
quadrilateral is concerned. In order to rotate the plot such that the vowels are arranged in relation 
to the vowel quadrilateral (i.e., as in Fig 3.1), a plot of -F2 vs. -F1 on the x- and y-axes needs to 
be made. This could be done as follows: 
 
plot(-mid[,2:1], pch=vowels.lab) 
 
The same can be achieved more simply with the eplot() function for ellipse drawing in the 
Emu-R library by including the  argument form=T. The additional argument centroid=T of 
eplot() plots a symbol per category at the centre (whose coordinates are the mean of 
formants) of the ellipse (Fig. 3.10): 
 
eplot(mid[,1:2], vowels.lab, centroid=T, form=T)  
 
Fig. 3.10 about here 
 
The ellipses include at least 95% of the data points by default and so are sometimes called 95% 
confidence ellipses - these issues are discussed more fully in relation to probability theory in the 
last Chapter of this book.You can also plot the points with dopoints=T and take away the 
ellipses with doellipse=F, thus: 
 
eplot(mid[,1:2], vowels.lab, dopoints=T, doellipse=F, form=T) 
 
gives the same display (albeit colour-coded by default) as plot(-mid[,2:1], 
pch=vowels.lab) given earlier.  
 
3.3 Summary 
 The main points that were covered in this Chapter and that are extended in the exercises 
below are as follows. 
 
Signal processing 

• Signal processing in Emu is applied with the tkassp toolkit. If signal processing is 
applied to the file x.wav, then the output is x.ext where ext is an extension that can 
be set by the user and which by default depends on the type of signal processing that is 
applied. The files derived from tkassp are by default stored in the same directory as 
those to which the signal processing was applied. 

• Signal processing is applied by calculating a single speech frame  at a single point in time 
for a given window size. The window size is the duration of the speech signal seen at any 
one time by the signal processing routine in calculating the speech frame. A speech frame 
is often a single value (such as an intensity value or a fundamental frequency value) or a 
set of values (such as the first four formants). The window shift defines how often this 
calculation is made. If the window shift is set to 5 ms, then one speech frame is derived 
every 5 ms.  

• One of the parameters in calculating formants that often needs to be changed from its 
default is Nominal F1 which is set to 500 Hz on the assumption that the speaker has a 
vocal tract length of 17.5 cm. For female speakers, this should be set to around 600 Hz. 

 
Displaying signal processing in Emu 
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• In order to display the output of tkassp in Emu, the template file needs to be edited to 
tell Emu where the derived signal files are located (and whether they should be displayed 
when Emu utterances from the database are opened).  

• In Emu, formants, fundamental frequency and some other signals can be manually 
corrected. 

 
Interface to R 

• Speech signal data that is the output of tkassp is read into R as a trackdata object. A 
trackdata object can only ever be created relative to a segment list. For this reason, a 
trackdata object contains signal data within the start and end times of each segment in the 
segment list.  

• Various functions can be applied to trackdata objects including plot() for plotting 
trackdata from individual segments and dcut() for extracting signal data at a specific 
time point.  

• Ellipses can be plotted for two parameters at a single point of time with the eplot() 
function. An option is available within eplot() for plotting data from the first two 
formants in such a way that the vowel categories are arranged in relation to the height 
and backness dimensions of the vowel quadrilateral. 

 
3.4 Questions 
 
1. The task in this question is to obtain ellipse plots as in the left panel of Fig. 3.11 for the female 
speaker agr from the second database analysed in this Chapter. Both the male speaker gam 
and the female speaker agr are speakers of the same North German variety. 
(a) Follow the procedure exactly as outlined in Figs. 3.3 and 3.4 (except substitute agr for gam 
in Fig. 3.3) and calculate formants for the female speaker agr with a default nominal F1 of 600 
Hz.  
 
(b) Start up R and, after entering library(emu), enter commands analogous to those given 
for the male speaker to produce the ellipses for the female speaker agr as shown in the right 
panel of Fig. 3.11. Create the following objects as you proceed with this task: 
 
vowelsF.s   Segment list of speaker agr's vowels    
vowelsF.l   Vector of labels 
vowelsF.fm  Trackdata object of formants 
vowelsF.fm5  Matrix of formants at the temporal midpoint of the vowel 
 
(See the answers at the end of the exercises if you have difficulty with this). 
Fig. 3.11 about here 
 (c)  You will notice from your display in R and from the right panel of Fig. 3.11 that there is 
evidently a formant tracking error for one of the [u:] tokens that has F2 at 0 Hz. The task is to 
use R to find this token and then Emu to correct it in the manner described earlier. Assuming you 
have created the objects in (b), then the outliner can be found in R using an object known as a 
logical vector (covered in detail in Chapter 5) that is True for any u: vowel that has F2 less 
than 100 Hz: 
temp = vowelsF.fm5[,2] < 100 & vowelsF.l == "u:" 
 
The following verifies that there is only one such vowel: 
sum(temp) 
[1] 
 
This instruction identifies the outlier: 
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vowelsF.s[temp,] 
segment  list from database:  second   
query was:  Phonetic=i:|e:|a:|o:|u:  
   labels   start     end   utts 
33     u: 560.483 744.803 agr052 
 
The above shows that the formant-tracking error occurred in agr052 between times 560 ms and 
745 ms (so since the data plotted in the ellipses were extracted at the temporal midpoint, then the 
value of F2 = 0 Hz must have occurred close to (560+745)/2 = 652 ms). Find these data in the 
corresponding utterance in Emu (shown below) and correct F2 manually to an appropriate value. 
 
(d) Having corrected F2 for this utterance in Emu, produce the ellipses again for the female 
speaker. Your display should now look like the one in the left panel of Fig. 3.11.  
 
(e) According to Fant (1966), the differences between males and females in the ratio of the 
mouth to pharynx cavity length causes greater formant differences in some vowels than in others. 
In particular, back rounded vowels are predicted to show much less male-female variation than 
most other vowels. To what extent is this consistent with a comparison of the male (gam) and 
female (agr) formant data? 
 
(f) The function trackinfo() with the name of the database gives information about the 
signals that are available in a database that can be read into R. For example: 
trackinfo("second") returns "samples" and "fm". Where is this information stored in 
the template file? 
 
(g) You could make another trackdata object of formants for just the first three segments in the 
segment list you created in (a) as follows: 
 
newdata = emu.track(vowelsF.s[1:3,], "fm") 
 
Given the information in (f), how would you make a trackdata object, audiowav, of the audio 
waveform of the first three segments? How would you use this trackdata object to plot the 
waveform of the third segment? 
 
(h)  As was shown in Chapter 2, a segment list of the word guten from the Word tier in the 
utterance gam001 can be read into R as follows: 
 
guten = emu.query("first", "gam001", "Word=guten") 
 
How can you use the information in (f) to show that this: 
 
emu.track(guten, "fm") 
 
must fail? 
 
2. The following question extends the use of signal processing to two parameters, intensity (dB-
RMS) and zero-crossing-rate (ZCR). The first of these gives an indication of the overall energy 
in the signal and is therefore very low at stop closures, high at the release of stops and higher for 
most vowels than for fricatives. The second, which is less familiar in phonetics research, is a 
calculation of how often the audio waveform crosses the x-axis per unit of time. In general, there 
is a relationship between ZCR and the frequency range at which most of the energy is 
concentrated in the signal. For example, since [s] has most of its energy concentrated in a high 
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frequency range, ZCR is usually high (the audio waveform for [s] crosses the x-axis frequently). 
But since on the other hand most sonorants have their energy concentrated below 3000 Hz, the 
audio waveform crosses the x-axis much less frequently and ZCR is comparably lower. 
Therefore, ZCR can give some indication about the division of an audio speech signal into 
fricative and sonorant-like sounds.  
 
Fig. 3.12 about here 
 
(a)  Download the aetobi database. Calculate using rmsana (Fig. 3.12) the intensity signals 
for all the utterances in this database using the defaults. Rather than using the default setting for 
storing the RMS data, choose a new directory (and create one if need be) for storing the intensity 
signals. Then follow the description shown in Fig. 3.12. 
 
(b) When the intensity data is calculated (select Perform Analysis in Fig. 3.12), then the 
corresponding files should be written to whichever directory you entered into the tkassp 
window. Verify that this is so. 
 
Fig. 3.13 about here 
 
(c) The task now is to modify the template file to get Emu to see these intensity data following 
exactly the procedure established earlier in this Chapter (Fig. 3.5). More specifically, you will 
need to enter the information shown in Fig. 3.13 in the Track and View panes of the aetobi 
template file. 
 
(d) Verify that when you open any utterance of the aetobi database in Emu, the intensity 
signal is visible together with the spectrogram as in Fig. 3.14. Why is the waveform not 
displayed? (Hint: look at the View pane of the template file in Fig. 3.13). 
Fig. 3.14 about here 
 
(e) Change the display to show only the Word tier and intensity contour as shown in Fig. 3.15. 
This is done with: Display → SignalView Levels → Word and Display → 
Tracks… → rms 
 
Fig. 3.15 about here 
 
(f) The calculation of intensity has so far made use of the defaults with a window size and shift 
of 25 ms and 5 ms respectively. Change the defaults by setting the window shift to 2 ms and the 
window size to 10 ms (Fig. 3.16). The output extension should be changed to something other 
than the default e.g. to rms2 as in Fig. 3.16, so that you do not overwrite the intensity data you 
calculated in (b). Save the data to the same directory in which you stored the intensity files in the 
calculation in (b) and then recalculate the intensity data.  
 
Fig. 3.16 about here 
 
(g) Edit the template file so that these new intensity data with the shorter time window and shift 
are accessible to Emu and so that when you open any utterance in Emu you display only the two 
intensity contours as in Fig. 3.17. (The required template modifications are in the answers).  
 
Fig. 3.17 about here 
 
(h) Explain why the intensity contour analysed with the shorter time window in Fig. 3.17 seems 
to be influenced to a greater extent by short-term fluctuations in the speech signal. 
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3. Using zcrana in tkassp, calculate the zero-crossing-rate (ZCR) for the aetobi database. 
Edit the template file in order to display the ZCR-data for the utterance bananas as shown in 
Fig. 3.18. What classes of speech sound in this utterance have the highest ZCR values  (e.g. 
above 1.5 kHz) and why?  
 
Fig. 3.18 about here 
 
4.  Calculate the fundamental frequency (use the f0ana pane in tkassp) and formant 
frequencies for the aetobi database in order to produce a display like the one shown in Fig. 
3.19 for the argument utterance (male speaker)  beginning at 3.2 seconds (NB: in modifying 
the Tracks pane of the template file, you must enter F0 (capital F) under Tracks for 
fundamental frequency data and, as already discussed, fm for formant data, so that Emu knows 
to treat these displays somewhat differently from other signals). 
 
Fig. 3.19 about here 
 
5. In order to obtain trackdata for a database, the procedure has so far been to use tkassp to 
calculate signals for the entire, or part of the, database and then to edit the template file so that 
Emu knows where to locate the new signal files. However, it is also possible to obtain trackdata 
for a segment list without having to derive new signals for the entire database and make changes 
to the template file. This can be especially useful if the database is very large but you only need 
trackdata for a handful of segments; and it also saves a step in not having to change the template 
file. This procedure is illustrated below in obtaining fundamental frequency data for speaker 
gam's  [i:] vowels from the second database. Begin by making a segment list in R of these 
vowels: 
 
seg.i = emu.query("second", "gam*", "Phonetic = i:") 
 
Now write out the segment list as a plain text file seg.txt to a directory of your choice using 
the write.emusegs() function. NB: use only forward slashes in R and put the name of the 
directory in "" inverted commas (e.g., on Windows "c:/documents/mydata/seg.txt"). 
 
write.emusegs(seg.i, "your chosen directory/seg.txt") 
 
The plain text segment list created by the above command should look like this: 
 
database:second 
query:Phonetic = i: 
type:segment 
# 
i: 508.578 612.95 gam006 
i: 472.543 551.3 gam007 
i: 473.542 548.1 gam016 
i: 495.738 644.682 gam022 
i: 471.887 599.255 gam026 
i: 477.685 589.961 gam035 
i: 516.33 618.266 gam038 
i: 459.79 544.46 gam055 
i: 485.844 599.902 gam072 
 
Start up Emu and then access tkassp from Signal Processing → Speech signal 
analysis. Then follow the instructions shown in Fig. 3.20 to calculate f0 data. The result of 
running tkassp in the manner shown in Fig. 3.20 is to create another text file in the same 
directory as the segment list to which you applied tkassp and with the name seg.f0-txt. 



    53 

 

This can be read into R with  read.trackdata() and stored as the trackdata object 
seg.f0: 
 
seg.f0 = read.trackdata("your chosen directory/seg-f0.txt") 
 
Verify with the summary() function that these are trackdata from nine segments and plot the 
f0 data from the 3rd segment. Which utterance are these data from? 
 
Fig. 3.20 about here 
 
3.5 Answers 
1 (b) 
# Segment list 
vowelsF.s = emu.query("second", "agr*",  "Phonetic=i: | e: | a: 
| o: | u:") 
 
# Vector of labels 
vowelsF.l = label(vowelsF.s) 
 
# Trackdata of formants 
vowelsF.fm = emu.track(vowelsF.s, "fm") 
 
# Formants at the temporal midpoint of the vowel 
vowelsF.fm5 = dcut(vowelsF.fm, 0.5, prop=T) 
 
# Ellipse plots in the formant plane 
eplot(vowelsF.fm5[,1:2], vowelsF.l, form=T, dopoints=T, xlab="F2 
(Hz)",  ylab="F1 (Hz)") 
 
1 (d)  
You will need to read the formant data into R again (since a change has been made to the 
formants in Emu (but not the segment list if you are still in the same R session), i.e. 
repeat last 3 commands from 1(b). 
 
1(e) 
A comparison of Figs. 3.10 (male speaker gam) and 3.11 (female speaker agr) shows that there 
is indeed comparatively little difference between the male and female speaker in the positions of 
the high back vowels [o:, u:] whereas F2 for [i:, e:] and F1 for [a:] have considerably higher 
values for the female speaker. Incidentally, the mean category values for the female on e.g. F2 
can be obtained from: 
 
tapply(vowelsF.fm5[,2], vowelsF.l, mean) 
 
1(f) You get the same information with trackinfo() as is given under Track in the 
Tracks pane of the corresponding template file. 
 
1(g)  
audiowav = emu.track(vowelsF.s[1:3,], "samples") 
plot(audiowav[3,], type="l") 
 
1(h) 
trackinfo("first") 
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shows that the track name fm is not listed,  i.e., there is no formant data available for this 
database, as looking at the Tracks pane of this database's template file will confirm. 
 
2(d)  
The waveform is not displayed because the samples box is not checked in the View pane of 
the template file. 
 
2(g)  
The Tracks and Variables panes of the template file need to be edited as shown in Fig. 
3.21. 
 
Fig. 3.21 about here 
 
2(h)  
The longer the window, the greater the probability that variation over a small time interval is 
smoothed out. 
 
3.  
ZCR is above 1.5 kHz at points in the signal where there is acoustic frication caused by a 
turbulent airstream. Notice that this does not mean that ZCR is high in phonological fricatives 
and low in phonological vowels in this utterance. This is because this utterance was produced 
with a high degree of frication verging on laughter (for pragmatic effect i.e., to convey 
surprise/astonishment at the interlocutor's naivety) resulting in e.g., fricative energy around 2 
kHz and a comparatively high ZCR in the second vowel of bananas. ZCR is also high in the 
release of [t] of aren't and in the release/aspiration of the [p] and in the final [s] of poisonous. 
Notice how ZCR is lower in the medial /z/ than the final /s/ of poisonous. This does not 
necessarily come about because of phonetic voicing differences between these segments (in fact, 
the signal is more or less aperiodic for /z/ as shown by an absence of vertical striations on the 
spectrogram) but probably instead because this production of /z/ does not have as much energy 
in the same high frequency range as does final /s/ (see Chapter 8 for a further example of this). 
 
5.  
summary(seg.f0)  
 
should confirm that there are 9 segments. The fundamental frequency for the third segment is 
plotted with:  
 
plot(seg.f0[3,])  
 
The information about the utterance is given in the corresponding segment list: 
seg.i[3,] 
segment  list from database:  second  
query was:  Phonetic = i:  
  labels   start   end   utts 
3     i: 473.542 548.1 gam016 
 
i.e., the f0 data plotted in R are from utterance gam016.  
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Chapter 4 Querying annotation structures 
 The purpose of this Chapter is to provide an overview both of the different kinds of 
annotation structures that are possible in Emu and of some of the main types of queries for 
extracting annotations from them. This will take in a discussion of how annotations from 
different tiers can be linked, their relationship to a Praat TextGrid,  and the way that they can be 
entered and semi-automated in Emu. This Chapter will begin with a brief review of the simplest 
kinds of queries that have been used in the preceding Chapters to make segment lists. 
 
4.1 The Emu Query Tool, segment tiers and event tiers 
 As already discussed, whenever annotations are queried in Emu the output is a segment 
list containing the annotations, their start and end times and the utterances from which they were 
taken. One of the ways of making segment lists is with the emu.query() function in the R 
programming language. For example, this function was used in the preceding Chapter to make a 
segment list from all utterances beginning with gam (i.e., for the male speaker) in the second 
database of five types of vowels annotated at the Phonetic tier: 
 
emu.query("second", "gam*", "Phonetic = i: | e: | a: | o: | u:") 
 
The other equivalent way to make a segment list is with the Emu Query Tool which is 
accessed with Database Operations followed by Query Database from the Emu DB 
window as shown in Fig. 4.1. One you have entered the information in Fig. 4.1, save the segment 
list to the file name seg.txt and in a directory of your choice. You will then be able to read 
this segment list into R with the read.emusegs() function as follows: 
 
read.emusegs("path/seg.txt") 
 
where path is the name of the directory to which you saved seg.txt. This will give exactly 
the same output as you get from the emu.query() function above (and therefore illustrates the 
equivalence of these two methods).  
 
Fig. 4.1 about here 
 
 In Chapter 2, a distinction was made between a segment tier whose annotations have 
durations and an event or point tier in which an annotation is marked by a single point in time. 
The commands for querying annotations from either of these tiers is the same but what is 
returned in the first case is a segment list and in the second a variation on a segment list called 
an event list in which the end times are zero. An example of both from the author utterance 
of the aetobi database is as follows: 
 
state.s = emu.query("aetobi", "author", "Word = state") 
state.s 
segment  list from database:  aetobi  
query was:  Word = state  
  labels   start     end   utts 
1  state 2389.44 2689.34 author 
 
bitonal = emu.query("aetobi", "author", "Tone = L+H*") 
bitonal 
event  list from database:  aetobi  
query was:  Tone = L+H*  
  labels   start end   utts 
1   L+H*  472.51   0 author 
2   L+H* 1157.08   0 author 
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Since the first of these is from a segment tier, the annotation has a start and end time and 
therefore a duration: 
 
dur(state.s) 
299.9 
 
On the other hand, the two annotations found in the second query have no duration (and their end 
times are defined to be zero) because they are from an event tier: 
 
dur(bitonal) 
0 0 
 
4.2 Extending the range of queries: annotations from the same tier 
 As shown by various examples so far, the most basic query is of the form T = x where 
T is an annotation tier and x an annotation at that tier. The following extensions can be made to 
this basic query command for querying annotations from the same tier. In all cases, as before, the 
output is either a segment list or an event list. 
 
The | (or) operator and classes (features) 
An example of this has already been given: Phonetic = i: | e: | a: | o: | u: 
makes a segment list of all these vowels. A very useful way of simplifying this type of 
instruction is to define annotations in terms of classes (or features). In Emu, classes can be set up 
in the Legal Labels pane of the template file. For example, a number of annotations have 
been grouped for the second database at the Phonetic tier into the classes shown in Fig. 4.2. 
Consequently, a query for finding all rounded vowels can be more conveniently written as 
follows: 
 
emu.query("second", "gam*", "Phonetic=round") 
 
Fig. 4.2 about here 
 
The != operator 
T != a means all annotations except x. So one way to get at all annotations in tier T in the 
database is to put the right hand side equal to an annotation that does not occur at that tier. For 
example, since abc is not an annotation that occurs at the Phonetic tier in the second 
database, then Phonetic != abc returns all annotations from that tier. In the following 
example, this instruction is carried out for speaker gam in R and then the label() and 
table() functions are used to tabulate all the corresponding annotations: 
 
seg.all = emu.query("second", "gam*", "Phonetic != abc") 
table(label(seg.all)) 
H  a: au  b  d e:  g i: o: oe oy u:  
72  9  9 24 24  9 24  9  9  9  9  9 
 
The & operator 
Apart from its use for queries between linearly linked tiers discussed in 4.3, this operator is 
mostly useful for defining annotations at the intersection of features. For example, the following 
feature combinations can be extracted from the second database as follows: 
 
rounded high vowels 
Phonetic = round & Phonetic = high 
 
unrounded high vowels 
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Phonetic != round & Phonetic = high 
 
mid vowels  
Phonetic != high & Phonetic != low 
 
mid rounded vowels 
Phonetic != high & Phonetic != low & Phonetic = round 
 
Such definitions are then equivalent to those found in some distinctive feature notations in 
phonology and linguistic phonetics. Thus the last instruction defines vowels that are [-high, -low, 
+round] and they can be read into R using emu.query() in the same manner as before: 
 
midround = emu.query("second", "*", "Phonetic != high & Phonetic != 
low & Phonetic = round") 
table(label(midround)) 
o: oe oy  
18 18 18 
 
The -> operator  
Any two queries at the same tier can be joined together with the -> operator which finds either a 
sequence of annotations, or an annotation in the context of another annotation. There are three 
cases to consider: 
 
1. Make a segment list of a b (the segment list has a start time of a and end time of b) 
 [T = a -> T = b] 
 
2. Make a segment list of a if a precedes b  
 [#T = a -> T = b] 
 
3. Make a segment list of b if b follows a  
 [T = a -> # T = b] 
 
For example: 
 
(i) A segment list of any word followed by of  in the aetobi database: 
 
emu.query("aetobi", "*", "[Word != x -> Word = of]") 
labels   start     end    utts 
1   kind->of 2867.88 3106.87 amazing 
2    lot->of 5315.62 5600.12 amazing 
3 author->of  296.65  894.27  author 
 
(ii) A segment list of all words preceding of: 
 
emu.query("aetobi", "*", "[#Word != x -> Word = of]") 
segment  list from database:  aetobi  
query was:  [#Word != x -> Word = of]  
  labels   start     end    utts 
1   kind 2867.88 3016.44 amazing 
2    lot 5315.62 5505.39 amazing 
3 author  296.65  737.80  author 
 
(iii) As above, but here the segment list is of the second word of: 
 
emu.query("aetobi", "*", "[Word != x -> #Word = of]") 
segment  list from database:  aetobi  
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query was:  [Word != x -> #Word = of]  
  labels   start     end    utts 
1     of 3016.44 3106.87 amazing 
2     of 5505.39 5600.12 amazing 
3     of  737.80  894.27  author 
 
4.3 Inter-tier links and queries 
 An inter-tier query is, as its name suggests, any query that spans two or more annotation 
tiers. For the aetobi database, an example of an inter-tier query is:  'find pitch-accented words'. 
This is an inter-tier query because all annotations at the Word tier have to be found, but only if 
they are linked to annotations at the Tone tier. For this to be possible, some of the annotations 
between tiers must already have been linked (since otherwise Emu cannot know which words are 
associated with a pitch-accent). So the first issue to be considered is the different kinds of links 
that can be made between annotations of different tiers. 
 
Fig. 4.3 about here 
 
 An initial distinction needs to be made between two tiers that are linearly and non-
linearly linked. The first of these is straightforward: when two tiers are linearly linked, then one 
tier describes or enriches another. For example, a tier Category might be included as a 
separate tier from Word for marking words' grammatical category membership (thus each word 
might be marked as one of adjective, noun, verb etc.); or information about whether or not a 
syllable is stressed might be included on a separate Stress tier. In both cases, the tiers are 
linearly linked because for every annotation at Word or Syllable tiers, there are exactly 
corresponding annotations at the Category or Stress tiers. Moreover, the linearly linked 
annotations have the same times. In the downloadable database gt which contains utterances 
labeled more or less according to the conventions of the German Tones and Break Indices 
system GToBI (Grice et al, 2005), the tiers Word and Break are linearly linked. The Break 
tier contains annotations for so-called break-indices which define the phonetic juncture at word 
boundaries. Each word is associated with a break on a scale from 0 to 5, with lower numbers 
corresponding to less juncture. So if there is a full-pause between two words, then the word 
before the pause on the Break tier is marked with a high value e.g., 4 or 5. On the other hand, 
the first word in did you when produced as the assimilated form [dɪdʒә] would be 0 to denote the 
substantial overlap at the word boundary. Whereas Break and Word are linearly linked, all of 
the other tiers in the gt database stand in a non-linear relationship to each other. In Fig. 4.3, the 
relationship between Tone and Word (and therefore also between Tone and Break) must be 
non-linear, because there is evidently not one pitch-accent per word (not one annotation at the 
Tone tier for every annotation at the Word tier).  
 Fig.4.3 also shows the organisation of the utterance into a prosodic hierarchy. In an 
annotation of this kind, an utterance (tier Utt) is made up of one or more intonation phrases (tier 
I). An intonation phrase is made up of at least one intermediate phrase (tier i) and an 
intermediate phrase is made up of one or more words. (Intonation and intermediate phrases are 
collectively referred to as prosodic phrases). The criteria for marking these groupings depend to 
a certain extent on phonetic juncture. Thus, there is a greater juncture between word pairs that 
are in different phrases ( morgen/fährt, Thorsten/ja, and Studio/bei in Fig. 4.3) than those within 
a prosodic phrase. Moreover, the break between adjacent words in different intonation phrases 
(Studio/bei) is greater than between adjacent words in different intermediate phrases. 
  The non-linear association extends beyond those tiers that are in a parent-child 
relationship35. Thus since I is a parent of i and since the relationship between i and Word is 
non-linear, then the grandparent-child relationship between I and Word is also necessarily non-

                                                
35 A tier T is a parent of tier U if it is immediately above it in the annotation structure: so Utt is a parent of I which 
is a parent of i which is a parent of Word which is a parent of Tone. 
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linear. This becomes completely clear in skipping the i tier and displaying the links between I 
and Word that fall out from these relationships, as in Fig. 4.4. 
 
Fig. 4.4 about here 
 
 There are two further parameters that need to be mentioned and both only apply to non-
linear relationships between tiers. The first is whether a non-linear association is one-to-many or 
many-to-many. All of the relationships between tiers in Fig. 4.3 are one-to-many because an 
annotation at a parent tier maps onto one or more annotations at a child tier, but not the other 
way round: thus an intermediate phrase can be made up of one or more words, but a word cannot 
map onto more than one intermediate phrase. In a many-to-many relationship by contrast, an 
annotation at the parent tier can map onto one or more annotations at the child tier, and vice-
versa. Two examples of this type of many-to-many association are shown in Fig. 4.5.  Firstly, the 
final syllable was produced with a final syllabic nasal [n̩] (that is with no discernible weak vowel 
in the final syllable) but in order to express the idea that this word could (in a more careful 
speech production) be produced with a weak vowel as [әn], the word is annotated as such at the 
Phoneme tier and both segments are linked to the single n annotation at the child tier.  Since 
two annotations from a parent tier can map onto a child tier and vice-versa, the inter-tier 
relationship is many-to-many.  Secondly, to express the idea inherent in some prosodic models 
that the medial /s/ in (non-rhotic varieties of) person is ambisyllabic (e.g., Kahn, 1976; 
Gussenhoven, 1986), the single s annotation is linked to both S and W (strong and weak) 
annotations at the Syllable tier. Evidently, Syllable and Phoneme also stand in a many-
to-many relationship to each other because a syllable can be made up of more than one phoneme, 
but a phoneme can also map onto two syllables.  
 The final parameter that needs to be mentioned is whether the non-linear association 
between two tiers is hierarchical or autosegmental (see also Bird & Liberman, 2001 and 
Taylor, 2001 for a similar distinction in query languages). Two tiers are defined in Emu to be in 
a hierarchical relationship when the annotations of a parent tier are composed of those from the 
child tier (or seen from the bottom upwards, when the annotations of the child tier can be parsed 
into those of the parent tier). For example, syllables stand in a hierarchical relationship to 
phonemes in Fig. 4.5, because syllables are made up of a sequence of phonemes (phonemes are 
parsed into syllables). In the autosegmental-metrical model of intonation (Pierrehumbert 1980; 
Beckman & Pierrehumbert 1986; Ladd 1996), words are made up of a sequence of syllables, and 
for this reason, the tiers stand in a hierarchical relationship to each other. Where → means 
'stands in a hierarchical relationship to' then for the GToBI annotation in Fig 4.3, Utt → I → i 
→ Word. On the other hand, the meaning of autosegmental is 'belongs to' or 'is associated with'. 
In Fig. 4.3, Word and Tone stand in an autosegmental relationship to each other. Their 
relationship is not hierarchical because a word is evidently not made up of a sequence of pitch-
accents (the units at the Tone tier) in the same way that it is always composed of a sequence of 
syllables or a sequence of phonemes.  
 In Emu, the difference between a hierarchical or autosegmental relationship depends on 
whether the time stamps from the different tiers can be predicted from each other. In an 
autosegmental relationship they cannot. For example, given a pitch-accent it is not possible to 
say anything about the start and end times of the word with which it is associated nor vice-versa 
(beyond the vague statement that a pitch-accent is likely to be annotated at a point on the f0-
contour somewhere near the word's rhythmically strongest vowel). On the other hand, given that 
a word is composed of a sequence of syllables, then the start and end times of a word are 
necessarily predictable from those of the first and last syllable. Similarly, given the hierarchical 
relationship Utt → I → i → Word in Fig.4.3, then the duration of the first H% at tier I in this 
figure extends from the onset of the first word to the offset of the last word that it dominates, i.e., 
between the start time of jeden and the end time of Thorsten; similarly, the duration of the first 
H- at level i extends from the beginning to the end of jeden morgen that it dominates, and so on.  
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Fig. 4.5 about here 
 
 Specifying a relationship as hierarchical and many-to-many allows hierarchies to overlap 
with each other in time at their edges. For example, since  the Syllable and Phoneme tiers 
are hierarchically related to each in Fig. 4.5, then the duration of the first syllable (S) of person 
extends across the segments that it dominates, i.e., from the onset of p to the offset of s; but 
since the second syllable (W) also extends across the segments it dominates, then its duration is 
from the onset of the same s to the end of word: that is, the two syllables overlap in time across 
the durational extent of the medial s. For analogous reasons, since @ (schwa) and n at the 
Phoneme tier both map onto the same n annotation at the Phonetic tier, and since Phoneme 
and Phonetic stand in a hierarchical relationship to each other, then these annotations are both 
defined to have the same start times and they both have the same end times: thus  since both @ 
and n inherit their times from the same annotation at the Phonetic tier, they are defined to be 
temporally overlapping. 
 When two tiers, T and U, are non-linearly (therefore either autosegmentally or 
hierarchically) linked, then their annotations can be queried with [T = a ^ U = b] where 
a and b are annotations at those tiers: such a query finds all a annotations at tier T that are 
linked to b annotations at tier U. Some examples with respect to the thorsten utterance of the 
gt database (Fig. 4.3) are given below. As discussed earlier, these search instructions can be 
entered either in the Emu Query Tool in the manner shown in Fig 4.1, or by using 
emu.query() function in R. For example, the search instruction  
 
 [Tone=L* ^ Word=morgen | Studio]  
 
can be embedded as argument to the emu.query() function as shown in the following 
examples. 
 
(i)  All L* tones at the Tone tier linked to either morgen or Studio at the Word tier. 
emu.query("gt","thorsten","[Tone=L* ^ Word=morgen | Studio]") 
labels    start end     utts 
1     L*  325.625   0 thorsten 
2     L* 2649.770   0 thorsten 
 
(ii)  As (i), but return the corresponding words 
[Tone = L* ^ #Word = morgen | Studio] 
labels    start      end     utts 
1 morgen  250.366  608.032 thorsten 
2 Studio 2438.090 2962.670 thorsten 
  
 The != operator discussed in 4.1 can be used to find all annotations. For example, the 
following search instruction finds all pitch-accented words i.e., any annotation at the Word tier 
that is linked to any annotation at the Tone tier: 
 
[Word != x ^ Tone != x] 
1   morgen  250.366  608.032 thorsten 
2 Thorsten 1573.730 2086.380 thorsten 
3   Studio 2438.090 2962.670 thorsten 
4    Chaos 3165.340 3493.200 thorsten 
5  Stunden 3982.010 4274.110 thorsten 
 
Queries can be made across intervening tiers as long as all the tiers are linked. Thus since tiers i 
and Tone are linked via Word, a query such as 'find any intermediate phrase containing an L*' 
(any annotation at tier i that is linked to L* at the Tone tier) is defined for this database: 
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[i != x ^ Tone = L*] 
labels    start      end     utts 
1     H-   47.689  608.032 thorsten 
2     L- 2086.380 2962.670 thorsten 
 
Two intermediate phrases are returned, which are the two that are associated with L* via the 
Word tier (see Fig. 4.3). Notice that, although the query is made with respect to an event which 
has no duration (L*), since the intermediate phrases inherit their durations from the Word tier, 
they have a duration equal to the words that they dominate. 
 It is possible to nest non-linear queries inside other non-linear queries. For example, the 
following query finds the words that occur in an H- intermediate phrase and in an L% 
intonational phrase (any annotation at the Word tier linked both to H- at the i tier and to L% at 
the I tier): 
 
[ [ Word != x ^ i = H- ] ^ I = L% ] 
1     bei 2962.67 3165.34 thorsten 
2   Chaos 3165.34 3493.20 thorsten 
3    Kaja 3493.20 3815.10 thorsten 
4    vier 3815.10 3982.01 thorsten 
5 Stunden 3982.01 4274.11 thorsten 
6    lang 4274.11 4691.39 thorsten 
 
The following does the same but under the additional condition that the words should be pitch-
accented, (linked to an annotation at the Tone tier): 
 
[[[Word !=x ^ Tone !=x] ^ i = H-] ^ I = L%] 
 
or equivalently: 
 
[[[ Tone !=x ^ # Word!=x] ^ i = H-] ^ I = L%] 
1   Chaos 3165.34 3493.20 thorsten 
2 Stunden 3982.01 4274.11 thorsten 
 
4.4 Entering structured annotations with Emu 
 A helpful first step in entering annotations such as the one shown in Fig 4.3 is to 
summarise the inter-tier relationships for a database in a path as in Fig. 4.6. In this Figure, (S) 
and (E) denote segment and event tiers which, for convenience, can be collectively referred to 
as time tiers. All other tiers (Utt, I, i, Break) are (initially) timeless i.e., they inherit their 
times from another tier. An arrow between two tiers means that they stand in a non-linear 
relationship to each other, either one-to-many (a single downward arrow) or many-to-many (a 
double arrow). Any adjacent two tiers not connected by an arrow stand in a linear relationship to 
each other (Word, Break). When a single or double arrow extends between any two time tiers 
(Word, Tone) then the relationship is autosegmental; otherwise if either one (i, Word) or both  
(Utt, I and I, i) of the tiers is timeless, then the relationship is hierarchical. A timeless tier 
inherits its times from the child tier that it dominates. Thus, times percolate up the tree: i inherits 
its times from Word, I from i, and Utt from I. In linear relationships, a timeless tier inherits 
its times from the tier with which it is linearly associated (Break inherits its times from Word).  
 
Fig. 4.6 about here 
 
 The tiers that stand in a non-linear relationship to each other are entered into Emu in the 
Levels pane of the template file (Fig. 4.6) in which the child:parent relationship is specified as 
one-to-many or many-to-many. A tier that is linearly linked to another tier is declared in the 
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Labels pane. The distinction between hierarchical and autosegmental depends on whether a 
tier is marked as timeless in the Labfiles pane. Unless a tier is defined as a segment or event 
tier (Fig. 4.6), it is timeless. Thus Utt → I → i → Word  defines a hierarchical relationship in 
this template file for two reasons: firstly, because of the child:parent relationships that are 
declared in the Levels pane, and secondly because Word is the only one of these tiers declared 
to be linked to times in the Labfiles pane. As described earlier, Utt, I and i inherit their 
times from Word both because they dominate it, and because Word  is associated with times. 
Moreover, because these tiers do not have their own independent times, they do not appear in the 
utterance's signal view window: thus when you open any utterance in the gt database, you will 
only see Word/Break and Tone in the signal view window and you have to switch to the 
hierarchy view window to see the other tiers (Fig. 4.3).  
 
 
Fig. 4.7 about here 
 
 There is one utterance in the gt database, dort, for which the non-linear links have not 
been set and these can be incorporated following the details below. Begin by opening the 
hierarchy window of this utterance in the manner described in Fig. 4.3.  Once you have the 
hierarchy window in the top panel of Fig. 4.7, select Simple Tree so that the annotations do 
not overlap. The utterance dann treffen wir uns dort am Haupteingang (lit: then meet we us there 
at the main-entrance, i.e. then we'll meet each other there, at the main entrance) was produced 
as one intonational phrase and two intermediate phrases and with accented words dann, dort, and 
Haupteingang. The corresponding pitch-accents have already been entered at the Tone tier: the 
task, then, is to link the annotations to end up with the display shown in the lower pane of Fig. 
4.7. Move the mouse over the leftmost H* which causes the annotation to turn blue. Then hold 
down the left button and without letting go, drag the mouse to the word to which this pitch-
accent belongs, treffen. Once treffen is highlighted (it will also change colour to blue), then 
release the mouse button. This should set the link. It is quite a good idea to practice deleting the 
link, in case you make a mistake. To do this, select Delete, and move the mouse over the line 
you have just drawn and it will then turn red. Clicking the mouse once, deletes the link. You can 
in fact delete not just lines but annotations in this way. When you finish deleting, select Edit 
before continuing, otherwise you will delete material such as links and annotations 
(unfortunately, there is currently no undo button - so if you accidentally delete material, close the 
annotation window without saving).  
 In order to set the links between the i and Word tiers, move the mouse anywhere to the 
same height in the window as the i tier and click twice (twice because two intermediate phrases 
have to be entered). This will cause two asterisks to appear. Proceed in the same way as 
described earlier for setting the non-linear links between the asterisks and the words as shown inf 
Fig. 4.7: thus, move the mouse to the first word dann until it changes to blue, then hold the 
mouse button down and sweep to the first asterisk until it also changes to blue. Set all of the 
links between these tiers in the same way. You should end up with two asterisks at the i tier, the 
first of which is linked to the first five words, the second to last two. To enter text, click on the 
asterisk to get a cursor and enter the annotations. Set the labels and links at the Utt and I tier in 
the same matter as described above. Finally, enter the annotations of the Break tier (these could 
also be entered in the signal window because any tier that is linearly linked to a time tier - in this 
case to Word - also appears in the signal window)36 and then save the file. 
 

                                                
36 If for any reason you are not able to reproduce the final display shown in Fig 4.7, then copy 
dort.tonesanswer dort.wordsanswer and dort.hlbanswer in path/gt/labels, where path is 
the name of the directory to which you downloaded the gt database, and rename the files to dort.tones, 
dort.words, dort.hlb respectively, over-writing any existing files if need be. 
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Fig. 4.8 about here 
 
The result of saving annotations is that one file per time tier and one so-called 

hierarchical label file will be created or updated. Since for this database, there are two time 
tiers, Tone and Word, then the annotations at the Tone tier and the annotations at the Word tier 
are stored in their own separate (plain text) files. The location of these files is given in the 
Labfiles pane of the template file (lower pane, Fig. 4.6). The other annotations from timeless 
tiers are stored in the hierarchical label file which always has the extension hlb and which is 
stored in the path given in the Levels pane of the template file. As you will see if you open any 
(plain text) hlb file, the information is a code that is equivalent to the kinds of structures shown 
in Fig. 4.8. (The actual numbers might differ depending on the order in which the annotations 
were created). For example, some of the lines from dort.hlb might look like this: 

 
0  
1 7  
2  
3  
4 8  
5  
6 9  
7  
8  
9  
10 5 6 9  
11 0 1 2 3 4 7 8  
 

The number on the left denotes a parent of any of those on the right. So 1 7 in the second line 
means that annotation 1 is a parent (or grand-parent or great-great grand-parent etc.) of 
annotation 7 while annotation 11 of the last line stands in an analogous relationship to the 
adjacent annotations 0, 1, 2, 3, 4, 7, 8. The relationship between these numeric and 
actual annotations can be deduced from the other information in the same hlb file or 
alternatively by opening a hierarchy window and showing both types of annotations as in Fig. 
4.8. This figure shows that 11 corresponds to the first H- at tier i while the other numbers to the 
right include the annotations at the Word tier of which it is a parent as well as those of the Tone 
tier of which it is a grand-parent.  
 
4.5 Conversion of a structured annotation to a Praat TextGrid 
 Although tiers whose times are predictable are structurally and implicitly coded in Emu, 
it is nevertheless possible to convert most Emu annotations into a Praat TextGrid in which times 
are explicitly represented for every annotation and for every tier. For example, the equivalent 
TextGrid representation for the utterance that has just been annotated is shown in Fig. 4.9: in this 
TextGrid, the annotations of the tiers that were declared to stand in a hierarchical relationship to 
each other in Emu have identical times at boundaries, as Fig. 4.9 shows. But not every Emu 
annotation structure can have a corresponding representation as a Praat TextGrid. In particular, it 
is possible to have annotations in Emu that are completely timeless even after annotations have 
percolated up through the tree, in the manner described earlier. An example of this occurs in the 
downloadable kielread corpus in Fig. 4.10 in which the Kanonic tier (used for citation-
form, dictionary pronunciations) stands in a hierarchical relationship to the segment tier 
Phonetic from which it therefore inherits its times. However, since some annotations at the 
Kanonic tier are not linked to the Phonetic tier, then the times cannot be passed up the tree 
to them and so they remain timeless.  
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 This purpose of these unlinked annotations is to express segment deletion. Thus the 
citation-form, isolated word production of und (and) has a final /t/, but in the read speech form 
that actually occurred in this utterance, the /t/ appears to have been deleted, as both the 
spectrogram Fig. 4.10 and listening to the utterance suggest. This mismatch between the citation-
form representation and what was actually spoken is given expression by representing this final 
/t/ at the Kanonic tier as being unassociated with any time. The advantage of this 
representation is that the user can subsequently compare analogous contexts that differ according 
to whether or not segment deletion has taken place. For example, although based on a similar 
spectrographic/auditory impression the final /t/ in past six may appear to have been deleted 
(thereby rendering the first word apparently homophonous with pass), a more rigorous follow-up 
analysis may well show that there were, after all, fine phonetic cues that distinguished the long 
[s] across the word boundary in past six from its occurrence in pass six. But in order to carry out 
such an analysis, it would be necessary to find in the corpus examples of [s] that do and do not 
precede a deleted /t/ and this will only be possible if the deletion is explicitly encoded at this 
more abstract level of representation, as has been done for the /t/ of und, the /ә/ of schreiben (to 
write) and the final /әn/ of lernen (to learn) in this utterance in the kielread corpus. Now 
since annotations in Praat must be explicitly associated with times, then these kinds of timeless 
segments that are used to express the possibility of segment deletion will not appear in the Praat 
TextGrid, when the conversion is carried out in the manner shown earlier in Fig. 4.9 (and a 
warning message is given to this effect). 
 
Fig. 4.9 about here 
Fig. 4.10 about here 
 
4.6 Graphical user interface to the Emu query language 
 The types of queries that have been discussed so far can be combined for more complex 
queries of structured annotations. A full review of the query syntax is beyond the scope of this 
Chapter but is summarized in Cassidy & Harrington (2001) and set out in further detail in 
appendix A on the website associated with this book. An example is given here of a complex 
query that makes use of the additional functionality for searching by position and number: 'find 
all L*+H pitch-accented words that are in intermediate-phrase-final position and in H% 
intonational phrases of at least 5 words and such that the target words precede another word with 
a break index of 0 in an L- intermediate phrase'. Such a query should find the word Thorsten in 
the gt database (Fig.  4.3) because Thorsten: 
 

• is the last word in an intermediate phrase 
• is associated with an L*+H pitch-accent 
• occurs in an H% intonational phrase of at least five words 
• precedes another word (ja) whose break index is 0 and which occurs in an L- 

intermediate phrase 
 
The graphical user interface to the Emu query language, which was written by Tina John, can be 
of great assistance in calculating complex queries such as these. This GUI (Fig. 4.11) is opened 
by clicking on the graphical query button in the Query Tool window: for the gt 
database, this action brings up a form of spreadsheet with the tiers arranged from top to bottom 
according to the database's template file. It is a comparatively straightforward matter to enter the 
search criteria into this window in the manner shown in Fig. 4.11. The search instruction is 
automatically copied into the Query Tool window after clicking the Query button. You 
could also copy the calculated search instruction  and then enter it as the third argument of the 
emu.query() function in R thus: 
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emu.query("gt", "*", "[ [ [ #Word !=x & End ( i,Word ) = 1 ^ I = 
H% & Num ( I,Word ) >= 5 ] ^ Tone = L*+H ] -> [ Word !=x & Break 
= 0 ^ i = L- ] ]") 
labels   start     end     utts 
1 Thorsten 1573.73 2086.38 thorsten 
 
Fig. 4.11 about here 
 
4.7  Re-querying segment lists 
 The emu.requery() function in the Emu-R library allows existing segment lists to 
be queried for position or non-linearly. This is useful if, say, you have made a segment list of 
words and subsequently want to find out the type of intermediate phrase in which they occurred, 
or the annotations that followed them, or the pitch-accents with which they were associated. The 
emu.requery()  function can be used for this purpose and it takes the following three 
mandatory arguments: 
 

• a segment list 
• the tier of the segments in the segment list 
• the tier of the desired segment list 

 
and the following two optional arguments: 
 

• the position (as an integer) relative to the input segment list 
• a specification for whether a new segment list or just its labels should be returned 

 
For example, suppose you have made a segment list of all words in the utterance thorsten: 
 
w = emu.query("gt", "thorsten", "Word != x") 
 
and you now want to know the break index of these segments. This could then be calculated 
with: 
 
emu.requery(w, "Word", "Break") 
 
In this case, the first argument is w because this is the segment list that has just been made; the 
second argument is "Word" because this is the tier from which w was derived; and the third 
argument is "Break" because this is the tier that is to be re-queried. The additional fourth 
argument justlabels=T or equivalently j = T returns only the corresponding annotations 
rather than the entire segment list: 
 
emu.requery(w, "Word", "Break", j=T) 
"1" "3" "1" "1" "1" "3" "0" "1" "1" "3" "1" "1" "1" "1" "1" "4" 
 
Thus the second annotation "3" in the vector of annotations highlighted above is the break 
index of the second segment. Exactly the same syntax can be used to re-query segment lists for 
annotations of non-linearly linked tiers. So emu.requery(w, "Word", "i") and 
emu.requery(w, "Word", "I") make segment lists of the intermediate and intonational 
phrases that dominate the words in the segment list w. Similarly, you could find which words are 
associated with a pitch-accent (i.e., the prosodically accented words) as follows: 
 
emu.requery(w, "Word", "Tone", j=T) 
"no-segment" "L*"  "no-segment" ... 
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The first two words in w are unaccented and accented respectively because, as the above 
annotations show, no-segment is returned for the first (i.e. it is not associated with any 
annotation at the Tone level) whereas the second is associated with an L*. 
 If you want to find the preceding or following segments relative to a segment then use the 
seq argument. Thus: 
 
emu.requery(w, "Word", "Word", seq=-1) 
 
finds the annotations at the same tier that precede the segment list (analogously, seq=2 would 
be for findings annotations positioned two slots to the right, and so on). The first three segments 
that are returned from the above command look like this: 
 
Read 16 records 
segment  list from database:  gt  
query was:  requery  
         labels    start      end     utts 
1    no-segment    0.000    0.000 thorsten 
2         jeden   47.689  250.366 thorsten 
3        morgen  250.366  608.032 thorsten 
 
The reason why the first segment has a no-segment entry is because there can be no segment 
that precedes the first word of the utterance.  
 If you want to re-query for both a different tier and a different position, then two queries 
are needed. Firstly, a segment list is made of the preceding word and secondly these preceding 
words are queried for pitch-accents: 
 
prec.word = emu.requery(w, "Word", "Word", seq=-1) 
prec.tone = emu.requery(prec.word, "Word", "Tone", j=T) 
 
4.8 Building annotation structures semi-automatically with Emu-Tcl 
 Putting together annotation structures such as the one discussed so far can be useful for 
subsequently searching the database, but the data entry can be cumbersome, especially for a 
large and multi-tiered database. For this reason, there is the facility in Emu to automate various 
stages of tree-building via an interface to the Tcl/Tk programming language and there are some 
existing programs in the Emu-Tcl library for doing so. Since an introduction to the Tcl/Tk 
language is beyond the scope of this book, some examples will be given here of using very 
simple programs for building annotation structures automatically. Some further examples of 
using existing Emu-Tcl scripts are given in Appendix B of the website associated with this book. 
 For the present example, the task will be to link annotations between the Tone and Word 
tiers in the aetobi database in order to be able to make similar kinds of queries that were 
applied to the gt database above. The annotations in aetobi are arranged in three time tiers, 
Word, Tone, and Break that have the same interpretation as they did for the gt database 
considered earlier. Since in contrast to the gt database, none of aetobi's annotations are 
linked, then inter-tier queries are not possible. The first task will be to use an Emu-Tcl function 
LinkFromTimes to link the Word and Tone tiers based on their times in order to allow 
queries such as: 'find all pitch-accented words'.   
 
Fig. 4.12 about here 
 
 The Emu-Tcl function LinkFromTimes, causes annotations at two tiers T and U to be 
linked whenever the time(s) of the annotations at tier U are within those of tier T. Therefore, 
LinkFromTimes should link the H*, L*, and H* pitch-accents to Anna, married, and Lenny 
respectively in Fig. 4.12 because the times of the pitch-accents all fall within the times of these 
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word boundaries. It is not clear what this function will do to the annotations  L-H% and L-L%: in 
annotating these utterances, which was done  in the early 1990s as part of the American English 
ToBI database, the task was to align all phrase and boundary tones like these with the right word 
boundary (so the right boundary of Anna and L-H% should have the same time) but it would 
have needed very fine mouse control indeed to make the boundaries coincide precisely. So it is 
more than likely that these boundary times are either fractionally before or after the word 
boundary and for this reason it is difficult to predict whether they will be linked with the phrase-
final or phrase-initial word.  
 Three steps are needed to run LinkFromTimes function and these are: 
 

• write an Emu-Tcl script than includes this function 
• load the script into the template file 
• modify the template file if need be 

 
For the first of these, the syntax is: 
 
LinkFromTimes $utt Word Tone  
 
where $utt is a variable defining the current utterance. This command needs to be saved in a 
plain text file that includes a package statement to provide access to LinkFromTimes in the 
Emu-Tcl library. You also have to include two functions that each begin with the line proc. The 
first of these,  AutoBuildInit, is used to initialise any data sets  and variables that are 
needed by the second, AutoBuild, that does the work of building the annotation structure for 
the current utterance. Your plain text file should therefore include just these three commands: 
 
package require emu::autobuild 
proc AutoBuildInit {template} {} 
proc AutoBuild {template utt} {LinkFromTimes $utt Word Tone} 
 
Save this plain text file as aetobi.txt somewhere on your system. Now edit the template file 
of the aetobi database in the usual way in order to make two changes: firstly, Word must be 
made a parent of Tone because Emu will only link annotations between two tiers non-linearly if 
one tier is declared to be a parent of the other; and secondly you will have to tell Emu where to 
find the plain text file, aetobi.txt, that you have just created,  (Fig. 4.13).  
 
Fig. 4.13 about here 
 
Then save the template file, reload the database and open any utterance. There will now be a new 
button Build Hierarchy which is used to run your Tcl-script over the annotations of the 
utterance that you have just opened. Switch to the hierarchy view, then select Build 
Hierarchy and finally Redraw to see the result which should be linked annotations between 
the Word and Tone tiers (Fig. 4.14). The same figure also shows that the L-H% phrase-
boundary tone has been linked with the second word (so the labeler evidently positioned this 
annotation fractionally beyond the offset of the first word Anna). 
 
Fig. 4.14 about here 
 
 You could now save the utterance and then work through the entire database one 
utterance at a time in order to link the annotations in this way, but even for a handful of 
utterances this becomes tedious. Your Tcl script can instead be run over the entire database with 
Database Operations → AutoBuildExtern which will bring up the Emu 
AutoBuild Tool with your Tcl-script ready to be run (Fig. 4.15). If you follow through the 
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instructions in this window, the script will be applied to all of the utterances and the 
corresponding hlb files saved to the directory specified in the Emu template file. If you open 
any utterance, you should find that the annotations at the Word and Tone tiers are linked.  
 
Fig. 4.15 about here 
 
Once the tiers are linked, then a query to find e.g. all L* accented words is possible: 
 
emu.query("aetobi", "*", "[Word != x ^ Tone = L*]") 
 
Read 13 records 
segment  list from database:  aetobi  
query was:  [Word!=x ^ Tone=L*]  
      labels    start      end        utts 
1    married  529.945  897.625       anna1 
2        can 1063.330 1380.750    argument 
3        can 3441.810 3723.970    argument 
4    Atlanta 8483.270 9214.580     atlanta 
5   audience 1070.865 1473.785   audience1 
6    bananas   10.000  655.665     bananas 
7  poisonous  880.825 1786.855     bananas 
8      ma'am 1012.895 1276.395        beef 
9      don't 2201.715 2603.025        beef 
10       eat 2603.025 2867.945        beef 
11      beef 2867.945 3441.255        beef 
12       and 3510.095 3622.955 blond-baby1 
13      pink 3785.905 4032.715 blond-baby1 
 
 In Cassidy, Welby, McGory and Beckman (2000), a more complicated Tcl-program was 
written for converting the flat annotations of the aetobi database into a hierarchical form 
similar to that of the gt database considered earlier, in which intonational phrases dominate 
intermediate phrases which dominate words and in which words are associated with pitch-
accents. In addition, and as for the gt database, the boundary and phrase tones are marked at 
the intonational and intermediate tiers and the script ensures only pitch-accents from the Tone 
tier are associated with words. The script for carrying out these operations is tobi2hier.txt 
and it is located in the top level folder of the aetobi database when it is downloaded.  
 
Fig. 4.16 about here 
 
 As described above,  the parent-child tier relationships need to be defined and the script 
has to be loaded into the template file. For the first of these, the template file has to be changed 
to encode the path in Fig. 4.16. This path has to be entered as always in the Levels pane of the 
template file and the simplest way to do this, when there are already existing tiers, is in text 
mode, as shown in Fig. 4.17. Having edited the tiers in the manner of Fig. 4.17, you must also 
load the new Emu-Tcl program (in the Variables pane of the template file, as already 
described in the right panel of Fig. 4.13). If you downloaded the aetobi database to the 
directory path, then the file that you need to load is path/aetobi/tobi2hier.txt. 
While you are editing the template, you should also select the new tiers Intonational and 
Intermediate to be displayed in the View pane of the template file.  
 
Fig. 4.17 about here 
 
 Now call up the program for running this script over the entire database as in Fig. 4.15 
which should now load the new Emu-Tcl script tobi2hier.txt. After you have run this 
script, then the hierarchy for each utterance should be built and visible, in the manner of Fig. 
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4.18. You will now be able to query the database for all the linked tiers. For example, the words 
associated with H* in L- intermediate and H% intonational phrases is given by: 
  
emu.query("aetobi", "*", "[ [ [ Word != x ^ Tone = H* ] ^ 
Intermediate = L- ] ^ Intonational = H% ]") 
1   Anna    9.995  529.945   anna1 
2    yes   10.000 2119.570 atlanta 
3     uh 2642.280 3112.730 atlanta 
4   like 3112.730 3360.330 atlanta 
5 here's   10.000  206.830    beef 
   
Fig. 4.18 about here 
 
4.9  Branching paths 
 In all of the tier relationships considered in the various corpora so far, the tiers have been 
stacked up on top of each other in a single vertical path – which means that a tier has at most one 
parent and at most one child. However, there are some kinds of annotation structure that cannot 
be represented in this way. Consider as an example of this the relationship between various tiers 
below the level of the word in German. It seems reasonable to suggest that words, morphemes, 
and phonemes stand in a hierarchical relationship to each other because a word is composed of 
one or more morphemes, which is composed of one or more phonemes: thus kindisch (childish) 
unequivocally consists of a sequence of two morphemes kind and -isch which each map onto 
their constituent phonemes. Analogously, words, syllables, and phonemes also stand in 
hierarchical relationship to each other. Now there is a well-known phonological process 
(sometimes called final devoicing) by which obstruents in German are voiceless in prosodically-
final position (e.g., Wiese, 1996): thus although the final consonant in Rad (wheel) may have 
underlying voicing by analogy to e.g., the genitive form, Rades which surfaces (is actually 
produced) with a voiced /d/, the final consonant of Rad is phonetically voiceless i.e., produced as 
/ra:t/ and possibly homophonous with Rat (advice). Therefore, since kindisch is produced with a 
voiced medial obstruent, i.e.,  /kɪndɪʃ/, then the /d/ cannot be in a prosodically final position, 
because if it were, then kindisch should be produced with a medial voiceless consonant as  
/kɪntɪʃ/ as a consequence of final devoicing. In summary it seems, then, that there are two quite 
different ways of parsing the same phoneme string into words: either as morphemes kind+isch or 
as syllables kin.disch. But what is the structural relationship between morphemes and syllables in 
this case? It cannot be hierarchical in the sense of the term used in this Chapter, because a 
morpheme is evidently not made up of one or more syllables (the first morpheme Kind is made 
up of the first syllable but only a fragment of the second) while a syllable is also evidently not 
made up of one or more morphemes (the second syllable consists of the second morpheme 
preceded by only a fragment of the first). It seems instead that because phonemes can be parsed 
into words in two different ways, then there must be two different  hierarchical relationships 
between Phoneme and Word organised into two separate paths:  via Morpheme along one 
path, but via Syllable along another (Fig. 4.19).  
 
Fig. 4.19 about here 
 
This three-dimensional representation in Fig. 4.19  can be translated quite straightforwardly 
using the notation for defining parent-child relationships between tiers discussed earlier, in 
which there are now two paths for this structure from Word to Morpheme to Phoneme and 
from Word to Syllable to Phoneme as shown in Fig. 4.20.The equivalent parent-child 
statements that would need to be made in the Levels pane of an Emu template file are as 
follows: 
 
Word 
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Morpheme Word 
Phoneme Morpheme 
Syllable Word 
Phoneme Syllable 
 
Fig. 4.20 about here 
 
 This type of dual path structure also occurs in the downloadable ae database of read 
sentences of Australian English in which an Abercrombian stress-foot has been fused with the 
type of ToBI prosodic hierarchy discussed earlier. A stress-foot according to Abercrombie 
(1967) is a sequence of a stressed syllable followed by any number of unstressed syllables and it 
can occur across word-boundaries. For example, a parsing into stress-feet for the utterance 
msajc010 of the ae database might be: 
 
It is | fu | tile to | offer | any | further re|sistance | 
w   w    s     s   w   s  w    s w    s   w   w  s   w 
 
where s and w are strong and weak syllables respectively and the vertical bar denotes a stress-
foot boundary. Evidently words and feet cannot be in a hierarchical relationship for the same 
reason discussed earlier with respect to morphemes and syllables: a foot is not made up of a 
whole number of words (e.g., resistance) but a word is also not composed of a whole number of 
feet (e.g., further re- is one stress-foot). In the ae database, the Abercrombian foot is 
incorporated into the ToBI prosodic hierarchy by allowing an intonational phrase to be made up 
of one or more feet (thus a foot is allowed to cross not only word-boundaries but also 
intermediate boundaries, as in futile to in msajc010). The paths for the ae database (which 
also include another branching path from Syllable to Tone that has nothing to do with the 
incorporation of the foot discussed here) is shown in Fig. 4.21 (open the Labels pane of the ae 
template file to see how the child-parent relationships have been defined for these paths). 
 
Fig. 4.21 about here 
 
 If you were to draw the structural relationships for an utterance from this database in the 
manner of Fig. 4.19, then you would end up with a three-dimensional structure with a parsing 
from Intonational to Foot to Syllable on one plane, and from Intonational to 
Intermediate to Word/Accent/Text to Syllable on another. These three-dimensional 
diagrams cannot be displayed in Emu: on the other hand, it is possible to view the relationships 
between tiers on the same path, as in Fig. 4.22 (Notice that if you select two tiers like 
Intermediate and Foot that are not on the same path, then the annotations in the resulting 
display will, by definition, not be linked). 
 
Fig. 4.22 about here 
 
 Inter-tier queries can be carried out in the usual way for the kinds of structures discussed 
in this section, but only as long as the tiers are on the same path. So in the kindisch example 
discussed earlier, queries are possible between any pairs of tiers except between Morpheme and 
Syllable. Similarly, all combinations of inter-tier queries are possible in the ae database 
except those between Foot and Intermediate or between Foot and 
Word/Accent/Text.  Thus the following are meaningful and result each in a segment list: 
 
Intonational-final feet 
emu.query("ae", "msajc010", "[Foot=F & End(Intonational, 
Foot)=1]") 
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Intonational-final content words 
emu.query("ae", "msajc010", "[Word=C & End(Intonational, 
Word)=1]") 
 
but the following produces no output because Intermediate and Foot are on separate paths: 
 
Intermediate-final feet 
emu.query("ae", "msajc010", "[Foot=F & End(Intermediate, 
Foot)=1]")  
 
Error in emu.query("ae", "msajc010", "[Foot=F & End(Intermediate, Foot)=1]") 
: Can't find the query results in emu.query: 
 
4.10 Summary 
Tier types: segment, event, timeless 
 In Emu, there is a distinction between time tiers and timeless tiers. The former includes 
segment tiers in which annotations have a certain duration and event tiers in which annotations 
are marked by a single point in time. Timeless tiers inherit their times from time tiers depending 
on how the tiers are linked. 
 
Linear links 
 When two tiers are linearly linked, then their annotations stand in a one-to-one 
relationship to each other: that is for every annotation at one tier there is another annotation in 
the tier to which it is linearly linked with the same time stamp. A tier inherits the times from the 
tier with which it is linearly linked. 
 
Non-linear links 
 Two tiers are non-linearly linked if an annotation at one tier can map onto one or more 
annotations at another tier.  
 If both of the non-linearly linked tiers are also time tiers, then they stand in an 
autosegmental relationship to each other, otherwise the relationship is hierarchical. In an 
autosegmental relationship, the times of the tiers are by definition not predictable from each 
other. In a hierarchical relationship, the times of the parent tier are predictable and inherited from 
the child tier, where the parent tier is defined as the tier which is ordered immediately above a 
child tier.  
 If a single annotation in a parent tier can map onto one or more annotations at the child 
tier but not vice-versa, the relationship between non-linearly linked tiers is additionally one-to-
many; otherwise it is defined to be many-to-many. Hierarchical many-to-many links can be used 
to allow trees to overlap in time at their edges. 
 
Specifying tier relationships in the template file 
 A tier which is linearly linked to another is entered in the Labels pane of the template 
file. When two non-linearly linked tiers are entered in the Levels pane by specifying that one 
is the parent of the other, then they are non-linearly linked. The Levels pane is also used for 
specifying whether the relationship is one-to-many or many-to-many. The distinction between 
autosegmental and hierarchical emerges from the information included in the Labfiles pane: 
if both tiers are specified as time tiers (segment or event) the association is autosegmental, 
otherwise it is hierarchical. 
 
Single and multiple paths 
 Any set of tiers linked together in a parent-child relationship forms a path. For most 
purposes, the annotation structures of a database can be defined in terms of a single path in 
which a parent tier maps onto only one child tier and vice-versa. Sometimes, and in particular if 
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there is a need to encode intersecting hierarchies, the annotation structures of a database may be 
defined as two or more paths (a parent tier can be linked to more than one child tier and vice-
versa). 
 
Data entry in Emu 
 Annotations of time tiers must be entered in the signal view window. Tiers linearly linked 
to time tiers can be entered in either the signal view or hierarchy windows. The annotations of all 
other tiers as well as the links between them are entered in the hierarchy window. Use Display 
→ SignalView Levels and Display → Hierarchy Levels to choose the tiers 
that you wish to see (or specify this information in the Variables pane of the template file). 
Annotations and annotation structures can also be semi-automated with the interface to Tcl. 
These scripts, some of which are prestored in the Emu-Tcl library, are loaded into the 
Variables pane of the template file. They are applied to single utterances with the Build 
Hierarchy button or to all utterances with the Emu AutoBuild Tool. 
 
File output and conversion to a Praat TextGrid 
 The result of saving the Emu annotations is one plain text annotation file per time tier. 
The extensions of each time tier are specified in the Labfiles pane of the template file.  The 
information about annotations in timeless tiers as well as the linear and non-linear links between 
annotations is coded in the plain text hlb file (again with the utterance's basename) whose path 
is specified in the template's Levels pane. Annotations stored in these files can be converted to 
an equivalent Praat TextGrid using Arrange Tools → Convert Labels → 
Emu2Praat. All annotations can be converted, even those in timeless tiers, as long as they have 
inherited times from a time tier. Annotations that remain timeless are not converted. 
 
Queries 
 Emu annotation structures can be queried with the Emu query language either directly 
using the Emu Query Tool or in R with the emu.query() function. The basic properties of 
the Emu query language are as follows: 

1. T = a finds all a annotations from tier T. The same syntax is used to find annotations 
grouped by feature in the Legal Labels pane of the template file. 

2. T != a finds all annotations except a. T = a | b finds a or b annotations at tier T.  
3. Basic queries,  either at the same tier or between linearly linked tiers,  can be joined by & 

to denote both and -> to denote a sequence. T = a & U = w finds a annotations at 
tier T linearly linked with w annotations at tier U. T = a -> T = b finds the sequence 
of annotations a b at tier T.  

4. The # sign preceding a basic query causes annotations to be returned from that basic 
query only. Thus T = a -> #T = b finds b annotations preceded by a annotations at 
tier T. 

5. ^ is used for queries between non-linearly linked tiers. [T = a ^ U = w] finds a 
annotations at tier T non-linearly linked (autosegmentally or hierarchically) to w 
annotations at tier U.  

6. Num(T, U)=n finds annotations at tier T that are non-linearly linked to a sequence of n 
annotations at tier U. (In place of = use  >, <, !=, >=, <= for more than, less than, not 
equal to, greater than or equal to, less than or equal to). 

7. Start(T, U)=1 finds annotations at tier U that occur in initial position with respect to 
the non-linearly linked tier T.  End(T, U) = 1 and Medial(T, U) = 1 do the 
same but for final and medial position. Start(T, U) = 0 finds non-initial 
annotations at tier U. 

8. Complex queries can be calculated with the aid of the graphical user interface. 
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9. An existing segment list can be re-queried in R either for position or with respect to 
another tier using the emu.requery() function. 

 
4.11 Questions 
 
1. This question is concerned with the second database. 
1.1 By inspecting the Levels, Labels, and Labfiles panes of the template file, draw the 
relationship between the tiers of this database in a path analogous to that in Fig. 4.6.  
 
1.2 How are the following pairs of tiers related: autosegmentally, hierarchically, linearly, or 
unrelated? 
 
Word and Phoneme 
Word and Phonetic 
Word and Target 
Word and Type 
Type and Phoneme 
Type and Phonetic 
Type and Target 
Phoneme and Phonetic 
Phoneme and Target 
Phonetic and Target 
 
1.3 Using the emu.query() function in R, make segment lists for utterances beginning with 
agr* (i.e., for the female speaker) in the following cases (/x/ refers to a segment at the 
Phoneme tier, [x] to a segment at the Phonetic tier, /x y/ to a sequence of segments at the 
Phoneme tier). If need be, make use of the graphical-user-interface to the Emu query language. 
Store the result as segment lists s1, s2...s12. Question 1.3.1 is given as an example. 
 
1.3.1. [u:] 
Example answer: s1 = emu.query("second", "agr*", "Phonetic=u:") 
 
1.3.2 The words Duden or Gaben. (Store the results in the segment list s2). 
 
1.3.3 The annotations at the Type tier for Duden or Gaben words. 
 
1.3.4.  [u:] and [oe] 
 
1.3.5. /g u:/ 
 
1.3.6.  /i:/ following /g/ or /b/ 
 
1.3.7. [H] in Gaben 
 
1.3.8. [a:] in Gaben words of Type L 
 
1.3.9. T at the Target level associated with any of /u:/, /i:/, or /y:/ 
 
1.3.10 Word-initial phonemes 
 
1.3.11 [H] in words of at least two phonemes 
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1.3.12 [H] when the word-initial phoneme is /d/ 
 
1.4 Use the emu.requery() function to make segment lists or annotations relative to those 
made in 1.3 in the following cases: 
 
1.4.1 A segment list of the  words corresponding to s4 
Example answer: emu.requery(s4, "Phonetic", "Word") 
 
1.4.2 A segment list of the phonemes preceding the segments in s6 
 
1.4.3 The annotations at the Type level in s9 
 
1.4.4 The annotations of the segments following s12 
 
1.4.5 A segment list of the phonetic segments corresponding to s2 
 
2. This question is concerned with the downloadable ae database. 
 
2.1 Fig. 4.21 is a summary of the paths for the ae database. Sketch the separate paths for the ae 
database in the manner shown on the left of Fig. 4.20. Why is there an ambiguity about the times 
inherited by the Syllable tier (and hence also about all tiers above Syllable)? 
 
2.2 Make segment or event lists from the ae database in the following cases. /x/ refers to 
annotations at the Phoneme tier, [x] to annotations at the Phonetic tier, orthographic 
annotations are at the Text tier. A strong (weak) syllable is coded as S (W) at the Syllable 
tier, and a prosodically accented (unaccented) word as S (W) at the Accent tier. 
 
2.2.1. Annotations of his (from the Text tier). 
 
2.2.2. /p/ or /t/ or /k/ 
 
2.2.3. All words following his 
 
2.2.4. The sequence /ei k/ 
 
2.2.5. All content words (annotations at the Text tier associated with C from the Word tier). 
 
2.2.6. The orthography of prosodically accented words in sequences of W S at the Accent tier. 
 
2.2.7. A sequence at the Text tier of the followed by any word e.g., sequences of the person or 
the situation  etc. 
 
2.2.8. The phoneme /ei/ in strong syllables 
 
2.2.9. Weak syllables containing an /ei/ phoneme 
 
2.2.10. Word-initial /m/ or /n/ 
 
2.2.11. Weak syllables in intonational-phrase final words. 
 
2.2.12.  Trisyllabic words (annotations from the Text tier of three syllables). 
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2.2.13. /w/ phonemes in monosyllabic words. 
 
2.2.14. Word-final syllables in trisyllabic content words. 
 
2.2.15. Foot-initial syllables.  
 
2.2.16. L+H* annotations at the Tone tier in foot-initial syllables in feet of more than two 
syllables.  
 
3. This question is concerned with the downloadable gt database that has been discussed in this 
Chapter. 
 
3.1. In some models of intonation (e.g. Grice et al, 2000) phrase tones (annotations at the 
intermediate tier) are both hierarchical groupings of words but also have their own independent 
times, as in Fig. 4.23. What simple modification do you need to make to the template file so that 
phrase tones (the annotations at Tier i) can be marked as an event in time as in Fig. 4.23? Verify 
that you can annotate and save the utterance schoen in the manner shown in Fig. 4.23 after you 
have edited and saved the template file. 
 
Fig. 4.23 about here 
 
3.2 If annotations at the intermediate tier are queried with the template file modified according to 
3.1, then such annotations are no longer segments but events as follows for the schoen 
utterance: 
 
emu.query("gt", "schoen", "i !=x") 
Read 1 records 
event  list from database:  gt  
query was:  i !=x  
  labels    start end   utts 
1     L- 1126.626   0 schoen 
 
Why is the result now an event and not a segment list as before? 
 
3.3 If you nevertheless also wanted to get the duration of this L- intermediate phrase in terms of 
the words it dominates as before, how could you do this in R? (Hint: use emu.requery()  ). 
 
4. Figure 4.24 shows the prosodic hierarchy for the Japanese word [kit:a] (cut, past participle) 
from Harrington, Fletcher, & Beckman (2000) in which the relationship between word, foot, 
syllable, mora, and phoneme tiers is hierarchical. (The long [t:] consonant is expressed in this 
structure by stating that [t] is ambisyllabic and dominated by a final mora of the first syllable).  
The downloadable database mora contains the audio file of this word produced by a female 
speaker of Japanese with a segmentation into [kita] at the lowest segment tier, Phon. 
 
Fig. 4.24 about here 
 
4.1 Draw the path structure for converting this representation in Fig 4.24 into a form that can be 
used in a template file. Use Word, Foot, Syll, Mora, Phon for the five different tiers. 
 
4.2 Modify the existing template file from the downloadable database mora to incorporate these 
additional tiers and annotate this word according to relationships given in Fig. 4.24.  
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4.3 Verify when you have completed your annotations that you can display the relationships 
between annotations shown in Fig. 4.25 corresponding to those in Fig. 4.24. 
 
Fig. 4.25 about here 
 
4.4 Make five separate segments lists of the segments at the five tiers Word, Foot, Syll, 
Mora, Phon. 
 
4.5. Verify the following by applying emu.requery()to the segment lists in 4.4: 
 
4.5.1 ωat the Word tier consists of [kita] at the Phon tier. 
4.5.2 F at the Foot tier consists of [kit] at the Phon tier. 
4.5.3 F at the Foot tier consists of the first two morae at the Mora tier. 
4.5.4 The second syllable at the Syll tier consists only of the last mora at the Mora tier. 
4.5.5 When you requery the annotations at the Phon tier for morae, the first segment [k] is not 
dominated by any mora. 
4.5.6 When you requery the [t] for syllables, then this segment is dominated by both syllables. 
 
4.12 Answers 
   
1.1 
 
Editor: Please insert Fig. 4.flowchart about here with no figure legend 
 
1.2. 
Word and Phoneme  h 
Word and Phonetic  h 
Word and Target   a 
Word and Type   l 
Type and Phoneme  h 
Type and Phonetic  h 
Type and Target   a 
Phoneme and Phonetic  h 
Phoneme and Target  a 
Phonetic and Target  a 
 
1.3.2 
s2 = emu.query("second", "agr*", "Word = Duden | Gaben") 
 
 1.3.3 
s3 = emu.query("second", "agr*", "Type !=x & Word = Duden | 
Gaben ") 
OR 
s3 = emu.requery(s2, "Word","Type") 
 
 1.3.4 
s4 = emu.query("second", "agr*", "Phonetic=u: | oe") 
 
 1.3.5 
s5 = emu.query("second", "agr*", "[Phoneme = g -> Phoneme = 
u:]") 
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 1.3.6 
s6 = emu.query("second", "agr*", "[Phoneme = g | b -> #Phoneme = 
i:]") 
 
 1.3.7 
s7 = emu.query("second", "agr*", "[Phonetic = H  ^ Word = 
Gaben]") 
 
 1.3.8 
s8 = emu.query("second", "agr*", "[Phonetic = a:  ^ Word = Gaben 
& Type=L]") 
 
 1.3.9 
s9 =  emu.query("second", "agr*", "[Target  = T  ^ Phoneme = u: 
| i: | y: ]") 
 
 1.3.10 
s10 = emu.query("second", "agr*", "Start(Word, Phoneme)=1") 
OR 
s10 = emu.query("second", "agr*", "Phoneme !=g4d6j7 & Start ( 
Word,Phoneme ) = 1") 
 
 1.3.11 
s11 = emu.query("second", "agr*", "[Phonetic = H ^ Num(Word, 
Phoneme) >= 2]") 
 
 1.3.12 
s12 = emu.query("second", "agr*", "[Phonetic = H ^ Phoneme =d & 
Start(Word, Phoneme)=1]") 
 
1.4.2 
emu.requery(s6, "Phoneme", "Phoneme", seq=-1) 
 
1.4.3 
emu.requery(s9, "Target", "Type", j = T) 
 
1.4.4 
emu.requery(s12, "Phonetic", "Phonetic", seq=1, j=T) 
 
1.4.5 
emu.requery(s2, "Word", "Phonetic") 
 
2.1 
There are four separate paths as follows: 
 
Editor: Please insert Fig. 4.flowchart2 about here with no figure legend 
 
The ambiguity in the times inherited by the Syllable tier comes about because Syllable is 
on the one hand a (grand)parent of Phonetic but also a parent of Tone. So do Syllable 
and all the tiers above it inherit segment times from Phonetic or event times from Tone? In 
Emu, this ambiguity is resolved by stating one of the child-parent relationships before the other 
in the template file. So because the child-parent relationship 
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Phoneme Syllable 
 
is stated before 
 
Tone Syllable 
 
in the Levels pane of the template file, then Syllable inherits its times from Phoneme (and 
therefore from Phonetic). If the Tone-Syllable relationship had preceded the others, then 
Syllable would have inherited event times from Tone.  
 The resolution of this ambiguity is (indirectly) expressed in Fig. 4.21 by drawing the 
Syllable-Phoneme-Phonetic tiers as the vertical path and having Syllable-Tone as 
a branching path from this main path (so whenever there is an ambiguity in time inheritance, 
then times are inherited along the vertical path). 
 
2.2.1 
Text = his 
 
2.2.2  
Phoneme = p | t | k 
 
2.2.3 
[Text = his -> # Text!=x] 
 
2.2.4 
[Phoneme = ei -> Phoneme = k] 
 
2.2.5 
Text!=x & Word = C 
 
2.2.6 
[Accent = W -> # Text!=x & Accent = S] 
 
2.2.7 
[Text = the -> Text!=x] 
 
2.2.8 
[Phoneme = ei ^ Syllable = S] 
 
2.2.9 
[Syllable = W ^ Phoneme = ei] 
 
2.2.10 
Phoneme = m | n & Start(Text, Phoneme)=1 
OR 
Phoneme = m | n & Start(Word, Phoneme)=1 
 
2.2.11 
[Syllable = W ^ End(Intonational, Text)=1] 
 
2.2.12 
[Text !=x & Num(Text, Syllable)=3] 
OR 
Num(Text, Syllable)=3 
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2.2.13 
[Phoneme = w ^ Num(Text, Syllable)=1] 
 
2.2.14 
[[Syllable!=x & End(Text, Syllable)=1 ^ Num(Text, Syllable)=3 ] 
^ Word=C] 
 
2.2.15 
[Syllable !=x & Start(Foot, Syllable)=1] 
 
2.2.16 
[[Tone = L+H* ^ Start(Foot, Syllable)=1 ] ^ Num(Foot, Syllable) 
> 2] 
 
3.1 Tier i needs to be declared an event tier in the Labfiles pane of the template file. 
 
3.2  Because Tier i no longer inherits its times hierarchically from the Word tier. 
 
3.3  
ptone = emu.query("gt", "schoen", "i !=x") 
emu.requery(ptone, "i", "Word") 
 
4.1  
This is a three-dimensional structure with Foot on a separate plane from Word-Syll and 
Mora on a separate plane from Syll-Phon as shown in the left panel of Fig. 4.26. The 
translation into the path structure is shown on the right in which Word inherits its times from 
Phon via Syll (as a result of which the duration of ω extends over all segments [kita] that it 
dominates).  
 
Fig. 4.26 about here 
 
4.2 The parent-child relationships between the tiers need to be coded in the Emu template file as 
follows:  
 
Level  Parent 
Word  
Syll  Word  
Phon  Syll  many-to-many  
Foot  Word  
Syll  Foot  
Mora  Syll 
Phon  Mora 
 
The Syll-Phon parent child relationship needs to be many-to-many because /t/ at tier Phon is 
ambisyllabic. All other tier relationships are one-to-many. The Word-Syll relationship needs to 
be positioned before Word-Foot in the template file so that Word inherits its times along the 
Word-Syll-Phon path (see the note in the  answer to question 2.1 for further details). The tiers 
will be arranged in appropriate order if you select the tiers from the main path (i.e., Word, 
Syll, Phon) in the View pane of the template file. Alternatively, verify in text mode (see Fig. 
4.17 on how to do this) that the following has been included: 
 
set HierarchyViewLevels Word Foot Syll Mora Phon 
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4.3 
When you annotate the utterance in the different planes, then choose from Display → 
Hierarchy levels to display the tiers in the separate planes as in Fig. 4.26. If all fails, then 
the completed annotation is accessible from the template file moraanswer.tpl . 
 
4.4 
(You will need to choose "moraanswer" as the first argument to emu.query()  if you did 
not complete 4.1-4.3 above). 
 
pword = emu.query("mora", "*", "Word!=x") 
foot = emu.query("mora", "*", "Foot!=x") 
syll = emu.query("mora", "*", "Syll!=x") 
m = emu.query("mora", "*", "Mora!=x") 
phon = emu.query("mora", "*", "Phon!=x") 
 
4.5.1. 
emu.requery(pword, "Word", "Phon") 
k->i->t->a 634.952 1165.162 kitta 
 
4.5.2 
emu.requery(foot, "Foot", "Phon") 
k->i->t 634.952 1019.549 kitta 
 
4.5.3 
emu.requery(foot, "Foot", "Mora") 
m->m 763.892 1019.549 kitta 
 
4.5.4 
emu.requery(syll[2,], "Syll", "Mora") 
m 1019.549 1165.162 kitta 
# or 
emu.requery(m[3,], "Mora", "Syll") 
s 831.696 1165.162 kitta 
 
4.5.5 
emu.requery(phon, "Phon", "Mora", j=T) 
"no-segment" "m"          "m"          "m"  
 
4.5.6 
emu.requery(phon[3,], "Phon", "Syll", j=T) 
"s->s" 
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Chapter 5 An introduction to speech data analysis in R: a study of an EMA database 
  
 In the third Chapter, a relationship was established in R using some of the principal 
functions of the Emu-R library between segment lists, trackdata objects and their values 
extracted at the temporal midpoint in the formant analysis of vowels. The task in this Chapter is 
to deepen the understanding of the relationship between these objects, but in this case using a 
small database of some movement data obtained with the electromagnetic midsagittal 
articulograph manufactured by Carstens Medizinelektronik. These data were collected by Lasse 
Bombien and Phil Hoole of the IPS, Munich (Hoole et al, in press) and their aim was to explore 
the differences in synchronization of the /k/ with the following /l/ or /n/ in German /kl/ (in e.g., 
Claudia) and /kn/ (e.g., Kneipe) word-onset clusters. More specifically, one of the hypotheses 
that Bombien and Hoole wanted to test was whether the interval between the tongue-dorsum 
closure for the /k/ and the tongue tip closure for the following alveolar was greater in /kn/ than in 
/kl/. A fragment of 20 utterances, 10 containing /kn/ and 10 containing /kl/ clusters of their much 
larger database was made available by them for illustrating some techniques in speech analysis 
using R in this Chapter. 
 After a brief overview of the articulatory technique and some details of how the data 
were collected (5.1), the annotations of movement signals from the tongue tip and tongue 
dorsum will be discussed in relation to segment lists and trackdata objects than can be derived 
from them (5.2). The focus of section 5.3 is an acoustic analysis of voice-onset-time in these 
clusters which will be used to introduce some simple forms of analysis in R using segment 
duration. In section 5.4, some techniques for making ensemble plots are introduced to shed some 
light on intergestural coordination, i.e., on the co-ordination between the tongue-body and 
following tongue-tip raising. In section 5.5, the main aim is to explore some intragestural 
parameters and in particular the differences between /kn/ and /kl/ in the characteristics of the 
tongue-dorsum raising gesture in forming the /k/ closure. This section will also include a brief 
overview of how these temporal and articulatory landmarks are related to some of the main 
parameters that are presumed to determine the shape of movement trajectories in time in the 
model of articulatory phonology (Browman & Goldstein, 1990a, b, c) and task-dynamic 
modeling (Saltzman & Munhall, 1989). 
  
5.1 EMA recordings and the ema5 database 
 In electromagnetic articulometry (EMA), sensors are attached with a dental cement or 
dental adhesive to the midline of the articulators, and most commonly to the jaw, lips, and 
various points on the tongue (Fig. 5.1).  
 
Fig. 5.1 about here 
 
As discussed in further detail in Hoole & Nguyen (1999), when an alternating magnetic field is 
generated by a transmitter coil, it induces a signal in the receiver coil contained in the sensor that 
is approximately inversely proportional to the cube of the distance between the transmitter and 
the receiver and it is this which allows the position of the sensor to be specified. In the so-called 
5D-system that has been developed at the IPS Munich (Hoole et al, 2003; Hoole & Zierdt, 2006; 
Zierdt, 2007) and which was used for the collection of the present data, the position of the sensor 
is obtained in a three-dimensional Cartesian space that can be  related to the sensor’s position in 
the coronal, sagittal, and transverse planes (Fig. 5.3). Typically, the data are rotated relative to 
the occlusal plane which is the line extending from the upper incisors to the second molars at the 
back and which is parallel to the transverse plane (Fig. 5.3). (The rotation is done so that the 
positions of the articulators can be compared across different speakers relative to the same 
reference points). The occlusal plane can be determined by having the subject bite onto a bite-
plate with sensors attached to it.  In recording the data, the subject sits inside a so-called EMA 
cube (Fig. 5.2) so there is no need for a helmet as in earlier EMA systems. In the system that was 
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used here, corrections for head movements were carried out in a set of processing steps sample 
by sample. 
 
Fig. 5.2 about here 
Fig. 5.3 about here 
 
 Up-down differences in the vertical dimension of the sagittal plane correspond most 
closely to stricture differences in consonants and to phonetic height differences in vowels. So, 
once the rotation has been done, then there should be noticeable differences in the position of the 
jaw sensor in moving from a bilabial closure to the open vowel in [pa]. Front-back,  differences 
in the horizontal dimension of the sagittal plane are related to movement of the articulators in the 
direction from the lips to the uvula. In this plane, the tongue-mid and tongue-back sensors should 
register a clear difference in producing a transition from a phonetically front to a back 
articulation in the production of [ju]. Finally, the lateral differences (horizontal dimension of the 
coronal plane) should register  movements between right and left, as in moving the jaw or the 
tongue from side to side to side37.  
 For the data in the downloadable EMA database, movement data were recorded from 
sensors fixed to three points on the tongue (Fig. 5.1), as  well as to the lower lip, upper lip, and 
jaw (Fig. 5.4). The sensors were all fixed in the mid-sagittal plane. The tongue tip (TT) sensor 
was attached approximately 1 cm behind the tip of the tongue; the tongue back or tongue body 
(TB) sensor was positioned as far back as the subject could tolerate; the tongue mid (TM) sensor 
was equidistant between the two with the tongue protruded. The jaw sensor was positioned in 
front of the lower incisors on the tissue just below the teeth. The upper lip (UL) and lower lip  
(LL) sensors were positioned on the skin just above and below the lips respectively (so as not to 
damage the lips' skin). In addition, there were four reference sensors which were used to correct 
for head movements: one each on the left and right mastoid process, one high up on the bridge of 
the nose, and one in front of the upper incisors on the tissue just above the teeth. 
 
Fig. 5.4 about here 
 
 The articulatory data were sampled at a frequency of 200 Hz in a raw file format. All 
signals were band-pass filtered with a FIR filter (Kaiser window design, 60 dB at 40-50 Hz for 
the tongue tip, at 20-30 Hz for all other articulators, at 5-15 Hz for the reference sensors). 
Horizontal, vertical, and tangential velocities were calculated and smoothed with a further 
Kaiser-window filter (60 dB at 20-30Hz). All these steps were done in Matlab and the output 
was stored in self-documented Matlab files. The data was then converted using a script written 
by Lasse Bombien into an Emu compatible SSFF format.38 

 The database that will be analysed in this Chapter, ema5, consists of 20 utterances 
produced by a single female speaker of Standard German. The 20 utterances are made up of five 
repetitions of four sentences that contain a target word in a prosodically phrase-medial, accented 
position containing either a /kl/ or /kn/ cluster in onset position. The four words for which, then, 
there are five repetitions each (thus 10 /kl/ and 10 /kn/ clusters in total) are Klausur 
(examination), Claudia (a person's name), Kneipe (a bar) and Kneipier (bar attendant).  Claudia 
and Kneipe have primary lexical stress on the first syllable, the other two on the final syllable.  
When any utterance of this database is opened, the changing positions of the moving jaw, lips, 
and three points of the tongue are shown in relation to each other in the sagittal and transverse 
planes (Fig. 5.5). In addition, the template file has been set up so that the two movement signals, 
the vertical movement of the tongue tip and tongue-body, are displayed. These are the two 
signals that will be analysed in this Chapter.  
 
                                                
37 See http://www.phonetik.uni-muenchen.de/~hoole/5d_examples.html for some examples. 
38 The script is mat2ssff.m and is available in the top directory of the downloadable ema5 database. 
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Fig. 5.5 about here 
 
 As is evident in opening any utterance of ema5, the database has been annotated at three 
tiers: Segment, TT, and TB. The Segment tier contains acoustic phonetic annotations that 
were derived semi-automatically with the MAUS automatic segmentation system (Schiel, 2004) 
using a combination of orthographic text and Hidden-Markov-models trained on phonetic-sized 
units. The segmentations have been manually changed to sub-segment the /k/ of the target words 
into an acoustic closure and following release/frication stage.  
 In producing a /kl/ or /kn/ cluster, the tongue-body attains a maximum height in forming 
the velar closure for the /k/. This time at which this maximum occurs is the right boundary of 
raise at the TB tier (or, equivalently, at the  left boundary of the following lower annotation). 
The left boundary of raise marks the greatest point of tongue dorsum lowering in the 
preceding vowel.  In producing the following /l/ or /n/, the tongue tip reaches a maximum height 
in forming the alveolar constriction. The time of this maximum point of tongue-tip raising is the 
right boundary of raise at the TT tier (left boundary of lower).  The left boundary of raise 
marks the greatest point of tongue tip lowering in the preceding vowel (Fig. 5.5). 
 
Fig. 5.6 about here 
  
The annotations for this database are organised into a double path annotation structure in which 
Segment is a parent of both the TT and the TB tiers, and in which TT is a parent of TB (Fig. 
5.6). The annotations raise and lower at the TT tier are linked to raise and lower 
respectively at the TB tier and both of these annotations are linked to the word-initial /k/ of the 
target words at the Segment tier. The purpose of structuring the annotations in this way is to 
facilitate queries from the database. Thus, it is possible with this type of annotation structure to 
make a segment list of word-initial acoustic /k/ closures and then to obtain a segment list of the 
associated sequence of raise lower annotations at either the TT or TB tier. In addition, if a 
segment list is made of raise at the TT tier, then this can be re-queried not only to obtain a 
segment list of the following lower annotations but also, since TT and TB are linked, of the 
raise annotation at the TB tier. Some examples of segment lists that will be used in this 
Chapter are given in the next section. 
 
5.2 Handling segment lists and vectors in Emu-R 
  
Fig. 5.7 about here 
 
 In almost all cases, whether analyzing formants in Chapter 3 or movement data in this 
Chapter, or indeed electropalatographic and spectral data in the later parts of this book, the 
association between signals and annotations that is needed for addressing hypotheses almost 
always follows the structure which was first presented in Fig. 3.8 of Chapter 3 and which is 
further elaborated in Fig. 5.7. The first step involves making one or more segment lists using the 
emu.query() or emu.requery() functions. Then emu.track() is used to retrieve 
trackdata i.e., signal data from the database with respect to the start and end times of any 
segment list that has been made. The purpose of start() , end() , and dur() is to obtain 
basic durational properties from either the segment list or trackdata object. The functions 
label() and utt() are used to retrieve from segment lists the annotations and utterance 
identifiers respectively of the segments. Finally, dcut() is used to slice out values from a 
trackdata object either over an interval, or at a specific point in time (as was done in analyzing 
vowel formants at the temporal midpoint in Chapter 3). These functions are at the core of all 
subsequent operations for analyzing and plotting data in R. 
 In this section, the task will be to obtain most of the necessary segment lists that will be 
needed for the comparison of /kn/ and /kl/ clusters and then to discuss some of the ways that 
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segment lists and vectors can be manipulated in R: these types of manipulations will be needed 
for the acoustic VOT analysis in the next section and are fundamental to most preliminary 
analyses of speech data in Emu-R. 
 
 Using the techniques discussed in Chapter 4, the following segment lists can be obtained 
from the ema5 database: 
 
# Segment list of word-initial /k/ 
k.s = emu.query("ema5", "*", "Segment=k & Start(Word, 
Segment)=1") 
 
# Segment list of the following h (containing acoustic VOT information) 
h.s = emu.requery(k.s, "Segment", "Segment", seq=1) 
 
# Segment list of the sequence of raise lower at the TT tier 
tip.s = emu.requery(k.s, "Segment", "TT") 
 
# Segment list of the sequence raise lower at the TB tier 
body.s = emu.requery(k.s, "Segment", "TB") 
 
In addition, two character vectors of annotations will be obtained using the label() function, 
the first containing either n or l (in order to identify the cluster as /kn/ or /kl/) and the second of 
the word annotations. Finally, a numeric vector is obtained with the dur() function of the 
duration of the h segments, i.e., of voice onset time. 
 
# Vector consisting of n or l (the segments are two positions to the right of word-initial /k/) 
son.lab = emu.requery(k.s, "Segment", "Segment", seq=2, j=T) 
 
# Word annotations 
word.lab = emu.requery(k.s, "Segment", "Word", j=T) 
 
# Acoustic VOT 
h.dur = dur(h.s) 
 
 It is useful at this point to note that segment lists on the one hand and vectors on the other 
are of different types and need to be handled slightly differently. As far as R is concerned, a 
segment list is a type of object known as a data frame. As far as the analysis of speech data in 
this book is concerned, the more important point is that segment lists share many properties 
with matrices: that is, many operations that can be applied to matrices can also be applied to 
segment lists. For example, nrow() and ncol() can be used to find out how many rows and 
columns there are in a matrix. Thus, the matrix bridge in the Emu-R library has 13 rows and 3 
columns and this information can be established with nrow(bridge), ncol(bridge), and 
dim(bridge): the last of these returns both the number of rows and columns (and therefore 
13 3 in this case). The same functions can be applied to segment lists. Thus dim(h.s) returns 
20 4 because, as will be evident by entering h.s on its own, there are 20 segments and 4 
columns containing information about each segment's annotation, start time, end time, and 
utterance from which it was extracted. As mentioned in Chapter 3, an even more useful function 
that can be applied to segment lists is summary(): 
 
summary(k.s) 
segment  list from database:  ema5  
query was:  Segment=k & Start(Word, Segment)=1  
 with 20 segments 
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Segment distribution: 
 
 k  
20  
 
which apart from listing the number segments and their annotations (all k in this case), also gives 
information about the database from which they were derived and the query that was used to 
derive them.  
 In contrast to segment lists and matrices, vectors have no dimensions i.e., no rows or 
columns and this is  why dim(word.lab), nrow(son.lab), or ncol(word.lab) all 
return NULL. Moreover, these three vectors can be divided into two types: character vectors 
like word.lab and son.lab whose elements all contain characters in "" quotes or numeric 
vectors to which various arithmetic, statistical, and mathematical operations can be applied and 
whose elements are not in quotes. You can use various functions beginning with is. as well as 
the class() function to test the type/class of an object thus: 
 
# Is k.s a segment list? 
is.seglist(k.s) 
TRUE 
 
# What type of object is h.s? 
class(h.s) 
# Both a segment list and a data frame 
"emusegs"    "data.frame" 
 
# Is son.lab a vector? 
is.vector(son.lab) 
TRUE 
 
# Is h.dur of mode character? 
is.character(h.dur) 
FALSE 
 
# Is h.dur of mode numeric? 
is.numeric(h.dur) 
TRUE 
 
# Is word.lab both of mode character and a vector (i.e., a character vector)? 
is.character(word.lab) & is.vector(word.lab) 
TRUE 
 A very important idea in all of the analyses of speech data with Emu-R in this book is 
that objects used for solving the same problem usually need to be parallel to each other. This 
means that if you extract n segments from a database, then the nth row of a segment list, matrix 
and, as will be shown later, of a trackdata object, and the nth element of a vector all provide 
information about the same segment. Data for the nth segment can be extracted or indexed 
using integers inside a square bracket notation, thus: 
 
# The 15th segment in the segment list 
h.s[15,] 
 
# The corresponding duration of this segment (h.dur is a vector) 
h.dur[15] 
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# The corresponding word label (word.lab is a vector) 
word.lab[15] 
 
The reason for the comma in the case of a matrix or segment list is because the entries before 
and after the comma index rows and columns respectively (so since a vector has no rows or 
columns, there is no comma). More specifically, h.s[15,] means all columns of row 15 which 
is why h.s[15,] returns four elements (because h.s has four columns). If you just wanted to 
pick out row 15 of column 2, then this would be h.s[15,2] (and only one element is 
returned). Analogously, entering nothing before the comma indexes all rows and so h.s[,2] 
returns 20 elements i.e., all elements of column 2 (i.e., the segments' start, or left boundary, 
times). Since 1:10 in R returns the integers 1 through 10, then the command to obtain the first 
10 rows of h.s is given by h.s[1:10,] while the same notation is used for the first 10 
elements of a vector, but again without the comma, thus word.lab[1:10], h.dur[1:10] 
etc. If you want to pull out non-sequential segment numbers, then first make a vector of these 
numbers with c(), the concatenate function, thus: 
 
# Make a numeric vector of three elements 
n = c(2, 5, 12) 
# Rows 2, 5, 12 of h.s 
h.s[n,] 
# or in a single line 
h.s[c(2,5,12),] 
# The corresponding word labels 
word.lab[n] 
 
A negative number inside the square bracket notation denotes all except. So h.s[-2,]  means 
all rows of h.s except the 2nd row, h.s[-(1:10),] all rows except the first ten, 
word.lab[-c(2, 5, 12)] all elements of word.lab except the 2nd, 5th, and 12th and so 
on.  
 When analyses of speech fail in R (i.e., an error message is returned), then it is often 
because the various objects that are used for solving a particular problem may have become out 
of step with each other so that the condition of being parallel is no longer met. There is no test 
for whether objects are parallel to each other as far as I know, but when an analysis fails, it is a 
good idea to check that all the segment lists have the same number of rows and that there is the 
same number of elements in the vectors that have been derived from them. This can be done with 
the logical operator == which amounts to asking a question about equality, thus: 
 
# Is the number of rows in k.s the same as the number of rows in h.s? 
nrow(k.s) == nrow(h.s) 
TRUE 
 
# Is the number of rows in k.s the same as the number of elements in word.lab? 
nrow(k.s) == length(word.lab) 
TRUE 
 
# Do word.lab and h.dur have the same number of elements? 
length(word.lab) == length(h.dur) 
TRUE 
 
5.3 An analysis of voice onset time 
 There are very many in-built functions in R for applying descriptive statistics whose 
function names usually speak for themselves e.g., mean(), median(), max(), min(), 
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range() and they can be applied to numeric vectors. It is therefore a straightforward matter to 
apply any of these functions to durations extracted from a segment list. Thus mean(h.dur) 
gives the mean VOT duration calculated across all segments, max(dur(k.s)) gives the 
maximum /k/-closure duration, range(dur(k.s)) the range (minimum and maximum value) 
of closure durations etc. However, a way has to be found of calculating these kinds of quantities 
separately for the /kn/ and /kl/ categories. It might also be interesting to do the same for the four 
different word types. You can remind yourself which these are by applying the table() 
function to the character vector containing them: 
 
table(word.lab) 
Claudia  Klausur   Kneipe Kneipier  
       5        5        5        5 
 
The same function can be used for cross-tabulations when more than one argument is included, 
for example: 
 
table(son.lab,word.lab) 
son.lab Claudia Klausur Kneipe Kneipier 
      l       5       5      0        0 
      n       0       0      5        5 
 
One way to get the mean VOT separately for /kn/ or /kl/ or separately for the four different kinds 
of words is with a for-loop. A better way is with another type of object in R called logical 
vectors. A logical vector consists entirely of True (T) and False (F) elements that are returned in 
response to applying a comparison operator. One of these, ==, has already been encountered 
above in asking whether the number of rows in two segment lists were the same. The other 
comparison operators are as follows: 
 
!=  Is not equal to 
<  Is less than 
> Is greater than 
<= Is less than or equal to 
>=  Is greater than or equal to 
 
As already described, making use of a comparison operator implies asking a question. So typing 
h.dur > 45 is to ask: which segment has a duration greater than 45 ms? The output is a 
logical vector, with one True or False per segment thus: 
 
h.dur > 45 
TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE 
TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE 
 
The first two elements that are returned are True and False because the first two segments do 
and do not have durations greater than 45 ms respectively, as shown by the following: 
 
h.dur[1:2] 
63.973 43.907 
 
Since the objects for comparing /kn/ with /kl/ are all parallel to each other in the sense discussed 
earlier, then the position number of the T and F elements can be used to find the corresponding 
segments or other labels for which VOT is, or is not, greater than 45 ms. For example, since 
there is, among others, a T element in the 1st, 4th, 6th and 7th positions, then these words must 
have segments with VOTs greater than 45 ms: 
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word.lab[c(1, 4, 6, 7)] 
"Kneipe"   "Kneipier" "Kneipe"   "Kneipier" 
 
and it is equally easy to find in which utterances these words occur by indexing the 
corresponding segment lists (and inspecting the fourth column): 
 
k.s[c(1, 4, 6, 7),] 
segment  list from database:  ema5  
query was:  Segment=k & Start(Word, Segment)=1  
  labels    start      end                    utts 
1      k 1161.944 1206.447 dfgspp_mo1_prosody_0020 
4      k 1145.785 1188.875 dfgspp_mo1_prosody_0063 
6      k 1320.000 1354.054 dfgspp_mo1_prosody_0140 
7      k 1306.292 1337.196 dfgspp_mo1_prosody_0160 
 
The corresponding rows or elements can be more easily retrieved by putting the logical vector 
within square brackets. Thus: 
 
# Logical vector when h.dur is greater than 45 ms 
temp = h.dur > 45 
# The corresponding durations 
h.dur[temp] 
 
# The corresponding word-labels 
word.lab[temp] 
"Kneipe"   "Kneipier" "Kneipe"   "Kneipier" "Claudia"  "Kneipier"  "Kneipe"   
"Kneipier" "Claudia"  "Kneipe"   "Claudia"  "Klausur" "Kneipe"   "Kneipier" 
 
An important point to remember is that when you combine a logical vector with a matrix or 
segment list, then it has to be followed by a comma, if you want to pull out the corresponding 
rows. Thus h.s[temp,] identifies the rows in h.s for which VOT is greater than 45 ms. A 
logical vector could be used in a similar way to extract columns. For example, h.s[,c(F, T, 
F, T)] extracts columns 2 and 4 (the start time and utterance identifier). Also, changing temp 
to !temp gets at the rows or elements for which the duration is not greater than ( less than or 
equal to) 45 ms, i.e., those rows/elements for which the logical vector is False: e.g., 
h.dur[!temp], word.lab[!temp], k.s[!temp,]. Finally, three useful functions when 
applied to logical vectors are sum(), any(), all() which find out respectively how many, 
whether there are any, or whether all elements of a logical vector are True. For example: 
lvec = c(T, F, F) 
sum(lvec) 
1 
 
any(lvec) 
TRUE 
 
all(lvec) 
FALSE 
 
The same can be applied to False elements by preceding the logical vector with an 
exclamation mark. Thus any(!lvec) returns True because there is at least one F element in 
lvec. With regard to the earlier example, these functions could be used to work out how many 
segments have VOT greater than 45 ms (sum(h.dur > 45)) whether any segments have a 
duration greater than 45 ms (any(h.dur > 45)) and whether all segments have a duration 
greater than 45 ms (all(h.dur > 45)). 
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 There is now easily sufficient computational machinery in place to find out something 
about the distributional VOT differences between /kn/ and /kl/. The first step might be to make a 
logical vector to identify which elements correspond to /kn/: this could then be applied to h.dur 
to get the corresponding VOT values. Since there are only two label categories, then the F 
elements of the logical vector could be used to find the VOT values for /kl/, thus: 
 
# Logical vector which is True for the n elements in son.lab 
temp = son.lab == "n" 
 
# Mean VOT (ms) for /kn/ 
mean(h.dur[temp]) 
74.971 
 
# Mean VOT (ms)  for /kl/ 
mean(h.dur[!temp]) 
44.9015 
 
The above analysis shows that the mean VOT is about 30 ms greater in /kn/ than in /kl/. What if 
you wanted to work out the mean duration of the preceding velar closure? This can be done by 
applying the logical vector to the durations of the segment list k.s. In this case, you have to 
remember to include the comma because k.s is a segment list requiring rows to be identified: 
 
# Mean duration (ms) of /k/ closure in /kn/ 
mean(dur(k.s[temp,])) 
38.0994 
 
# Mean duration (ms) of /k/ closure in /kl/ 
mean(dur(k.s[!temp,])) 
53.7411 
 
In fact this result is not without interest because it shows that the closure duration of /kn/ is 
somewhat less than that of /kl/. Thus the difference between /kn/ and /kl/, at least as far as 
voicing onset is concerned seems to be one of timing.  
 What if you now wanted to compare the ratio of closure duration to VOT? Consider first 
the two main ways in which arithmetic operations can be applied to vectors: 
 
# Make a vector of three elements 
x = c(10, 0, 5) 
 
# Subtract 4 from each element 
x - 4 
 
# Make another vector of three elements 
y = c(8, 2, 11) 
 
# Subtract the two vectors element by element 
x - y 
 
In this first case, the effect of x - 4 is to subtract 4 from every element of x. In the second 
case, the subtraction between x and y is done element by element. These are the two main ways 
of doing arithmetic in R and in the second case it is important to check that the vectors are of the 
same length (length(x) == length(y)) because if they are not, a warning message is 
given and the values of the shorter vector are recycled in a way that is usually not at all helpful 
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for the problem that is to be solved. Logical vectors can be applied in the same two ways. In the 
earlier example of h.dur > 45, each element of h.dur was compared with 45. But two 
vectors can also be compared element by element if they are of the same length. In x > y 
(assuming you have entered x and y as above), the first element of x is compared with the first 
element of y to see if it is greater, then the same is done for the second element, then for the 
third. The output is therefore T F F because x is greater than y only in its first element. 
 The ratio of the closure duration to VOT can now be worked out by dividing one vector 
by the other, thus: 
 
h.dur/dur(k.s) 
1.4374986 0.9140436 0.6911628 ... 
 
The first value returned is 1.4 because the VOT of the first segment, given by h.dur[1] (63.9 
ms) is about 1.4 times the size of its preceding closure duration given by dur(k.s[1,]) (44.5 
ms):  more generally what is returned by the above command is h.dur[n]/dur(k.s[n,]) 
where n is the nth segment. You could also work out the proportion of VOT taken up by the total 
closure duration plus VOT duration. This is: 
 
h.dur/(h.dur + dur(k.s)) 
0.5897434 0.4775459 0.4086909... 
 
So for the second segment, VOT takes up about 48% of the duration between the onset of the 
closure and the onset of periodicity.  
 In order to compare /kn/ with /kl/ on any of these measures, a logical vector needs to be 
applied as before. Thus to compare /kn/ with /kl/ on this proportional measure, apply either the 
logical vector to each object or to the result of the proportional calculation. Here are the two 
possibilities: 
 
# Logical vector to identify /kn/ 
temp = son.lab== "n" 
 
# Mean proportional VOT duration for /kn/. Either: 
mean(h.dur[temp]/(h.dur[temp] + dur(k.s[temp,]))) 
0.6639655 
 
# Equivalently: 
mean((h.dur/(h.dur + dur(k.s)))[temp]) 
0.6639655 
 
The second of these is perhaps easier to follow if the proportional calculation on each segment is 
initially stored in its own vector: 
 
prop = h.dur/(h.dur + dur(k.s)) 
 
# Proportional VOT for /kn/ 
mean(prop[temp]) 
0.6639655 
 
#Proportional VOT for /kl/ 
mean(prop[!temp]) 
0.4525008 
 
So the proportion of VOT taken up by the interval between the closure onset and onset of 
periodicity is some 20% less for /kl/ compared with /kn/. 
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 What if you wanted to compare the four separate words with each other on any of these 
measures? Recall that the annotations for these words are stored in word.lab: 
 
table(word.lab) 
Claudia  Klausur   Kneipe Kneipier  
       5        5        5        5 
 
One possibility would be to proceed as above and to make a logical vector that was True for 
each of the categories. However, a much simpler way is to use tapply(x, lab, fun), 
which applies a function (the third argument) to the elements of a vector (the first argument) 
separately per category (the second argument). Thus the mean VOT separately for /kn/ and /kl/ is 
also given by: 
 
tapply(h.dur, son.lab, mean) 
l       n  
44.9015 74.9710 
 
The third argument is any function that can be sensibly applied to the numeric vector (first 
argument). So you could calculate the standard deviation separately for the closure durations of 
/kn/ and /kl/ as follows: 
 
tapply(dur(k.s), son.lab, sd) 
l        n  
5.721609 8.557875 
 
Thus the mean VOT duration (ms) for each separate word category is: 
 
tapply(h.dur, word.lab, mean) 
Claudia  Klausur   Kneipe Kneipier  
 49.5272  40.2758  66.9952  82.9468 
 
So the generalization that the mean VOT of /kn/ is greater than that of /kl/ seems to hold across 
the separate word categories. Similarly, tapply() can be used to work out separately per 
category the mean proportion of the interval between the onset of the closure and the  periodic 
onset of the sonorant taken up by aspiration/frication: 
 
prop = h.dur/(h.dur + dur(k.s)) 
tapply(prop, word.lab, mean) 
Claudia   Klausur    Kneipe  Kneipier  
0.4807916 0.4242100 0.6610947 0.6668363 
 
 The results showing differences between the categories on means need to be followed up 
with analyses of the distribution of the tokens about each category. One of the most useful 
displays for this purpose, of which extensive use will be made in the rest of this book, is a 
boxplot which can be used per category to produce a display of the median, the interquartile 
range, and the range. The median is the 50% quantile and the pth quantile (0 ≤ p ≤ 100) is in the 
index position 1+p*(n-1)/100 after the data has been sorted in rank order. For example, here 
are 11 values randomly sampled between -50 and 50: 
 
g = sample(-50:50, 11)  
-46  41  23   4 -33  46 -30  18 -19 -38 -32 
 
They can be rank-order sorted with the sort() function: 
g.s = sort(g) 
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g.s 
-46 -38 -33 -32 -30 -19   4  18  23  41  46 
 
The median is the 6th element from the left in this rank-order sorted data, because 6 is what is 
returned by 1+50*(11-1)/10: thus the median of these random numbers is g.s[6] which is 
-19. The same is returned by median(g) or quantile(g, .5). The interquartile range is 
the difference between the 75% and 25% quantiles, i.e., quantile(g, .75) - 
quantile(g, .25) or equivalently IQR(g). In the corresponding boxplot, the median 
appears as the thick horizontal line and the upper (75%) and lower (25%) quartiles as the upper 
and lower limits of the rectangle. A boxplot for the present VOT data can be produced with (Fig. 
5.8): 
 
boxplot(h.dur ~ son.lab, ylab = "VOT (ms)") 
 
The operation ~ means 'given that' and often forms part of a formula that is used in very many 
statistical tests in R. The boxplot shows fairly conclusively that VOT is greater in /kn/ than in 
/kl/ clusters. 
  
Fig. 5.8 about here 
 
5.4 Inter-gestural coordination and ensemble plots 
 The task in this section is to produce synchronized plots of tongue-dorsum and tongue-tip 
movement in order to ascertain whether these are differently coordinated for /kn/ and /kl/. The 
discussion will begin with some general remarks about trackdata objects (5.4.1), then overlaid 
plots from these two movement signals will be derived (5.4.2); finally, so-called ensemble plots 
will be discussed in which the same movement data from several segments are overlaid and 
averaged separately for the two categories. All of the movement data are in millimetres and the 
values are relative to the origin [0, 0, 0] which is a point on the occlusal plane just in front of the 
teeth.   
 
5.4.1 Extracting trackdata objects 
 As shown in the flow diagram in Fig. 5.7, signal or trackdata is extracted from a database 
relative to the start and end times of a segment list using the emu.track() function. The first 
argument to emu.track() is the segment list itself and the second argument is any track that 
has been declared to be available in the template file. You can check which tracks are available, 
either by inspecting the Tracks pane of the template file, or with trackinfo() in R using 
the name of the database as an argument: 
 
trackinfo("ema5") 
  
"samples" "tm_posy" "tm_posz" "ll_posz" "tb_posz" "jw_posy" 
 "jw_posz" "tt_posz" "ul_posz" 
 
 
The movement data is accessed from any track name containing posz for vertical movement 
(i.e., height changes) or posy for anterior-posterior movement (i.e., for front-back changes to 
mark e.g., the extent of tongue-front/backing between the palatal and uvular regions). The initial 
ll, tb, tm, jw, tt, and ul are codes for lower-lip, tongue body, tongue-mid, jaw, tongue 
tip, and upper lip respectively. Here the concern will be almost exclusively with the analysis of 
tt_posz and tb_posz (vertical tongue tip and tongue body movement in the coronal plane). 
Thus, assuming you have created the segment list tip.s as set out in 5.2, trackdata of the 
vertical tongue-tip movement over the durational extent of the raise lower annotations at 
the TT tier is obtained as follows: 
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tip.tt = emu.track(tip.s, "tt_posz") 
 
tip.tt is a trackdata object as can be verified with is.trackdata(tip.tt) or 
class(tip.tt).  
 Trackdata objects are lists but because of an implementation using object-oriented 
programming in Emu-R, they behave like matrices and therefore just like segment lists as far as 
both indexing and the application of logical vectors are concerned. Therefore, the same 
operations for identifying one or more segment numbers can also be used to identify their 
corresponding signal data in the trackdata objects. For example, since tip.s[10,] denotes the 
10th segment, then tip.tt[10,] contains the tongue tip movement data for the 10th segment. 
Similarly, tip.s[c(10, 15, 18),] are segment numbers 10, 15, 18 in the segment list 
and tip.tt[c(10, 15, 18),] access the tongue tip movement data for the same 
segments. Logical vectors can be used in the same way. So in the previous section, the /kn/ 
segments in the segment list could be identified with a logical vector: 
 
# Logical vector: True for /kn/, False for /kl/ 
temp = son.lab == "n" 
# /k/ closures in /kn/ 
k.s[temp,] 
# A segment list of raise lower associated with /kn/ 
tip.s[temp,] 
 
The corresponding tongue tip movement data for the above segments is analogously given by 
tip.tt[temp,].  
 As already foreshadowed in Chapter 3, emu.track() retrieves signal data within the 
start and end time of the segment list. For this reason, the duration measured from a trackdata 
object is always fractionally less than the durations obtained from the corresponding segment 
list. In both cases, the duration can be obtained with dur() (Fig. 5.7). Here this function is used 
to confirm that the trackdata durations are less than the segment durations for all 20 segments. 
More specifically, the following command asks: are there any segments for which the trackdata 
duration is greater than or equal to the duration from a segment list? 
 
any(dur(tip.tt) >= dur(tip.s)) 
FALSE 
 
5.4.2 Movement plots from single segments 
 Each segment in a trackdata object is made up of a certain number of frames of data or 
speech frames39 that occur at equal intervals of time depending on the rate at which they were 
sampled or the frame rate. For example, if formants are calculated at intervals of 5 ms and if a 
segment is 64 ms in duration, then that segment should have at least 12 speech frames of formant 
frequencies between its start time and end time at intervals of 5 ms. The function frames() 
and tracktimes() applied to a trackdata object retrieve the speech frames and the times at 
which they occur, as already shown in Chapter 3. The generic plot() function when applied to 
any single segment of trackdata plots the frames as a function of time. For example, the speech 
frames of the 5th segment, corresponding to tip.s[5,], are given by: 
 
frames(tip.tt[5,]) 
T1 
1405 -12.673020 

                                                
39 The term speech frame will be used henceforth for these data to distinguish them from a type of object in R 
known as a data frame. 



    94 

 

1410 -12.631612 
1415 -12.499837 
1420 -12.224785 
.... etc. 
 
and the times at which these occur by: 
 
tracktimes(tip.tt[5,]) 
1405 1410 1415 1420 1425 1430...etc. 
 
These data could be inspected in Emu by looking at the corresponding segment in the segment 
list: 
 
tip.s[5,] 
5 raise->lower 1404.208 1623.48 dfgspp_mo1_prosody_0132 
 
i.e., the speech frames occur between times 1404 ms and 1623 ms in the utterance 
dfgspp_mo1_prosody_0132.  
 The data returned by frames() looks as if it has two columns, but there is only one, as  
ncol(frames(tip.tt[5,])) shows: the numbers on the left are row names and they are 
the track times returned by tracktimes(tip.tt[5,]). When tracktimes() is applied 
to tip.tt in this way, it can be seen that the frames occur at 5 ms intervals and so the frame 
rate is 1000/5 = 200 Hz.  
 The commands start(tip.tt[5,]) and end(tip.tt[5,]) return the times of 
the first and last speech frame of the 5th segment. A plot of the speech frames as a function of the 
times at which they occur is given by plot(tip.tt[5,]). You can additionally set a 
number of plotting parameters (see help(par) for which ones). In this example, both lines and 
points are plotted (type="b") and labels are supplied for the axes: 
 
plot(tip.tt[5,], type="b", ylab ="Tongue tip vertical position 
(mm)", xlab="Time (ms)") 
 
 In order to investigate tongue-body and tongue-tip synchronization, the movement data 
from both tracks need to be plotted in a single display. One way to do this is to retrieve the 
tongue-body data for the same segment list and then to use the cbind() (column bind) 
function to make a new trackdata object consisting of the tongue tip and tongue body movement 
data. This is done in the following two instructions, firstly by obtaining the tongue-body data 
from the same segment list from which the tongue-tip data has already been obtained, and then, 
in the second instruction, column-binding the two trackdata objects40. The third instruction plots 
these data: 
 
tip.tb = emu.track(tip.s, "tb_posz") 
both = cbind(tip.tt, tip.tb) 
plot(both[5,], type="l") 
 
If you are familiar with R, then you will recognize cbind()as the function for concatenating 
vectors by column, thus: 
 
a = c(0, 4, 5) 
b = c(10, 20, 2) 

                                                
40 Both trackdata objects must be derived from the same segment list for cbind() to be used in 
this way. 
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w = cbind(a, b) 
w 
a  b 
0 10 
4 20 
5  2 
 
As already mentioned, trackdata objects are not matrices but lists. Nevertheless, many of the 
functions for matrices can be applied to them. Thus the functions intended for matrices, 
dim(w), nrow(w), ncol(w) also work on trackdata objects. For example, dim(both) 
returns 20 2 and has the meaning, not that there are 20 rows and 2 columns (as it would if 
applied to a matrix), but firstly that there are 20 segments' worth of data (also given by 
nrow(both)) and secondly that there are two tracks (also given by ncol(both)). Moreover 
a new trackdata object consisting of just the second track (tongue body data) could now be made 
with new = both[,2] ; or a new trackdata object of the first 10 segments and first track only 
with both[1:10,1], etc. 
 In the previous example, the movement data from both tongue tracks extended over the 
interval raise lower annotated at the tongue tip (TT) tier. If you wanted to superimpose the 
tongue-body movement extracted over a corresponding interval from the tongue body (TB) tier, 
then the data needs to be extracted from this segment list made earlier at the TB tier: 
 
body.s = emu.requery(k.s, "Segment", "TB") 
body.tb = emu.track(body.s, "tb_posz") 
 
It is not possible to apply cbind() to join together tip.tt[5,] and body.tb[5,] in the 
manner used before because cbind() presupposes that the segments in the trackdata objects 
are of the same duration, and this will only be so if they have been extracted from the same 
segment list. The plots must therefore be made separately for the tongue-tip and tongue-body 
data and superimposed using par(new=T), after setting the ranges for the x- and y-axes to be 
the same: 
 
# Find the y-range for the vertical axis in mm 
ylim = range(frames(tip.tt[5,]), frames(body.tb[5,])) 
 
# Find the x-range for times in ms 
xlim = range(tracktimes(tip.tt[5,]), tracktimes(body.tb[5,])) 
plot(tip.tt[5,], xlim=xlim, ylim=ylim, xlab="", ylab="", 
type="l") 
par(new=T) 
plot(body.tb[5,], xlim=xlim, ylim=ylim, xlab="Time (ms)", 
ylab="Vertical tongue position", type="l", lty=2) 
 
The first of these commands for finding the y-range concatenates the speech frames from the 
tongue-tip and tongue-body into a single vector and then finds the range. The second command 
does the same but after concatenating the times at which the frames occur. The plot() 
function is then called twice with the same x- and y-ranges. In the first plot command, xlab 
and ylab are set to "" which means print nothing on the axis labels. The command 
par(new=T) means that the next plot will be drawn on top of the first one. Finally, the 
argument lty=2 is used to create the dotted line in the second plot. The result is the plot of 
synchronized tongue-tip and tongue-body data, extending from the onset of tongue-body raising 
for the /k/ closure to the offset of tongue-tip lowering for the /l/, as shown in Fig. 5.9. 
  
Fig. 5.9 about here 
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5.4.3 Ensemble plots 
 A visual comparison between /kn/ and /kl/ on the relative timing of tongue body and 
tongue tip movement can best be made not by looking at single segments but at multiple 
segments from each category in what are sometimes called ensemble plots. The function for 
creating these is dplot() in the Emu-R library. This function has trackdata as an obligatory 
argument; two other important optional arguments are a parallel set of annotations and the 
temporal alignment point. Assuming you have created the trackdata objects in the preceding 
section, then dplot(tip.tt) plots the tongue tip data from multiple segments superimposed 
on each other and time-aligned by default at their onset (t = 0 ms).  The command 
dplot(tip.tt, son.lab), which includes a parallel vector of labels, further differentiates 
the plotted tracks according to segment type. The argument offset can be used for the 
alignment point. This is by default 0 and without modifying other default values it can be set to a 
proportional value which varies between 0 and 1, denoting that the trackdata are to be 
synchronized at their onsets and offsets respectively. Thus dplot(tip.tt, son.lab, 
offset=0.5) synchronises the tracks at their temporal midpoint which is then defined to have 
a time of 0 ms. You can also synchronise each segment according to a millisecond time by 
including the argument prop = F (proportional time is False). Therefore, 
dplot(tip.tt, son.lab, prop=F, offset=end(tip.tt)-20) synchronises the 
tongue tip movement data at a time point 20 ms before the segment offset. The way in which the 
synchronization point is evaluated per segment is as follows. For the first segment, the times of 
the frames are tracktimes(tip.tt[1,]) which are reset to: 
 
tracktimes(tip.tt[1,]) - ( end(tip.tt[1,]) - 20) 
 
-150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100  -95  -90  -85  -80 -
75  -70  -65  -60  -55  -50  -45  -40  -35  -30  -25  -20  -15  -10   -5 0    
5   10   15   20 
 
As a result, the synchronization point at t = 0 ms is four frames earlier than the offset (which is 
also apparent if you enter e.g. dplot(tip.tt[1,], offset=end(tip.tt[1,])-20, 
prop=F,  type="b").  
 
 In order to compare /kl/ and /kn/ on the relative timing of tongue-body and tongue-tip 
movement, an ensemble plot could be made of the tongue tip data but synchronized at the time at 
which the tongue-body displacement for the /k/ is a maximum. Recall that in labeling the 
movement trajectories, the tongue-body trajectory was segmented into a sequence of raise and 
lower annotations such that the time of maximum tongue-body raising was at the boundary 
between them. It is not possible to use the segment list body.s to obtain these times of 
maximum tongue-dorsum raising for /k/,  because this segment list extends over both raise 
and lower without marking the boundary between. Instead therefore, a new segment list needs 
to be made just of the raise annotations at the TB tier and then the offset times extracted from 
these with end(). Since there is only one raise annotation per segment, the segment list 
could be made with: 
 
tbraise.s = emu.query("ema5", "*", "TB=raise") 
 
But a safer way is to query the raise annotation at the TB tier subject to it also being in word-
initial position.  This is because all of the other segment lists (and trackdata objects derived from 
these) have been obtained in this way and so there is then absolutely no doubt that the desired 
segment list of raise annotations is parallel to all of these: 
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tbraise.s = emu.query("ema5", "*", "[TB=raise ^ Start(Word, 
Segment)=1]") 
 
Fig. 5.10 about here 
 
An ensemble plot41 of the tongue-tip movement synchronized at the point of maximum tongue-
dorsum raising (Fig. 5.10, left panel) can be produced with: 
 
 dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s)) 
 
The same function can be used to produce ensemble-averaged plots in which all of the speech 
frames at equal time points are averaged separately per annotation category. It should be 
remembered that the data in an ensemble-averaged plot are less representative of the mean for 
points progressively further away in time from the synchronization point (because fewer data 
points tend to be averaged at points further away in time from t = 0 ms). The ensemble averaged 
plot is produced in exactly the same way as the Fig. 5.10 but by adding the argument 
average=T (Fig. 5.10 right panel). 
  
Fig. 5.11 about here 
 
In order to produce ensemble plots of both tongue tip and tongue body data together in the 
manner of Fig. 5.9, the same method can be used of overlaying one (ensemble) plot on the other 
as shown in Fig. 5.11.  For the x-axis range, specify the desired duration as a vector consisting of 
two elements, a negative and a positive value on either side of the synchronization point. The y-
range is determined, as before, across both sets of data. Fig. 5.11 was produced as follows: 
 
# Set the x- and y-ranges 
xlim = c(-100, 100); ylim = range(frames(tip.tt), 
frames(body.tb)) 
 
# Tongue-tip data coded for /n/ or /l/ with no surrounding box, black and slategray colors,  
# double line thickness, dashed,  and no legend 
dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), average=T, 
xlim=xlim, ylim=ylim, ylab="Position (mm)", xlab="Time (ms)", 
bty="n", col=c(1, "slategray"), lwd=2, lty=2, legend=F) 
 
# Put appropriate legends at the top left and top right of the display 
legend("topleft", c("body", "tip"), lty=c(1,2), lwd=2) 
legend("topright", paste("k", unique(son.lab), sep=""), 
col=c(1,"slategray"), lty=1, lwd=2) 
par(new=T) 
 
# The tongue body data 

                                                
41 For the sake of brevity, I will not always include the various options (see help(par)) that can be included in 
the plotting function and that were needed for camera ready b/w images in this book. Thus Fig. 5.10 was actually 
produced as follows: 
par(mfrow=c(1,2)); lwd=lty=c(1,2); col=c(1, "slategray") 
xlab = "Time (ms)"; ylab="Vertical tongue tip position (mm)" 
dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), bty="n", ylab=ylab, 
xlab=xlab, col=col, lwd=lwd, lty=lty) 
dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), average=T, bty="n", 
xlab=xlab, col=col, lwd=lwd, lty=lty, legend=F) 
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dplot(body.tb, son.lab, prop=F, offset=end(tbraise.s), 
average=T, xlim=xlim, ylim=ylim, legend=F, col=c(1, 
"slategray"), lwd=2, bty="n") 
 
 
5.5 Intragestural analysis 
 The task for the rest of this Chapter will be to compare /kn/ with /kl/ on the movement 
and velocity of tongue-dorsum raising in /k/. To do so requires a bit more discussion both of the 
numerical and logical manipulation of trackdata objects as well as the way in which functions 
can be applied to them. This is covered in 5.5.1. Then in 5.5.2 some of these operations from 
5.5.1 are applied to movement data in order derive their velocity as a function of time42. Finally, 
in 5.5.3, the various movement and velocity parameters are interpreted in terms of the output of a 
critically damped system that forms parts of the model of articulatory phonology (Browman & 
Goldstein, 1990a, b, c) in order to try to specify more precisely the ways in which these clusters 
may or may not differ in tongue-body raising. It is emphasized here that although the analyses 
are conducted from the perspective of movement data, the types of procedures are just as 
relevant for many of the subsequent investigations of formants, electropalatography, and spectra 
in the remaining Chapters of the book. 
 
5.5.1 Manipulation of trackdata objects 
Arithmetic 
 Earlier in this Chapter two methods for carrying out simple arithmetic were presented. 
The first involved applying an arithmetic operation to a single element to a vector and in the 
second the operation was applied to two vectors of the same length. Here are the two methods 
again. 
 
# Make a vector of 4 values 
x = c(-5, 8.5, 12, 3) 
 
# Subtract 4 from each value 
x - 4 
-9.0  4.5  8.0 -1.0 
 
# Make another vector of the same length 
y = c(9, -1, 12.3, 5) 
 
# Multiply the vectors element by element 
x * y 
-45.0  -8.5 147.6  15.0 
 
Trackdata objects can be handled more or less in an analogous way. Consider the operation 
tip.tt - 20. In this case, 20 is subtracted from every speech frame. Therefore if you save 
the results: 
 
new = tip.tt - 20 
 
and then compare new and tip.tt, you will find that they are the same except that in new the 
y-axis scale has been shifted down by 20 (because  20 has been subtracted from every speech 
frame). This is evident if you compare new and tip.tt on any segment e.g. 

                                                
42 The velocity signals are also available in the same directory to which the ema5 database was downloaded 
although they have not been incorporated into the template file. They could be used to find peaks and troughs in the 
movement signals, as described in section 5.5.2. 



    99 

 

 
par(mfrow=c(1,2)) 
plot(new[10,]) 
plot(tip.tt[10,]) 
 
If you enter tip.tt[10,] on its own you will see that it consists of three components (which 
is why it is a list): index, ftime, and data. The last of these contains the speech frames: 
therefore those of the 10th segment are accessible with either tip.tt[10,]$data or (more 
conveniently) with frames(tip.tt[10,]). Thus, because of the way that trackdata objects 
have been structured in R, the arithmetic just carried out affects only the speech frames (only 
the values in $data). Consider as another example the trackdata object vowlax.fdat 
containing the first four formant frequencies of a number of vowels produced by two speakers. 
The fact that this object contains 4 tracks in contrast to tip.tt which contains just one is 
evident if you use ncol(vowlax.fdat)to ask how many columns there are or 
dim(vowlax.fdat) to find out the number of segments and columns. If you wanted to add 
100 Hz to all four formants, then this is vowlax.fdat + 100. The following two commands 
can be used to make a new trackdata object, newform,  in which 150 Hz is added only to F1: 
 
newf1 = vowlax.fdat[,1]+150 
newform = cbind(newf1, vowlax.fdat[,2:4]) 
 
Can arithmetic operations be applied to trackdata objects in a similar way? The answer is yes, 
but only if the two trackdata objects are from the same segment list. So tip.tt + 
tip.tt, which is the same as tip.tt * 2 causes the speech frames to be added to 
themselves. Analogously, d = vowlax.fdat[,2]/vowlax.fdat[,1] creates another 
trackdata object, d, whose frames contain F2 divided by F1 only. As before, it is only the speech 
frames that are subject to these operations. Suppose then you wanted to subtract out the jaw 
height from the tongue-tip height in order to estimate the extent of tongue tip movement 
independently of the jaw. The trackdata object tip.tt for tongue movement was derived from 
the segment list tip.s. Therefore, the vertical movement of the jaw must be first be derived 
from the same segment list: 
 
jaw = emu.track(tip.s, "jw_posz") 
 
The difference between the two is then:  
 
tipminusjaw = tip.tt - jaw 
 
The derived trackdata object can now be plotted in all the ways described earlier, thus: 
 
par(mfrow=c(1,3)) 
# Tongue-tip movement (for the 15th segment) 
plot(tip.tt[15,]) 
# Jaw movement for the same segment 
plot(jaw[15,]) 
# Tongue-tip movement with jaw height subtracted out for the same segment 
plot(tipminusjaw[15,]) 
 
The fact that it is the speech frames to which this operation is applied is evident from asking the 
following question: are all speech frames of the 15th segment in tipminusjaw equal to the 
difference between the tongue-tip and jaw speech frames? 
 



    100 

 

all(frames(tipminusjaw[15,]) ==  frames(tip.tt[15,]) - 
frames(jaw[15,])) 
TRUE 
 
 The types of arithmetic functions that show this parallelism between vectors on the one 
hand and trackdata on the other is given in help(Ops) (under Arith).  So you will see from 
help(Ops) that the functions listed under Arith include ^ for raising. This means that there 
must be parallelism between vectors and trackdata objects for this operation as well: 
 
x = c(-5, 8.5, 12, 3) 
# Square the elements in x 
x^2 
 
# Square all speech frames of the tongue tip trackdata object  
tipsquared = tip.tt^2 
 
Comparison operators 
 There is also to a certain extent a similar parallelism between vectors and trackdata 
objects in using comparison operators. Recall from the analysis of acoustic VOT in 5.3 that  
logical vectors return True of False. Thus: 
 
x  = c(-5, 8.5, 12, 3) 
x < 9 
TRUE  TRUE FALSE  TRUE 
 
When logical vectors are applied to trackdata objects, then they operate on speech frames. For 
example, vowlax.fdat[10,1] > 600 returns a logical vector for any F1 speech frames in 
the 10th segment greater than 600 Hz: exactly the same result is produced by entering 
frames(vowlax.fdat[10,1]) > 600. Similarly, the command sum(tip.tt[4,]  
>= 0) returns the number of frames in the 4th segment that are greater than zero. To find out 
how many frames are greater than zero in the entire trackdata object, use the sum() function 
without any subscripting, i.e., sum(tip.tt > 0);  the same quantity expressed as a 
proportion of the total number of frames is sum(tip.tt > 0) / length(tip.tt > 0) 
or sum(tip.tt > 0)/length(frames(tip.tt)).  
 The analogy to vectors also holds when two trackdata objects are compared with each 
other. For example for vectors: 
 
# Vectors 
x  = c(-5, 8.5, 12, 3) 
y = c(10, 0, 13, 2) 
x > y 
FALSE  TRUE FALSE  TRUE 
 
For trackdata objects, the following instruction: 
 
temp = tip.tt > tip.tb 
 
compares every frame of tongue tip data with every frame of tongue body data that occurs at the 
same time and returns True if the first is greater than the second. Therefore, 
sum(temp)/length(temp) can be subsequently used to find the proportion of frames (as a 
fraction of the total) for which the tongue tip position is greater (higher) than the position of the 
back of the tongue. 
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 All logical vectors show this kind of parallelism between vectors and trackdata objects 
and they are listed under Compare in help(Ops). However, there is one important sense in 
which this parallelism does not work. In the previous example with vectors, x[x > 9] returns 
those elements in x for which x is greater than 9. Although (as shown above) tip.tt > 0 is 
meaningful, tip.tt[tip.tt > 0] is not. This is because tip.tt indexes segments 
whereas tip.tt > 0 indexes speech frames. So if you wanted to extract the speech frames 
for which the tongue-tip has a value greater than zero, this would be 
frames(tip.tt)[tip.tt > 0]. You can get the times at which these occur with 
tracktimes(tip.tt)[tip.tt > 0]. To get the utterances in which they occur is a little 
more involved, because the utterance identifiers are not contained in the trackdata object. For 
this reason, the utterance labels of the corresponding segment list have to be expanded to the 
same length as the number of speech frames. This can be done with expand_labels() in 
the Emu-R library whose arguments are the index list of the trackdata object and the utterances 
from the according segment list: 
 
uexpand = expand_labels(tip.tt$index, utt(tip.s)) 
 
A table listing per utterance the number of speech frames for which the position of the tongue tip 
is greater than 0 mm could then be obtained with table(uexpand[tip.tt > 0]). 
 
Math and summary functions 
 There are many math functions in R that can be applied to vectors including those that 
are listed under Math and Math2 in help(Ops). The same ones can be applied directly to 
trackdata objects and once again they operate on speech frames. So round(x, 1) rounds the 
elements in a numeric vector x to one decimal place and round(tip.tt, 1) does the same 
to all speech frames in the trackdata object tip.tt. Since log10(x) returns the common 
logarithm of a vector x, then plot(log10(vowlax.fdat[10,1:2])) plots the common 
logarithm of F1 and F2 as a function of time for the 10th segment of the corresponding trackdata 
object. There are also a couple of so-called summary functions including max(), min(), 
range() for finding the maximum, minimum, and range that can be applied in the same way to 
a vector or trackdata object. Therefore max(tip.tt[10,]) returns the speech frame with the 
highest tongue-tip position for the 10th segment and range(tip.tt[son.lab == "n",]) 
returns the range of tongue tip positions across all /kn/ segments (assuming you created 
son.lab earlier). 
 Finally, if a function is not listed under help(Ops), then it does not show a parallelism 
with vectors and must therefore be applied to speech frames directly. So while mean(x) and 
sd(x) return the mean and standard deviation respectively of the numeric elements in a vector 
x, since neither mean() nor sd() are functions listed under help(Ops), then this syntax this 
does not carry over to trackdata objects. Thus mean(frames(tip.tt[1,])) and not 
mean(tip.tt[1,]) returns the mean of the frames of the first segment; and 
sd(frames(tip.tt[1:10,])) and not sd(tip.tt[1:10,]) returns the standard 
deviation across all the frames of the first 10 segments and so on. 
 
Applying a function segment by segment to trackdata objects 
 With the exception of mean(), max() and min() all of the functions in the preceding 
sections for carrying out arithmetic and math operations have two things in common when they 
are applied to trackdata objects: 

1. The resulting trackdata object has the same number of frames as the trackdata object to 
which the function was applied. 

2. The result is unaffected by the fact that trackdata contains values from multiple segments. 
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Thus according to the first point above, the number of speech frames in e.g., tip.tt - 20 or 
tip.tt^2 is the same as in tip.tt; or the number of frames in 
log(vowlax.fdat[,2]/vowlax.fdat[,1]) is the same as in vowlax.fdat. 
According to the second point, the result is the same whether the operation is applied to all 
segments in one go or one segment at a time: the segment divisions are therefore transparent 
as far as the operation is concerned. So the result of applying the cosine function to three 
segments: 
 
res = cos(tip.tt[1:3,]) 
 
is exactly the same as if you were to apply the cosine function separately to each segment: 
 
res1 = cos(tip.tt[1,]) 
res2 = cos(tip.tt[2,]) 
res3 = cos(tip.tt[3,]) 
resall = rbind(res1, res2, res3) 
 
The equivalence between the two is verified with: 
 
all(res == resall) 
TRUE 
 
Now clearly there are a number of operations in which the division of data into segments does 
matter. For example, if you want to find the mean tongue tip position separately for each 
segment, then evidently mean(frames(tip.tt)) will not work because this will find the 
mean across all 20 segments i.e., the mean value calculated across all speech frames in the 
trackdata object tip.tt. It would instead be necessary to obtain the mean separately for each 
segment: 
 
m1 = mean(frames(tip.tt[1,])) 
m2 = mean(frames(tip.tt[2,])) 
... 
m20 = mean(frames(tip.tt[20,])) 
 
Even for 20 segments, entering these commands separately becomes tiresome but in 
programming this problem can be more manageably solved using iteration in which the same 
function, mean() in this case, is applied repeatedly to each segment. As the words of the 
penultimate sentence suggest ('obtain the mean separately for each segment') one way to do this 
is with a for-loop applied to the speech frames per segment, thus: 
 
vec = NULL 
for(j in 1:nrow(tip.tt)){ 
m = mean(frames(tip.tt[j,])) 
vec = c(vec, m) 
} 
vec 
-3.818434 -4.357997 -4.845907... 
 
A much easier way, however, is to use trapply() in the Emu-R library that applies a 
function (in fact using just such a for-loop) separately to the trackdata for each segment. The 
single line command will accomplish this and produce the same result: 
 
trapply(tip.tt, mean, simplify=T) 
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-3.818434 -4.357997 -4.845907... 
  
So to be clear: the first value returned above is the mean of the speech frames of the first 
segment, i.e., it is mean(frames(tip.tt[1,])) or the value shown by the horizontal line 
in: 
 
plot(tip.tt[1,], type="b") 
abline(h= mean(frames(tip.tt[1,]))) 
 
The second value, -4.357997, has the same relationship to the tongue tip movement for the 
second segment and so on.  
 The first argument to trapply() is, then, a trackdata object and the second argument is 
a function like mean(). What kinds of functions can occur as the second argument? The answer 
is any function, as long as it can be sensibly applied to a segment's speech frames. So the 
reason why mean() is valid is because it produces a sensible result when applied to the speech 
frames for the first segment: 
 
mean(frames(tip.tt[1,])) 
-3.818434 
 
Similarly range() can be used in the trapply() function because it too gives meaningful 
results when applied to a segment's speech frames, returning the minimum and maximum: 
 
range(frames(tip.tt[1,])) 
-10.124228   1.601175 
 
Moreover, you could write your own function and pass it as the second argument to 
trapply() as long as your function gives a meaningful output when applied to any segment's 
speech frames. For example, supposing you wanted to find out the average values of just the first 
three speech frames for each segment. The mean of the first three frames in the data of, say, the 
10th segment is: 
 
fr  = frames(tip.tt[10,]) 
mean(fr[1:3]) 
-14.22139 
 
Here is a function to obtain the same result: 
 
mfun <- function(frdat, k=3) 
{ 
   # frdat are speech frames, k the number of frames to be averaged (default is 3) 
   mean(frdat[1:k]) 
} 
 
mfun(frames(tip.tt[10,])) 
-14.22139 
 
Can mfun() be applied to a segment's speech frames? Evidently it can, as the preceding 
command has just shown. Consequently, the function can be used as the second argument to  
trapply()  to calculate the mean of the first three elements for each segment  separately: 
 
res = trapply(tip.tt, mfun, simplify=T) 
res[10] 
-14.22139 
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 The purpose of the third argument, simplify=T, is to simplify the result as a vector or 
a matrix (otherwise for reasons explained below the output is a list). This third argument can, 
and should be, used if you are sure that the function will return the same number of numeric 
elements per segment. It was therefore appropriate to use simplify=T in all of the above 
examples, because in each case the number of values returned is the same for each segment: both 
mean() and mfun() always return one numeric value per segment and range() always 
returns two values per segment. Whenever one value is returned per segment, then 
simplify=T causes the output to be converted to a vector, otherwise, as when using 
range(), the output is a matrix.  
 Using simplify=T would not be appropriate if the function returns neither a vector nor 
a matrix. Consider for example ar() for calculating autocorrelation coefficients. This function 
produces meaningful output when applied to speech frames for any segment: 
 
auto = ar(frames(tip.tt[9,])) 
auto 
Call: 
ar(x = frames(tip.tt[9, ])) 
 
Coefficients: 
     1   
0.9306   
 
Order selected 1  sigma^2 estimated as  3.583 
 
Therefore, ar() could be applied iteratively to each segment using trapply(). But as both 
the above output and class(auto) show, the output is neither a vector nor a matrix. 
Consequently, simplify=T should not be included as the third argument. When 
simplify=T is not included (equivalent to simplify = F), the output for each segment is 
collected as a list and the data corresponding to any segment number is accessible using the 
double bracket notation, thus: 
 
a = trapply(tip.tt, ar) 
summary(a[[9]]) 

Length  Class  Mode      
order         1     -none- numeric   
ar            1     -none- numeric   
var.pred      1     -none- numeric   
x.mean        1     -none- numeric   
aic          17     -none- numeric   
n.used        1     -none- numeric   
order.max     1     -none- numeric   
partialacf   16     -none- numeric   
resid        40     -none- numeric   
method        1     -none- character 
series        1     -none- character 
frequency     1     -none- numeric   
call          2     -none- call      
asy.var.coef  1     -none- numeric   
 
 
5.5.2 Differencing and velocity 
 Another perhaps more common case in which simplify=T is not appropriate is if the 
function does not return the same number of elements per segment. This is going to happen in, 
for example, differencing speech frames because the number of frames per segment is not the 
same for each segment (because segments are not of the same duration).  Differencing is often 
a useful operation in many kinds of speech research and when speech movement data is 
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differenced, the result is a signal containing an estimate for any point in time of the articulator's 
velocity. In differencing a signal, element at time n-1 in a digital signal is subtracted from 
element at time n.  The relationship can be written as a equation relating the differenced signal 
y[n] to the signal x[n] to which differencing in applied: 
 
(1) y[n] = x[n] - x[n-1] 
 
(1) can be carried out in R straightforwardly using the diff() function: 
 
x = c(10, 0, -2 , 4, 12, 5) 
y = diff(x) 
y 
-10  -2   6   8  -7 
 
(1) is an example of first order (backward) differencing and the output always has one value less 
than the number of elements in the signal to which differencing is applied. The estimation of 
velocity from movement data is however often more reliably obtained from three-point central 
differencing.  The equation for this is: 
 
(2) y[n] = ½ (x[n] - x[n-2]) 
 
(2) could be translated into R as 0.5 * diff(x, 2). The same result can be obtained by  
convolving the input signal with the coefficients of a finite impulse response (FIR) filter. The 
coefficients are the weights on the signal delays: thus c(0.5, 0, -0.5) in this case because 
0.5 is the coefficient of x[n], 0 is the coefficient on x[n-1] (i.e.,  there is no x[n-1]) and -0.5 is 
the coefficient on x[n-2]. So in R the three-point central differencing equation in (2) can be 
implemented using the filter() function as: 
 
y = filter(x, c(0.5, 0, -0.5)) 
y 
NA -6.0  2.0  7.0  0.5   NA 
 
In three-point central differencing, two values are lost, one at the beginning and the other at the 
end43:  this is why the output has an initial and final NA (not applicable). The other values are 
synchronized with those of the original signal: thus the second value y[2] is an estimate of the 
velocity at time point 2, y[3] at time point 3 and so on. This is another advantage of three-point 
central differencing: in contrast to first order differencing, no further synchronization of the 
differenced and the original signal is necessary. 
   Consider now the effect of differencing on a cosine wave which can be produced with 
cr() in the Emu-R library. In Fig. 5.12, a single cycle sinusoid (a phase shifted cosine wave) 
consisting of 48 points was produced and plotted and follows: 
 
coswav = cr(N=48, p=pi/2, values=T, plotf=F) 
times = 0:47 

                                                
43 This is because three point central differencing is the average of the forward and backward difference. For 
example, suppose there is a signal x = c(1, 3, 4). At time point 2, the forward difference is x[2] - x[1] 
and the backward difference is x[3] - x[2]. The average of these is 0.5 * (x[2] - x[1] + x[3] - 
x[2]) or  0.5 * (x[3]-x[1]) or 1.5. At time point 1, the three point central difference would therefore be 
0.5 * (x[2] - x[0]). But this gives numeric(0) or NA because x[0] is undefined (there is no sample 
value preceding x[1]).  At time point three, the output of  0.5 * (x[4]-x[2]) is NA for the same reason that 
x[4] is undefined (the signal is of length 3). Consequently, filter(x, c(0.5, 0, -0.5)) gives NA 1.5 
NA.  



    106 

 

plot(times, coswav, type="b", xlab="Time (number of points)", 
ylab="Displacement") 
 
For reasons that will be clear in a moment, vertical lines are marked at both the trough, or 
minimum, and the following peak, or maximum, which occur at times 12 and 36: 
 
abline(v=c(12, 36), lty=2) 
 
Then central differencing is applied to this sinusoid and the result is plotted on top:  
 
coswav.d = filter(coswav, c(0.5, 0, -0.5)) 
par(new=T) 
plot(times, coswav.d, axes=F, type="b", xlab="", ylab="", 
pch=18) 
axis(side=4); mtext("Velocity", side=4, line=2) 
 
Fig. 5.12 about here 
 
The values for which the first differenced signal is zero can be seen by plotting a horizontal line 
with abline(h=0). Finally, abline(v=24) marks the time at which the differenced signal 
has a maximum value (Fig. 5.12). 
 Now it is evident from Fig. 5.12 that whenever there is a peak (maximum) or trough 
(minimum) in the sinusoid, then the differenced signal is zero-valued. This is at it should be 
because the sinusoid is stationary at these times, i.e., the rate at which the sinusoid changes at 
these times is zero. In addition, the time at which the differenced signal has a peak is when the 
sinusoid has the greatest range of change (which is when the amplitude interval between two 
points of the sinusoid is greatest). 
 One of the remarkable discoveries in speech research in the last 20-30 years, which is 
brought out so well by EMA analyses, is that the movement of the supralaryngeal articulators - 
the jaw, lips, different points on the tongue - as a function of time often bears quite a close 
resemblance to the sinusoidal movement shown on the left in Fig. 5.12. For example, there is a 
quasi-sinusoidal shape to the movement of the tongue body over the interval of the tongue-body 
raising and lowering for the /k/ in the 5th segment in Fig. 5.13. These data can be plotted with 
plot(body.tb[5,]), assuming that the tongue body trackdata has been derived from the 
corresponding segment list: 
 
body.s = emu.query("ema5", "*", "[TB=raise -> TB = lower]") 
body.tb = emu.track(body.s, "tb_posz") 
plot(body.tb[5,]) 
 
The velocity of the tongue body can be derived using the same central differencing procedure 
described above. In the procedure below, the filter() function is put inside another function 
cendiff() which removes the first and last NA. The arguments to this function are the speech 
frames and the coefficients set by default to those for central differencing: 
 
cendiff <- function(spframes, coeffs=c(0.5, 0, -.5)) 
{ 
times = tracktimes(spframes) 
result = filter(spframes, coeffs) 
temp = is.na(result) 
result = cbind(result[!temp]) 
rownames(result) <- times[!temp] 
result 
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} 
 
The function can be applied to speech frames as this example shows: 
 
cendiff(frames(body.tb[5,])) 
[,1] 
1400  0.2107015 
1405  0.3403330 
1410  0.4507700 
1415  0.5315820 
1420  0.5738020 
 
The same function can therefore also be used inside trapply() for deriving the velocity from 
multiple segments. For all the reasons discussed in the preceding section, simplify=T must 
not be included because the number of differenced values is not the same from one segment to 
the next, given that the durations of segments vary. However, if the function outputs values as a 
function of time - as is necessarily the case in differencing a time signal - then the argument 
returntrack=T can be included which will cause the output to be built as a trackdata object, 
if possible. The advantage of doing this is that all of the functionality for manipulating trackdata 
objects becomes available for these differenced data. The command is: 
 
body.tbd = trapply(body.tb, cendiff, returntrack=T) 
 
A plot of tongue body velocity as a function of time is then given by plot(body.tbd[5,]). 
Ensemble plots (Fig. 5.13) for the movement and velocity data separately per category, 
synchronized at the beginning of the raising movement for all segments can be produced with:  
 
par(mfrow=c(1,2)) 
dplot(body.tb, son.lab) 
dplot(body.tbd, son.lab) 
 
Fig. 5.13 about here 
 
The scale of the velocity data is mm/T where T is the duration between speech frames. Since in 
this case T is 5 ms, the scale is mm/5 ms44. 
 As the right panel of Fig. 5.13 shows, there are maxima and minima in the velocity data  
corresponding to the times at which the rate of change of tongue-body raising and lowering are 
greatest. The same figure also shows that the velocity is around zero close to 75 ms: this is the 
time around which the tongue-body raising for the /k/ closure is at a maximum in many 
segments. 
 The left panel of Fig. 5.13 suggests that the peak velocity of the raising movement might 
be greater for /kn/ than for /kl/. In order to bring out such differences between the clusters more 
clearly, it would be helpful to align the trajectories at the time of the peak velocity itself. This in 
turn means that these times have to be found which will require writing a function to do so. For 
the data in question, the speech frames of any segment number n are given by 
frames(body.tb[n,]) and the times at which they occur by 
tracktimes(body.tb[n,]). The required function needs to find the time at which the 
speech frames for any segment attain a maximum. This can be done by using the 

                                                
44 If you want to convert this to cm/s, then divide by 5 to get to ms, multiply by 1000 to get to 
seconds, and divide by 10 to get to cm: the combined effect of these operations is that the 
trackdata object has to be multiplied by 20  which can be done with body.tbd = body.tbd 
* 20. 
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which.max() function to find the speech frame number at which the maximum occurs and 
then applying it to the times of the speech frames. For example, for the fifth segment: 
 
num = which.max(frames(body.tbd[5,])) 
times = tracktimes(body.tbd[5,]) 
times[num] 
1420 
 
These lines can now be packed into a function that can be applied to speech frames. The function 
has been written so that it defaults to finding the time of the maximum if maxtime is True; if 
not, it finds the time of the minimum: 
 
peakfun <- function(fr, maxtime=T) 
{ 
if(maxtime) num = which.max(fr) 
else num = which.min(fr) 
tracktimes(fr)[num] 
} 
 
Now verify that you get the same result as before: 
 
peakfun(frames(body.tbd[5,])) 
1420 
 
The time of the peak-velocity minimum is incidentally: 
 
peakfun(frames(body.tbd[5,]), F) 
1525 
 
Since this function can evidently be applied to speech frames, then it can also be used inside 
trapply() to get the peak-velocity maximum for each segment. In this case, simplify=T 
can be set because there should only be one peak-velocity time per segment: 
 
pkraisetimes = trapply(body.tbd, peakfun, simplify=T) 
 
If you wanted to get the times of the peak-velocity minima for each segment corresponding to 
the peak velocity of tongue body lowering, then just append the argument F after the function 
name in trapply(), thus:  
 
pklowertimes = trapply(body.tbd, peakfun, F, simplify=T) 
 
The movement or velocity trackdata objects can now be displayed in an ensemble plot 
synchronized at the peak-velocity maximum (Fig. 5.14): 
 
par(mfrow=c(1,2)) 
dplot(body.tbd, son.lab, offset=pkraisetimes, prop=F) 
dplot(body.tbd, son.lab, offset=pkraisetimes, prop=F, average=T) 
 
Fig. 5.14 about here 
 
These data are quite interesting because they show that the peak-velocity of the tongue-body 
movement is not the same in /kn/ and /kl/ clusters and noticeably greater in /kn/, a finding that 
could never be established from a spectrogram or an acoustic analysis alone.  
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5.5.3 Critically damped movement, magnitude, and peak velocity 
 The purpose in this final section is to explore in some further detail the origin of the 
evidently faster movement in closing the /k/ in /kn/ than in /kl/. To do so, a bit more needs to be 
said about the way in which movements are modeled in articulatory phonology (e.g., Browman 
& Goldstein, 1990a, 1990b, 1990c, 1992; Saltzman & Munhall, 1989). In the preceding section, 
it was noted that the movement of an articulator such as the tongue tip or jaw often follows a 
quasi-sinusoidal pattern as a function of time. In articulatory phonology, this type of pattern is 
presumed to come about because articulatory dynamics are controlled by the same kind of 
dynamics that control the movement of a mass in a mass-spring system (e.g., Byrd et al, 2000). 
 In such a system, imagine that there is a mass attached to the end of a spring. You pull 
down on the mass and let it go and then measure its position as a function of time as it 
approaches rest position. The way that the mass approaches the rest, or equilibrium, position 
depends on a number of parameters some of which are factored out by making the simplification 
firstly that the mass is of unit size and secondly that the mass-spring system is what is called 
critically damped. In a critically damped system, the spring does not overshoot its rest position 
or oscillate before coming to rest but approaches it exponentially and in the shortest amount of 
time possible. This system’s equation of motion is defined as follows (Saltzman & Munhall, 
1989; Byrd et al, 2000): 
 
(2)  
 
where x, ẋ, and ẍ  are the position, velocity, and acceleration of the mass,  ω is the spring's 
natural frequency (and equal to the square root of the spring's stiffness), and xtarg is the position 
of the spring at rest position. The system defined by (2) is dynamically autonomous in that there 
are no explicit time-dependent, but only state-dependent, forces. For this critically damped mass-
spring system, the position of the mass as a function of time can be computed using the solution 
equation in (3) in which time is explicitly represented and in which the starting velocity is 
assumed to be zero45: 
 
(3)  
 
where A = x(0) - xtarg and B = v(0) + Aω. In this equation, ω and xtarg have the definition as 
before, and x(t) and v(t) are the position and velocity of the mass at time t (t ≥ 0). Equation (3) 
can be converted into an equivalent function in R as follows in which x(0), xtarg, v(0), ω, t are 
represented in the function by xo, xtarg, vo, w, and n respectively: 
 
critdamp <- function(xo=1, xtarg=0, vo=0, w=0.05, n=0:99) 
{ 
A = xo - xtarg 
B = vo + w * A 
(A + B * n) * exp(-w * n) 
} 
 
The defaults are set in such a way that the starting position of the mass is 1, the initial velocity is 
zero,  and such that the mass approaches but does not attain, the rest (target) position of zero 
over an interval between 0 and 99 time points. The position of the mass (articulator) as a 
function of time46 for the defaults is shown in the left panel of Fig. 5.15. The figure was 
                                                
45 My thanks to Elliot Saltzman for assistance in relating (2) to (3). 
46 The units are not important for this example but in fact, if the sampling frequency, fs is defined, then the natural 
frequency is w * fs/(2 * pi) Hz (see e.g. Harrington & Cassidy, 1999, p. 160). Thus, if the default of 100 

€ 

˙ ̇ x + 2ω ˙ x +ω2 (x − xtarg ) = 0

€ 

x(t) = (A+ Bt)e−ωt
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produced with: 
 
position = critdamp() 
plot(0:99, position) 
 
The velocity, shown in the right panel of Fig. 5.15, can be calculated from the movement as 
before with central differencing: 
 
plot(0:99, filter(position, c(0.5, 0, -0.5)) 
 
Fig. 5.15 about here 
 
In some implementations of the model of articulatory phonology (e.g., Byrd et al, 2000), there is 
presumed to be a two-parameter specification of just this kind for each so-called gesture. In the 
present data, raising and lowering the tongue-body in producing the /k/ closure (Fig. 5.16) are 
the result of tongue-dorsum constriction-formation  and constriction-release gestures that are 
separately determined by their own two-parameter specifications that are input to an equation 
such as (2). There then has to be a further parameter defining how these two gestures are timed 
or phased relative to each other. This phasing is not the concern of the analysis presented here - 
but see e.g., Beckman et al (1992), Harrington et al (1995), Fowler & Saltzman (1993) and more 
recently Nam (2007) for further details. 
 Although varying the parameters xo and ω can result in a potentially infinite number of 
gestural shapes, they all confirm to the following four generalizations (Beckman et al, 1992; 
Byrd et al, 2000): 
  

i. The magnitude of a gesture is affected by xo: the greater xo, the greater the magnitude. 
In Fig. 5.15, the magnitude is 1 because this is the absolute difference between the 
highest and lowest positions. In tongue-body raising for producing the /k/ closure, the 
magnitude is the extent of movement from the tongue-body minimum in the preceding 
vowel to the maximum in closing the /k/ (a in Fig. 5.16). 

ii. The peak-velocity of a gesture is influenced by both xo and by ω.  
iii. The time at which the peak-velocity occurs relative to the onset of the gesture (c or f in 

Fig. 5.15) is influenced only by ω,  the articulatory stiffness. 
iv. The gesture duration (b or e in Fig. 5.15) is  the time taken between the tongue-body 

minimum and following maximum in closing the /k/: this is not explicitly specified in the 
model but arises intrinsically as a consequence of specifying xo and ω. 

 
Both ii. and iii. can be derived from algebraic manipulation of (1) and demonstrated graphically. 
As far as the algebra is concerned, it can be shown that the time at which the peak velocity 
occurs, tpkvel, is the reciprocal of the natural frequency: 
 
(4) tpkvel = 1/ω 
 
Therefore, the higher the value of ω (i.e., the stiffer the spring/articulator), the smaller 1/ω and 
the earlier the time of the peak velocity. Also, since (4) makes no reference to xo, then changing 
xo can have no influence on tpkvel. Secondly, the peak velocity (ii), pkvel, is given by: 
 
(5) pkvel =  - xoω/e   
 

                                                
points in the critdamp() function is assumed to take up 1 second (i.e., fs = 100 Hz), then the default w = 
0.05 has a frequency in Hz of  0.05 * 100/(2 * pi) i.e. just under 0.8 Hz. 
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Fig. 5.16 about here 
 
Consequently, an increase in either xo or in ω (or both) causes the absolute value of pkvel to 
increase because in either case the right hand side of (5) increases (in absolute terms).  
 An illustration of the consequences of (4) and (5) is shown in Fig. 5.17. In column 1, 
critdamp() was used to increase xo in equal steps with the stiffness parameter held constant: 
in this case, there is a progressive increase in both the magnitude (between 0.75 and 1.5) and in 
the peak velocity, but the time of the peak velocity is unchanged at 1/ω. In column 2, xo was held 
constant and ω was varied in equal steps. In this case, the magnitude is the same, the peak 
velocity increases, and the time of the peak velocity relative to movement onset decreases. 
 
Fig. 5.17 about here 
 
 The issue to be considered now is which parameter changes can best account for the 
observed faster tongue-body raising movement shown in Fig 5.14 for /kn/ compared with /kl/. 
This is at first sight not self-evident, since, as shown in Fig. 5.17, the greater peak velocity could 
have been brought about by a change either to xo or to ω or to both. However, based on the above 
considerations the following two predictions can be made: 
 

i. If the faster tongue-body movement in /kn/ is due to a change in stiffness and not in the 
target, then the time at which the peak velocity occurs should be earlier in /kn/ than in 
/kl/. 

ii. If the faster tongue-body movement in /kn/ is due to a change in the target and not in the 
stiffness, then the ratio of the magnitude of the movement to the peak-velocity should be 
about the same for /kn/ and /kl/. The evidence for this can be seen in column 1 of Fig. 
5.17 which shows a progressive increase in the peak velocity, as the magnitude 
increases. It is also evident from algebraic considerations. Since by (5)  pkvel =  -xoω/e, 
then the ratio of the magnitude to the peak velocity is -xo/( xoω/e) = -e/ω. Consequently, 
if ω is the same in /kn/ and /kl/, then this ratio for both /kn/ and /kl/ is the same constant 
which also means that the tokens of /kn/ and /kl/ should fall on a line with approximately 
the same slope of -e/ω when they are plotted in the plane of the magnitude as a function 
of the peak velocity.  

  
In order to adjudicate between these hypotheses - whether the faster tongue movement is brought 
about by a change to the target or to stiffness or quite possibly both - then the parameters for the 
raising gesture shown in Fig.5.16 need to be extracted from the trackdata object. Recall that a 
segment list over the interval defined by tongue body raising was made earlier: 
 
tbraise.s = emu.query("ema5", "*", "TB=raise") 
 
A trackdata object of tongue-body raising over this raising interval is given by: 
 
tbraise.tb = emu.track(tbraise.s, "tb_posz") 
 
The function dur() could now be used to retrieve the duration of the raising gesture (b in Fig. 
5.16) from this trackdata object: 
 
# Raising gesture duration 
raise.dur = dur(tbraise.tb) 
 
For the raising gesture magnitude (a in Fig. 5.16), the positions at the onset and offset of the 
raising gesture need to be retrieved from the trackdata object and subtracted from each other. 
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The retrieval of values at a single time point in a trackdata object can be done with dcut() in 
the Emu-R library. For example, the start time of the raising gesture for the first segment is given 
by start(tbraise.tb[1,]) which is 1105 ms so the position at that time is 
dcut(tbraise.tb[1,], 1105). The corresponding positions for all segments can be 
extracted by passing the entire vector of start times to dcut() as the second argument, thus: 
 
pos.onset = dcut(tbraise.tb, start(tbraise.tb)) 
 
The positions at the offset of the raising gesture can be analogously retrieved with: 
 
pos.offset = dcut(tbraise.tb, end(tbraise.tb)) 
 
The magnitude is the absolute difference between the two: 
 
magnitude = abs(pos.onset - pos.offset) 
 
The function dcut() could also be used to extract the times of the peak velocity. The first three 
lines repeat the commands from 5.5.2 for creating the peak velocity trackdata object. The last 
time extracts the times of maximum peak velocity: 
 
body.s = emu.query("ema5", "*", "[TB=raise -> TB = lower]") 
body.tb = emu.track(body.s, "tb_posz") 
body.tbd = trapply(body.tb, cendiff, returntrack=T) 
pkvel = dcut(body.tbd, pkraisetimes) 
 
Finally, the fourth parameter that is needed is the duration between the movement onset and the 
time of the peak velocity. Using the objects created so far, this is: 
 
timetopkvel = pkraisetimes - start(body.tbd) 
 
 If the faster tongue-body movement in /kn/ is due to a change in articulatory stiffness, 
then the time to the peak velocity should be earlier than for /kl/. Assuming you have created the 
objects k.s and son.lab (section 5.2), then  the boxplot in Fig. 5.18 can be created with: 
 
boxplot(timetopkvel ~ son.lab) 
 
The boxplot shows no evidence that the time to the peak velocity is earlier in /kn/, although it is 
difficult to conclude very much from these results, given the small number of tokens and 
somewhat skewed distribution for /kn/ (in which the median and upper quartile have nearly the 
same value).  
 The same figure shows /kn/ and /kl/ in the plane of the magnitude as a function of the 
peak velocity. The figure was plotted with: 
 
plot(pkvel, magnitude, pch=son.lab) 
 
The resulting display suggests that the tokens of /kn/ and /kl/ may well fall on the same line. 
Thus although there are insufficient data to be conclusive, the pattern of results in the right panel 
of Fig. 5.17 is consistent with the view that the ratio of the displacement to the peak velocity is 
quite similar for both /kn/ and /kl/.  
 
Fig. 5.18 about here 
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 These data support the view, then, that the faster tongue movement is not the result of 
changes to articulatory stiffness but instead to the target: informally, this brief analysis suggests 
that the raising gesture for the velar stop in /kn/ is bigger and faster than in /kl/. 
 
5.6 Summary 
 The main purpose of this Chapter has been to make use of movement data in order to 
illustrate some of the principal ways that speech can be analysed in Emu-R. The salient points of 
this Chapter are as follows. 
 
Segment lists and trackdata objects 
 A segment list is derived from an annotated database with emu.query() and it 
includes for each segment information about its annotation, its start time, its end time, and the 
utterance from which it was extracted. The functions label() and utt() operate on a 
segment list to retrieve respectively the annotation and utterance name in which the segment 
occurs. 
 The function trackinfo() gives information about which signals are available for a 
database i.e., which trackdata objects can be made. The summary() function provides an 
overview of the contents either of a segment list or of a trackdata object.  
 A trackdata object contains speech frames and is always derived from a segment list. For 
each segment, the times of the first and last speech frame are also within the boundary times of 
the segment list. Successive speech frames are stored in rows and can be retrieved with the 
function frames() and their times with tracktimes().The functions start(), end(), 
dur() can be applied to segment lists or trackdata objects to obtain the segments’ start times, 
end times and durations. There may be several columns of speech frames if several signal files 
are read into the same trackdata object (as in the case of formants for example).  
 
Indexing and logical vectors 
 Emu-R has been set up so that vectors, matrices, segment lists, and trackdata objects can 
be indexed in broadly the same way. The annotation or duration of the nth segment is indexed 
with x[n], where x is a vector containing the segments' annotations or durations. Data for the 
nth segment from matrices, segment lists and trackdata objects is indexed with x[n,].  
 Logical vectors are the output of comparison operators and can be used to index 
segments in an analogous way: if temp is logical, x[temp] retrieves information about the 
annotations and durations of segments from vectors; and x[temp,] retrieves segment 
information from segment lists and trackdata objects. 
 
Plotting speech data from trackdata objects 
 The function plot() (in reality plot.trackdata() when applied to a trackdata 
object) can be used to produce a plot of the speech frames as a function of time for any 
individual segment. The function dplot() is used for ensemble plots of speech frames as a 
function of time for several segments. 
 
Numerical, mathematical and logical operations on trackdata objects 
 Trackdata objects can be handled arithmetically, logically and mathematically in very 
similar way to vectors for the functions listed under Arith, Compare, Ops, Math, Math2, 
and Summary in help(Ops). In all cases, these operations are applied to speech frames. 
 
Applying functions to trackdata objects 
 trapply() can be used to apply a function to a trackdata object. tapply() is for 
applying a function to a vector separately for each category; and apply() can be used for 
applying a function separately to the rows and columns of a matrix.  
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Extracting data from trackdata objects at particular points in time 
 Speech frames are extracted from a trackdata object with dcut() either at a single point 
in time or over an interval. 
 
Analysis of movement data 
  In many cases, the movement of the supralaryngeal articulators in speech production 
exhibits characteristics of a damped sinusoid with a minimum and maximum displacement at 
articulatory landmarks. In the task-dynamic model, the movement between these extreme points 
of articulatory movement is the result of producing an articulatory gesture according to the same 
sets of parameters that control a critically-damped mass spring system. The time interval 
between these points of minimum and maximum displacement corresponds to the gesture's 
duration. The absolute difference in position between the minimum and maximum displacement 
is the gesture's magnitude. Since the movement ideally follows a sinusoidal trajectory, there is 
one point at which the velocity is a maximum, known as the peak velocity. The peak velocity can 
be found by finding the time at which the movement's rate of change has a peak. The time of the 
maximum or minimum displacement are the same as the times at which the velocity is zero. 
 In the equation of a critically damped mass-spring system that defines the gesture's 
trajectory, time is not explicitly represented but is instead a consequence of specifying two 
parameters: the stiffness (or the spring/the articulator) and the target (change from equilibrium 
position). Changing the stiffness increases peak velocity but does not affect the magnitude. 
When the target is changed, then the peak velocity and magnitude change proportionally. 
 
/kn/ vs. /kl/ clusters 
 The interval between the tongue dorsum and tongue tip closures is greater for /kn/ than 
for /kl/. In addition, /kn/ was shown to have a greater acoustic voice onset time as well as a 
bigger (and proportionately faster) tongue-dorsum closing gesture compared with /kl/. 
   
5.7 Questions 
1. This question is about exploring whether the data shows a relationship between the extent of 
jaw lowering and the first formant frequency in the first [a] component of [aɪ] of Kneipe, 
Kneipier or of [aʊ] of Claudia and Klausur. In general, a more open vocal tract can be expected 
to be associated with both by F1-raising and by a lower jaw position (Lindblom & Sundberg, 
1971) 
 
1(a) Calculate the first two formants of this database (ema5) and store these in a directory of 
your choice. Modify the template file in the manner described in Chapter 2 so that they are 
visible to the database ema5.  Since this is a female speaker, use a nominal F1 of 600 Hz. 
 
1(b) Assuming the existence of the segment list k.s  of word-initial /k/ segments as defined at 
the beginning of this Chapter and repeated below: 
 
k.s = emu.query("ema5", "*", "Segment=k & Start(Word, 
Segment)=1") 
 
how could you use emu.requery() to make a segment list, vow, containing the diphthongs 
in the same words, given that these are positioned three segments to the right in relation to these 
word-initial /k/ segments? One you have made vow, make a trackdata object vow.fm, for this 
segment list containing the formants. (You will first need to calculate the formants in the manner 
described in Chapter 3. Use a nominal F1 of 600 Hz). 
 
1(c) Make a vector of word labels, word.l, either from k.s or from the segment list vow you 
created in 1(b). A table of the words should look like this: 
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table(word.l) 
word.l 
 Claudia  Klausur   Kneipe Kneipier  
       5        5        5        5 
 
1(d) Make a trackdata object, vow.jaw, containing vertical jaw movement data (in track 
jw_posz) for the segment list you made in 1(b). 
 
1(e) The jaw height should show a trough in these diphthongs somewhere in the first component 
as the jaw lowers and the mouth opens. Use trapply() and peakfun() given below 
(repeated from section 5.5.2) to find the time at which the jaw height is at its lowest point in 
these diphthongs. 
 
peakfun <- function(fr, maxtime=T) 
{ 
if(maxtime) num = which.max(fr) 
else num = which.min(fr) 
tracktimes(fr)[num] 
} 
 
1(f) Verify that the times you have found in (e) are appropriate by making an ensemble plot of 
vow.jaw color-coded for the diphthong type and synchronized at time of maximum jaw 
lowering found in 1(e). 
 
1(g) Using dcut() or otherwise, extract (i) the first formant frequency and (ii) the jaw height at 
these times. Store the first of these as f1 and the second as jaw. 
 
1(h) Plot F1 as a function of the jaw height minimum showing the word labels at the 
corresponding points. This can be done either with: 
 
plot(f1, jaw, type="n", xlab="F1 (Hz)", ylab="Jaw position 
(mm)") 
text(f1, jaw, word.l) 
 
or with: 
 
eplot(cbind(f1, jaw), word.l, dopoints=T, doellipse=F, xlab="F1 
(Hz)", ylab="Jaw position (mm)") 
 
where word.l is the vector of word labels you make in 1(c). To what extent would you say that 
there is a relationship between F1 and jaw height? 
 
2. This question is about lip-aperture and tongue-movement in the closure of [p] of Kneipe and 
Kneipier. 
 
2(a). Make a segment list, p.s, of the acoustic [p] closure (p at the Segment tier) of Kneipe or 
Kneipier. 
 
2(b) Make a vector of word labels pword.l, parallel to the segment list in 2(a). 
 
2(c) Make two trackdata objects from p.s: (i) p.ll, of the vertical position of the lower lip 
(track ll_posz) and (ii) p.ul, of the vertical position of the upper lip (track ul_posz). 
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2(d) One way to approximate the lip aperture using EMA data is by subtracting the vertical 
lower lip position from the vertical upper lip position. Create a new trackdata object p.ap 
consisting of this difference between upper and lower lip position. 
 
2(e) Use peakfun() from 1(e) to create a vector, p.mintime, of the time at which the lip 
aperture in p.ap is a minimum. 
 
2(f) Make an ensemble plot of the position of the lip-aperture as a function of time from p.ap 
color-coded for Kneipe vs. Kneipier and synchronized at the time of minimum lip aperture. 
 
2(g) How could you work out the mean proportional time in the acoustic closure at which the lip-
aperture minimum occurs separately for Kneipe and Kneipier? For example, if the acoustic [p] 
closure extends from 10 to 20 ms and the time of the minimum lip-aperture is 12 ms, then the 
proportional time is (12-10)/(20-10) = 0.2. The task is to find two mean proportional times, one 
for Kneipe and the other for Kneipier. 
 
2(h) How would you expect the vertical and horizontal position of the tongue mid (Fig. 5.4) 
sensor to differ between the words in the closure of [p], given that the segment following the 
closure is [ɐ] in Kneipe and [j] or [ɪ] in Kneipier?  Check your predictions by producing two 
ensemble plots over the interval of the acoustic [p] closure and color-coded for these words (i) of 
the vertical tongue-mid position and (ii) of the horizontal tongue-mid position synchronized at 
the time of the lip-aperture minimum obtained in 2(g). (NB: the horizontal movement of the 
tongue mid sensor is in tm_posy; and lower values obtained from the horizontal movement of 
sensors denote more forward, anterior positions towards the lips). 
 
3. The following question is concerned with the production differences between the diphthongs 
[aʊ] and [aɪ] in the first syllables respectively of Klausur/Claudia and Kneipe/Kneipier.  
 
3(a) Make a boxplot of F2 (second formant frequency) at the time of the jaw height minimum 
(see 1(e)) separately for each diphthong (i.e., there should be one boxplot for [aʊ] and one for 
[aɪ]). 
 
3(b) Why might either tongue backing or a decreased lip-aperture contribute to the tendency for 
F2 to be lower in [aʊ] at the time point in 3(a)? Make ellipse plots separately for the two 
diphthong categories with the horizontal position of the tongue-mid sensor on the x-axis and the 
lip-aperture (as defined in 2(d)) on the y-axis and with both of these parameters extracted at the 
time of the jaw height minimum identified in 3(a). To what extent might these data explain the 
lower F2 in [aʊ]? 
 
4. This question is about the relationship between jaw height and duration in the first syllable of 
the words Kneipe and Kneipier.  
 
4(a) Kneipe has primary lexical stress on the first syllable, but Kneipier on the second. It is 
possible that these lexical stress differences are associated with a greater duration in the first 
syllable of Kneipe than that of Kneipier. Make a segment list of these words between the time of 
maximum tongue-tip raising in /n/ and the time of minimum lip-aperture in /p/. (The way to do 
this is to make use of the segment list of the lower annotations for these words at the TT tier, 
and then to replace its third column, i.e., the end times, with p.mintime obtained in 2(e)). 
Before you make this change, use emu.requery() to obtain a parallel vector of word labels 
(so that each segment can be identified as Kneipe or Kneipier). 
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4(b) Calculate the mean duration of the interval defined by the segment list in 4(a) separately for 
Kneipe and Kneipier. 
 
4(c) If there is less time available for a phonetic segment or for a syllable to be produced, then 
one possibility according to Lindblom (1963) is that the target is undershot i.e., not attained. If 
this production strategy is characteristic of the shorter first syllable in Kneipier, then how would 
you expect the jaw position as a function of time over this interval to differ between these two 
words? Check your predictions by making an ensemble plot of the position of the jaw height 
color-coded according to these two words. 
 
4(d) Derive by central differencing from 4(c) a trackdata object vz of the velocity of jaw height 
over this interval. 
 
4(e) Use emu.track() to make a trackdata object of the horizontal position of the jaw 
(jw_posy) over this interval and derive the velocity of horizontal jaw movement, vy, from this 
trackdata object. 
 
4(f) The tangential velocity in some analyses of EMA data is the rate of change of the Euclidean 
distance in the plane of vertical and horizontal movement which can be defined by: 
 

(6) 
 

in which vz is the velocity of vertical movement (i.e., the trackdata object in (4d) for this 
example) and vy the velocity of horizontal movement (the trackdata object in (4e)). Derive the 
tangential velocity for these jaw movement data and make an ensemble plot of the tangential 
velocity averaged and color-coded for the two word categories (i.e., one tangential velocity 
trajectory as a function of time averaged across all tokens of Kneipe and another superimposed 
tangential velocity trajectory averaged across all tokens of Kneipier). 
 
5.8 Answers 
 
1(b)  
vow = emu.requery(k.s, "Segment", "Segment", seq=3) 
vow.fm = emu.track(vow, "fm") 
 
1(c)  
word.l = emu.requery(vow, "Segment", "Word", j=T) 
 
1(d)  
vow.jaw = emu.track(vow, "jw_posz") 
 
1(e) 
jawmin = trapply(vow.jaw, peakfun, F, simplify=T) 
 
1(f) 
dplot(vow.jaw, label(vow), offset=jawmin, prop=F) 
 
1(g) 
f1 = dcut(vow.fm[,1], jawmin) 
jaw = dcut(vow.jaw, jawmin) 
 
1(h) 
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Fig. 5.19 about here 
   
Fig. 5.19 shows that the variables are related: in very general terms, lower jaw positions are 
associated with higher F1 values. The (negative) correlation is, of course, far from perfect (in 
fact,  -0.597 and significant, as given by cor.test(f1, jaw) ). 
 
2. (a) 
p.s = emu.query("ema5", "*", "[Segment = p ^ Word=Kneipe | 
Kneipier]") 
 
2 (b) 
pword.l = emu.requery(p.s, "Segment", "Word", j=T) 
 
2(c) 
p.ll = emu.track(p.s, "ll_posz") 
p.ul = emu.track(p.s, "ul_posz") 
 
2(d) 
p.ap = p.ul - p.ll 
 
2(e) 
p.mintime = trapply(p.ap, peakfun, F, simplify=T) 
 
2(f) 
dplot(p.ap, pword.l, offset=p.mintime, prop=F) 
 
2(g) 
prop = (p.mintime-start(p.s))/dur(p.s) 
tapply(prop, pword.l, mean) 
  Kneipe    Kneipier  
  0.3429   0.2607 
 
2(h) 
You would expect the tongue mid position to be higher and fronter in Kneipier due to the 
influence of the preceding and following palatal segments and this is supported by the evidence 
in Fig. 5.20. 47 

 
p.tmvertical = emu.track(p.s, "tm_posz") 
p.tmhorz = emu.track(p.s, "tm_posy") 
par(mfrow=c(1,2)) 
dplot(p.tmvertical, pword.l, offset=p.mintime, prop=F, 
ylab="Vertical position (mm)", xlab="Time (ms)", legend=F)  
dplot(p.tmhorz, pword.l, offset=p.mintime, prop=F, 
ylab="Horizontal position (mm)", xlab="Time (ms)", 
legend="topleft") 
 
3(a)   
f2jaw = dcut(vow.fm[,2], jawmin) 
boxplot(f2jaw ~ label(vow)) 
 
Fig. 5.21 about here 
                                                
47 The following additional plotting  parameters were used: col=c(1, "slategray"), lwd=c(1,2), 
lty=c(1,2), bty="n" 
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3 (b) 
vow.tmhor = emu.track(vow, "tm_posy") 
vow.ul = emu.track(vow, "ul_posz") 
vow.ll = emu.track(vow, "ll_posz") 
vow.ap = vow.ul - vow.ll 
tongue = dcut(vow.tmhor, jawmin) 
ap = dcut(vow.ap, jawmin) 
d = cbind(tongue, ap) 
eplot(d, label(vow), dopoints=T, xlab="Horizontal tongue 
position (mm)", ylab="Lip aperture (mm)") 
 
Fig. 5.22 about here 
 
Overall, there is evidence from Fig. 5.22 of a more retracted tongue position or decreased lip-
aperture at the jaw height minimum in [aʊ] which could be due to the phonetically back and 
rounded second component of this diphthong. Either of these factors is likely to be associated 
with the observed lower F2 in Fig. 5.21. In addition, Fig. 5.22 shows that [aʊ] seems to cluster 
into two groups and these are probably tokens from the two words Claudia and Klausur. Thus, 
the data show either that the lip aperture in [aʊ] is less than in [aɪ] (for the cluster of points 
around 24 mm on the y-axis) or that the tongue is retracted (for the points around 27-28 mm on 
the y-axis) relative to [aɪ] (but not both). 
 
4 (a) 
syll.s = emu.query("ema5", "*", "[TT = lower ^ Word = Kneipe | 
Kneipier]") 
word.l = emu.requery(syll.s, "TT", "Word", j=T) 
syll.s[,3] = p.mintime 
 
4(b) 
tapply(dur(syll.s), word.l, mean) 
Kneipe   Kneipier  
201.6592 161.0630 
 
Yes: the first syllable of Kneipier, where syllable is defined as the interval between tongue-tip 
raising in /n/ and the point of minimum lip-aperture in /p/, is some 40 ms less than that of 
Kneipe. 
 
4(c) 
syll.jaw = emu.track(syll.s, "jw_posz") 
dplot(syll.jaw, word.l, ylab="Position (mm)") 
 
Fig. 5.23 about here 
 
There does seem to be evidence for target undershoot of vertical jaw movement, as Fig. 5.23 
suggests. 
4(d) 
vz = trapply(syll.jaw, cendiff, returntrack=T) 
 
4(e) 
syll.jawx = emu.track(syll.s, "jw_posy") 
vy = trapply(syll.jawx, cendiff, returntrack=T) 
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4(f) 
tang = sqrt(vz^2 + vy^2) 
dplot(tang, word.l, average=T, ylab="Tangential velocity (mm / 5 
ms)", xlab="Time (ms)") 
 
Fig. 5.24 about here 
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Chapter 6. Analysis of formants and formant transitions 
 

The aim of this Chapter is to extend some of the techniques presented in Chapter 3 for the 
analysis of formant frequencies as well as some methods for analying the way that formants 
change in time. The discussion is centred predominantly around vowels and the type of acoustic 
information that is available for distinguishing between them. Sections 6.1 – 6.3 are for the most 
part concerned with representing vowels in terms of their first two formant frequencies extracted 
at the vowel targets. A technique known as kmeans clustering for assessing the influence of 
context is briefly reviewed as well as some methods for locating vowel targets automatically 
from vowel formant data. Outliers that can arise as a result of formant tracking errors are 
discussed as well as methods for removing them.  

As is well known, the formants of the same phonetic vowel vary not only because of 
context, but also due to speaker differences and in 6.4 some techniques of vowel normalization 
are applied to some vowel data in order to determine how far they reduce the different formant 
characteristics of male and female vowels. 

The final sections of this Chapter deal with vowel reduction, undershoot and 
coarticulatory influences.  In 6.5, some metrics for measuring the Euclidean distance are 
introduced and applied to determining the expansion of the vowel space relative to its centre: this 
method is especially relevant for modelling the relationship between vowel positions and vowel 
hyperarticulation (see e.g., Moon & Lindblom, 1994; Wright, 2003). But Euclidean distance 
measurements can also be used to assess how close one vowel space is to another and this is 
found to have an application in quantifying sound change that is relevant for sociolinguistic 
investigations.  

Whereas all the techniques in 6.1-6.5 are static, in the sense that they rely on applying 
analyses to formants extracted at a single point in time, in section 6.6 the focus is on the shape of 
the entire formant movement as a function of time. In this section, the coefficients of the 
parabola fitted to a formant are used both for quantifying vowel undershoot and also for 
smoothing formant frequencies. Finally, the concern in section 6.7 is with the second formant 
frequency transition as a cue to the place of the articulation of consonants and the way that so-
called locus equations can be used to measure the coarticulatory influence of a vowel on a 
preceding or following consonant. 

  
6.1 Vowel ellipses in the F2 x F1 plane 

There is extensive evidence going back to the 19th and early part of the 20th Century that 
vowel quality distinctions depend on the first two, or first three, resonances of the vocal tract 
(see  Ladefoged, 1967 and Traunmüller & Lacerda, 1987 for reviews). Since the first formant 
frequency is negatively correlated with phonetic vowel height, and since F2 is correlated with 
vowel backness, then a shape resembling the vowel quadrilateral emerges by plotting vowels in 
the (decreasing) F1 × F2 plane. Essner (1947) and Joos (1948) were amongst the first to 
demonstrate this relationship, and since then, many different kinds of  experimental studies have 
shown that this space is important for making judgements of vowel quality (see e.g., Harrington 
& Cassidy, 1999, p. 60-78).  

The first task will be to examine some formant data from a male speaker of Standard 
German using some objects from the  vowlax dataset stored in the Emu-R library48: 

 
 

vowlax   Segment list of four German lax vowels 
vowlax.fdat  Trackdata object of F1-F4 
vowlax.l   Vector of parallel vowel labels  
vowlax.left  Vector of labels of the segments preceding the vowels 

                                                
48 All of these objects can be recreated from scratch: see Appendix C for further details 
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vowlax.right  Vector of labels of the segments following the vowels 
vowlax.spkr  Vector of speaker labels 
vowlax.word  Vector of word labels for the vowel 
 
The dataset includes he vowels I, E, O, a from two speakers of Standard German, one 
male (speaker 67) and one female (speaker 68) who each produced the same 100 read sentences 
from the Kiel Corpus of Read Speech (the data are in the downloadable kielread database). 
In the following, a logical vector is used to extract the data from the above for the male speaker: 
 
temp = vowlax.spkr == "67" Logical vector - True for speaker 67 
m.fdat = vowlax.fdat[temp,] Formant data 
m.s = vowlax[temp,]   Segment list 
m.l = vowlax.l[temp]  Vowel labels 
m.left = vowlax.left[temp]  Left context 
m.right = vowlax.right[temp]  Right context 
m.word = vowlax.word[temp]  Word labels 
 
 
In plotting vowels in the F1 × F2 plane, a decision has to be made about the time point from 
which the data are to be extracted. Usually, the extraction point should be at or near the vowel 
target, which can be considered to be the point in the vowel at which the formants are least 
influenced by context and/or where the formants change minimally in time (Chapter 3, Fig. 3.2). 
Some issues to do with the vowel target are discussed in 6.3. For the present, the target is taken 
to be at the temporal midpoint of the vowel, on the assumption that this is usually the time point 
nearest to which the target occurs (Fig. 6.1): 
 
m.fdat.5 = dcut(m.fdat, .5, prop=T) 
eplot(m.fdat.5[,1:2], m.l, centroid=T, form=T, xlab="F2 (Hz)", 
ylab="F1 (Hz)") 
 
Fig. 6.1 about here 
 
Note that in using eplot(), the number of rows of data must be the same as the number of 
elements in the parallel label vector. This can be checked as follows: 
 
nrow(m.fdat.5[,1:2]) == length(m.l) 
[1] TRUE 
 
The centroid=T argument displays the means of the distributions using the corresponding 
character label; and as discussed in Chapter 3, the form=T argument rotates the space so that 
the x-axis has decreasing F2 and the y-axis decreasing F1 as a result of which the vowels are 
positioned analogously to the phonetic backness and height axes of the vowel quadrilateral. As 
discussed in more detail in connection with probabilistic classification in Chapter 9, an ellipse is 
a contour of equal probability. In the default implementation of the eplot() function, each 
ellipse includes at least 95% of the data points corresponding to just under 2.45 ellipse standard 
deviations. 
 Those researchers who tend not to look at very much at data from continuous speech may 
find the extent of overlap between vowels shown in Fig. 6.1 quite alarming because in laboratory 
speech of isolated word data, the ellipses of one speaker are usually quite well separated. The 
overlap arises, in part, because vowel targets in continuous speech are affected by different 
contexts and prosodic factors.  It might be helpful then to look at [ɪ] in further detail according to 
the left context (Fig. 6.2): 
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temp = m.l=="I"; par(mfrow=c(1,2)) 
eplot(m.fdat.5[temp,1:2], m.l[temp],m.left[temp], dopoints=T, 
form=T, xlab="F2 (Hz)", ylab="F1 (Hz)") 
 
There is not an immediately obvious pattern to the data in Fig. 6.2 and nor can one be reasonably 
expected, given that it does not take account of some other variables, especially of the right 
context. Nevertheless, when the preceding context is alveolar it does seem that [ɪ] is mostly 
positioned in the top left of the display with low F1 and high F2. There are also a number of Q 
labels with a high F2: these denote vowels that are preceded by a glottal stop i.e., syllable or 
word-initial [ʔɪ] (vowels in a domain-initial position in German are usually glottalised).  
 
Fig. 6.2 about here 
 
 The technique of kmeans clustering can be applied to the data to give an indication of 
whether the variability is affected by different types of context. This technique partitions the data 
into k different clusters in such a way that the distance from the data points  to the centroids 
(means) of the derived clusters of which they are members is minimised. An example of how this 
algorithm works is shown for 10 data points (those in bridge[1:10,1:2]) which are divided 
into two clusters. Initially, a guess is made of two means shown by X1 and Y1 in the left panel of 
Fig. 6.3. Then the straight-line (Euclidean) distance is calculated  from each point to each of 
these two means (i.e., two distance calculations per point) and each point is classified depending 
on which of these two distances is shortest. The results of this initial classification are shown in 
the central panel of the same figure: thus the four values at the bottom of the central panel are 
labelled x because their distance is less to X1 than to Y1. Then the centroid (mean value on both 
dimensions) is calculated separately for the points labelled x and those labelled y: these are 
shown as X2 and Y2 in the middle panel. The same step as before is repeated in which two 
distances are calculated from each point to X2 and Y2 and then the points are reclassified 
depending on which of the two distances is the shortest. The results of this reclassification (right 
panel, Fig. 6.3) show that two additional points are labelled x because these are nearer to X2 than 
to Y2. The means of these new classes are X3 and Y3 and since there is no further shift in the 
derived means by making the same calculations again, these are the final means and final 
classifications of the points. They are also the ones that are given by 
kmeans(bridge[1:10,1:2], 2). 
 
Fig. 6.3 about here 
 
 When kmeans clustering is applied to the [ɪ] data shown in the left panel of Fig. 6.2, the 
result is a split of the data into two classes, as the right panel of the same figure shows. This 
figure was produced with the following commands: 
 
temp = m.l=="I" 
k = kmeans(m.fdat.5[temp,1:2], 2) 
eplot(m.fdat.5[temp,1:2], m.l[temp], k$cluster, dopoints=T, 
form=T, xlab="F2 (Hz)", ylab="F1 (Hz)") 
 
As is apparent from the right panel of Fig. 6.2, the algorithm has split the data according to 
whether F2 is less, or greater, than roughly 1800 Hz. We can see whether this also partitions the 
data along the lines of the left context as follows: 
 
temp = m.l == "I" 
# Left context preceding [ɪ] 
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m.left.I = m.left[temp] 
 
# Left context preceding [ɪ] in cluster 1 (the circles in Fig. 6.2, right panel). 
temp = k$cluster==1 
table(m.left.I[temp]) 
 Q  b  d  k  l  m  n  r  s  t  z  
10  3  6  3 10  1 10  6  2  4  1  
 
# Left context preceding [ɪ] in cluster 2 
table(m.left.I[!temp]) 
Q b f g l m n r s v  
2 4 3 1 3 2 1 9 1 3 
 
 So, as these results and the right panel of Fig. 6.2 show, cluster 1 (the circles in Fig. 6.2) 
includes all of [d, t], 10/11 of [n] and 10/12 [ʔ] ("Q"). Cluster 2 tends to include more contexts 
like [ʁ] ("r") and labials (there are more [b, f, m, v] in cluster 2 that for reasons to do with their 
low F2-locus, are likely to have a lowering effect on F2).  
 Thus the left context obviously has an effect on F2 at the formant midpoint of [ɪ]. Just 
how much of an effect can be seen by plotting the entire F2 trajectory between the vowel onset 
and vowel midpoint for two left contexts that fall predominantly in cluster 1 and cluster 2 
respectively. Here is such a plot comparing the left contexts [ʔ] on the one hand with the 
labiodentals [f, v] together (Fig. 6.4): 
 
# Logical vector that is true when the left context of [ɪ]  is one of [ʔ, f,  v] 
temp = m.l == "I" & m.left %in% c("Q", "f", "v") 
 
# The next two lines relabel "f" and "v" to a single category "LAB" 
lab = m.left[temp] 
lab[lab %in% c("f", "v")] = "LAB" 
dplot(m.fdat[temp,2], lab, ylab="F2 (Hz)", xlab="Duration (ms)") 
 
Fig. 6.4 about here 
 
Apart from two [ʔɪ] trajectories, there is a separation in F2 throughout the vowel depending on 
whether the left context is [ʔ] or a labiodental fricative. But before these very clear F2 
differences are attributed  just to left context, the word label (and hence the right context) should 
also be checked. For example, for [ʔ]: 
 
table(vowlax.word[m.left=="Q" & m.l=="I"]) 
 ich  Ich   In Inge  Iss isst  ist  
   4    4    2    4    2    2    6  
 
So the words that begin with [ʔɪ] almost all have a right context which is likely to contribute to 
the high F2 i.e., [ç] in [ɪç] (I) or [s] in  [ɪs],  [ɪst] (eat, is): that is, the high F2 in [ʔɪ] is unlikely 
to be due just to left context alone. 
 
6.2 Outliers 

When a formant tracker is run over speech data in the manner described in Chapter 3, 
there will inevitably be errors due to formant tracking especially for large speech corpora. Errors 
are especially common at the boundaries between voiceless and voiced segments and whenever 
two formants, such as F1 and F2 for back vowels are close together in frequency. If such errors 
occur, then it is likely that they will show up as outliers in ellipse plots of the kind examined so 
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far. If the outliers are far from the ellipse's centre, then they can have quite a dramatic effect on 
the ellipse orientation.  

 
Fig. 6.5 about here 
 

Fig. 6.5 shows two outliers from the [ɪ] vowels of the male speaker for the data extracted 
at the onset of the vowel: 
 
# Speaker 67's [ɪ]vowels 
temp = vowlax.spkr=="67" & vowlax.l=="I" 
# Segment list thereof 
m.seg = vowlax[temp,] 
# F1 and F2 at the segment onset 
m.Ion = dcut(vowlax.fdat[temp,1:2], 0, prop=T) 
# Set x- and y-ranges to compare two plots to the same scale 
xlim = c(150,500);  ylim =c(0,2500); par(mfrow=c(1,2)) 
# Ellipse plot with outliers 
eplot(m.Ion, label(m.seg), dopoints=T, xlim=xlim, ylim=ylim, 
xlab="F2 (Hz)", ylab="F1 (Hz)") 
 
As the left panel of Fig. 6.5 shows, there are two outliers: one of these is where F2 = 0 Hz at the 
bottom of the plot and is almost certainly due to a formant tracking error. The other outlier has a 
very low F1 but it is not possible to conclude without looking at the spectrogram whether this is 
a formant error or the result of a context effect. The first of these outliers can, and should, be 
removed by identifying all values that have F2 less than a certain value, say 50 Hz. This can be 
done with a logical vector that is also passed to eplot() to produce the plot without the outlier 
on the right. The command in the first line is used to identify F2 values less than 50 Hz: 
 
temp = m.Ion[,2] < 50 
eplot(m.Ion[!temp,], label(m.seg[!temp,]),dopoints=T, xlim=xlim, 
ylim=ylim, xlab="F2 (Hz)") 
 
Because the outlier was a long way from the centre of the distribution, its removal has shrunk the 
ellipse size and also changed its orientation slightly.  
 It is a nuisance to have to constantly remove outliers with logical vectors, so a better 
solution that the one in Fig. 6.5 is to locate its utterance identifier and redraw the formant track 
by hand in the database from which these data were extracted (following the procedure in 3.1). 
The utterance in which the outlier occurs as well as its time stamp can be found by combining 
the logical vector with the segment list: 
 
temp = m.Ion[,2] < 50 
m.seg[temp,] 
segment  list from database:  kielread  
query was:  Kanonic=a | E | I | O  
    labels   start     end     utts 
194      I 911.563 964.625 K67MR096 
 
That is, the outlier occurs somewhere between 911 ms and 964 ms in the utterance K67MR096 
of the kielread database. The corresponding spectrogram shows that the outlier is very 
clearly a formant tracking error that can be manually corrected as in Fig. 6.6.  
 
Fig. 6.6 about here 
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 Manually correcting outliers when they are obviously due to formant tracking errors as in 
Fig. 6.6 is necessary. But this method should definitely be used sparingly: the more manual 
intervention that is used, the greater the risk that the researcher might unwittingly bias the 
experimental data. 
 
6.3 Vowel targets 

As discussed earlier, the vowel target can be considered to be the section of the vowel 
that is least influenced by consonantal context and most similar to a citation-form production of 
the same vowel. It is also sometimes defined as the most steady-state part of the vowel: that is, 
the section of the vowel during which the formants (and hence the phonetic quality) change 
minimally (see e.g., Broad & Wakita, 1977; Schouten & Pols, 1979). It is however not always 
the case that the vowel target is at the temporal midpoint. For example, in most accents of 
Australian English, in particular the broad variety, the targets of the long high vowels in heed 
and who'd occur late in the vowel and are preceded by a long onglide (Cox & Palethorpe, 2007). 
Apart from factors such as these, the vowel target could shift proportionally because of 
coarticulation. For example, Harrington, Fletcher and Roberts (1995) present articulatory data 
showing that in prosodically unaccented vowels (that is those produced without sentence stress), 
the final consonant is timed to occur earlier in the vowel than in prosodically accented vowels 
(with sentence stress). If the difference between the production of accented and unaccented 
vowels has an influence on the final transition in the vowel, then the effect would be that the 
vowel target occurs proportionally somewhat later in the same word when it is unaccented. For 
reasons such as these, the vowel target cannot always be assumed to be at the temporal midpoint. 
At the same time, some studies have found that different strategies for locating the vowel target 
have not made a great deal of difference to classifying vowels from formant data  (see e.g., van 
Son & Pols, 1990 who compared three different methods for vowel target identification in 
Dutch). 
 One method that is sometimes used for vowel target identification is to find the time 
point at which the F1 is at a maximum. This is based on the idea that vowels reach their 
targets when the oral tract is maximally open which often coincides with an F1-maximum, at 
least in non-high vowels (Lindblom & Sundberg, 1971). The time of the F1-maximum can be 
obtained using the same function for finding the first maximum or minimum in the speech 
frames of a single segment presented in 5.5.2. Here is the function again:  
 
peakfun <- function(fr, maxtime=T) 
{ 
if(maxtime) num = which.max(fr) 
else num = which.min(fr) 
tracktimes(fr)[num] 
} 
 
Following the procedure discussed in 5.5.2, the time at which F1 reaches a maximum in the 5th 
segment of the trackdata object m.fdat is: 
 
peakfun(frames(m.fdat[5,1])) 
2117.5 
 
Since the function can evidently be applied to speech frames, then it can be used inside the 
trapply() function to find the time of the F1 maximum in all segments.  However, it might 
be an idea to constrain the times within which the F1-maximum is to be found, perhaps by 
excluding the first and last 25% of each vowel from consideration, given that these intervals are 
substantially influenced by the left and right contexts. This can be done, as discussed in 5.5.3 of 
the preceding Chapter, using dcut(): 
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# Create a new trackdata object   between the vowels' 25% and 75% time points 
m.fdat.int = dcut(m.fdat, .25, .75, prop=T) 
# Get the times at which the F1 maximum first occurs in this interval 
m.maxf1.t = trapply(m.fdat.int[,1], peakfun, simplify=T) 
 
The calculated target times could be checked by plotting the trackdata synchronised at these 
calculated target times (Fig. 6.7, left panel): 
 
# Logical vector to identify all a vowels 
temp = m.l == "a" 
# F1 and F2 of a synchronised at the F1-maximum time 
dplot(m.fdat[temp,1:2], offset=m.maxf1.t[temp] , prop=F, ylab="F1 
and F2 (Hz)", xlab="Duration (ms)") 
 
Fig. 6.7 about here 
 
The alignment can also be inspected segment by segment using a for-loop.  
 
# For the first five [a] segments separately… 
for(j in 1:5){ 
# plot F1 and F2 as a function of time with the vowel label as the main title 
dplot(m.fdat[temp,1:2][j,], main=m.l[temp][j], offset= 
m.maxf1.t[temp][j], prop=F, ylab="F1 and F2 (Hz)") 
# Draw a vertical line at the F1-maximum 
abline(v = 0, col=2) 
# Left button to advance 
locator(1) 
} 
 
The result of the last iteration is shown in the right panel of Fig. 6.7. 

It will almost certainly be necessary to change some of these target times manually but 
this should be done not in R but in Praat or Emu. To do this, the vector of times needs to be 
exported so that the times are stored separately in different annotation files. The makelab() 
function can be used for this. The following writes out annotation files so that they can be loaded 
into Emu. You have to supply the name of the directory where you want all these annotation files  
to be stored as the third argument to makelab(). 
 
path = "directory for storing annotation files" 
makelab(m.maxf1.t, utt(m.s), path, labels="T") 
 
This will create a number  of files, one per utterance,  in the specified directory. For example, a 
file K67MR001.xlab will be created that looks like this: 
 
signal K67MR001 
nfields 1 
# 
0.8975 125 T 
1.1225 125 T 
1.4775 125 T 
1.6825 125 T 
2.1175 125 T 
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The template file for the database kielread must now be edited in the manner described in 
2.5 of Chapter 2 so that the database can find these new label files. In Fig. 6.8, this is done by 
specifying a new level called Target that is (autosegmentally) associated with the Phonetic 
tier: 
 
Fig. 6.8 about here 
 
As a result of modifying the template, the target times are visible and can be manipulated in 
either Emu or Praat. 

The function peakfun() which has so far been used to find the time at which the F1 
maximum occurs, can also be used to find the time of the F1-minimum: 
 
m.minf2.t = trapply(m.fdat.int[,2], peakfun, F, simplify=T) 
 
What if you want to find the vowel target in a vowel-specific way – based on the F1 maximum 
for the open and half-open vowels [a, ɛ], on the F2-maximum for the mid-high vowel [ɪ], and 
on F2-minimum for the back rounded vowel [ɔ]? In order to collect up the results so that the 
vector of target times is parallel to all the other objects, a logical vector could be created per 
vowel category and used to fill up the vector successively by vowel category. The commands for 
doing this and storing the result in the vector times are shown below: 
 
# A vector of zeros the same length as the label vector (and trackdata object) 
times = rep(0, length(m.l)) 
# Target times based on F2-max for [ɪ] 
temp = m.l=="I" 
times[temp] = trapply(m.fdat.int[temp,2], peakfun, simplify=T) 
# Target time based on F1-max for [a, ɛ] 
temp = m.l %in% c("E", "a") 
times[temp] = trapply(m.fdat.int[temp,1], peakfun, simplify=T) 
# Target time based on F2-min for [ɔ] 
temp = m.l == "O" 
times[temp] = trapply(m.fdat.int[temp,2], peakfun, F, 
simplify=T) 
 
6.4 Vowel normalization 

Much acoustic variation comes about because speakers have different sized and shaped 
vocal organs. This type of variation was demonstrated spectrographically in Peterson & Barney's 
(1952) classic study of vowels produced by men, women, and children and the extensive 
speaker-dependent overlap between formants was further investigated in Peterson (1961), 
Ladefoged (1967) and Pols et al (1973) (see also Adank et al., 2004 for a more recent 
investigation). 

The differences in the distribution of the vowels for the male speaker and female speaker 
can be examined once again with ellipse plots. These are shown together with the data points in 
Fig. 6.9 and they were created with the following commands: 
 
# Set the ranges for the x- and y-axes to plot two panels in one row and two columns 
xlim = c(800,2800);  ylim = c(250, 1050); par(mfrow=c(1,2)) 
# Logical vector for identifying the male speaker; !temp is the female speaker 
temp = vowlax.spkr=="67" 
eplot(vowlax.fdat.5[temp,1:2], vowlax.l[temp], dopoints=T, 
form=T, xlim=xlim, ylim=ylim, xlab="F2 (Hz)", ylab="F1 (Hz)") 
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eplot(vowlax.fdat.5[!temp,1:2], vowlax.l[!temp], dopoints=T, 
form=T, xlim=xlim, ylim=ylim, xlab="F2 (Hz)", ylab="") 
 
Fig. 6.9 about here 
 
The differences are quite substantial, especially considering that these are speakers of the same 
standard North German variety producing the same read sentences! The figure shows, in general, 
how the formants of the female speaker are higher in frequency than those of the male which is 
to be expected because female vocal tracts are on average shorter. But as argued in Fant (1966), 
because the ratio of the mouth cavity to the pharyngeal cavity lengths is  different in male and 
female speakers, the changes to the vowels due to gender are  non-uniform: this means that the 
male-female differences are greater in some vowels than others.  Fig. 6.9 shows that, whereas the 
differences between the speakers in [ɪ] are not that substantial, those between [a] on F1 and F2 
are quite considerable. Also the F2 differences are much more marked than those in F1 as a 
comparison of the relative positions of [ɪ, ɛ] between the two speakers shows. Finally, the 
differences need not be the result entirely of anatomical and physiological differences between 
the speakers. Some differences may be as a result of speaking-style: indeed, for the female 
speaker there is a greater separation between [ɪ, ɛ] on the one hand and [ɔ, a] on the other than 
for the male speaker and this may be because there is greater vowel hyperarticulation for this 
speaker – this issue will be taken up in more detail in the analysis of Euclidean distances in 6.5. 

An overview of the main male-female vowel differences can be obtained by plotting a 
polygon that connects the means (centroids) of each vowel category for the separate speakers on 
the same axes.  The first step is to get the speaker means. As discussed in 5.3, tapply() 
applies a function to  a vector per category. So the F1 category means for speaker 67 are: 
 
temp = vowlax.spkr=="67" 
tapply(vowlax.fdat.5[temp,1], vowlax.l[temp], mean) 
       a        E        I        O  
635.9524 523.5610 367.1647 548.1875 
 
However   in order to calculate these category means for a matrix of F1 and F2 vowels, 
tapply() could be used inside the apply() function. The basic syntax for applying a 
function, fun(),  to the columns of a matrix is  apply(matrix, 2, fun, arg1, 
arg2…argn) where arg1, arg2, …argn are the arguments of the function that is to be 
applied. So the F1 and F2 category means for speaker 67 are: 
 
temp = vowlax.spkr=="67" 
apply(vowlax.fdat.5[temp,1:2], 2, tapply, vowlax.l[temp], mean) 
 T1       T2 
E 523.5610 1641.073 
I 367.1647 1781.329 
O 548.1875 1127.000 
a 635.9524 1347.254 
 
Fig. 6.10 about here 
 
The desired polygon (Fig. 6.10) could be plotted first by calling eplot() with doellipse=F 
(don't plot the ellipses) and then joining up these means using the polygon() function. The x- 
and y-ranges need to be set in the call to eplot(), in order to superimpose the corresponding 
polygon from the female speaker on the same axes: 
 
xlim = c(1000, 2500); ylim = c(300, 900) 
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eplot(vowlax.fdat.5[temp,1:2], vowlax.l[temp],  form=T, 
xlim=xlim, ylim=ylim, doellipse=F, col=F, xlab="F2 (Hz)", 
ylab="F1 (Hz)" ) 
m = apply(vowlax.fdat.5[temp,1:2], 2, tapply, vowlax.l[temp], 
mean) 
# Negate the mean values because this is a plot in the –F2 × –F1 plane 
polygon(-m[,2], -m[,1]) 
 
Then, since the logical vector, temp, is True for the male speaker and False for the female 
speaker, the above instructions can be repeated with !temp for the corresponding plot for the 
female speaker. The line par(new=T) is for superimposing the second plot on the same axes 
and  lty=2 in the call to polygon() produces dashed lines:  
 
par(new=T) 
eplot(vowlax.fdat.5[!temp,1:2], vowlax.l[!temp],  form=T, 
xlim=xlim, ylim=ylim, doellipse=F, col=F, xlab="", ylab="") 
m = apply(vowlax.fdat.5[!temp,1:2], 2, tapply, vowlax.l[!temp], 
mean) 
polygon(-m[,2], -m[,1], lty=2) 
 

Strategies for vowel normalization are designed to reduce the extent of these divergences 
due to the speaker and they fall into two categories: speaker-dependent and speaker-
independent. In the first of these, normalization can only be carried out using statistical data 
from the speaker beyond the vowel that is to be normalized (for this reason, speaker-dependent 
strategies are also called extrinsic, because information for normalization is extrinsic to the 
vowel that is to be normalized). In a speaker-independent strategy by contrast, all the 
information needed for normalising a vowel is within the vowel itself, i.e., intrinsic to the 
vowel. 

The idea that normalization might be extrinsic can be traced back to Joos (1948) who 
suggested that listeners judge the phonetic quality of a vowel in relation to a speaker's point 
vowels [i, a, u].  Some evidence in favour of extrinsic normalization is provided in Ladefoged & 
Broadbent (1957) who found that the listeners' perceptions of the vowel in the same test word 
shifted when the formant frequencies in a preceding carrier phrase were manipulated. On the 
other hand, there were also various perception experiments in the 1970s and 1980s showing that 
listeners' identifications of a speaker's vowels were not substantially improved if they were 
initially exposed to the same speaker's point vowels (Assmann et al, 1982; Verbrugge et al., 
1976).  

Whatever the arguments from studies of speech perception for or against extrinsic 
normalization (Johnson, 2005), there is evidence to show that when extrinsic normalization is 
applied to acoustic vowel data, the differences due to speakers can often be quite substantially 
reduced (see e.g. Disner, 1980 for an evaluation of some extrinsic vowel normalization 
procedures). A very basic and effective extrinsic normalization technique is to transform the 
data to z-scores by subtracting out the speaker's mean and dividing by the speaker's standard-
deviation for each parameter separately. The technique was first used by Lobanov (1971) for 
vowels and so is sometimes called Lobanov-normalization. The transformation has the effect of 
centering each speaker's vowel space at coordinates of zero (the mean); the axes are then the 
number of standard deviations away from the speaker's mean. So for a vector of values: 
 
vec = c(-4, -9, -4,  7,  5, -7,  0,  3,  2, -3) 
 
their Lobanov-normalized equivalents are:  
 
(vec - mean(vec)) / sd(vec) 
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-0.5715006 -1.5240015 -0.5715006  1.5240015  1.1430011  
-1.1430011  0.1905002  0.7620008  0.5715006 -0.3810004 
 
A function that will carry out Lobanov-normalization when applied to a vector is as follows: 
 
lob <- function(x) 
{ 
# transform x to z-scores (Lobanov normalization); x is a vector 
(x - mean(x))/sd(x) 
} 
 
Thus lob(vec) gives the same results as above. But since there is more than one parameter 
(F1, F2), the function needs to be applied to a matrix. As discussed earlier, apply(matrix, 
2, fun) has the effect of applying a function, fun(), separately to the columns of a matrix.  
The required modifications can be accomplished as follows:  
 
lobnorm <- function(x) 
{ 
# transform x to z-scores (Lobanov normalization); x is a matrix 
lob <- function(x) 
{ 
(x - mean(x))/sd(x) 
} 
apply(x, 2, lob) 
} 
 
In lobnorm(),  the function lob() is applied to each column of x. Thus, the Lobanov-
normalized F1 and F2 for the male speaker are now: 
 
temp = vowlax.spkr == "67" 
norm67 = lobnorm(vowlax.fdat.5[temp,]) 
 
and those for the female speakers can be obtained with the inverse of the logical vector, i.e.,  
lobnorm(vowlax.fdat.5[!temp,]). However, as discussed in 5.2, it is always a good 
idea to keep objects that belong together (segment list, trackdata, label files, matrices derived 
from trackdata, normalized data derived from such data, etc.) parallel to each other as a result of 
which they can all be manipulated in relation to segments. Here is one way to do this: 
 
# Set up a matrix of zeros with the same dimensions as the matrix to be Lobanov-normalized 
vow.norm.lob = matrix(0, nrow(vowlax.fdat.5), 
ncol(vowlax.fdat.5)) 
temp = vowlax.spkr == "67" 
vow.norm.lob[temp,] = lobnorm(vowlax.fdat.5[temp,]) 
vow.norm.lob[!temp,] = lobnorm(vowlax.fdat.5[!temp,]) 
 
The same effect can be achieved with a for-loop and indeed, this is the preferred approach if 
there are several speakers whose data is to be normalized (but it works just the same when there 
are only two): 
 
vow.norm.lob = matrix(0, nrow(vowlax.fdat.5), 
ncol(vowlax.fdat.5)) 
for(j in unique(vowlax.spkr)){ 
temp = vowlax.spkr==j 
vow.norm.lob[temp,] = lobnorm(vowlax.fdat.5[temp,]) 
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} 
 
Since vow.norm.lob is parallel to the vector of labels vowlax.l, then eplot() can be 
used in the same way as for the non-normalized data to plot ellipses (Fig. 6.11).  
 
xlim = ylim = c(-2.5, 2.5);  par(mfrow=c(1,2)) 
temp = vowlax.spkr=="67" 
eplot(vow.norm.lob[temp,1:2], vowlax.l[temp], dopoints=T, 
form=T, xlim=xlim, ylim=ylim, xlab="F2 (normalized)", ylab="F1 
(normalized)") 
eplot(vow.norm.lob[!temp,1:2], vowlax.l[!temp], dopoints=T, 
form=T, xlim=xlim, ylim=ylim, xlab="F2 (normalized)", ylab="") 
 
Fig. 6.11 about here 
 
The point [0,0] in Fig. 6.11 is the mean or centroid across all the data points per speaker and the 
axes are the numbers of standard deviations away from [0,0]. Compared with the raw data in Fig. 
6.9, it is clear enough that there is a much closer alignment between the vowel categories of the 
male and female speakers in these normalized data. For larger studies, the mean and standard 
deviation should be based not just on those of a handful of lax vowels, but a much wider 
selection of vowel categories. 
 Another extrinsic normalization technique is due to Nearey (see e.g., Assmann et al., 
1982; Nearey, 1989). The version demonstrated here is the one in which normalization is 
accomplished by subtracting a speaker-dependent constant from the logarithm of the formants. 
This speaker-dependent constant is obtained by working out (a) the mean of the logarithm of F1 
(across all tokens for a given speaker) and (b) the mean of the logarithm of F2 (across the same 
tokens) and then averaging (a) and (b). An expression for the speaker-dependent constant in R is 
therefore  mean( apply(log(mat), 2, mean)), where mat is a two-columned matrix 
of F1 and F2 values. So for the male speaker, the speaker-dependent constant is: 
 
temp = vowlax.spkr == "67" 
mean(apply(log(vowlax.fdat.5[temp,1:2]), 2, mean)) 
6.755133 
 
This value must now be subtracted from the logarithm of the raw formant values separately for 
each speaker. This can be done with a single-line function: 
 
nearey <- function(x) 
{ 
# Function for extrinsic normalization according to Nearey 
# x is  a two-columned matrix 
log(x) -  mean(apply(log(x), 2, mean)) 
} 
 
Thus nearey(vowlax.fdat.5[temp,1:2]) gives the Nearey-normalized formant (F1 
and F2) data for the male speaker. The same methodology as for Lobanov-normalization above 
can be used to obtain Nearey-normalized data that is parallel to all the other objects – thereby 
allowing ellipse and polygon plots to be drawn in the F2 x F1 plane in the manner described 
earlier. 
 Lobanov- and Nearey-normalization are, then, two examples of speaker-dependent 
strategies that require data beyond the vowel that is to be normalized. In speaker-independent 
strategies all the information for normalization is supposed to be in the vowel itself. Earlier 
speaker-independent strategies made use of formant ratios (Peterson, 1961; Potter & Steinberg, 
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1950; see also Miller, 1989) and they often copy some aspects of the auditory transformations to 
acoustic data that are known to take place in the ear (Bladon et al, 1984). These types of speaker-
independent auditory transformations are based on the idea that two equivalent vowels, even if 
they are produced by different speakers, result in a similar pattern of motion along the basilar 
membrane, even if the actual position of the pattern varies (Potter & Steinberg, 1950; see also 
Chiba & Kajiyama, 1941). Since there is a direct correspondence between basilar membrane 
motion and a sound's frequency on a scale known as the Bark scale, a transformation to an 
auditory scale like the Bark scale (or ERB scale:  see e.g., Glasberg & Moore, 1990) is usually 
the starting point for  speaker-independent normalization. Independently of these normalization 
issues, many researchers transform formant values from Hertz to Bark before applying any 
further analysis, on the grounds that an analogous translation is presumed to be carried out in the 
ear.  

There is a function bark(x) in the Emu-R library to carry out such a transformation, 
where x is a vector, matrix, or trackdata object of Hertz values. (The same function with the 
inv=T argument converts Bark back into Hertz). The formulae for these transformations are 
given in Traunmüller (1990) and they are based on analyses by Zwicker (1961). 

A graph of the relationship between the two scales (up to 10 kHz)  with horizontal lines 
at intervals of 1 Bark superimposed on the Hz axis can be drawn as follows (Fig. 6.12): 
 
plot(0:10000, bark(0:10000), type="l", xlab="Frequency (Hz)", 
ylab="Frequency (Bark)") 
abline(v=bark(1:22, inv=T), lty=2) 
 
Fig. 6.12 about here 
 
Fig. 6.12 shows that the interval corresponding to 1 Bark becomes progressively wider for values 
higher up the Hertz scale (the Bark scale, like the Mel scale (Fant, 1968), is roughly linear up to 
1 kHz and then quasi-logarithmic thereafter). Ellipse plots analogous to those in Fig. 6.11 can be 
created by converting the matrix into Bark values (thus the first argument to eplot() for the 
male speaker is bark(vowlax.fdat.5[temp,1:2])) or else by leaving the values in Hz 
and adding the argument scaling="bark" in the eplot() function. A detailed exploration 
of Bark-scaled, vowel formant data is given in Syrdal & Gopal (1986). 
 
6.5 Euclidean distances 
6.5.1 Vowel space expansion 

Various studies in the last fifty years have been concerned with phonetic vowel reduction 
that is with the changes in vowel quality brought about by segmental, prosodic, and situational 
contexts. In Lindblom's (1990) hyper- and hypoarticulation theory, speech production varies 
along a continuum from clear to less clear speech. According to this theory, speakers make as 
much effort to speak clearly as is required by the listener for understanding what is being said. 
Thus, the first time that a person's name is mentioned, the production is likely to be clear because 
this is largely unpredictable information for the listener; but subsequent productions of the same 
name in an ongoing dialogue are likely to be less clear, because the listener can more easily 
predict its occurrence from context (Fowler & Housum, 1987).  

A vowel that is spoken less clearly tends to be reduced which means that there is a 
deviation from its position in an acoustic space relative either to a clear, or citation-form 
production. The deviation is often manifested as centralisation, in which the vowel is produced 
nearer to the centre of the speaker's vowel space than in clear speech. Equivalently, in clear 
speech there is an expansion of the vowel space. There is articulatory evidence for this type of 
vowel space expansion when vowels occur in prosodically accented words, often because these 
tend to be points of information focus,  that is points of the utterance that are especially 
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important for  understanding what is being said (de Jong, 1995; Harrington, Fletcher & 
Beckman, 2000).  

One of the ways of quantifying vowel space expansion is to measure the Euclidean or 
straight line distance between a vowel and the centre of the vowel space. Wright (2003) used just 
such a measure to compare so called easy and hard words on their distances to the centre of the 
vowel space. Easy words are those that have high lexical frequency (i.e., occur often) and low 
neighborhood density (there are few words that are phonemically similar). Since such words tend 
to be easier for the listener to understand, then, applying Lindblom’s (1990) model, the vowels 
should be more centralised compared with hard words which are both infrequent and high in 
neighborhood density.  

 
Fig. 6.13 about here 
 
 In a two-dimensional space, the Euclidean distance is calculated by summing the square 
of the horizontal and vertical distances between the points and taking the square root. For 
example, the expressions in R for horizontal and vertical distances between the two points (0, 0) 
and (3,4) in Fig. 6.12 are (0 – 3)^2 and (0 – 4)^2 respectively. Thus the Euclidean 
distance between them is: 
  
sqrt( (0 - 3)^2 + (0 - 4)^2 ) 
5 
 

Because of the nice way that vectors work in R, the same result is given by: 
 
a = c(0, 0) 
b = c(3, 4) 
sqrt( sum( (a - b)^2 )) 
5 

 
So a function to calculate the Euclidean distance between any two points a and b is: 
 
euclid <- function(a, b) 
{ 
# Function to calculate Euclidean distance between a and b;  
# a and b are vectors of the same length 
sqrt(sum((a - b)^2)) 
} 
 
In fact, this function works not just in a two-dimensional space, but in an n-dimensional space. 
So if there are two vowels, a and b, in a three-dimensional F1, F2, F3 space with coordinates for 
vowel a F1 = 500 Hz, F2 = 1500 Hz, F3 = 2500 Hz and for vowel b F1 = 220 Hz, F2 = 2400 Hz, 
F3 = 3000 Hz, then the straight line, Euclidean distance between a and b is just over 1066 Hz as 
follows: 
 
a = c(500, 1500, 2500) 
b = c(220, 2400, 3000) 
euclid(a, b) 
1066.958 

 
Exactly the same principle (and hence the same function) works in 4, 5, …n dimensional spaces 
even though any space higher than three dimensions cannot  be seen or drawn. The only 
obligation on the function is that the vectors should be of the same length. The function can be 
made to break giving an error message, if the user should try to do otherwise: 
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euclid <- function(a, b) 
{ 
# Function to calculate Euclidean distance between a and b;  
# a and b are vectors of the same length 
if(length(a) != length(b)) 
stop("a and b must be of the same length") 
sqrt(sum((a - b)^2)) 
} 
 
a = c(3, 4) 
b = c(10, 1, 2) 
euclid(a, b) 
Error in euclid(a, b) : a and b must be of the same length 
 

For the present task of assessing vowel space expansion, the distance of all the vowel 
tokens to the centre of the space will have to be measured. For illustrative purposes, a 
comparison will be made between the male and female speakers on the lax vowel data 
considered so far,  although in practice, this technique is more likely to be used to compare 
vowels in easy and hard words or in accented and unaccented words as described earlier. The 
question we are asking is:  is there any evidence that the lax vowels of the female speaker are 
more expanded, that is  more distant from the centre of the vowel space than those of the male 
speaker in Figs. 6.9 and 6.10? A glance at Fig. 6.10 in particular must surely suggest that the 
answer to this question is 'yes' and indeed, the greater area of the polygon for the female speaker 
partly comes about because of the female's higher F1 and F2 values.  

 
Fig. 6.14 about here 
 
In order to quantify these differences, a single point that is at the centre of the speaker's vowel 
space, known as the centroid, has to be defined. This could be taken across a much larger 
sample of the speaker's vowels than are available in these data sets: for the present, it will be 
taken to be the mean across all of the speaker's lax vowels. For the male and female speaker 
these are: 

 
temp = vowlax.spkr == "67" 
m.av = apply(vowlax.fdat.5[temp,1:2], 2, mean) 
m.av 
       T1        T2  
 495.1756 1568.8098 
 
f.av = apply(vowlax.fdat.5[!temp,1:2], 2, mean) 
f.av 
        T1        T2  
 533.8439 1965.8293 
 

But there are good grounds for objecting to these means: in particular, the distribution of vowel 
tokens across the categories is not equal, as the following shows for the male speaker (the 
distribution is the same for the female speaker): 
 
table(vowlax.l[temp]) 
 a  E  I  O  
63 41 85 16 
 
In view of the relatively few back vowels, the centroids are likely to be biased towards the front 
of the vowel space. As an alternative, the centroids could be defined as the mean of the vowel 
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means, which is the point that is at the centre of the polygons in Fig. 6.10. Recall that for the 
female speaker the mean position of all the vowels was given by: 
 
temp = vowlax.spkr == "67" 
f = apply(vowlax.fdat.5[!temp,1:2], 2, tapply, vowlax.l[!temp], 
mean) 
f 

        T1       T2 
a 786.1429 1540.159 
E 515.9268 2202.268 
I 358.0941 2318.812 
O 520.0000 1160.813 

 
So the mean of these means is: 
 
f.av = apply(f, 2, mean) 
f.av 
      T1       T2  
 545.041 1805.51 
 
The centroid is shown in Fig. 6.14 and was produced as follows: 
 
temp = vowlax.spkr=="68" 
eplot(vowlax.fdat.5[temp,1:2], vowlax.l[temp], dopoints=T, 
form=T, xlab="F2 (Hz)", ylab="F1 (Hz)", doellipse=F) 
text(-f.av[2], -f.av[1], "X", cex=3) 
 

The Euclidean distances of each data point to X in Fig. 6.14 can be obtained  by applying 
euclid() to the rows of the matrix using apply()with a second argument of 1 (meaning 
apply to rows): 
 
temp = vowlax.spkr=="68" 
e.f = apply(vowlax.fdat.5[temp,1:2], 1, euclid, f.av) 
 
The same technique as in 6.4 could be used to keep all the various objects that have something to 
do with lax vowels parallel to each other, as follows: 
 
# Vector of zeros to store the results 
edistances = rep(0, nrow(vowlax.fdat.5)) 
# Logical vector to identify speaker 67 
temp = vowlax.spkr == "67" 
# The next two commands give the male speaker's centroid analogous to f.av 
m = apply(vowlax.fdat.5[temp,1:2], 2, tapply, vowlax.l[temp], 
mean) 
m.av = apply(m, 2, mean) 
# Distances to the centroid for the male speaker 
edistances[temp] = apply(vowlax.fdat.5[temp,1:2], 1, euclid, 
m.av) 
# Distances to the centroid for the  female speaker 
edistances[!temp] = apply(vowlax.fdat.5[!temp,1:2], 1, euclid, 
f.av) 
 
Since all the objects are parallel to each other, it only takes one line to produce a boxplot of the 
results comparing the Euclidean distances for the male and female speakers separately by vowel 
category (Fig 6.15): 
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boxplot(edistances ~ factor(vowlax.spkr) * factor(vowlax.l), 
ylab= "Distance (Hz)") 
 
Fig. 6.15 about here 
 
Fig. 6.15 confirms what was suspected: the Euclidean distances are greater on every vowel 
category for the female speaker.  
 
6.5.2 Relative distance between vowel categories 

In the study of dialect and sound change, there is often a need to compare the relative 
position of two vowel categories in a formant space. The sound change can sometimes be linked 
to age and social class, as the various pioneering studies by Labov (1994, 2001) have shown. It 
might be hypothesised that a vowel is in the process of fronting or raising: for example, the 
vowel in who'd in the standard accent of English has fronted in the last fifty years (Harrington et 
al, 2008; Hawkins & Midgley, 2005), there has been a substantial rearrangement of the front lax 
vowels in New Zealand English (Maclagen & Hay, 2007), and there is extensive evidence in 
Labov (1994, 2001) of numerous diachronic changes to North American vowels.  

Vowels are often compared across two different age groups so that  if there is a vowel 
change in progress, the position of the vowel in the older and younger groups might be different 
(this type of study is known as an apparent time study: see e.g., Bailey et al, 1991). Of course 
independently of sound change, studies comparing different dialects might seek to provide 
quantitative evidence for the relative differences in vowel positions: whether, for example, the 
vowel in Australian English head is higher and/or fronter than that of Standard Southern British 
English. 
 There are a number of ways of providing quantitative data of this kind. The one to be 
illustrated here is concerned with determining whether the position of a vowel in relation to other 
vowels is different in one set of data compared with another. I used just this technique 
(Harrington, 2006) to assess whether the long, final lax vowel in words like city, plenty, ready, 
was relatively closer to the tense vowel in [i] (heed) than in the lax vowel in [ɪ] (hid) in  the more 
recent Christmas messages broadcast by Queen Elizabeth II over a fifty year period.  

For illustrative purposes, the analysis will again make use of the lax vowel data. Fig. 6.10  
suggests that [ɛ] is closer to [ɪ] than it is to [a] in the female than in the male speaker. Perhaps 
this is a sound change in progress, perhaps the female subject does not speak exactly the same 
variety as the male speaker; or perhaps it has something to do with differences between the 
speakers along the hyper- and hypoarticulation continuum, or perhaps it is an artefact of 
anatomical differences in the vocal tract between the male and female speaker. Whatever the 
reasons, it is just this sort of problem that can arise in sociophonetics in dealing with gradual and 
incremental sound change.  

The way of addressing this issue based on  Harrington (2006) is to work out two 
Euclidean distances: d1, the distance of all of the  [ɛ] tokens to the centroid of [ɪ]; and  d2, the 
distance of all of the same [ɛ] tokens to the centroid of [a]. The ratio of these two distances, d1/d2 
is indicative of how close (in terms of Euclidean distances) the [ɛ] tokens are to [ɪ] in relation to 
[a].The logarithm of this ratio, which will be termed ERATIO, gives the same information but in a 
more convenient form. More specifically, since  

 
ERATIO = log(d1/ d2)  

= log(d1) – log(d2) 
 

The following three relationships hold for any single token of [ɛ]: 
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(a) if an [ɛ] token is exactly equidistant between the [ɪ] and [a] centroids, then log(d1) = log(d2), 
and so ERATIO is zero.  
 
(b) if an [ɛ] token is closer to the centroid of [ɪ], then  log(d1) < log(d2) and so ERATIO is 
negative. 
 
(c) if an [ɛ] token is closer to [a] than to [ɪ], log(d1) > log(d2) and so ERATIO is positive.  
 

The hypothesis to be tested is that the female speaker's [ɛ] vowels are closer to her [ɪ] 
than to her [a] vowels compared with those for the male speaker.  If so, then the female speaker's 
ERATIO should be smaller than that for the male speaker.  The Euclidean distance calculations will 
be carried out as before in the F2 × F1 vowel space using the euclid() function written in 
6.5.1. Here are the commands for the female speaker: 
 
# Next two lines calculate  the centroid of female [ɪ] 
temp = vowlax.spkr == "68" & vowlax.l=="I" 
mean.I = apply(vowlax.fdat.5[temp,1:2], 2, mean) 
 
# Next two lines calculate  the centroid of female [a] 
temp = vowlax.spkr == "68" & vowlax.l=="a" 
mean.a = apply(vowlax.fdat.5[temp,1:2], 2, mean) 
 
# Logical vector to identify all the female speaker's [ɛ] vowels 
temp = vowlax.spkr == "68" & vowlax.l=="E" 
 
# This is d1 above i.e., the distance of [ɛ] tokens to [ɪ] centroid 
etoI = apply(vowlax.fdat.5[temp,1:2], 1, euclid, mean.I) 
 
# This is d2 above i.e., the distance of [ɛ] tokens to [a] centroid 
etoa = apply(vowlax.fdat.5[temp,1:2], 1, euclid, mean.a) 
 
# ERATIO for the female speaker 
ratio.log.f = log(etoI/etoa) 
 
Exactly the same instructions can be carried out for the male speaker except that 68 should be 
replaced with 67 throughout in the above instructions. For the final line for the male speaker, 
ratio.log.m is used to store the male speaker's ERATIO values. A histogram of the ERATIO 
distributions for these two speakers can then be created as follows (Fig. 6.16): 
 
par(mfrow=c(1,2)); xlim = c(-3, 2) 
col = "steelblue"; xlab=expression(E[RATIO])  
hist(ratio.log.f, xlim=xlim, col=col, xlab=xlab,  main="Speaker 
67") 
hist(ratio.log.m, xlim=xlim, col=col, xlab=xlab, main="Speaker 
68") 
 
It is clear enough that the ERATIO values are smaller than those for the male speaker as a statistical 
test would confirm:  (e.g, assuming the data are normally distributed, 
t.test(ratio.log.f, ratio.log.m)). So compared with the male speaker, the female 
speaker's [ɛ] is relatively closer to [ɪ] in a formant space than it is to [a]. 
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Fig. 6.16 about here 
 
6.6 Vowel undershoot and formant smoothing 

The calculation of the Euclidean distance to the centre of the vowel space discussed in 
6.5.1 is one of the possible methods for measuring vowel undershoot, a term first used by 
Lindblom (1963) to refer to the way in which vowels failed to reach their targets due to 
contextual influences such as the flanking consonants and stress. But in such calculations, the 
extent of vowel undershoot (or expansion) is being measured only at a single time point. The 
technique to be discussed in this section is based on a parameterisation of the entire formant 
trajectory. These parameterisations involve reducing an entire formant trajectory to a set of 
coefficients – this can be thought of as the analysis mode. A by-product of this reduction is that 
if the formant trajectories are reconstructed from the coefficients that were obtained in the 
analysis mode, then a smoothed formant contour can be derived – this is the synthesis mode and 
it is discussed more fully at the end of this section. 

The type of coefficients to be considered are due to van Bergem (1993) and involve 
fitting a parabola, that is an equation of the form F = c0 + c1t + c2t2, where F is a formant from 
the start to the end of a vowel that changes as a function of time t.  As the equation shows, there  
are three coefficients c0, c1, and c2 that have to be calculated for each vowel separately from the 
formant's trajectory. The shape of a parabola is necessarily curved in an arc, either U-shaped if c2 
is positive, or ∩-shaped if c2 is negative. The principle that lies behind fitting such an equation is 
as follows. The shape of a formant trajectory, and in particular that of F2, over the extent of a 
vowel, is influenced mostly both by the vowel and by the immediately preceding and following 
sounds:  that is by the left and right contexts. At the vowel target, which for most 
monophthongs is nearest the vowel's temporal midpoint, the shape is predominantly determined 
by the phonetic quality of the vowel, but it is reasonable to assume that the influence from the 
context increases progressively nearer the vowel onset and offset (e.g. Broad & Fertig, 1970). 
Consider for example the case in which the vowel has no target at all. Just this hypothesis has 
been suggested for schwa vowels by Browman & Goldstein (1992b) in an articulatory analysis 
and by van Bergem (1994) using acoustic data. In such a situation, a formant trajectory might 
approximately follow a straight line between its values at the vowel onset and vowel offset: this 
would happen if the vowel target has no influence so that the trajectory's shape is entirely 
determined by the left and right contexts. On the other hand, if a vowel has a prominent target, as 
if often the case if it is emphasised or prosodically accented (Pierrehumbert & Talkin, 1990), 
then, it is likely to deviate  considerably from a straight line joining its onset and offset. Since a 
formant trajectory often follows reasonably well a parabolic trajectory (Lindblom, 1963), one 
way to measure the extent of deviation from the straight line and hence to estimate how much it 
is undershot is to fit a parabola to the formant and then measure the parabola's curvature. If the 
formant is heavily undershot and follows more or less a straight line path between its endpoints, 
then the curvature will be almost zero; on the other hand, the more prominent the target, the 
greater the deviation from the straight line, and the greater the magnitude of the curvature, in 
either a positive or a negative direction. 

The way that the parabola is fitted in van Bergem (1993) is essentially to rescale the time 
axis of a trajectory linearly between t = -1 and t = 1. This rescaled time-axis can be obtained  
using the seq() function, if the  length of the trajectory in data points is known. As an 
example, the length of the F2-trajectory for the first segment in the lax vowel data is given by: 
 
N = length(frames(vowlax.fdat[1,2])) 
N 
18 
 
So the linearly rescaled time axis between t = ± 1  is given by: 
times = seq(-1, 1, length=N) 
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Since a precise estimate of the formant will need to be made at time t = 0, the number of data 
points that supports the  trajectory could be increased using linear interpolation with the 
approx() function. The shape of the trajectory stays exactly the same, but the interval along 
the time axis becomes more fine grained (this procedure is sometimes known as linear time 
normalization). For example, the F2-trajectory for the first segment in the lax vowel dataset 
could be given 101 rather than 17 points as in Fig. 6.17 which was created as follows (an odd 
number of points is chosen here, because this makes sure that there will be a value at t = 0): 
 
N = 101 
F2int = approx(frames(vowlax.fdat[1,2]), n=N) 
times = seq(-1, 1, length=N) 
par(mfrow=c(1,2));   
plot(times, F2int$y, type="b", xlab="Normalized time", ylab="F2 
(Hz)") 
# The original F2 for this segment 
plot(vowlax.fdat[1,2], type="b", xlab="Time (ms)", ylab="") 
 
Fig. 6.17 about here 
 
There are three unknown coefficients to be found in the  parabola F = c0 + c1t + c2t2 that is to be 
fitted to the data of the left panel in Fig. 6.17 and this requires inserting  three sets of data points 
into this equation. It can be shown (van Bergem, 1993) that when the data is extended on the 
time axis between t = ± 1, the coefficients have the following values: 
 
# c0 is the value at t = 0. 
c0 = F2int$y[times==0] 
# c1 is half of the difference between the first and last data points. 
c1 <- 0.5 * (F2int$y[N] - F2int$y[1]) 
# c2 is half of the sum of the first and last data points minus c0 
c2 <- 0.5 * (F2int$y[N] + F2int$y[1]) - c0 
 
If you follow through the example in R, you will get values of 1774, -84, and 30 for c0, c1, and c2 
respectively. Since these are the coefficients, the parabola over the entire trajectory can be 
calculated by inserting these coefficients values into the equation c0 + c1t + c2t2. So for this 
segment, the values of the parabola are: 
 
c0 + c1 * times + c2 * (times^2) 
 
Fig. 6.18 about here 
 
These values could be plotted as a function of time to obtain the fitted curve. However, there is a 
function in the Emu-R library plafit()that does all these steps. So for the present data, the 
coefficients are: 
 
plafit(frames(vowlax.fdat[1,2])) 
     c0     c    c2  
 1774  -84   30 
 
Moreover, the additional argument fit=T returns the formant values of the fitted parabola  
linearly time-normalized back to the same length as the original data to which the plafit() 
function was applied. So a superimposed plot of the raw and parabolically-smoothed F2-track for 
this first segment is: 
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# Calculate the values of the parabola 
F2par = plafit(frames(vowlax.fdat[1,2]), fit=T) 
ylim = range(c(F2par, frames(vowlax.fdat[1,2]))) 
xlab="Time (ms)"; ylab="F2 (Hz)" 
# Plot the raw values 
plot(vowlax.fdat[1,2], type="b", ylim=ylim, xlab=xlab, 
ylab=ylab) 
# Superimpose the smoothed values 
par(new=T) 
plot(as.numeric(names(F2par)), F2par, type="l", ylim=ylim, 
xlab=xlab, ylab=ylab, lwd=2) 
 
The fitted parabola (Fig. 6.18) always passes through the first and last points of the trajectory 
and through whichever point is closest to the temporal midpoint. The coefficient c0 is the y-axis 
value at the temporal midpoint. The coefficient c1, being the average of the first and last values, 
is negative for falling trajectories and positive for rising trajectories. As already mentioned, c2 
measures the trajectory's curvature: positive values on c2 mean that the parabola has a U-shape, 
as in Fig. 6.18, negative values that it is ∩-shaped. Notice that these coefficients encode the 
trajectory's shape independently of time. So the above trajectory extends over a duration of 
about 80 ms; however, even if the duration were 1/10th or 100 times as great, the coefficients 
would all be the same, if the trajectory's shape were unchanged. So it would be wrong to say that 
very much can be inferred about the rate of change of the formant (in Hz/s) from c1 (or to do so, 
c1 would have to be divided by the formant's duration). 
 The task now is to explore a worked example of measuring formant curvatures in a larger 
sample of speech.  The analysis of the vowel spaces in the F2 × F1 plane, as well as the 
Euclidean distance measurements in 6.5 have suggested that the female speaker produces more 
distinctive vowel targets, or in terms of Lindblom's (1990) H&H theory, her vowels show greater 
evidence of hyperarticulation and less of a tendency to be undershot. Is this also reflected in a 
difference in the extent of formant curvature?  

In order to address this question, the two speakers' [ɛ] vowels will be compared. Before 
applying an algorithm for quantifying the data, it is always helpful to look at a few plots first, if 
this is possible (if only because a gross inconsistency between what is seen and what is obtained 
numerically often indicates that there is a mistake in the calculation!). A plot of all of the F2 
trajectories lined up at the temporal midpoint and shown separately for the two speakers does not 
seem to be especially revealing (Fig. 6.19, left panel), perhaps in part because the trajectories 
have different durations and, as was mentioned earlier, in order to compare whether one 
trajectory is more curved than another, they need to be time normalized to the same length. The 
argument norm=T in the dplot() function does just this  by linearly stretching and 
compressing the trajectories so that they extend in time between 0 and 1. There is some 
suggestion from the time-normalized data (Fig. 6.19 centre) that the female's F2 trajectories are 
more curved than for the male speaker. This emerges especially clearly when the linearly time-
normalzed, male and female F2-trajectories are separately averaged (Fig. 6.19, right). However, 
the average is just that: at best a trend, and one that we will now seek to quantify by calculating 
the c2 coefficients of the fitted parabola. Before doing this, here are the instructions for producing 
Fig. 6.19: 
 
temp = vowlax.l == "E" 
par(mfrow=c(1,3)); ylim = c(1500, 2500) 
# F2 of E separately for M and F synchronised at the midpoint 
dplot(vowlax.fdat[temp,2], vowlax.spkr[temp], offset=.5, 
ylab="F2 (Hz)", ylim=ylim, xlab="Time (ms)",legend=F) 
# As above with linear time normalization 
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dplot(vowlax.fdat[temp,2], vowlax.spkr[temp], norm=T, 
xlab="Normalized time", ylim=ylim, legend=F) 
# As above and averaged 
dplot(vowlax.fdat[temp,2], vowlax.spkr[temp], norm=T, average=T, 
ylim=ylim, xlab="Normalized time") 
 
Fig. 6.18 about here 
 
The plafit() can be applied to any vector of values, just like the euclid() function 
created earlier. For example, this instruction finds the three coefficients of a parabola that have 
been fitted to 10 random numbers. 
 
r = runif(10) 
plafit(r) 
 
Sind plafit() evidently works on frames of speech data (see the instructions for creating Fig. 
6.18), then, for all the reasons given in 5.5.1 of the preceding Chapter, it can also be used inside  
trapply(). Moreover, since the function will return the same number of elements per segment 
(3 in this case), then, for the further reasons discussed in 5.5.1, the argument simplify=T can 
be set, which has the effect of returning a matrix with the same number of rows as there are 
segments: 
 
# Logical vector to identify  E vowels 
temp = vowlax.l == "E" 
# Matrix of coefficients, one row per segment. 
coeffs = trapply(vowlax.fdat[temp,2], plafit, simplify=T) 
 
coeffs has 3 columns (one per coefficient) and the same number of rows as there are [ɛ] 
segments (this can be verified with nrow(coeffs) == sum(temp) ).  Fig. 6.20 compares 
the F2-curvatures of the male and female speakers using a boxplot. There are two outliers (both 
for the female speaker) with values less than -500 (as sum(coeffs[,3] < -500) shows) 
and these have been excluded from the plot by setting the y-axis limits: 
 
ylim = c(-550, 150) 
boxplot(coeffs[,3] ~ factor(vowlax.spkr[temp]), 
ylab="Amplitude", ylim=ylim) 
 
Fig. 6.20 about here 
 
Fig. 6.20 shows greater negative values on c2 for the female speaker which is consistent with the  
view that there is indeed greater curvature in the female speaker's F2 of [ɛ] than for the male 
speaker. 

As foreshadowed at various stages in this section, the fit=T argument applies the 
function in synthesis mode: it works out the corresponding fitted formant parabola as a function 
of time. In order to smooth an entire trackdata object, trapply()can once again be used but 
this time with the argument returntrack=T to build a trackdata object (see 5.5.2): 
 
# Calculate the fitted F2 parabolas for all the vowel data 
vow.sm2 = trapply(vowlax.fdat[,2], plafit, T, returntrack=T) 
 
The smoothed and raw F2 data can be superimposed on each other for any segment as in Fig. 
6.21 and in the manner described below. 
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Although fitting a parabola is an effective method of data reduction that is especially useful 
for measuring formant curvature and hence undershoot, there are two disadvantages as far as 
obtaining a smoothed contour are concerned: 
 

• not every formant trajectory has a parabolic shape 
• parabolic fitting of the kind illustrated above forces a fit at the segment onset, offset, and 

midpoint as is evident from Figs. 6.21.  
 
One way around both of these problems is to use the discrete cosine transformation (see e.g., 
Watson & Harrington; 1999; Harrington, 2006; Harrington et al., 2008) which will be discussed 
more fully in Chapter 8. This transformation decomposes a trajectory into a set of coefficients 
(this is the analysis mode) that are the amplitudes of half-cycle cosine waves of increasing 
frequency. The number of coefficients derived from the discrete cosine transformation (DCT) is 
the same as the length of the trajectory. If, in synthesis mode, all of these cosine waves are 
summed, then the original, raw trajectory is exactly reconstructed. However, if only the first few 
lowest frequency cosine waves are summed, then a smoothed trajectory is derived. Moreover, 
the fewer the cosine waves that are summed, the greater the degree of smoothing. Therefore, an 
advantage of this type of smoothing over that of fitting parabolas is that it is possible to control 
the degree of smoothing. Another advantage is that the DCT does not necessarily force the 
smoothed trajectory to pass through the values at the onset, offset, and midpoint and so is not as 
prone to produce a wildly inaccurate contour, if formant onsets and offsets were inaccurately 
tracked (which is often the case especially if there is a preceding or following voiceless 
segment).  

There is a function in the Emu-R library for computing the DCT coefficients, 
dct()which, just like plafit() and euclid() takes a vector of values as its main 
argument. The function can be used in an exactly analogous way to the plafit() function in 
synthesis mode for obtaining smoothed trajectories from the coefficients that are calculated in 
analysis mode. In the example in Fig. 6.21, a smoothed F2 trajectory is calculated from the first 
five DCT coefficients. The DCT coefficients were calculated as follows: 

 
Fig. 6.21 about here 
 
# Calculate a smoothed-trajectory based on the lowest 5 DCT coefficients 
vow.dct2 = trapply(vowlax.fdat[,2], dct, fit=T, 4, 
returntrack=T) 
 
Fig. 6.21 containing the raw and two types of smoothed trajectories for the 8th segment in the 
segment list was produced with the following commands:  
 
j = 8 
# A label vector to identify the trajectories 
lab = c("raw", "parabola", "DCT") 
# Row-bind the three trajectories into one trackdata object 
dat = rbind(vowlax.fdat[j,2], vow.sm2[j,], vow.dct2[j,]) 
dplot(dat, lab, ylab="F2 (Hz)", xlab="Time (ms)") 
 
6.7 F2 locus, place of articulation and variability 

In the production of an oral stop, the vocal tract is initially sealed during which time air-
pressure builds up and is then released. At the point of release, the shape of the vocal tract has a 
marked influence on the acoustic signal and this influence extends at least to the beginning of the 
formant transitions, if the following segment is a vowel. Since the shape of the vocal tract is 
quite different for labial, alveolar, and velar places of articulation, the way in which the acoustic 
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signal is influenced following the release differs correspondingly. If the influence extends to the 
onset of periodicity for the following vowel, then the formant onset frequencies of the same 
phonetic vowel should be different when it occurs after consonants at different places of 
articulation.  

As a study by Potter, Kopp and Green (1947) had shown, different places of articulation 
have their greatest influence on the onset of the second formant frequency. But it was the famous 
perception experiments using hand-painted spectrograms at the Haskins Laboratories that gave 
rise to the concept of an F2-locus. In these experiments, Liberman and colleagues (Delattre, 
Liberman & Cooper, 1955; Liberman, Delattre, Cooper & Gerstman, 1954; Liberman, et al, 
1958) showed that the origin of the second formant frequency influenced the perception of the 
place of articulation of the following consonant. More specifically, if the F2-onset was low and 
at around 700 Hz, listeners would predominantly hear /b/; if it was roughly in the 1800 Hz 
region, they would hear /d/; while if the F2-onset began near 3000 Hz, listeners would perceive 
/g/ before front vowels. The locus frequency was not at the acoustic vowel onset itself, but at 
some point prior to it during the consonantal closure. More specifically, in synthesising a CV 
transition, formants would be painted from the F2-locus somewhere in the consonant closure to 
the  F2-vowel target and then the first part of the transition up to where the voicing for the vowel 
began would be erased. With these experiments, Liberman and colleagues also demonstrated that 
the perception of place of articulation was categorical and this finding was interpreted in favour 
of the famous motor theory of speech perception (see e.g. Hawkins, 1999 for a thorough review 
of these issues). 

In the years following the Haskins Laboratories experiments, various large-scale acoustic 
studies were concerned with finding evidence for an F2-locus  (including e.g., Fant, 1973; 
Kewley-Port, 1982;  Lehiste & Peterson, 1961; Öhman, 1966). These studies  showed that the 
most stable F2-locus was for alveolars (i.e., alveolars exhibit the least F2-onset variation of the 
three places of articulation) whereas velars, which exhibit a great deal of variability depending 
on the backness of the following vowel, showed no real evidence from acoustic data of a single 
F2-locus. 

From the early 1990s, Sussman and Colleagues applied the concept of a locus equation 
to suggest that F2 transitions might in some form provide invariant cues to the place of 
articulation (see e.g., Sussman et al, 1991; Sussman et al, 1995), a position that has  also not 
been without its  critics (e.g., Brancazio  &  Fowler, 1998; Löfqvist, 1999).  

Locus equations were first investigated systematically by Krull (1988, 1989) and they 
provide a numerical index of the extent to which vowels exert a coarticulatory influence on a 
consonant's place of articulation. Thus, whereas in studies of vowel undershoot, the concern is 
with the way in which context influences vowel targets, here it is the other way round: that is, the 
aim is to find out the extent to which vowel targets exert a coarticulatory influence on the place 
of articulation of flanking consonants. 

 
Fig. 6.22 about here 

 
The basic idea behind a locus equation is illustrated with some made-up data in Fig. 6.22 

showing two hypothetical F2-trajectories for [bɛb] and [bob]. In the trajectories on the left, the 
extent of influence of the vowel on the consonant is nil. This is because,  in spite of very 
different F2 vowel targets, the F2 frequencies of [ɛ] and of [o] both converge to exactly the same 
F2-locus at 700 Hz for the bilabial – that is, the F2-onset frequency is determined entirely by the 
consonant with no influence from the vowel. The other (equally unlikely) extreme is shown on 
the right. In this case, the influence of the vowel on the consonant's place of articulation is 
maximal so that there is absolutely no convergence to any locus and therefore no transition.  

A locus equation is computed by transforming F2 frequencies (top row, Fig. 6.22)  as a 
function of time into the plane of F2-target × F2-onset (bottom row, Fig. 6.22) in order to 
estimate the extent of coarticulatory influence of the vowel on the consonant. Firstly, when there 
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is no vowel-on-consonant coarticulation (left), the locus equation, which is the line that connects 
[bɛb] and [bob] is horizontal: this is because they both converge to the same locus frequency and 
so F2-onset is 700 Hz in both cases. Secondly, when vowel-on-consonant coarticulation is at a 
maximum (right), then the locus equation is a diagonal in this plane because the locus frequency 
is equal to the target frequency.  

A fundamental difference between these two extreme cases of coarticulation is in the 
slope of the locus equation. On the left, the slope in this plane is zero (because the locus equation 
is horizontal) and on the right it is one (because F2Target = F2Onset). Therefore, for real speech 
data, the slope of the locus equation can be used as a measure of the extent of vowel-on-
consonant coarticulation: the closer the slope is to one, the more the consonant's place of 
articulation is influenced by the vowel (and the slope must always lie between 0 and 1 since 
these are the two extreme cases of zero and maximal coarticulation). Finally, it can be shown 
(with some algebraic manipulation: see Harrington & Cassidy 1999, p. 128-130) that the locus 
frequency itself,  that is the frequency towards which transitions tend to converge,  can be 
estimated by establishing either where the locus equation and the line F2Target = F2Onset bisect. 
This is shown for the case of zero vowel-on-consonant coarticulation on left in Fig. 6.22: this 
line bisects the locus equation at the frequency at which the transitions in the top left panel of 
Fig. 6.22 converge, i.e. at 700 Hz which is the locus frequency. On the right, the line F2Target = 
F2Onset cannot bisect the locus equation, because it is the same as the locus equation. Because 
these lines do not bisect, there is no locus frequency, as is of course obvious from the 'transitions' 
in Fig. 6.22 top right that never converge. 

This theory can be applied to some simple isolated word data produced by the first author 
of Clark et al (2007).  In 1991, John Clark produced a number of isolated /dVd/ words where the 
V is one of the 13 possible monophthongs of Australian English. The relevant dataset which is 
part of the Emu-R library includes a segment list of the vowel in these words (isol), a vector of 
vowel labels (isol.l) and a trackdata object of the first four formant frequencies between the 
vowel onset and offset (isol.fdat).  

The task is to investigate whether the coarticulatory influence of the vowel is greater on 
the final, than on the initial, consonant. There are various reasons for expecting this to be so. 
Foremost are the arguments presented in Ohala (1990) and Ohala & Kawasaki (1984) that initial 
CV (consonant-vowel) transitions tend to be a good deal more salient than VC transitions: 
compatibly, there are many more sound changes in which the vowel and syllable-final consonant 
merge resulting in consonant loss (such as the nasalization of vowels and associated final nasal 
consonant deletion in French) than is the case for initial CV syllables. This would suggest that 
synchronically a consonant and vowel are more sharply delineated from each other in CV than in 
VC syllables and again there are numerous aerodynamic and acoustic experiments to support this 
view. Secondly, there are various investigations (Butcher, 1989, Hoole et al, 1990) which show 
that in V1CV2 sequences where C is an alveolar, the perseverative influence of V1 on V2 is 
greater than the anticipatory influence of V2 on V1. This suggests that the alveolar consonant 
resists coarticulatory influences of the following V2 (so the alveolar has a blocking effect on the 
coarticulatory influences of a following vowel) but is more transparent to the coarticulatory 
influences of the preceding V2 (so the alveolar does not block the coarticulatory influences of a 
preceding vowel to the same extent). Therefore, the vowel-on-consonant coarticulatory 
influences can be expected to be weaker when the vowel follows the alveolar in /dV/ than when 
it precedes it in /Vd/. 
 
Fig. 6.23 about here 
 

Before proceeding to the details of quantification, it will be helpful as always to plot the 
data. Fig. 6.23 shows the second formant frequency trajectories synchronised at the vowel onset 
on the left and at the vowel offset on the right. The trajectories are of F2 of the separate vowel 
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categories and there is only one token per vowel category, as table(isol.l) shows49. The 
plots can be obtained by setting the offset argument in this function argument to 0 (for 
alignment at the segment onset) and to 1 (for alignment at the segment offset).  
 
par(mfrow=c(1,2)) 
dplot(isol.fdat[,2], offset=0, ylab = "F2 (Hz)", xlab="Time 
(ms)") 
dplot(isol.fdat[,2], offset=1, xlab="Time (ms)") 
 
It seems clear enough from Fig. 6.23 that there is greater convergence of the F2-transitions at the 
alignment point on the left (segment onset) than on the right (segment offset). So far, the 
hypothesis seems to be supported.  

The task now is to switch to the plane of F2-target × F2-onset (F2-offset) and calculate 
locus equations in these two planes. The vowel target is taken to be at the temporal midpoint of 
the vowel. The following three vectors are F2 at the vowel onset, target, and offset respectively: 

 
f2onset = dcut(isol.fdat[,2], 0, prop=T) 
f2targ = dcut(isol.fdat[,2], .5, prop=T) 
f2offset= dcut(isol.fdat[,2], 1, prop=T) 

 
 The next step is to plot the data and then to calculate a straight line of best fit  known as a 
regression line  through the scatter of points: that is, there will not be two points that lie on the 
same line as in the theoretical example in Fig. 6.22,  but several points that lie close to a line of 
best fit. The technique of linear regression, which for speech analysis in R  is described in detail 
in Johnson (2008), is to calculate such a line, which is defined as the  line to which the distances 
of the points are minimised. The function lm() is used to do this. Thus for the vowel onset data, 
the second and third commands below are used to calculate and draw the straight line of best fit: 
 
plot(f2targ, f2onset) 
regr = lm(f2onset ~ f2targ) 
abline(regr) 
 
The information about the slope is stored in $coeff which also gives the intercept (the value 
at which the regression line cuts the y-axis, i.e. the F2-onset axis). The slope of the line is just 
over 0.27: 
 
regr$coeff 
 (Intercept)       f2targ  
1217.8046955    0.2720668 
 
Recall that the best estimate of the locus is where the line F2Target = F2Onset cuts this regression 
line. Such a line can be superimposed on the plot as follows: 
 
abline(0, 1, lty=2) 
 
There is a function in the Emu-R library, locus(), that carries out all of these operations. The 
first two arguments are for the data to be plotted on the x- and y-axes (in this case the F2-target 
and the F2-onset respectively) and there is a third optional argument for superimposing a parallel 
set of labels. In this example, the vowel labels are superimposed on the scatter and the x- and y-
ranges are set to be identical (Fig. 6.24): 

                                                
49 The relationship between the machine readable ad phonetic alphabet for Australian vowels is given at the 
beginning of the book. 
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xlim = c(500, 2500); ylim = xlim; par(mfrow=c(1,2)) 
xlab = "F2-target (Hz)"; ylab = "F2-onset (Hz)" 
stats.on = locus(f2targ, f2onset, isol.l, xlim=xlim, ylim=ylim, 
xlab=xlab, ylab=ylab) 
stats.off = locus(f2targ, f2offset, isol.l, xlim=xlim, 
ylim=ylim, xlab=xlab) 
 
Fig. 6.24 about here 
 
Fig. 6.24 shows that the regression line (locus equation) is not as steep for the F2-onset 
compared with the F2-offset data. The following two commands show the actual values of the 
slopes (and intercepts) firstly in the F2-target × F2-onset plane and secondly in the F2-target × 
F2-offset plane: 
 
stats.on$coeff 
 (Intercept)      target  
1217.8046955    0.2720668 
 
stats.off$coeff 
(Intercept)       target  
850.4935279    0.4447689 

 
The locus() function also calculates the point at which the regression line and the lines 

F2Target = F2Onset (Fig. 6.24, left) and F2Target = F2Offset (Fig. 6.24, right) bisect, thus giving a best 
estimate of the locus frequency. These estimates are in $locus and the calculated  values for 
the data in the left and right panels of Fig. 6.24  respectively are 1673 Hz and 1532 Hz.  In fact, 
the locus frequency can also be derived from: 

 
(1) L = c/(1 – α) 
 
where L is the locus frequency and c and α are the intercept and slope of the locus equation 
respectively (Harrington, 2009). Thus the estimated locus frequency for the CV syllables is 
equivalently given by: 
 
1217.8046955/(1- 0.2720668) 
1672.962 

 
The reason why there is this 141 Hz difference in the calculation of the locus frequencies 

for initial as opposed to final /d/ is not immediately clear; but nevertheless as Fig. 6.23 shows, 
these are reasonable estimates of the point at which the F2 transitions tend, on average, to 
converge. Finally, statistical diagnostics on the extent to which the regression line could be fitted 
to the points is given by the summary function: 
 
summary(stats.on) 
Call: 
lm(formula = onset ~ target) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1.218e+03  5.134e+01  23.721 8.51e-11 *** 
target      2.721e-01  3.308e-02   8.224 5.02e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 53.12 on 11 degrees of freedom 
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Multiple R-squared: 0.8601, Adjusted R-squared: 0.8474  
F-statistic: 67.64 on 1 and 11 DF,  p-value: 5.018e-06 
 
The probability that the regression line slope accounts for the data is given by the results of  t-
test in the line beginning target. The null hypothesis is that there is no relationship at all 
between the F2-onset and F2-target  (which would mean that the slope of the regression line 
would be zero): the t-test computes the likelihood that this could be the case. This probability is 
shown to be 5.02e-06 or 0.00000502 i.e., very small. So the null hypothesis is rejected. The 
other important diagnostic is given under adjusted R-squared which is a measure of how 
much of the variance is explained by the regression line. It shows that for these data, just over 
86% of the variance is explained by the regression line and the probability that this value is 
different from zero is given by the results of an F-test in the next line beginning 'F-statistic'. 

The analysis of these (very limited) data lends some support to the view that the 
coarticulatory influence of the vowel on an alveolar stop is greater when the consonant is in final 
than when it is in initial position. However, data from continuous speech and above all from 
other consonant categories will not always give such clear results, so the locus equation 
calculations must be used with care. In particular, an initial plot of the data to check the formant 
transitions for any outliers due to formant tracking errors is essential. If the slope of the line is 
negative or greater 1, then it means either that the data could not be reliably modelled by any 
kind of regression line and/or that no sensible locus frequency could be computed (i.e., the 
formant transitions do not converge, and the resulting locus frequency calculation is likely to be 
absurd).  
 
6.8 Questions 
 
These questions make use of existing objects in the Emu-R library. 
 
A. Plotting vowel ellipses and removing outliers (sections 6.1 and 6.2) 
A1. Extract the formant data at the temporal midpoint from the trackdata object vowlax.fdat 
and convert the Hz values to Bark. 
 
A2.  F3–F2 in Bark was suggested by Syrdal & Gopal (1986) as an alternative to F2 in Hz for 
representing vowel backness. Make a plot like the one in Fig. 6.25 of the female speaker's 
(speaker 68)  E vowels in the plane of –F1  in Bark (y-axis)  and F3 – F2 in Bark (x-axis) 
showing the data points. 
 
A3. Using a logical vector, create a matrix that is the same as the one in A1 (of Bark values at 
the temporal midpoint) but which excludes the very obvious outlier shown in the upper left of 
Fig. 6.25.  
 
Fig. 6.25 about here 
 
A4. Use the same logical vector as in A3,  make a  vector of speaker labels from 
vowlax.spkr and a  vector of vowel labels from vowlax.l that are each parallel to the 
matrix that you created in A3. 
 
A5. Make two plots as shown in Fig. 6.26 of the male and female speakers' data in the plane 
scaled to the same axes as in Fig. 6.25. 
 
Fig. 6.26 about here 
 
B. Finding targets (section 6.3) 
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B1. The trackdata object vowlax.rms contains dB-RMS data that is parallel to the segment list 
vowlax and the other objects associated with it. Use peakfun()from 6.3 or otherwise to find 
for each segment  the time within the vowel at which the dB-RMS reaches a maximum value.  
 
B2. Extract the F1 and F2 data from the trackdata object vowlax.fdat for the male speaker 
67 at the target time defined by B1 and make a plot of the vowels in the F2 x F1 plane.  
 
B3. The objects dip (segment list), dip.fdat (trackdata objects of F1-F4), dip.l (vector of 
diphthong labels), and dip.spkr (vector of speaker labels)  are available for three diphthongs 
in German [aɪ, aʊ, ɔʏ] for the same two speakers as for the lax vowel data presented in this 
Chapter. Make a plot of F1 as a function of time for the male speaker's [aʊ] thereby verifying 
that F1 seems to reach a target/plateau in the first half of the diphthong. 
 
B4. Make a matrix of the F1 and F2 values at the time at which F1 reaches a maximum in the 
first half of  [aʊ]. Create a vector of [aʊ] labels that is parallel to this matrix (i.e., a vector of the 
same length as there are rows in the matrix and consisting entirely of aU, aU, aU …). 
 
B5. The task is to check how close the quality of the diphthong at the alignment point in B4 is to 
the same speaker's (67) lax [a, ɔ] (a, O) vowels extracted from F1 and F2 data at the temporal 
midpoint. Using the data from B4 above in combination with the R objects of these lax 
monophthongs in A1, make a plot of the kind shown in Fig. 6.27 for this purpose. What can you 
conclude about the quality of the first target of this diphthong? What phonetic factor might cause 
it to have lower F2 values than the lax monophthong [a]? 
 
Fig. 6.27 about here 
 
C. Formant curvature and undershoot (section 6.4) 
C1 Which diphthong, [aɪ] or [ɔʏ] would you expect to have greater curvature in F1 and why? 
 
C2. Produce a linearly time-normalized plot of F1 of the female speaker's [aɪ] or [ɔʏ] 
diphthongs. Does this match your predictions in C1? 
 
C3. Fit  parabolas to F1 of the diphthongs for both speakers (i.e., create a matrix of coefficients 
that is parallel to the R objects for the diphthong segments). Based on the evidence of the 
hyperarticulation differences between the speakers presented in this Chapter, which speaker is 
expected to show less formant F1-curvature in the diphthongs? 
 
C4. Produce on one page four boxplots (analogous to Fig. 6.15) of the curvature-parameter for 
the label combinations aI.67 (the male speaker's [aɪ]), OY.67 (the male speaker's [ɔʏ]), 
aI.68 (the female speaker's [aɪ]), and OY.68  (the femmale speaker's [ɔʏ]). 
 
D. F2-loci (section 6.7) 
D1.  
(a) How would you expect the slope of the locus equation to be different in continuous speech 
compared with the type of isolated, citation-form production examined in 6.7 above? 
 
(b) If the female speaker 68 hyperarticulates compared with the male speaker 67,  i.e., produces 
more distinctive consonant and vowel targets, how might their locus equation slopes differ for 
the same place of articulation?  
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(c) Check your predictions by calculating and plotting locus equations in the plane of F2-Onset x 
F2-Target for /d/ preceding the lax vowels in the segment list vowlax separately for both 
speakers (the left context labels are given in vowlax.left; take F2 at the temporal midpoint 
for F2-target values).  Set the ranges for the x- and y-axes to be between 1000 Hz and 2500 Hz in 
both cases. 
 
D2. How would you expect (a) the estimated F2-locus frequency and (b) the slope of the locus 
equation for initial [v] to compare with those of initial [d]? Check your hypotheses by making F2 
locus equations based on vowels following initial [v] analogous to the ones above for initial [d] 
and compare the F2-loci and slopes between these places of articulation for both speakers.  
 
D3. Make a time-aligned plot colour-coded for [v] or [d] of F2-trajectories for the male speaker 
following these two consonants (a plot like the one in Fig. 6.23 but in which the trajectories are 
of F2 for the vowels following [d] or [v]). Is the plot consistent with your results from D2 (i.e, 
locus differences and slope differences?). 
 
6.9 Answers 
A1. 
mid = dcut(vowlax.fdat, .5, prop=T) 
mid = bark(mid) 
 
A2. 
temp = vowlax.spkr=="68" & vowlax.l=="E" 
eplot(cbind(mid[temp,3]-mid[temp,2], -mid[temp,1]), 
vowlax.l[temp], dopoints=T, ylab="- F1 (Bark)", xlab="F3 - F2 
(Bark)")  
 
A3. 
temp = vowlax.spkr=="68" & vowlax.l=="E" & mid[,3]-mid[,2] < -12 
mid = mid[!temp,] 
 
A4. 
mid.sp = vowlax.spkr[!temp] 
mid.l = vowlax.l[!temp] 
 
A5. 
temp = mid.sp=="67" 
par(mfrow=c(1,2)); xlim = c(0, 8);  ylim = c(-9, -2) 
ylab="- F1 (Bark)"; xlab="F3 - F2 (Bark)" 
eplot(cbind(mid[temp,3]-mid[temp,2], -mid[temp,1]), mid.l[temp], 
dopoints=T, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab) 
eplot(cbind(mid[!temp,3]-mid[!temp,2], -mid[!temp,1]), 
mid.l[!temp], dopoints=T, xlim=xlim, ylim=ylim, xlab=xlab) 
 
B1. 
mtime = trapply(vowlax.rms, peakfun, simplify=T) 
 
B2. 
form = dcut(vowlax.fdat[,1:2], mtime) 
temp = vowlax.spkr == "68" 
eplot(form[temp,], vowlax.l[temp], centroid=T, form=T) 
 
B3. 
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temp =  dip.l == "aU" 
dplot(dip.fdat[temp,1], ylab="F1 (Hz)") 
 
 
B4. 
maxf1 = trapply(dcut(dip.fdat[,1], 0, 0.5, prop=T), peakfun, 
simplify=T) 
temp =  dip.l == "aU" 
formau = dcut(dip.fdat[temp,1:2], maxf1[temp]) 
labsau = dip.l[temp] 
 
B5. [ʊ] has a backing effect on [a] in the diphthong [aʊ], thus lowering F2. 
 
temp = vowlax.l %in% c("a", "O") & vowlax.spkr == "67" 
mono.f.5 = dcut(vowlax.fdat[temp,1:2], .5, prop=T) 
both = rbind(mono.f.5, formau) 
both.l = c(vowlax.l[temp], labsau) 
eplot(both, both.l, form=T, dopoints=T, xlab="F2 (Hz)", ylab="F1 
(Hz)") 
 
C1. [aɪ] because the change in openness of the vocal tract between the two component vowels is 
greater than for [ɔʏ]. 
 
C2. 
temp = dip.l  %in% c("aI", "OY") & dip.spkr == "68" 
dplot(dip.fdat[temp,1], dip.l[temp], norm=T) 
 
Yes. 
 
C3. Speaker 67. 
coeff = trapply(dip.fdat[,1], plafit, simplify=T) 
 
C4. 
temp = dip.l %in% c("aI", "OY") 
boxplot(coeff[temp,3] ~ dip.l[temp] * dip.spkr[temp]) 
 
D1. 
(a) The slope in continuous speech should be higher because of the greater coarticulatory effects. 
(b) The slopes for speaker 68 should be lower. 
(c) 
temp = vowlax.left=="d" & vowlax.spkr == "67" 
on.m = dcut(vowlax.fdat[temp,2], 0, prop=T) 
mid.m = dcut(vowlax.fdat[temp,2], .5, prop=T) 
 
temp = vowlax.left=="d" & vowlax.spkr == "68" 
on.f = dcut(vowlax.fdat[temp,2], 0, prop=T) 
mid.f = dcut(vowlax.fdat[temp,2], .5, prop=T) 
 
par(mfrow=c(1,2)); xlim=ylim=c(1000, 2500) 
l.m.d = locus(mid.m, on.m, xlim=xlim, ylim=ylim) 
l.f.d = locus(mid.f, on.f, xlim=xlim, ylim=ylim) 
 
D2.  
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(a) The locus frequency for [v] should be lower because labials according to the locus theory 
have a lower F2-locus than alveolars. 
 
(b)  The slope of the locus equation for [v] should be higher. This is because alveolars are 
supposed to have the most stable locus of labials, alveolars, and velars, i.e., the place of 
articulation for alveolars, and hence the F2-locus, shifts the least  due to the effects of vowel 
context. 
 
temp = vowlax.left=="v" & vowlax.spkr == "67" 
on.m = dcut(vowlax.fdat[temp,2], 0, prop=T) 
mid.m = dcut(vowlax.fdat[temp,2], .5, prop=T) 
 
temp = vowlax.left=="v" & vowlax.spkr == "68" 
on.f = dcut(vowlax.fdat[temp,2], 0, prop=T) 
mid.f = dcut(vowlax.fdat[temp,2], .5, prop=T) 
 
par(mfrow=c(1,2)); xlim=ylim=c(1000, 2500) 
l.m.v = locus(mid.m, on.m, xlim=xlim, ylim=ylim) 
l.f.v = locus(mid.f, on.f, xlim=xlim, ylim=ylim) 
 
The F2 locus for [v]  (given by l.m.v$locus and l.f.v$locus) for the male and female 
speakers respectively are, rounded to the nearest Hz, 749 Hz and 995 Hz, i.e. markedly lower 
than for alveolars. The slopes of the locus equations for [v] (given by entering by l.m.v and 
l.f.v) are 0.794 and 0.729 for the male and female speakers respectively and these are both 
higher than for the alveolar. 
 
D3. 
temp = vowlax.left %in% c("v", "d") & vowlax.spkr=="67" 
dplot(vowlax.fdat[temp,2], vowlax.left[temp], ylab="F2 (Hz)") 
 
Fig. 6.28 about here 
 
Yes. The [v] and [d] transitions point to different locis as Fig. 6.28 shows.  Fig. 6.28 also shows 
that the locus equation slope for [d] is likely to be lower because, even though the F2 range at the 
vowel target is quite large (over 1000 Hz) at time point 50 ms, the F2-transitions for [d] 
nevertheless converge to about 1600-1700 Hz at F2-onset (t = 0 ms). There is much less 
evidence of any convergence for [v] and this is why the locus equation slope for [v] is higher 
than for [d]. 
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Chapter 7. Electropalatography 
 
7.1. Palatography and electropalatography 

Palatography is the general term given to the experimental technique for obtaining 
records of where the tongue makes a contact with the roof of the mouth. The earliest types of 
palatographic techniques were static allowing recordings to be made of a single consonant 
typically produced between vowels. In static palatography, which is still very useful especially in 
fieldwork (Ladefoged, 2003), the roof of the mouth is coated in a mixture of olive oil and 
powdered charcoal and the subject produces a consonant. Details of the consonant's place of 
articulation and stricture are obtained from a photograph taken of the roof of the mouth showing 
where the powder was wiped-off and sometimes also of the tongue (which is coated in the 
powder at the point where tongue-palate contact was made). Dynamic electropalatography 
(Hardcastle, 1972; Hardcastle et al., 1991) is an extension of this technique in which tongue-
palate contacts are recorded as a function of time. In dynamic palatography, an acrylic palate is 
custom-made for each subject and fixed to the roof of the mouth using clasps placed over the 
teeth. The palate is very thin and contains a number of electrodes that are exposed to the surface 
of the tongue (Fig. 7.1).  
 
Fig. 7.1 about here 
 
Each electrode is connected to a wire and all the wires from the electrodes are passed out of the 
corner of the subject's mouth in two bundles. The wires are fed into a processing unit whose job 
it is to detect whether or not there is electrical activity in any of the electrodes. The choice is 
binary in all cases: either there is activity or there is not. Electrical activity is registered 
whenever the tongue surface touches an electrode because this closes an electrical circuit that is 
created by means of a small electrical current passed through the subject's body via a hand-held 
electrode.  

Three EPG systems that have been commercially available include the Reading EPG3 
system developed at the University of Reading and now sold by Articulate Instruments; a 
Japanese system produced by the Rion corporation and an American system that has been sold 
by Kay Elemetrics Corporation (see Gibbon & Nicolaidis, 1999 for a comparison of the three 
systems).  

The palate of the Reading EPG3 system, which is the system that is compatible with 
Emu-R, contains 62 electrodes as shown in Fig. 7.1 that are arranged in eight rows. The first 
row, at the front of the palate and just behind the upper front teeth contains six electrodes, and 
the remaining rows each have 8 electrodes. There is a greater density of electrodes in the dental-
alveolar than in the dorsal region to ensure that the fine detail of lingual activity that is possible 
in the dental, alveolar, and post-alveolar zones can be recorded. The last row is generally 
positioned at the junction between the subject's hard and soft-palate.  

Fig 7.1 also shows the type of display produced by the EPG-system; the cells are either 
black (1) when the corresponding electrode is touched by the tongue surface or white (0) when it 
is not. This type of display is known as a palatogram and the EPG3 system typically produces 
palatograms at a sampling frequency of 100 Hz, i.e., one palatogram every 10 ms. As Fig. 7.1 
shows, the palate is designed to register contacts extending from the alveolar to velar 
articulations with divisions broadly into alveolar (rows 1-2), post-alveolar (rows 3-4), palatal 
(rows 5-7) and velar (row 8).   

Electropalatography is an excellent tool for studying consonant cluster overlap and 
timing. It also has an important application in the diagnosis and the treatment of speech 
disorders. There is mostly a reasonably transparent relationship between phonetic quality and 
EPG output: a [t] really does show up as contacts in the alveolar zone, the different groove 
widths between [s] and [ʃ] are usually very clearly manifested in EPG displays, and 
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coarticulatory and assimilatory influences can often be seen and quantified. (See Gibbon, 2005, 
for a bibliography of electropalatographic studies since 1957). 

At the same time, it is important to be clear about some of the limitations of this 
technique:  

• A separate palate (involving a visit to the dentist for a plaster-cast impression of the roof 
of the mouth) has to be made for each subject which can be both time-consuming and 
expensive.  

• As with any articulatory technique, subject-to-subject variation can be considerable. This 
variation can come about not only because subjects may invoke different articulatory 
strategies for producing the same phonetic segment, but also because the rows of 
electrodes are not always aligned with exactly the same articulatory landmarks across 
subjects. 

• EPG can obviously give no direct information about labial consonants (apart from 
coarticulatory effects induced by other segments) and there is usually only limited 
information for places of articulation beyond a post-palatal or pre-velar articulation: that 
is, /k/ in English shows up clearly in key, but for many subjects  there may be scarcely 
any recorded activity for the retracted /k/ in call. 

• EPG can only give limited information about vowels. It does register contact at the sides 
of the palate in non-low front vowels, but provides little information about tongue 
position and velocity. 

• Some older EPG systems have fixed sampling rates of 100 Hz and 10 kHz for the 
palatograms and acoustic signal respectively.  A 100 Hz palatogram rate is often too slow 
to record details of rapid articulatory movements; a 10000 Hz sampling frequency with 
the associated 5000 Hz cut-off is often too low for carrying out articulatory-acoustic 
modelling of fricatives. 

 
7.2. An overview of electropalatography in Emu-R 
 The databases listed at the beginning of this book whose names begin with epg include 
electropalatographic data and they can all be downloaded following the procedure discussed in 
2.1. When an utterance is opened from any of these databases, a palatographic frame appears at 
the time point of the cursor (Fig. 7.2). The electropalatographic data that is compatible with Emu 
is derived from the 62-electrode EPG system manufactured by Articulate Instruments50. If you 
already have your own EPG data from this system, then the files need  to be converted into an 
SSFF (simple signal file format) to read them into Emu: this can be done after starting Emu from 
Arrange Tools and then EPG2SSFF.  
 
Fig. 7.2 about here 
 
 Once an EPG-database is available in Emu, then the EPG signal files of the database are 
accessible to Emu-R in all of the ways that have been described in the preceding Chapters. In 
addition, there are some functions that are specific to an EPG analysis in Emu-R and these and 
the relationship between them are summarised in Fig. 7.3.  
 
As Fig. 7.3 shows, there are four main components to the EPG analysis in Emu-R.  
 

1. Accessing the database. The EPG-data is accessed from the database in the usual way 
from a segment list via the emu.track() function. 

2. EPG Objects. The EPG-data that is read into R with emu.track() is an EPG-
compressed trackdata object (Fig. 7.3, box 2, A) which compresses the 62 zero and one 
values of each palatogram into a vector of just 8 values. Since this is a trackdata object, 

                                                
50 http://www.articulateinstruments.com/ 
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then it is amenable to dcut() for obtaining  an EPG-compressed matrix at a single 
time point (Fig. 7.3, box 2, B). Both of these EPG-compressed objects can be 
uncompressed in R (using the palate() function) to produce a 3D palatographic 
array (Fig. 7.3, box 2, C): that is, an array of palatograms containing 0s and 1s in an 8 x 
8 matrix. 

 
Any of the objects listed under 2. are then amenable to two kinds of analysis: plotting or further 
parameterisation, as follows: 
 

3. EPG Plots. Two kinds of plots are possible: either the palatograms showing their time-
stamps, or a three-dimensional grey-scale plot that represents the frequency of contact 
over two or more palatograms. 

 
4. EPG data-reduced objects. In this case, the 62 palatographic values from each 

palatogram are reduced to a single value. As will be shown later in this Chapter, these 
data-reduced objects can be very useful for quantifying consonantal overlap and 
coarticulation.  

 
Fig. 7.3 about here 
 

It will be helpful to begin by looking in some further detail at the types of R objects in 
box 2 (EPG Objects) of Fig. 7.3, because they are central to all the other forms of EPG analysis, 
as the figure shows. All of the EPG-databases that are pre-stored and accessible within the Emu-
R library and used as examples in this Chapter are initially in the form of EPG-compressed-
trackdata objects (A. in Fig. 7.3) and this is also always the way that you would first encounter 
EPG data in R if you are using your own database obtained from the  Articulate Instruments EPG 
system. One of the available EPG-database fragments is epgcoutts, recorded by Sallyanne 
Palethorpe, and it includes the following R objects: 
 
coutts   Segment list 

 of the sentence just relax said Coutts. (One segment per word). 
coutts.sam  Sampled speech trackdata  object  of  coutts. 
coutts.epg  EPG-compressed-trackdata  
    object of coutts (frame rate 5 ms). 
 
The segment list, coutts, consists of four words of a sentence produced by a female speaker of 
Australian English and the sentence forms part of a passage that was constructed by Hewlett & 
Shockey (1992) for investigating (acoustically) coarticulation in /k/ and /t/. Here is the segment 
list: 
 
coutts 
segment  list from database:  epgcoutts  
query was:  [Word!=x ^ Utterance=u1]  
  labels   start     end          utts 
1   just 16018.8 16348.8 spstoryfast01 
2  relax 16348.8 16685.7 spstoryfast01 
3   said 16685.7 16840.1 spstoryfast01 
4 Coutts 16840.1 17413.7 spstoryfast01 
 
The EPG-compressed trackdata object coutts.epg therefore also necessarily consists of four 
segments, as can be verified with nrow(coutts.epg). Thus the speech frames of EPG data 
for the first word in the segment list, just, are given by frames(coutts.epg[1,]).  The 
command dim(frames(coutts.epg[1,])) shows that this is a 66 x 8 matrix: 66 rows 
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because there are 66 palatograms between the start and end time of just and 8 columns which 
provide the information about palatographic contacts in columns 8-1 respectively. As for all 
trackdata objects, the times at which these EPG-frames of data occur are stored as row names 
(accessible with tracktimes(coutts.epg)) and for this example they show that 
palatographic frames occur at intervals of 5 ms (i.e. at times 16020 ms, 16025 ms, etc.). 

Each of the EPG-frames can be unpacked into a series of zeros and ones corresponding to 
the absence and presence of contact in the palatogram. The unpacking is done by converting 
these values into binary numbers after adding 1 (one). More specifically, consider e.g. the 23rd 
EPG-frame of the 1st segment: 

 
frames(coutts.epg[1,])[23,] 
T1  T2  T3  T4  T5  T6  T7  T8  
195 195 131 131 129   1   0   0 
 
The first value, corresponding to row 8 is 195. In order to derive the corresponding palatographic 
contacts for this row, 195 + 1 = 196 is converted into binary numbers. 196 in binary form is 
11000011 and so this is the contact pattern for the last (8th row) of the palate at time 16020 ms 
(i.e., there is lateral contact and no contact at the centre of the palate). Since the next entry is also 
195, then row 7 evidently has the same contact pattern. 

This job of converting EPG-frames into binary values and hence palatographic contacts is 
done by the palate() function. So the palatogram for all 66 rows of data in 
coutts.epg[1,] i.e., of the word just extending in time from 16020 ms to 16340 ms is 
obtained as follows: 
 
p = palate(coutts.epg[1,]) 
 
p is a three-dimensional array of palatograms, as shown by the following: 
dim(p) 
8  8 66 
 
The first element that is returned by dim(p) refers to the number of palatographic rows and 
the second to the number of palatographic columns: these are therefore always both 8 because 
each palatogram contains contacts defined over an 8 x 8 grid. The third entry is the number of 
palatograms. The result here is 66 because, as has just been shown, this is the number of 
palatograms between the start and end times of just. 

A three-dimensional palatographic array is indexed in R with [r, c, n] where r and 
c are the row and column number of the palatogram and n is the frame number (from 1 to 66 in 
the present example). In order to get at the entire palatogram, omit the r and c arguments. So the 
first palatogram at the onset of the word just (at time 16020 ms corresponding to the first row of 
frames(coutts.epg[1,])is: 
 
p[,,1] 
   C1 C2 C3 C4 C5 C6 C7 C8 
R1  0  1  1  1  1  1  0  0 
R2  1  1  1  1  1  1  1  1 
R3  1  1  1  0  0  1  1  1 
R4  1  1  1  0  0  0  1  1 
R5  1  1  0  0  0  0  0  1 
R6  1  1  0  0  0  0  1  1 
R7  1  1  0  0  0  0  1  1 
R8  1  1  0  0  0  0  1  1 
 
In this type of array, the row and column numbers are given as the respective dimension names. 
Since the first row of the EPG3 palate has 6 contacts (i.e., it is missing the two most lateral 
contacts), the values in both row 1 column 1 and in row 1 column 8 are always zero. 
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The indexing on the palatograms works as for matrices, but since this is a 3D-array,  two 
preceding commas have to be included to get at the palatogram number: so p[,,1:3] refers to 
the first three palatograms, p[,,c(2, 4)], to palatograms 2 and 4, p[,,-1] to all 
palatograms  except the first one, and so on. It is worthwhile getting used to manipulating these 
kinds of palatographic arrays because this is often the primary data that you will have to work 
with, if you ever need to write your own functions for analysing EPG data (all of the functions 
for EPG plotting and EPG data reduction in boxes 3 and 4 of Fig. 7.3 are operations on these 
kinds of arrays). On way to become familiar with these kinds of arrays is to make up some 
palatographic data. For example: 
 
# Create 4 empty palatograms 
fake = array(0, c(8, 8, 4)) 
 
# Give fake appropriate row and dimension names for a palatogram 
rownames(fake) = paste("R", 1:8, sep="") 
colnames(fake) = paste("C", 1:8, sep="") 
 
# Fill up row 2 of the 3rd palatogram with contacts 
fake[2,,3] = 1 
 
# Fill up row 1, columns 3-6, of the 3rd palatogram only with contacts 
fake[1,3:6,3] = 1 
 
# Look at the 3rd palatogram 
fake[,,3] 
  C1 C2 C3 C4 C5 C6 C7 C8 
R1  0  0  1  1  1  1  0  0 
R2  1  1  1  1  1  1  1  1 
R3  0  0  0  0  0  0  0  0 
R4  0  0  0  0  0  0  0  0 
R5  0  0  0  0  0  0  0  0 
R6  0  0  0  0  0  0  0  0 
R7  0  0  0  0  0  0  0  0 
R8  0  0  0  0  0  0  0  0 
 
# Give contacts to rows 7-8, columns 1, 2, 7, 8 of palatograms 1, 2, 4 
fake[7:8, c(1, 2, 7, 8), c(1, 2, 4)] = 1 
 
# Look at rows 5 and 7, columns 6 and 8, of the palatograms 2 and 4: 
fake[c(5,7), c(6, 8), c(2,4)] 
, , 1 
   C6 C8 
R5  0  0 
R7  0  1 
 
, , 2 
   C6 C8 
R5  0  0 
R7  0  1 
 
The times at which palatograms occur are stored as the names of the third dimension and they 
can be set as follows: 
 
# Assume that these four palatograms occur at times 0, 5, 10, 15 ms 
times = seq(0, by=5, length=4) 
# Store these times as dimension names of fake 
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dimnames(fake)[[3]] = times 
 
This causes the time values to appear instead of the index number. So the same instruction as the 
previous one now looks like this51: 
 
, , 5 
   C6 C8 
R5  0  0 
R7  0  1 
 
, , 15 
   C6 C8 
R5  0  0 
R7  0  1 
 
Functions can be applied to the separate components of arrays in R using the apply() 
function. For 3D-arrays, 1 and 2 in the second argument to apply() refer to the rows and 
columns (as they do for matrices) and 3 to the 3rd dimension of the array, for example: 
  
# Sum the number of contacts in the 4 palatograms 
apply(fake, 3, sum)  
0  0 12  0 
 
# Sum the number of contacts in the columns 
apply(fake, c(2,3), sum) 
   0 5 10 15 
C1 2 2  1  2 
C2 2 2  1  2 
C3 0 0  2  0 
C4 0 0  2  0 
C5 0 0  2  0 
C6 0 0  2  0 
C7 2 2  1  2 
C8 2 2  1  2 
 
Notice that the above command returns a matrix whose columns refer to palatograms 1-4 
respectively (at times 0, 5, 10, 15 ms) and whose rows show the summed values per 
palatographic column. So the entries in row 1 means: the number of contacts in column 1 of the 
palatograms occurring at 0, 5, 10, 15 ms are  2, 2, 1, 2 respectively. If you want to sum (or to 
apply any meaningful function) by row or column across all palatograms together, then the 
second argument has to be 1 (for rows) of 2 (for columns) on its own. Thus: 
apply(fake, 1, sum) 
R1 R2 R3 R4 R5 R6 R7 R8  
 4  8  0  0  0  0 12 12 
 
The first returned entry under R1 means that the sum of the contacts in row 1 of all four 
palatograms together is 4 (which is also given by sum(fake[1,,])).  

As already mentioned, arrays can be combined with logical vectors in the usual way – but 
take great care where to place the comma! For example, suppose that these are four palatograms 
corresponding to the labels k, k, t, k respectively. Then the palatograms for k can be given 
by: 
 
lab = c("k", "k", "t", "k") 

                                                
51 However,  the times do not appear as dimension names if you look at only a single palatogram:  
because in this special case, an array is turned into a matrix (which has only 2 dimensions as a 
result of which  the 3rd dimension name cannot be represented). 



    159 

 

temp = lab=="k" 
fake[,,temp] 
 
and rows 1-4 of the palatograms for t are: 
 
fake[1:4,,!temp] 
 
and so on. Finally, in order to apply the functions in boxes 3 and 4 of Fig. 7.3 to made-up data of 
this kind, the data must be declared to be of class "EPG"  (this tells the functions that these are 
EPG-objects). This is done straightforwardly as: 
 
class(fake) = "EPG" 
 
 Having established some basic attributes of EPG objects in R, the two functions for 
plotting palatograms can now be considered. As Fig. 7.4 shows, palatograms can be plotted 
directly from EPG-compressed trackdata objects or from time slices extracted from these using 
dcut(), or else from the 3D palatographic arrays of the kind discussed above. We will begin 
by looking at EPG data from the third and fourth segments said Coutts. This is given by 
epgplot(coutts.epg[3:4,]) (or by epgplot(palate(coutts.epg[3:4,])) ) 
and the corresponding waveform, from which the palatograms are derived, by 
plot(coutts.sam[3:4,], type="l"). 
 
Fig. 7.4 about here 
 
Some of the main characteristics of the resulting palatograms shown in Fig. 7.4 are: 
 

• The alveolar constriction for the fricative [s] of said is in evidence in the first 7 
palatograms between 16690 ms and 16720 ms. 

• The alveolar constriction for [d] of said begins to form at 16800 ms and there is a 
complete alveolar closure for 8 palatograms, i.e., for 40 ms.  

• There is clear evidence of a doubly-articulated [d ͡k] in said Coutts (i.e., a stop produced 
with simultaneous alveolar and velar closures) between 16825 ms and 16835 ms.  

• [k] of Coutts is released at 16920 ms. 
• The aspiration of Coutts and the following [ʉ] vowel extend through to about 17105 ms. 
• The closure for the final alveolar [t] of Coutts is first completed at 17120 ms. The release 

of this stop into the final [s] is at 17205 ms.  
 

The interval including at least the doubly-articulated [d͡k] has been marked by vertical 
lines on the waveform in Fig. 7.5. This was done with the locator() function that allows any 
number of points on a plot to be selected and the values in either x- or y-dimension to be stored 
(these commands must be entered after those used to plot Fig. 7.5): 
 
# Select two time points at store the x-coordinates 
times = locator(2)$x 
 
# The vertical boundaries in Fig. 7.5 are at these times 
times 
16828.48 16932.20 
abline(v=times) 
 
Fig. 7.5 about here 
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The xlim argument can be used to plot the palatograms over this time interval and optionally 
the mfrow argument to set the number of rows and columns (you will also often need to sweep 
out the graphics window in R to get an approximately square shape for the palatograms): 
 
# A 2 × 11 display of palatograms plotted between the interval defined by times 
epgplot(coutts.epg, xlim=times, mfrow=c(2,11)) 
 
Fig. 7.6 about here 
 

The next example of manipulating and plotting electropalatographic data is taken from a 
fragment of a database of Polish fricatives that was collected in Guzik & Harrington (2007). This 
database was used to investigate the relative stability of fricatives in word-final and word-initial 
position. Four fricatives were investigated: the alveolar [s], a post-alveolar [ʃ], an alveolo-palatal 
[ɕ], and a velar [x]. They were produced in word-pairs in all possible combinations with each 
other across word boundaries. So there are sequences like [s#ʃ] (in wlos szary), [ʃ#ɕ] (in pytasz 
siostre), [x#s] (in dach sali) and so on for all possible 4 × 4 cross-word boundary combinations, 
including the homorganic sequences [s#s], [ʃ#ʃ], [ɕ#ɕ], [x#x]. The database fragment polhom 
is of the homorganic sequences produced by one native, adult male speaker of Polish. The 
palatographic data was sampled at 100 Hz: 
 
polhom  Segment list of Polish homorganic fricatives 
polhom.l  A parallel vector of labels (s, S, c, x, for [s#s], [ʃ#ʃ], [ɕ#ɕ], [x#x]) 
polhom.epg Parallel EPG trackdata 
 
As table(polhom.l) shows, there are 10 homorganic fricatives in each category. If you 
have accessed the corresponding database epgpolish from the Arrange tools → DB 
Installer in Emu, then you will see that the segment boundaries in the segment list polhom 
extend approximately from the acoustic onset to the acoustic offset of each of these homorganic 
fricatives.  
 
Fig. 7.7 about here 

The first task will be to compare [s] with [ʃ] as far as differences and similarities in 
palatographic contact patterns are concerned and this will be done by extracting the 
palatographic frames closest to the temporal midpoint of the fricatives. The data for [s] and [ʃ] 
are accessed with a logical vector, and dcut() is used for extracting the frames at the midpoint: 
 
# Logical vector to identify [s] and [ʃ] 
temp = polhom.l %in% c("s", "S") 
 
# EPG-compressed trackdata for [s] and [ʃ] 
cor.epg = polhom.epg[temp,] 
 
# Matrix of EPG-compressed data for [s] and [ʃ] at the temporal midpoint 
cor.epg.5 = dcut(cor.epg, 0.5, prop=T) 
 
# Labels for the above 
cor.l = polhom.l[temp] 
 
sum(temp) shows that there are 20 fricatives and table(cor.l) confirms that there are 10 
fricatives per category. The following produces a plot like Fig. 7.7 of the palatograms at the 
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temporal midpoint, firstly for [s], then for [ʃ]. Rather than displaying the times at which they 
occur, the palatograms have been numbered with the num=T argument: 
 
temp = cor.l =="s" 
epgplot(cor.epg.5[temp,], num=T) 
epgplot(cor.epg.5[!temp,], num=T) 

 
As expected, the primary stricture for [s] is further forward than for [ʃ] as shown by the presence 
of contacts for [s] but not for [ʃ] in row 1. A three-dimensional, gray-scale image can be a useful 
way of summarising the differences between two different types of segments: the function for 
doing this is epggs(): 
 
par(mfrow=c(1,2)) 
epggs(cor.epg.5[temp,], main="s") 
epggs(cor.epg.5[!temp,], main="S") 
 
Fig. 7.8 about here 
 
At the core of epggs() is a procedure for calculating the proportional number of times a cell 
was contacted. When a cell is black, then it means that it was contacted in all the palatograms 
over which the function was calculated, and when a cell is white, then there were no contacts. 
Thus for [s] in Fig. 7.8, the entire first column is black in this three-dimensional display because, 
as Fig. 7.7 shows, all ten palatograms for [s] have their contacts on in column 1; and columns 3 
and 5 of rows 1 for [s] are dark-gray, because, while most [s] palatograms had a contact for these 
cells (numbers 2, 5, 6, 9, 10 in Fig. 7.7), others did not.  
 
7.3. EPG data reduced objects 
 As discussed earlier, various functions can be applied to EPG-data that reduce each 
palatogram to a single value (Fig. 7.3, box 4). The most basic of these is a function for producing 
a contact profile in which the contacts per palate are summed (7.3.1). The other data reduction 
functions which are discussed in 7.3.2 are essentially further operations on contact profiles. In 
7.4, some of these data reduction functions are put to use for measuring the extent of overlap in 
consonant clusters and vowel-induced consonantal coarticulation. 
 All data reduction functions work on the same kinds of EPG-objects as those for plotting 
electropalatographic data in 7.3. Thus, they can be applied to EPG-compressed trackdata objects, 
a matrix of EPG-compressed data extracted at a single time slice, or to a 3D-palatographic array. 
In all cases, the output is a single value per palatogram: if the data reduction functions are 
applied to an EPG-compressed trackdata object, these values are structured into a trackdata 
object. These points are elaborated further in the next section. 
 
7.3.1 Contact profiles 
 A contact profile is a form of data reduction in which palatographic data are summed by 
row(s) and/or by column(s). Contact profiles have a number of applications in phonetics: they 
can be used to distinguish between stops and fricatives at the same place of articulation (by 
summing the number of contacts in certain rows) or between different places of articulation (by 
summing contacts in different rows). 

 The function for calculating a contact profile is epgsum() and its default is to sum all 
the contacts per palate. Thus for the 3D-array fake created earlier, epgsum(fake) gives 
the same result as the operation applied in 7.2 for summing contacts in the four palatograms,  
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apply(fake, 3, sum)52. But epgsum() can also be used to sum selectively by row and 
column. So epgsum(fake, rows=1:4) sums the contacts in rows 1-4, epgsum(fake, 
rows=1:4, columns=c(1, 2, 7, 8)) sums contacts in rows 1-4 of columns 1, 2, 7 
and 8. The additional argument inactive=T can be used to sum the inactive electrodes (the 
0s of the palatograms)  also by row and by column. The default is to sum the entire palatogram 
(in selected rows and or columns) but it is also possible to show the summations for the separate 
rows or columns using a second argument of 1 (for rows) or 2 (for columns). For example, in the 
previous section it was shown how apply(fake, c(2,3), sum) gives the  sum of the  
contacts in the columns: an equivalent way of doing this is  epgsum(fake, 2). See 
help(epgsum) for further examples. 
 In Fig. 7.4, the separate palatograms at 5 ms intervals were shown for the words said 
Coutts. By making a display of the summed contacts in rows 1-3, the articulations in the front 
part of the palate should become very clearly visible, while a summation in the back two rows 
over columns 3-6 should produce a display which is associated with the degree of tongue-
dorsum contact in /k/ of Coutts. Here are these two contact profiles: 
 
# Sum rows 1-3 of the EPG-trackdata object over said  
fsum = epgsum(coutts.epg[3:4,], rows=1:3) 
 
# Sum rows 7-8, columns 3-6 of the EPG-trackdata object over said Coutts 
bsum = epgsum(coutts.epg[3:4,], rows=7:8, columns=3:6) 
 
A plot of the contact profiles superimposed on each other together with the waveform is shown 
in Fig. 7.9 and can be produced as follows: 
 
# Column-bind the trackdata objects 
both = cbind(fsum, bsum) 
 
# save the defaults for setting graphical parameters 
oldpar = par(no.readonly = TRUE) 
 
par(mfrow=c(2,1)); par(mar=c(1,4,1,1)) 
xlim = c(start(coutts[3,]), end(coutts[4,])) 
plot(both, type="l", ylab="Summed contacts", xlab="", axes=F, 
xlim=xlim) 
axis(side=2); axis(side=1) 
mtext("Time (ms)", side=1, at=17300) 
 
# Superimpose some symbols 
text( c(16816, 16846,  17158,  17291), c(19.6,  8.7,  17.1, 
15.0), c("d", "k", "t", "s")) 
 
# Plot the synchronised acoustic waveform 
plot(coutts.sam[3:4,], type="l", axes=F, xlab="Time (ms)", 
ylab="", xlim=xlim) 
 
# Restore the margin defaults 
par(mar = oldpar$mar) 
 
Fig. 7.9 about here 
                                                
52 As described earlier, fake must an object of class EPG for this to work. So if 
class(fake) returns array, then enter class(fake) = "EPG" 
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The synchronised contact profiles in Fig. 7.9 provide a great deal of information about the 
overlap and lenition of the alveolar and velar articulations. For example: 

• The tongue dorsum for [k] already begins to rise during [ɛ] of said. 
• The maximum overlap between [d] and [k] is at the point of the final stop release in said. 
• The [t] of Coutts is less lenited compared with [d] of said, as shown by the greater 

number of contacts for the former extending over a greater duration. 
 
 Contact profiles could be used to distinguish between the Polish [s,ʃ] fricatives discussed 
earlier according to the central groove width which could be defined as the smallest number of 
inactive electrodes in any row over the central columns 3-6. For example, in the first five 
palatograms of [s] in Fig. 7.7, this central groove width is 3, 1, 2, 2, 1 respectively. For the first 5 
[ʃ] palatograms in Fig. 7.7, the central groove width is usually at least one inactive contact 
greater. 

In order to obtain groove widths for the data in Fig. 7.7, the first step is to count the 
number of inactive electrodes (i.e., those with a value of zero) over a particular row and column 
range: we will restrict this to the first four rows and to columns 3-6, since, as Fig. 7.7 shows, this 
is the region of the palate within which the point of maximum narrowing occurs: 

 
# Commands repeated from before 
temp = polhom.l %in% c("s", "S") 
cor.epg = polhom.epg[temp,] 
cor.epg.5 = dcut(cor.epg, 0.5, prop=T) 
cor.l = polhom.l[temp] 
 
# Count the number of inactive electrodes in rows 1-4, columns 3-6 
in.sum = epgsum(cor.epg.5, 1, rows=1:4, columns=3:6, inactive=T) 
 
# Show the first two rows of in.sum 
in.sum[1:2,] 
     R1 R2 R3 R4 
2120  3  3  4  4 
1170  1  1  3  4 
 
So that it is completely clear what is being counted, the first two palatograms of the array are 
listed below. The count on the right is of the zeros in bold: 
 
p = palate(cor.epg.5) 
p [,,1:2] 
 
, , 2120 
 
   C1 C2 C3 C4 C5 C6 C7 C8 
R1  0  1  0  0  0  1  1  0   3 
R2  1  1  0  0  0  1  1  1   3 
R3  1  1  0  0  0  0  1  1   4 
R4  1  1  0  0  0  0  0  1   4 
R5  1  0  0  0  0  0  0  0 
R6  1  0  0  0  0  0  0  1 
R7  1  0  0  0  0  0  0  1 
R8  1  0  0  0  0  0  1  1 
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, , 1170 
 
   C1 C2 C3 C4 C5 C6 C7 C8 
R1  0  1  1  0  1  1  1  0   1 
R2  1  1  1  0  1  1  1  1   1 
R3  1  1  0  0  0  1  1  1   3 
R4  1  1  0  0  0  0  1  1   4 
R5  1  0  0  0  0  0  0  0 
R6  1  0  0  0  0  0  0  1 
R7  1  0  0  0  0  0  0  1 
R8  1  0  0  0  0  0  1  1 
 
A function is needed to get the minimum groove width  – that is, the function should return 3 and 
1 respectively for the above two palatograms. Since in.sum is a matrix, this can be done with 
the apply() function: 
 
# Find the row with the fewest 0s and return the number of 0s for that row 
min.groove = apply(in.sum, 1, min) 
 
# Minima for the first two palatograms above: this is correct (see the palatograms above) 
min.groove[1:2] 
2120 1170  
   3    1  
 
Fig. 7.10 about here 
 
The histogram in Fig. 7.10 of the minimum groove width provides some limited evidence that it 
is less for [s] than for [ʃ]. The histogram was created with the following commands:  
 
xlim = c(1,3); ylim = c(0, 6); par(mfrow=c(1,2)) 
xlab = "Min groove width" 
 
# Logical vector that is True for [s] 
temp = cor.l=="s" 
hist(min.groove[temp], col="gray", main="s", xlim=xlim, 
ylim=ylim, xlab=xlab) 
hist(min.groove[!temp], col="slategray", main="S", xlim=xlim, 
ylim=ylim,  xlab=xlab) 
 

The above analysis was for one single palatogram per segment extracted at the temporal 
midpoint. The same kind of analysis could be carried out for every palatogram between the 
temporal onset and offset of these fricatives. This would allow us to see not only if there is a 
difference in minimum groove width between [s,ʃ], but also whether groove width decreases 
from the fricative margins towards the fricatives' temporal midpoint (this is to be expected given 
that the homorganic fricatives were flanked by vowels and given that the extent of stricture in 
fricative production tends to increase from the margins towards the temporal midpoint).  

The first step is to count the number of inactive electrodes in rows 1-4 and columns 3-6 
as before, but this time for all the palatograms contained in the entire EPG-compressed trackdata 
object. This is done in the following command by summing the number of inactive electrodes 
from the onset to the offset for all segments in the EPG-trackdata object polhom.epg and 
storing the count separately by row: 

 
in.sum.all = epgsum(polhom.epg, 1, rows=1:4, columns=3:6, 
inactive=T) 
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Fig. 7.11 about here 
 
The object in.sum.all is four-dimensional (as shown by summary(in.sum.all) ) and 
consists of the sum of inactive electrodes in rows 1-4 of columns 3-6 for every palatogram 
between the onset and offset of each fricative. So that it is clear what has just been calculated, 
Fig. 7.11 shows the EPG data for the 10th segment (given by 
epgplot(polhom.epg[10,])), together with the corresponding minimum groove widths 
(given by frames(in.sum.all[10,]) ). Thus, the values of the rows at 1290 ms in the 
matrix on the right of Fig. 7.11 are 1, 1, 3, 4 because this is the count of inactive electrodes in 
rows 1-4, columns 3-6 of the palatogram shown on the left at that time. A function is now 
needed similar to the one before to find the minimum value per row in the EPG frames: 
 
minfun <- function(contacts) 
{ 
   # Find the minimum per row 
   apply(contacts, 1, min) 
} 
 
When this function is applied to the data of the 10th segment, the minimum groove widths of the 
palatograms at intervals of 10 ms between the start and end time of the 10th segment are 
returned: 
 
minfun(frames(in.sum.all[10,])) 
1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 
   2    1    1    1    1    1    1    1    1    1    2    3    4 
 
This function must now be applied to every segment which can be done using the trapply() 
function with returntrack=T to build a corresponding trackdata object (see 5.5.2): 
 
groove.min = trapply(in.sum.all, minfun, returntrack=T) 
 
 A plot of the 10th segment of this trackdata object should give the same values that were 
returned by minfun(frames(in.sum.all[10,]), which is indeed the case (Fig. 7.12). 
 
plot(groove.min[10,], type="b", ylab="Minimum groove width", 
xlab="Time (ms)") 
 
Fig. 7.12 about here 
 
Finally, a plot from segment onset to segment offset should show both the differences on this 
parameter between [s] and [ʃ] and also a progressively decreasing minimum groove width 
towards the temporal midpoint of the segments, as the fricative's stricture is increased. Such a 
plot can be produced with dplot() and in this example, the 10 fricatives per category are 
averaged after linear time normalisation (Fig. 7.13): 
 
temp = polhom.l %in% c("s", "S") 
dplot(groove.min[temp,], polhom.l[temp], norm=T, average=T, 
ylab="Minimum groove width", xlab="Normalised time", 
leg="topleft") 
 
Fig. 7.13 about here 
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Evidently, the groove width decreases on average towards the temporal midpoint for [ʃ] and 
somewhat after the temporal midpoint for [s]. Fig. 7.13 also shows that the groove width for [s] 
is well below that of [ʃ] at equal proportional time points from segment onset to segment offset. 
 
7.3.2 Contact distribution indices 
 As discussed in Gibbon & Nicolaidis (1999), various EPG parameters have been devised 
for quantifying both the distribution and the extent of tongue palate contacts. Almost all of these 
are based on some form of summation of the palates (see e.g., Recasens et al., 1993; Hardcastle, 
Gibbon and Nicolaidis, 1991 for details). These are the anteriority index (AI), the centrality 
index (CI), the dorsopalatal index (DI) and the centre of gravity (COG). The first three of 
these all vary between 0 and 1 and COG varies between 0.5 and 7.6. The R functions in the 
Emu-R library for calculating them are epgai(), epgci(), epgdi(), and epgcog() 
respectively. 
 
Fig. 7.14 about here 
 
 The anteriority index quantifies how far forward the contacts are on the palate in rows 1-
5.  Rows 6-8 are not taken into account in this calculation. AI is especially useful for quantifying 
the place of articulation as far back as the post-alveolar zone (row 5) and can also be used to 
quantify the degree of stricture for two consonants at the same place of articulation. The data in 
Fig. 7.14 shows AI for various made-up palatograms. (Details of how to produce these are given 
at the end of this Chapter in the exercises).  Four general principles are involved in calculating 
AI (Fig. 7.14): 
 

1. The further forward the contacts in any row, the higher AI. Thus, the palatogram with the 
filled row of contacts in row 1 in (a) has a higher AI value than (c) for which the contacts 
are filled in row 2. AI decreases from 0.9822 (filled row of contacts in row 1) to 0.08 
(filled row of contacts in row 5). Any palatogram with contacts exclusively in rows 6-8 
has an AI of 0. 

 
2. Any single contact in row i always has a higher AI than any number of contacts in row j, 

where i < j. So the AIs for palatograms (b) and (d) that each have a single contact in row 
2 are greater than the AI of palatogram (e) in which all contacts are filled in a lower row 
number, row 3.   

 
3. The same number of contacts in any row has the same AI irrespective of their lateral 

distribution (distribution by column). So the fact that the lateral distribution of the single 
contact is different in palatograms (b) and (d) makes no difference as far as AI is 
concerned, since both palatograms have a single contact in row 2. 

 
4. The greater the number of contacts, the higher AI – but only up to the limit specified by 

2. above. So palatogram (f) which has rows 3-5 completely filled has a higher AI than 
palatogram (e), in which only row 3 is filled; but since palatogram (f) has no contacts 
forward of row 3, its AI is lower than those of (b) or (c) that have a single contact  in row 
2. 

 
Fig. 7.15 about here 
 
The centrality index (CI), as its name suggests, measures the extent of contact at the centre of 
the palate and varies between 0 and 1. In general, the more the contacts are laterally distributed, 
the lower the value of CI. This parameter could be used to distinguish between consonants that 
have a narrow vs. wide central groove, as in the [s,ʃ] fricatives discussed earlier. The actual 
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calculation of CI can be explained in terms of a set of principles that are very similar to those of 
AI, except that they are based on columns and the relative lateralisation of contacts: 
 

1. In the case of a single filled column of contacts, CI is higher nearer the centre of the 
palate: thus higher for filled columns 4 or 5 (palatograms (b), (e) in Fig. 7.15) than for the 
more laterally filled columns 3 or 6 (palatograms (a), (d)). 

  
2. Any single contact in a given column has a higher CI than a palatogram filled with any 

number of contacts in more lateral columns. So the CIs for palatograms (g) and (h) which 
have a single contact in columns 4 and 5 are higher than those of  palatograms (a) and (d) 
in which all contacts are filled in the more lateral columns 3 and 6.  

 
3. The same number of contacts in any column has the same CI irrespective of the 

distribution by row:  thus, palatograms (g) and (h) have the same CI. 
 

4. The greater the number of contacts, the higher CI  – but only up to the limit specified by 
2. above. 

 
Fig. 7.16 about here 
 
The dorsopalatal index (DI) also varies between 0 and 1 and is a measure of the extent of 

contact in the last three rows, i.e. in the palatal and post-palatal region. It is a simple proportional 
measure: when all 24 electrodes are contacted in rows 6-8, then DI has a value of 1; if 12 are 
contacted, then DI is 0.5, etc. 

Finally, the centre of gravity index (COG) is a measure of the distribution of the place of 
articulation between the front and back of the palate: further advanced/retracted places of 
articulation are associated with higher/lower COG values. COG varies between 7.6 (when row 1 
alone is filled) to 0.5 (when row 8 alone is filled). COG is calculated from a weighted average of 
the sum of contacts in the rows, where the weights on rows 1-8 are 7.6, 6.5…0.5.  For example, 
for palatogram (c) in Fig. 7.16, COG is calculated as follows: 
 
# Sum of the contacts in rows 1-8 for (c) in Fig. 7.16 
contacts = c(0, 0, 0, 2, 2, 3, 4, 4) 
 
# Weights on rows 1-8 
weights = seq(7.6, 0.5, by = -1) 
 
# COG for (c) 
sum(contacts * weights)/sum(contacts) 
2.2 
 
In Fig 7.16, (a) and (b) have the same contact patterns, except that in (b) some contacts in the 
first row are missing. Thus, the overall distribution of contacts is further towards the front in (a) 
than in (b) and so COG is higher. (c) and (d) have no contacts in the first three rows and so have 
lower COG values than those of either (a) or (b). Finally (c) and (d) have the same pattern of 
contacts except that in (d) the last row is filled: consequently the overall distribution of contacts 
in (d) is furthest towards the back of all the palatograms and so it has the lowest COG of all.  
 An example of how AI, DI and COG vary is shown for the first two words just relax 
from the epgcoutts database considered earlier in Fig. 7.17. AI, DI, and COG for the first two 
segments are obtained as follows: 
 
ai = epgai(coutts.epg[1:2,]) 
di = epgdi(coutts.epg[1:2,]) 
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cog = epgcog(coutts.epg[1:2,]) 
 
# Save the default graphical parameters 
oldpar = par(no.readonly=TRUE) 
 
# Set the display for a 3 x 1 plot and define the margins 
par(mfrow=c(3,1)); par(mar=c(1, 2, 1, 1)) 
 
# Waveform 
plot(coutts.sam[1:2,], type="l", axes=F, ylab="Amplitude")  
axis(side=1) 
mtext("Time (ms)", side=1, at=16600, line=-1) 
 
# AI and DI 
plot(cbind(ai, di), type="l", axes=F)  
axis(side=2, line=-1) 
 
# Some superimposed labels 
text(c(16048,  16250,  16434,  16616,  16674), c(0.80, 0.88, 
0.60, 0.69, 0.82), c("dZ", "t", "l", "k", "s")) 
 
# COG 
plot(cog, type="l", axes=F, ylab="COG") 
axis(side=1) 
 
# Mark in some time values 
times = c(16050, 16250, 16442, 16600, 16650)  
abline(v=times) 
 
# Restore the plotting device defaults 
par(oldpar) 
 
# Plot palatograms at these time values 
epgplot(coutts.epg[1:2,], times, mfrow=c(1,5)) 
 
Fig. 7.17 about here 
 
The contact profiles in Fig. 7.17 lead to the following conclusions: 
 

• AI is somewhat lower for the lateral of relax than either [ʤ] (dZ) or [st] of just because, 
in contrast to these segments, [l] has only one contact in the first row, as the palatogram 
at 16440 ms shows.  

 
• DI has a high value during [ʤ] and this is because, as the palatogram at 16050 ms shows, 

there is quite a lot of contact in the back three rows.  
 

• COG often tends to track AI quite closely and this is also evident for the data in figure 
7.17. However unlike AI, COG takes account of the overall distribution of the contacts 
from front to back; and unlike AI, COG is not biased towards giving a higher ranking if 
there is a single contact in a low row number. Therefore, because the two leftmost 
palatograms in Fig 7.17 have contacts in the first row, they have high AI values which 
are higher than those of the 3rd palatogram from the left at 16440 ms during [l]. But of 
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these three, the leftmost palatogram at 16050 ms has the lowest COG because of the large 
number of contacts in the back rows. 

 
 Finally, some of these data-reduction parameters will be applied to the Polish fricatives 
considered earlier. For this analysis, the data from the alveolo-palatal [ɕ] is included as well as 
from [s,ʃ]. Here again is a grayscale palatographic display, this time averaged over the middle 
third of each fricative: 
 
par(mfrow=c(1,3)) 
for(j in c("s", "S", "c")){ 
   temp = polhom.l == j 
   epggs(dcut(polhom.epg[temp,], .33, .67, prop=T), main=j) 
} 
 
Fig. 7.18 about here 
 
These greyscale palatographic displays in Fig. 7.18 can be used to make various predictions 
about how these three places of articulation might be separated on some of the EPG data 
reduction parameters: 
 

• AI:  highest for [s] (greatest number of contacts in rows 1 and 2) and possibly higher for 
[ɕ] than for [ʃ] (more contacts in rows 1-2). 

• DI: highest for [ɕ] (greatest number of contacts in rows 5-8) 
• CI: lowest for [ʃ] (least number of contacts medially in columns 4-5) 
• COG: highest for [s], possibly with little distinction between [ʃ] and [ɕ] since the 

distribution of contacts from front to back is about the same for these fricatives. 
 
In the example in Fig. 7.19, these parameters were calculated across the entire temporal extent of 
the homorganic fricatives. Since the fricatives were flanked by vowels, then the parameters 
might be expected to rise towards the temporal midpoint in most cases. The commands for 
creating Fig. 7.19 are as follows. 
 
# AI, DI, CI, COG 
ai = epgai(polhom.epg);  di = epgdi(polhom.epg) 
ci = epgci(polhom.epg);  cog = epgcog(polhom.epg) 
 
# Logical vector to identify the three fricatives 
temp = polhom.l %in% c("s", "S", "c") 
 
par(mfrow=c(2,2)); par(mar=c(1,2,1.3,1)) 
dplot(ai[temp,], polhom.l[temp], offset=.5, axes=F, main="AI", 
bty="n") 
axis(side=2) 
dplot(di[temp,], polhom.l[temp], offset=.5, axes=F, legend=F, 
main="DI", bty="n") 
axis(side=2) 
dplot(ci[temp,], polhom.l[temp], offset=.5, legend=F, axes=F, 
main="CI", bty="n") 
axis(side=1, line=-1); axis(side=2) 
mtext("Time (ms)", side=1, at=120, line=0) 
dplot(cog[temp,], polhom.l[temp], offset=.5, legend=F, axes=F, 
main="COG", bty="n") 
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axis(side=1, line=-1); axis(side=2) 
 
Fig. 7.19 about here 
 
Three of the parameters distinguish one fricative category from the other two: thus DI separates 
[ɕ] from [s,ʃ], CI separates [ʃ] from [s,ʃ,ɕ], COG separates [s] from [ɕ,ʃ] while AI produces a 
clear distinction between all three categories. 
 
7.4. Analysis of EPG data 
 The mechanisms are now in place to carry out many different kinds of analysis using 
electropalatographic data. Two common kinds of investigation to which an EPG-analysis is 
particularly suited are presented in this section: an investigation into the extent of consonant 
overlap in alveolar-velar consonant clusters (7.4.1); and vowel-induced place of articulation 
variation in dorsal fricatives and stops (7.4.2). 
 
7.4.1 Consonant overlap 
 The database fragment in this section is part of a larger database that was collected and 
analysed by Lisa Stephenson (Stephenson, 2003, 2004, 2005; Stephenson & Harrington, 2002) in 
studying consonant overlap in the production of blends in English and Japanese. In her 
experiments, subjects saw two hypothetical town names on a screen and had to produce a blend 
from the two words as quickly as possible after seeing them. They might see for example 
Randon and Pressgate and the task was to produce a blend by combining the first syllable of the 
first word with the second syllable of the second word, thus Rangate.  

Stephenson's database included a number of blends formed with combinations of /n/ and 
a following consonant and in the analysis in this section, two of these types will be compared:  
blends formed with /nk, ng/ and blends formed with /sk, sg/ clusters. No differentiation will be 
made between the voicing status of the final consonant: so the comparison is between /nK/ vs. 
/sK/ where /K/ stands for either /k/ or /g/. The question that is addressed is the following: is the 
extent of alveolar-velar overlap the same in /nK/ and /sK/? 

As an initial hypothesis, it is reasonable to expect more overlap in /nK/ for at least two 
reasons. Firstly because of the well-known tendency for /n/ to assimilate in this context (see e.g., 
Hardcastle, 1994) whereas /s/ does not audibly retract its place of articulation in e.g., mascot or 
must get and is often resistant to coarticulatory influences (e.g., Recasens, 2004). Secondly, 
whereas it is quite possible to sustain an alveolar [n] production when there is tongue-dorsum 
contact at the velum for [k] or for [g], this type of overlapping or double-articulation is likely to 
be more difficult in [sk] or [sg]: this is because if there is substantial velar closure during the 
production of the alveolar, then the airflow through the oral cavity will be inhibited as a result of 
which it will be difficult to sustain the high aerodynamic power required for the production of 
the sibilant fricative [s]. 

The available database fragment is epgassim and there are the usual sets of parallel R 
objects associated with this: 

 
engassim   Segment list from the acoustic onset to the  

 acoustic offset of the entire [nk,ng,sk,sg] sequences 
engassim.l  Label vector of the above. nK for [nk, ng] vs.  sK for [sk, sg]. 
engassim.w  Label vector of the words from which the sequences  
    were derived. 
engassim.epg  Parallel EPG trackdata at a frame rate of 5 ms. 
 
Fig. 7.20 about here 
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In 7.3 it was shown how the anteriority and dorsopalatal indices tend to provide positive 
evidence for productions at alveolar and velar places of articulation respectively. The data will 
therefore be analysed for these parameters, but as with any more complicated parametric 
analysis, it is always a good idea to look at some samples of the data first. A plot of all of the nK 
data separately per segment and from the onset of the [n] to the offset of the velar can be 
produced as follows. (Use the left-mouse button to advance through each plot; you will have to 
do this 17 times, since there are 17 nK segments. Use the same commands to get the 
corresponding sK data, but replace temp with its logical inverse !temp). The EPG frames 
from the first run through the loop (for the first nK and sK segments) are shown in Fig. 7.20: 
 
temp = engassim.l == "nK" 
for(j in 1:sum(temp)){ 
   # Show palate numbers rather than times 
   epgplot(engassim.epg[temp,][j,], numbering=T) 
   # Left mouse button to advance 
   locator(1) 
} 
 
Palatograms from two segments are shown in Fig. 7.20: on the left is /nk/from duncourt and on 
the right, /sk/ from bescan. For /nk/ on the left, the alveolar stricture increases from palatogram 
2. It is complete by palatogram 6 and the release of the alveolar occurs 50 ms after that by frame 
16. The same display shows how the velar closure begins to form during this interval such that 
the maximum visible extent of velar closure takes place by frame 16. Evidently then, although 
the alveolar and velar articulations are not simultaneous (i.e., are not completely doubly 
articulated), they overlap a good deal. Consider now /sk/ in Fig. 7.20. The alveolar constriction 
for [s] extends approximately over 115 ms between palatograms 10 and 23, but the greatest 
degree of narrowing for the velar stop /k/ does not take place until well after this at frame 31.  
 The aim now is to see whether there is any evidence for a greater extent of alveolar-velar 
overlap in nK in all of the data, using anteriority and dorsopalatal indices to parameterise the 
extent of contact at the front and at the back of the palate respectively: 
 
ai = epgai(engassim.epg); di = epgdi(engassim.epg) 
par(mfrow=c(1,2)) 
temp = engassim.l == "nK" 
 
# Data for nK 
dplot(ai[temp,], ylim=c(0,1), main="/nK/", lwd=2, leg=F) 
par(new=T) 
dplot(di[temp,], ylim=c(0,1), col="slategray", lwd=2, leg=F) 
 
# Data for sK 
dplot(ai[!temp,], ylim=c(0,1), main="/sK/", lwd=2, leg=F) 
par(new=T) 
dplot(di[!temp,], ylim=c(0,1), col="slategray", lwd=2, leg=F) 
 

It is apparent from Fig. 7.21 that the tongue-dorsum activity for [k] is timed to occur a good deal 
earlier relative to the preceding consonant in the clusters with [n] compared with those of [s]. In 
particular, the left panel of Fig. 7.20 shows how the dorsopalatal index rises throughout the AI-
plateau for [n]; by contrast, there is a dorsopalatal trough for most of the AI-plateau for [s] 
between roughly 40 ms and 100 ms on the right. 
 
Fig. 7.21 about here 
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 The differences in the extent of alveolar-velar overlap could be further highlighted by 
producing grayscale EPG-images at about 50 ms after the acoustic onset of the consonant 
cluster:  as Fig. 7.20 shows, this is approximately the time at which the AI maxima are first 
attained in nK and sK.  
 
par(mfrow=c(1,2)) 
temp = engassim.l == "nK" 
epggs(dcut(engassim.epg[temp,], start(engassim[temp,])+50), 
main="/nK/") 
epggs(dcut(engassim.epg[!temp,], start(engassim[!temp,])+50), 
main="/sK/") 
 
The grayscale images in Fig. 7.22 show greater evidence of alveolar-velar overlap for /nK/ 
which, in contrast to /sK/, has more filled cells in the last two rows. 
 
Fig. 7.22 about here 
 
7.4.2 VC coarticulation in German dorsal fricatives 
 The analysis in this section is concerned with dorsal fricative assimilation in German and 
more specifically with whether the influence of a vowel on the following consonant is greater 
when the consonant is a dorsal fricative, which, for compatibility with the machine readable 
phonetic alphabet, will be denoted phonemically as /x/, compared with an oral stop, /k/. This 
analysis was carried out in a seminar at the IPDS, University of Kiel, and then further developed 
in a paper by Ambrazaitis & John (2004).  
 In German, a post-vocalic dorsal fricative varies in place of articulation depending 
largely on the backness of a preceding tautomorphemic vowel. After front vowels, /x/ is 
produced in Standard German and many German varieties as a palatal fricative (e.g., [ri:ç], [lɪçt], 
[pɛç]; riech/smell, Licht/light, Pech/bad luck respectively), as a velar fricative after high back 
vowels (e.g. [bu:x],  Buch/book) and quite possibly as a uvular fricative after central or back non-
high vowels  (e.g., [maχ], make; [lɔχ], Loch/hole). In his extensive analysis of German 
phonology, Wiese (1996) raises the interesting point that, while this type of vowel-dependent 
place of articulation in the fricative is both audible and well-documented, the same cannot be 
said for analogous contexts with /k/. Thus, there are tautomorphemic sequences of /i:k, ɪk, ɛk/ 
(flieg/fly; Blick/view; Fleck/stain), and of /u:k, ɔk/ (Pflug/plough; Stock/stick) and of /ak/ 
(Lack/paint). However, it not so clear either auditorily nor from any experimental analysis 
whether there is the same extent of allophonic variation between palatal and uvular places of 
articulation.  

We can consider two hypotheses as far as these possible differences in coarticulatory 
influences on /x/ and /k/ are concerned. Firstly, if the size of coarticulatory effects is entirely 
determined by the phonetic quality of the preceding vowel, then there is indeed no reason to 
expect there to be any differences in the variation of place of articulation between the fricative 
and the stop: that is, the extent of vowel-on-consonant coarticulation should be the same for 
both. However, perhaps the coarticulatory variation is simply much less audible in the case of /k/ 
because the release of the stop, which together with the burst contains most of the acoustic cues 
to place of articulation, is so much shorter than in the fricative. The alternative hypothesis is that 
there is a categorical distinction between the allophones of the fricative, but not between those of 
/k/. Under this hypothesis, we might expect not only a sharper distinction in speech production 
between the front and back allophones of the fricative but also that the variation within the front 
or back allophones might be less for the fricative than the stop.  

 It is certainly difficult to answer this question completely with the available fragment of 
the database of a single speaker, but it is nevertheless possible to develop a methodology that 
could be applied to many speakers in subsequent experiments. The database fragment here is 
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epgdorsal that forms part of a corpus recorded by phonetics students at the IPDS Kiel in 2003 
and also part of the study by Ambrazaitis & John (2004). The EPG data was recorded at a frame 
rate of 10 ms at the Zentrum für allgemeine Sprachwissenschaft in Berlin. For the recording, the 
subject had to create and produce a street name by forming a blend of a hypothetical town name 
and a suffix that were shown simultaneously on a screen. For example, the subject was shown 
RIEKEN and –UNTERWEG at the same time, and had to produce RIEKUNDERWEG as 
quickly as possible. In this example, the underlined part of this blend includes /i:kʊ/. Blends 
were formed in an analogous way to create /V1CV2/ sequences where V1 included vowels 
varying in backness and height, C = /k, x/, and V2 = /ʊ, ɪ/. In all cases, primary stress is 
necessarily on V2. To take another example, the subject produced RECHINSKIWEG in response 
to RECHEN and –INSKIWEG resulting in a blend containing /ɛxɪ/ over the underlined 
segments.  

For the database fragment to be examined here, there are six different V1 vowels whose 
qualities are close to IPA [i:, ɪ, ɛ, a,  ɔ, ʊ] (i, I, E, a, O, U respectively in this database) and 
that vary phonetically in backness more or less in the order shown. So assuming that the 
following V2 = /ʊ, ɪ/ has much less influence on the dorsal fricative than the preceding vowel, 
which was indeed shown to be the case in Ambrazaitis & John (2004), we can expect a relatively 
front allophone of the fricative or stop after the front vowels  [i:, ɪ, ɛ] but a back allophone after 
[ɔ, ʊ]. 
 The following parallel objects are available in the dataset dorsal for investigating this 
issue. With the exception of dorsal.bound which marks the time of V1C acoustic boundary, 
their boundary times extend from the acoustic onset V1 to the acoustic offset of C (the acoustic 
offset of the dorsal): 
 
dorsal   Segment list of V1C (C = /k, x/)  
dorsal.epg  EPG-compressed trackdata of  dorsal 
dorsal.sam  sampled waveform trackdata of dorsal 
dorsal.fm   Formant trackdata of dorsal 
dorsal.vlab  Label vector of V1 (i, I, E, a, O, U) 
dorsal.clab  Label vector of C  (k or x) 
dorsal.bound  Event times of the acoustic V1C boundary 
 
There were 2 tokens per /V1CV2/ category (2 tokens each of /i:kɪ/, /i:kʊ/, /i:xɪ/, /i:xʊ/, … etc.) 
giving 4 tokens for each separate V1 in /V1k/ and 4 tokens per /V1x/ (although since V1 was not 
always realised in the way that was intended  - e.g., /ɪ/ was sometimes produced instead of /i:/ - 
there is some deviation from this number, as table(label(dorsal)) shows). In order to 
be clear about how the above R objects are related, Fig. 7.23 shows the sampled waveform and 
electropalatographic data over the third segment in the database which, as 
label(dorsal[3,]) shows, was ak53: 
 
plot(dorsal.sam[3,], type="l",main="ak", xlab="Time (ms)", 
ylab="", axes=F, bty="n") 
axis(side=1) 
epgplot(dorsal.epg[3,], mfrow=c(2,8)) 
 
For the investigation of the variation in place of articulation in dorsal consonants, the anteriority 
index is not appropriate because this only registers contact in rows 1-5. The dorsopalatal index 
might shed more light on place of articulation variation: however, given that it is based on 

                                                
53 The waveform and EPG-data have to  be created as separate plots in the current 
implementation of Emu-R. 



    174 

 

summing the number of contacts in the back three rows, it is likely to register differences 
between the lesser stricture of the fricatives than the stops. But this is not what is needed. 
Instead, we need a parameter that is affected mostly by shifting the tongue from front to back 
along the palate and which does so in more or less the same way for the fricative and the stop 
categories.  
 The parameter that is most likely to be useful here is the EPG centre of gravity (COG) 
which should show decreasing values as the primary dorsal stricture moves back along the 
palate. COG should also show a predictable relationship by vowel category. It should be highest 
for a high front vowel like [i:] that tends to have a good deal of contact laterally in the palatal 
region and decrease for [ɪ,ɛ] which have a weaker palatal contact. It should have the lowest 
values for [ʊ,ɔ] in which any contact is expected at the back of the palate.  

COG should show some relationship to the vowel's second formant frequency, since F2 
of [i:] is higher than F2 of [ɪ,ɛ] and since of course F2 of front vowels is greater than F2 of low, 
central and back vowels. These relationships between COG, vowel category and F2 can be 
examined during the interval for which sensible formant data is available, i.e., during the voiced 
part of the vowel. Given that the interest in this analysis is in the influence of the vowel on the 
following consonant, we will consider data extracted at the vowel-consonant boundary close the 
vowel's last glottal pulse, i.e. close to the time at which the voiced vowel gives way to the 
(voiceless) fricative or stop. Two different types of COG will be presented. In one, COG is 
calculated as in section 7.3 over the entire palate: in the other, which will be called the posterior 
centre of gravity (P-COG), the COG calculations are restricted to rows 5-8. P-COG is relevant 
for the present investigation because the study is concerned exclusively with sounds made in the 
dorsal region such as vowels followed by dorsal consonants. It should be mentioned at this point 
that this version of P-COG is not quite the same as the one in Gibbon & Nicolaidis (1999) who 
restrict the calculations not only to rows 5-8 but also to columns 3-6 (see the picture on the 
jacket cover of Hardcastle & Hewlett, 1999), i.e. to a central region of the palate. However, this 
parameter is likely to exclude much of the information that is relevant in the present 
investigation, given that the distinction between high front and back vowels often shows up as 
differences in lateral tongue-palate contact (present for high front vowels, absent for back 
vowels), i.e. at the palatographic margins. 
 
Fig. 7.24 about here 

 
 The relationship between the centre of gravity parameters and F2 at the acoustic vowel 
offset is shown in Fig. 7.24 which was created with the following commands: 
 
# COG and PCOG, from the onset to the offset of VC 
cog = epgcog(dorsal.epg);  pcog = epgcog(dorsal.epg, rows=5:8)  
 
# COG and PCOG at the VC boundary 
cog.voffset = dcut(cog, dorsal.bound) 
pcog.voffset = dcut(pcog, dorsal.bound) 
 
# F2 at the VC boundary 
f2.voffset = dcut(dorsal.fm[,2], dorsal.bound) 
par(mfrow=c(1,2)) 
plot(f2.voffset, cog.voffset, pch=dorsal.vlab, xlab="F2 (Hz)", 
ylab="COG") 
plot(f2.voffset, pcog.voffset, pch=dorsal.vlab, xlab="F2 (Hz)", 
ylab="PCOG") 
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As Fig. 7.24 shows, both COG and PCOG show a fairly linear relationship to the second formant 
frequency at the vowel offset. They also show a clear separation between vowel categories, with 
the low back vowels appearing at the bottom left of the display and the high and mid-high front 
vowel in the top right. For this particular speaker, these relationships between acoustic data, 
articulatory data and vowel category emerge especially clearly. It must be emphasised that this 
will not always be so for all speakers! PCOG shows a slightly better correlation with the F2-data 
than COG (as cor.test(f2.voffset, pcog.voffset) and 
cor.test(f2.voffset, cog.voffset) show). However, COG shows a clearer 
distinction within the front vowel categories [i:,ɪ,ɛ] – and this could be important in determining 
whether the coarticulatory influences of the vowel on the consonant are more categorical for /x/ 
than for /k/ (if this were so, then we would expect less variation in /x/ following these different 
front vowels, if /x/ is realised as basically the same front allophone in all three cases). The 
subsequent analyses are all based on COG – some further calculations with PCOG are given in 
the exercises.  
 In order to get some insight into how /k,x/ vary with the preceding vowel context, a plot 
of COG will be made 30 ms on either side of the vowel boundary. This is shown in Fig. 7.25 and 
was produced as follows: 
 
# Cut the EPG-data to ±30 ms either side of V1C boundary 
epg30 = dcut(dorsal.epg, dorsal.bound-30, dorsal.bound+30) 
# Calculate COG 
cog30 = epgcog(epg30) 
 
# Logical vector that is True when the consonant is /k/ as opposed to /x/ 
temp = dorsal.clab=="k" 
ylim = c(0.5, 3.5); xlim=c(-50, 50) 
par(mfrow=c(1,2)) 
dplot(cog30[temp,], dorsal.vlab[temp], offset=.5, xlim=xlim, 
ylim=ylim, leg="topright", ylab="EPG COG", main="/k/", bty="n") 
mtext("Time (ms)", side=1, line=1, at=70) 
dplot(cog30[!temp,], dorsal.vlab[!temp], offset=.5, xlim=xlim, 
ylim=ylim, leg=F, main="/x/", bty="n") 
 

Fig. 7.25 about here 
 
As Fig. 7.25 shows, there is a clearer separation (for this speaker at least) on this parameter 
between the front vowels [i, ɪ, ɛ] on the one hand and the non-front /a, ɔ, ʊ/ in the context of /x/; 
on the other hand, the separation is much less in evidence  in the context of /k/. A histogram of 
COG  30 ms after the acoustic VC boundary brings out the greater categorical separation 
between these allophone groups preceding /x/ quite clearly. 
 

# COG values at 30 ms after the VC boundary. Either: 
cog30end = dcut(cog30, 1, prop=T) 
# Or 
cog30end = dcut(cog30, dorsal.bound+30) 
 
# Logical vector, T when clab is /k/, F when clab is /x/ 
temp = dorsal.clab=="k" 
par(mfrow=c(1,2)) 
# Histogram of EPG-COG 30 ms after the VC boundary for /k/ 
hist(cog30end[temp], main="/k/", xlab="EPG-COG at t = 30 ms", 
col="blue") 
# As above but for /x/ 
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hist(cog30end[!temp], main="/x/", xlab="EPG-COG at t = 30 ms", 
col="blue") 
 
Fig. 7.26 about here 
 
There is evidently a bimodal distribution on COG 30 ms after the VC boundary for both /x/ and 
/k/, but this is somewhat more pronounced for /x/: such a finding is consistent with the view that 
there may be a more marked separation into front and non-front allophones for /x/ than for /k/. In 
order to test this hypothesis further, the EPG-COG data are plotted over the extent of the 
consonant (over the fricative or the stop closure) in Fig. 7.26: 
 
# Centre of gravity from acoustic onset to offset of the consonant 
cogcons = epgcog(dcut(dorsal.epg, dorsal.bound, 
end(dorsal.epg))) 
 
# Logical vector that is True when dorsal.clab is k 
temp = dorsal.clab=="k" 
par(mfrow=c(1,2)); ylim = c(0.5, 3.5); xlim=c(-60, 60) 
col = c(1, "slategray", "slategray", 1, 1, "slategray") 
linet=c(1,1,5,5,1,1) ; lwd=c(2,2,1,1,1,1)   
dplot(cogcons[temp,], dorsal.vlab[temp], offset=.5, 
leg="topleft", ylab="COG", ylim=ylim, xlim=xlim, main="/k/", 
col=col, lty=linet, lwd=lwd) 
dplot(cogcons[!temp,], dorsal.vlab[!temp], offset=.5, ylim=ylim, 
xlim=xlim, leg=F, main="/x/", col=col, lty=linet, lwd=lwd) 
 
There is once again a clearer separation of EPG-COG in /x/ depending on whether the preceding 
vowel is front or back. Notice in particular how COG seems to climb to a target for /ɛx/ and 
reach a position that is not very different from that for /ix/ or /ɪx/.  
 For this single speaker, the data does indeed suggest a greater categorical allophonic 
distinction for /x/ than for /k/. 
 
Fig. 7.27 about here 
 
7.5. Summary 
 One of the central concerns in experimental phonetics is with how segments overlap and 
the way in which they are coordinated with each other. The acoustic speech signal provides a 
rich source of information allowing these types of processes in speech production to be inferred 
indirectly. However, it is clear that acoustics is of little use for the kind of study presented in the 
latter part of this Chapter in analysing how the tongue moves due to the influence of context 
during an acoustic stop closure. Also, it is very difficult and probably impossible to quantify 
reliably from speech acoustics the way in which the tongue is repositioned from an alveolar to a 
velar place of articulation in the kinds of /nk/ sequences that were examined earlier, largely 
because this kind of subtle change is very difficult to detect in the acoustics of nasal consonants. 
Moreover, an acoustic analysis could not reveal the differences in segmental coordination 
between /sk/ and /nk/ that were in evidence in analysing these productions 
electropalatographically. 

As discussed earlier, electropalatography is much more limited compared with a 
technique like electromagnetic articulometry (EMA) presented in Chapter 5, because it cannot 
provide as much information about the dynamics of tongue movement; and EPG in comparison 
with EMA has little to offer in analysing vowels or consonants produced beyond the hard/soft 
palate junction. On the other hand, EPG tracks can often be more transparently related to 
phonetic landmarks than the data from EMA, although critics of EPG also argue (not 
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unjustifiably) that the EPG parameters like AI, DI, and COG are too simplistic for inferring the 
complexities of speech motor control. 

A central aim in this Chapter has been to show how many of the procedures for handling 
acoustic data in R can be applied to data-reduced versions of the EPG signal. Thus the tools for 
plotting and quantifying EPG data are, for the most part, the same as those that were used in the 
analysis of movement and formant data in the preceding two Chapters and for spectral data to the 
discussed in the next Chapter. As a result, the mechanisms are in place for carrying out various 
kinds of articulatory-acoustic relationships, of which one example was provided earlier (Fig. 
7.24). In addition, the extensive resources for quantifying data that are available from the 
numerous R libraries can also be applied to further analyses of palatographic data.  
 
7.6 Questions 
 
1. Make a 3D palatographic array for creating the figure in Fig. 7.14, then plot Fig. 7.14 and use 
the made-up array to verify the values for the anteriority index. 
 
2. Write R commands to display the 1st, 4th, and 7th palatograms at the acoustic temporal 
midpoint of [ɕ] (c) in the epgpolish database fragment with the R objects (dataset) polhom. 
 
3. The R dataset coutts2 of the database fragment epgcoutts contains the same utterance 
produced by the same speaker as coutts but at a slower rate. The R-objects for coutts2 are: 
 
coutts2   Segment list of words 
coutts2.l   Vector of word labels 
coutts2.epg  EPG-compressed trackdata object 
coutts2.sam  Trackdata of the acoustic waveform 
 
Produce palatographic plots over a comparable extent as in Fig. 7.5 from the /d/ of said up to the 
release of /k/ in said Coutts. Comment on the main ways the timing of /d/ and /k/ differ in the 
normal and slow database fragments. 
 
4. For the polhom data set of Polish homorganic fricatives (segment list, vector of labels, and 
trackdata polhom, polhom.l, polhom.epg respectively), write R-expressions for the 
following: 
 
4.1 For each segment onset, the sum of the contacts in rows 1-3. 
 
4.2 For each segment, the sum of all palatographic contacts at 20 ms after the segment onset. 
 
4.3 For each segment, the sum of the contacts in rows 1-3 and columns 1-2 and 7-8 at the 
segment midpoint. 
 
4.4 For each s segment, the anteriority index at the segment offset. 
 
4.5 For each s and S segment, the dorsopalatal index 20 ms after the segment midpoint. 
 
4.6 An ensemble plot as a function of time of the sum of the contacts in rows 2 and 4 for all 
segments, colour-coded for segment type (i.e., a different colour or line-type for each of s, S, 
c, x) and synchronised at the temporal midpoint of the segment. 
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4.7 An ensemble plot as a function of time of the sum of the inactive electrodes in columns 1, 
2, 7, and 8 and rows 2-8 for all S and c segments  for a duration of 40 ms after the segment onset 
and synchronised 20 ms after segment onset. 
 
4.8 An averaged, and linearly time-normalized ensemble plot for c and x as a function of 
time of the posterior centre of gravity PCOG (see 7.4.2). 
 
4.9 For each segment, the median of the anteriority index between segment onset and offset. 
 
4.10 A boxplot of the centre of gravity index averaged across a 50 ms window, 25 ms on 
either side of the segment's temporal midpoint, for s and S segments. 
 
5. For the engassim dataset, the AI and DI indices were calculated as follows: 
 
ai = epgai(engassim.epg); di = epgdi(engassim.epg) 
 
Calculate over these data AITMAX the time at which AI first reaches a maximum value  and 
DITMAX, the time at which DI first reaches a maximum value. Make a boxplot of the difference 
between these times, DITMAX – AITMAX, to show that the duration between these two maxima is 
greater for sK than for nK. 
 
7.7 Answers 
1.  
palai = array(0, c(8, 8, 8)) 
palai[1,2:7,1] = 1 
palai[2,4,2] = 1 
palai[2,,3] = 1 
palai[2,8,4] = 1 
palai[3,,5] = 1 
palai[3:5,,6] = 1 
palai[4,,7] = 1 
palai[5,,8] = 1 
class(palai) = "EPG" 
aivals = round(epgai(palai), 4) 
aivals 
epgplot(palai, mfrow=c(1,8), num=as.character(aivals)) 
 
2. 
# EPG data at the midpoint 
polhom.epg.5 = dcut(polhom.epg, 0.5, prop=T) 
 
# EPG data at the midpoint of c 
temp = polhom.l == "c" 
polhom.epg.c.5 = polhom.epg.5[temp,] 
 
# Plot of the 1st, 4th, 7th c segments at the midpoint 
epgplot(polhom.epg.c.5[c(1,4,7),], mfrow=c(1,3)) 
 
3.  
epgplot(coutts2.epg, xlim=c(end(coutts2)[3]-120, 
start(coutts2)[4]+120)) 
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The main difference is that in the slow rate, /d/ is released (at 14910 ms) well before the 
maximum extent of dorsal closure is formed (at 14935 ms), i.e., the stops are not doubly 
articulated. 
 
4.1 
epgsum(dcut(polhom.epg, 0, prop=T), r=1:3) 
 
4.2 
times = start(polhom)+20 
epgsum(dcut(polhom.epg, times)) 
 
4.3 
epgsum(dcut(polhom.epg, 0.5, prop=T), r=1:3, c=c(1, 2, 7, 8)) 
 
4.4 
epgai(dcut(polhom.epg[polhom.l=="s",], 1, prop=T)) 
 
4.5 
temp = polhom.l %in% c("s", "S") 
times = (start(polhom[temp,])+end(polhom[temp,]))/2 + 20 
epgdi(dcut(polhom.epg[temp,], times[temp])) 
 
4.6 
dplot(epgsum(polhom.epg, r=c(2,4)), polhom.l, offset=0.5) 
 
4.7 
# EPG-trackdata from the onset for 40 ms 
trackto40 = dcut(polhom.epg, start(polhom.epg), 
start(polhom.epg)+40) 
 
# Trackdata of the above but with rows and columns summed 
esum = epgsum(trackto40, r=2:8, c=c(1, 2, 7, 8), inactive=T) 
# Logical vector that is True for S or c 
temp = polhom.l %in% c("S", "c") 
 
# A plot of the summed contacts synchronised 20 ms after segment onset 
dplot(esum[temp,], polhom.l[temp], 
offset=start(polhom.epg[temp,])+20, prop=F) 
 
4.8 
temp = polhom.l %in% c("c", "x") 
dplot(epgcog(polhom.epg[temp,], rows=5:8), polhom.l[temp], 
norm=T, average=T) 
 
4.9  
trapply(epgai(polhom.epg), median, simplify=T) 
 
4.10 
# EPG-trackdata from the temporally medial 50 ms 
midtime = (start(polhom.epg) + end(polhom.epg))/2 
trackmid = dcut(polhom.epg, midtime-25, midtime+25) 
 
# COG index of the above 
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cogvals = epgcog(trackmid) 
 
# The mean COG value per segment over this interval 
mcog = trapply(cogvals, mean, simplify=T) 
 
# A boxplot of the mean COG for s and S 
temp = polhom.l %in% c("S", "s") 
boxplot(mcog[temp] ~ polhom.l[temp], ylab="Average COG") 
 
5. 
# Function for calculating the time at which the maximum first occurs 
peakfun <- function(fr, maxtime=T) 
{ 
if(maxtime) num = which.max(fr) 
else num = which.min(fr) 
tracktimes(fr)[num] 
} 
 
ai = epgai(engassim.epg) 
di = epgdi(engassim.epg) 
 
# Get the times at which the AI- and DI-maxima first occur 
aimax = trapply(ai, peakfun, simplify=T) 
dimax = trapply(di, peakfun, simplify=T) 
diffmax = dimax - aimax 
 
boxplot(diffmax ~ engassim.l, ylab="Duration (ms)")  
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Chapter 8. Spectral analysis. 
The material in this chapter provides an introduction to the analysis of speech data that 

has been transformed into a frequency representation using some form of a Fourier 
transformation. In the first section, some fundamental concepts of spectra including the 
relationship between time and frequency resolution are reviewed. In section 8.2 some basic 
techniques are discussed for reducing the quantity of data in a spectrum. Section 8.3 is concerned 
with what are called spectral moments that encode properties of the shape of the spectrum. The 
final section provides an introduction to the discrete cosine transformation (DCT) that is often 
applied to spectra and auditorily-scaled spectra. As well as encoding properties of the shape of 
the spectrum, the DCT can also be used to remove much of the contribution of the source (vocal 
fold vibration for voiced sounds, a turbulent airstream for voiceless sounds) from the filter (the 
shape of the vocal tract). The DCT can then be used to derive a smoothed spectrum. 
 
8. 1 Background to spectral analysis 
8.1. 1 The sinusoid.  

The digital sinusoid, which is the building block for all forms of computationally based 
spectral analysis can be derived from the height of a point above a line as a function of time as it 
moves in discrete jumps, or steps, at a constant speed around a circle. In deriving a digital 
sinusoid, there are four variables to consider:  the amplitude, frequency, phase, and the 
number of points per repetition or cycle. Examples of digital sinusoids are shown in Fig. 8.1 
and were produced with the Emu-R crplot() function as follows: 
 
par(mfrow=c(3,2)); par(mar=c(1, 2, 1, 1)) 
oldpar = par(no.readonly=TRUE) 
 
# Plot a circle and its sinusoid with defaults 
crplot() 
# Set the amplitude to 0.75 
crplot(A=.75) 
# Set the frequency to 3 cycles 
crplot(k=3) 
# Set the phase to –π/2 radians. 
crplot(p=-pi/2) 
# Set the frequency to 3 cycles and plot these with 24 points 
crplot(k=3, N=24) 
# Set the frequency to 13 cycles  
crplot(k=13) 
par(oldpar) 
 
In the default case (Fig. 8.1a), the point hops around the circle at a constant speed at intervals 
that are equally spaced on the circumference starting at the top of the circle. A plot of the height 
of these points about the horizontal line results in the digital sinusoid known as a cosine wave. 
The cosine wave has an amplitude that is equal to the circle's radius and it has a frequency of k = 
1 cycle, because the point jumps around the circle once for the 16 points that are available. In 
Fig. 8.1b, the same cosine wave is derived but with a reduced amplitude, corresponding to a 
decrease in the circle's radius  – but notice that all the other variables (frequency, phase, number 
of points) are the same. In Fig. 8.1c, the variables are the same as for Fig. 8.1a,  except that the 
frequency has been changed to k = 3 cycles. Here, then, the point hops around the circle three 
times given the same number of digital points – and so necessarily the angle at the centre of 
the circle that is made between successive hops is three times as large compared with those in 
Figs. 8.1(a, b, d) for which k = 1. In Fig. 8.1d,  the variable that is changed relative to Fig. 8.1a is 
the phase, which is measured in radians. If the point begins at the top of the circle as in Figs. 
8.1a-c, then the phase is defined to be zero radians. The phase can vary between ± π radians: at -
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π/2 radians, as in Fig. 8.1(d), the point starts a quarter of a cycle earlier to produce what is called 
a sine wave; if the phase is π/4 radians (argument p = pi/4), then the point starts at 1/8 
cycle later, and so on. 
 
Fig. 8.1 about here 
 

The number of digital points that are available per cycle can be varied independently of 
the other parameters. Fig. 8.1e is the same as the one in Fig. 8.1c except that the point hops 
around the circle three times with 24 points (8 more than in 8.1c). The resulting sinusoid that is 
produced – a three cycle cosine wave – is the same as the one in Fig. 8.1c except that it is 
supported by a greater number of digital points (and for this reason it is smoother and looks a bit 
more like an analog cosine wave). Since there are more points available, then the angle made at 
the centre of circle is necessarily smaller (compare the angles between points in Fig. 8.1c and 
Fig. 8.1e). Finally, Fig. 8.1f illustrates the property of aliasing that comes about when k, the 
number of cycles, exceeds half the number of available data points. This is so in Fig. 8.1(f) for 
which k = 13 and N = 16. In this case, the point has to hop 13 times around the circle but 
in 16 discrete jumps. Since the number of cycles is so large relative to the number of available 
data points, the angle between the hops at the centre of the circle is very large. Thus in making 
the first hop between time points 0 and 1, the point has to move almost all the way round the 
circle in order to achieve the required 13 revolutions with only 16 points. Indeed, the jump is so 
big that the point always ends up on the opposite side of the circle compared with the sinusoid at 
k = 3 cycles in Fig. 8.1c. For this reason, when k = 13 and N = 16, the result is not a 13-
cycle sinusoid at all, but the same three-cycle sinusoid shown in Fig. 8.1c. 

It is an axiom of Nyquist's theorem (1822) that it is never possible to get frequencies of 
more than N/2 cycles from N points. So for the present example with N = 16, the sinusoid with 
the highest frequency has 8 cycles (try crplot(k=8) ), but for higher k, all the other resulting 
sinusoids are aliases of those at lower frequencies.  Specifically the frequencies k and N-k cycles 
produce exactly the same sinusoids if the phase is the same: thus crplot(k=15) and 
crplot(k=1) both result in the same 1-cycle sinusoid. The highest frequency up to which the 
sinusoids are unique is k = N/2 and this is known as the critical Nyquist or folding frequency. 
Beyond k = N/2, the sinusoids are aliases of those at lower frequencies. 

 
Fig. 8.2 about here 
 

Finally, we will sometimes come across a sinusoid with a frequency of k = 0. What could 
this look like? Since the frequency is zero, the point does not complete any cycles and so has to 
stay where it is: that is, for N= 8 points, it hops up and down 8 times on the same spot. The result 
must therefore be a straight line, as Fig. 8.2 (given by crplot(k=0, N=8) ) shows. 
 
8.1.2 Fourier analysis and Fourier synthesis 

Fourier analysis is a technique that decomposes any signal into a set of sinusoids which, 
when summed reconstruct exactly the original signal. This summation, or reconstruction, of the 
signal from the sinusoids into which it was decomposed is called Fourier synthesis. 

When Fourier analysis is applied to a digital signal of length N data points, then a 
calculation is made of the amplitudes and phases of the sinusoids at integer frequency intervals 
from 0 to N-1 cycles. So for a signal of length 8 data points, the Fourier analysis calculates the 
amplitude and phase of the k = 0 sinusoid, the amplitude and phase of the k = 1 sinusoid, the 
amplitude and phase of the k = 2 sinusoid… the amplitude and phase of the k = N-1 = 7th 
sinusoid. Moreover it does so in such a way that if all these sinusoids are added up, then the 
original signal is reconstructed. 

In order to get some understanding of this operation (and without going into 
mathematical details which would lead too far into discussions of exponentials and complex 
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numbers), a signal consisting of 8 random numbers will be decomposed into a set of sinusoids; 
the original signal will then be reconstructed by summing them. Here are 8 random numbers 
between -10 and 10: 
 
r = runif(8, -10, 10) 
 
The principal operation for carrying out the Fourier analysis on a computer is the discrete 
Fourier transform (DFT) of which there is a faster version known as the Fast Fourier 
Transform (the FFT). The FFT can only be used if the window length – that is the number of 
data points that are subjected to Fourier analysis – is exactly a power of 2. In all other cases, the 
DFT has to be used. Since in the special case when the FFT can be used it gives exactly 
equivalent results to a DFT, the mathematical operation for carrying out Fourier analysis on a 
time signal will be referred to as the DFT, while recognising in practice that, for the sake of 
speed, a window length will usually be chosen that is a power of 2, thereby allowing the faster 
version of the DFT, the FFT, to be implemented. In R, the function for carrying out a DFT (FFT) 
is the function fft(). Thus the DFT of the above signal is: 
 
r.f = fft(r) 
 
r.f in the above calculation is a vector of 8 complex numbers involving the square root of 
minus 1. Each such complex number can be thought of as a convenient code that embodies the 
amplitude and phase values of the sinusoids from k = 0 to k = 7 cycles. To look at the sinusoids 
that were derived by Fourier analysis, their amplitude and phase values must be derived (the 
frequencies are already known: these are k = 0, 1, ...7). The amplitude is obtained by taking the 
modulus, and the phase by taking the argument of the complex number representations. In R, 
these two operations are carried out with the functions Mod() and Arg() respectively: 
 
r.a = Mod(r.f)   Amplitudes 
r.p = Arg(r.f)   Phases 
 
So a plot can now be produced of the sinusoids into which the 8 random numbers were 
decomposed using the cr() function for plotting sinusoids: (Fig. 8.3): 
par(mfrow=c(8,1)); par(mar=c(1,2,1,1)) 
for(j in 1:8){ 
   cr(r.a[j], j-1, r.p[j], 8, main=paste(j-1, "cycles"), axes=F) 
   axis(side=2) 
} 
 
Fig. 8.3 about here 
 
Following the earlier discussion, the amplitude of the sinusoid with frequency k = 0 cycles is a 
straight line, and the sinusoids at frequencies N-k are aliases of those at frequencies of k (so the 
sinusoids for the pairs k = 1 and k = 7; k = 2 and k = 6; k = 3 and k = 5 are the same). Also, the 
amplitude of the k = 0 sinusoid54 is equal to the sum of the values of the waveform (compare 
sum(r) and r.a[1]). 

Carrying out Fourier synthesis involves summing the sinusoids in Fig. 8.3, an operation 
which should exactly reconstruct the original random number signal. However, since the results 
of a DFT are inflated by the length of the window - that is by the length of the signal to which 
Fourier analysis was applied - what we get back is N times the values of the original signal. So to 
reconstruct the original signal, the length of window has to be normalised by dividing by N (by 8 
                                                
54 This sinusoid at 0 Hz is equal to what is sometimes called the DC offset divided  by the length of the signal (i.e., 
the DC offset is the mean of the signal's amplitude). 
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in this case). The summation of the sinusoids can also be done with the same cr() function as 
follows: 
  
summed = cr(r.a, 0:7, r.p, 8, values=T)/8 
 
Rounding errors apart, summed and the original signal r are the same, as can be verified by 
subtracting one from the other. However, the usual way of doing Fourier synthesis in digital 
signal processing is to carry out an inverse Fourier transform on the complex numbers and in 
R this is also done with the fft() function by including the argument inverse=T. The result 
is something that looks like a vector of complex numbers, but in fact the so-called imaginary 
part, involving the square root of minus one, is in all cases zero. To get the vector in a form 
without the +0i, take the real part using the Re() function. The follow does this and normalises 
for the length of the signal: 
 
summed2 = Re(fft(r.f, inverse=T))/8 
 
There is thus equivalence between the original waveform of 8 random numbers, r, summed2 
obtained with an inverse Fourier transform, and summed obtained by summing the sinusoids.  
 
8.1.3 Amplitude spectrum 
 An amplitude spectrum, or just spectrum, is a plot of the sinusoids' amplitudes as a 
function of frequency. A phase spectrum is a plot of their phase values as a function of 
frequency. (This Chapter will only be concerned with amplitude spectra, since phase spectra do 
not contribute a great deal, if anything, to the distinction between most phonetic categories). 
Since the information above k = N/2 is, as discussed in 8.1.1, replicated in the bottom part of the 
spectrum, it is usually discarded. Here (Fig. 8.4) then is the (amplitude) spectrum for these 8 
random numbers up to and including k = N/2 cycles (normalised for the length of the window). 
In the commands below, the Emu-R function as.spectral() makes the objects of class 
'spectral' so that various functions like plot() can handle them appropriately55. 
 
# Discard amplitudes above k = N/2 
r.a = r.a[1:5] 
# Normalise for the length of the window and make r.a into a spectral object: 
r.a = as.spectral(r.a/8) 
# Amplitude spectrum 
plot(r.a, xlab="Frequency (number of cycles)", ylab="Amplitude", 
type="b") 
 
Fig. 8.4 about here 
 
8.1.4 Sampling frequency 

So far, frequency has been represented in an integer numbers of cycles which, as 
discussed in 8.1.1, refers to the number of revolutions made around the circle per N points. But 
usually the frequency axis of the spectrum is in cycles per second or Hertz and the Hertz values 
depend on the sampling frequency. If the digital signal to which the Fourier transform was 
applied has a sampling frequency of fs Hz and is of length N data points, then the frequency in 
Hz corresponding to k cycles is fs k/N. So for a sampling frequency of 10000 Hz and N = 8 
points, the spectrum up to the critical Nyquist has amplitudes at frequency components in Hz of: 
 
10000 * 0:4/8 
                                                
55 Specifically, when an object of class spectral is called with plot(), then, as a result of an object oriented 
programming implementation of spectral data in Emu-R, it is actually called with plot.spectral()). 
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From another point of view, the spectrum of an N-point digital signal sampled at fs Hz consists of 
N/2 + 1 spectral components (has N/2 + 1 amplitude values) extending between 0 Hz and fs/2 Hz 
with a frequency interval between them of fs /N Hz.  
 
8.1.5 dB-Spectrum 

It is usual in obtaining a spectrum of a speech signal to use the decibel scale for 
representing the amplitude values. A decibel is 10 times one Bel and a Bel is defined as the 
logarithm of the ratio of the acoustic intensity of a sound (IS) to the acoustic intensity of a 
reference sound (IR). Leaving aside the meaning of 'reference sound' for the moment, the 
intensity of a sound is given by: 
 
 (1) IS = 10  log10(IS/IR )  dB 
 
The acoustic or sound intensity IS is a physical measurable quantity with units Watts per square 
metre. Thus to take an example, if IS = 10-8 watts/m2 and IR = 10-4 watts/m2, then IS is 40 dB 
relative to IR (40 decibels more intense than IR). 

More importantly for the present discussion, there is a relationship between acoustic 
intensity and the more familiar amplitude of air-pressure which is recorded with a pressure-
sensitive microphone. The relationship is I = kA2, where k is a constant. Thus (1) can be rewritten 
as: 
 
(2) IS  = 10 log10 (kAS

2 / kAR
2) dB = 10 log10(AS/AR)2 dB 

 
and since log ab = b log a and since log(a/b) = log a – log b, (3) is the same as (2): 
 
(3) IS = 20 log10AS – 20 log10AR  dB 
 
The Emu-tkassp system that is used to compute dB-spectra assumes that the amplitude of the 
reference sound, AR (and hence 20 log10AR), is zero. So, finally, the decibel values that you will 
see in the spectra in this Chapter and indeed in this book are 20 log10AS where AS refers to the 
amplitudes of sinusoids produced in Fourier analysis. Now since log(1) is always equal to zero, 
then this effectively means that the reference sound is a signal with an amplitude of ±1 unit: a 
signal with any sequence of +1 or -1 like 1, 1, -1, 1… etc. 

There are two main reasons for using decibels. Firstly, the decibel scale is more closely 
related to perceived loudness than amplitudes of air-pressure variation. Secondly, the range of 
amplitude of air-pressure variations within the hearing range is considerable and, because of the 
logarithmic conversion, the decibel scale represents this range in more manageable values (from 
e.g. 0 to 120 dB). 

An important point to remember is that the decibel scale always expresses a ratio of 
powers: in a decibel calculation, the intensity of a signal is always defined relative to a reference 
sound. If the latter is taken to be the threshold of hearing, then the units are said to be dB SPL 
where SPL stands for sound pressure level (and 0 dB is defined as the threshold of hearing). 
Independently of what we take to be the reference sound, it is useful to remember that 3 dB 
represents an approximate doubling of power and whenever the power is increased ten fold, then 
there is an increase of 10 dB (the power is the square of the amplitude of air-pressure variations). 

Another helpful way of thinking of decibels is as percentages, because this is an 
important reminder that a decibel, like a percentage, is not an actual quantity (like a meter or 
second) but a ratio. For example, one decibel represents a power increase of 27%, 3 dB 
represents a power increase of 100% (a doubling of power), and 10 dB represents a power 
increase of 1000% (a tenfold increase of power). 
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8.1.6 Hamming and Hann(ing) windows 

If a DFT is applied to a signal that is made up exactly of an integer number of sinusoidal 
cycles, then the only frequencies that show up in the spectrum are the sinusoids' frequencies. For 
example, row 1 column 1 of Fig. 8.5 shows a sinusoid of exactly 20 cycles i.e. there is one cycle 
per 5 points. The result of making a spectrum of this 20-cycle waveform is a single component at 
the same frequency as the numer of cycles (Fig. 8.5, row 1, right). Its spectrum was calculated 
with the spect() function below which simply packages up some of the commands that have 
been discussed in the previous section.   
 
spect <- function(signal, ...) 
{ 
   # The number of points in this signal 
   N = length(signal) 
   # Apply FFT and take the modulus 
   signal.f = fft(signal);  signal.a = Mod(signal.f) 
   # Discard magnitudes above the critical Nyquist and normalise 
   signal.a = signal.a[1:(N/2+1)]/N 
   as.spectral(signal.a, ...) 
} 
 
Fig. 8.5 about here 
 
The 20-cycle sinusoid (Fig. 8.5, row 1) and its spectrum are then given by: 
par(mfrow=c(3,2)) 
a20 = cr(k=20, N=100, values=T, type="l", xlab="") 
plot(spect(a20), type="h", xlab="", ylab="") 
 
Fig. 8.5 about here 
 
But the sinusoid's frequency only shows up faithfully in the spectrum in this way if the window 
to which the DFT is applied is made up of an exact number of whole sinusoidal cycles. When 
this is not the case, then a phenomenon called spectral leakage occurs, in which magnitudes 
show up in the spectrum, other than at the sinusoidal frequency. This is illustrated in the middle 
panel of Fig. 8.5 for a sinusoid whose frequency is fractional at 20.5 cycles. 
 
a20.5 = cr(k=20.5, N=100, values=T, type="l", xlab="") 
plot(spect(a20.5), type="h", xlab="", ylab="") 
 
Because a DFT can only compute amplitudes at integer values of k, the sinusoid with a 
frequency of 20.5 cycles falls, as it were, between the cracks: the spectrum does have a peak 
around k = 20 and k = 21 cycles, but there are also amplitudes at other frequencies. Obviously 
something is not right: a frequency of k = 20.5 should somehow show up in the spectrum at only 
that frequency and not as energy that is distributed throughout the spectrum. 

What is actually happening for the k = 20.5 frequency is that the spectrum is being 
convolved with the spectrum of what is called a rectangular window. Why should this be so? 
Firstly, we need to be clear about an important characteristic of digital signals: they are finite, i.e. 
they have an abrupt beginning and an abrupt ending. So although the sinusoids in the first two 
rows of Fig. 8.5 look as if they might carry on forever, in fact they do not and, as far as the DFT 
is concerned, they are zero-valued outside the windows that are shown: that is, the signals in Fig. 
8.5 start abruptly at n = 0 and they end abruptly at n = 99. In digital signal processing, this is 
equivalent to saying that a sinusoid whose duration is infinite is multiplied with a rectangular 
window whose values are 1 over the extent of the signals that can be seen in Fig. 8.5 (thereby 
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leaving the values between n = 0 and n = 99 untouched, since multiplication with 1 gives back 
the same result) and multiplied by zero everywhere else. This means that any finite-duration 
signal that is spectrally analysed is effectively multiplied by just such a rectangular window. But 
this also means that when a DFT of a finite-duration signal is calculated, a DFT is effectively 
also being calculated of the rectangular window and it is the abrupt switch from 0 to 1 and back 
to 0 that causes extra magnitudes to appear in the spectrum as in the middle right panel of Fig. 
8.5. Now it so happens that when the signal consists of an integer number of sinusoidal cycles so 
that an exact number of cycles fits into the window as in the top row of Fig. 8.5, then the 
rectangular window has no effect on the spectrum: therefore, the sinusoidal frequencies show up 
faithfully in the spectrum (top right panel of Fig. 8.5). However in all other cases – and this will 
certainly be so for any speech signal – the spectrum is also influenced by the rectangular 
window. 

Although such effects of a rectangular window cannot be completely eliminated, there is 
a way to reduce them. One way to do this is to make the transitions at the edges of the signal 
gradual, rather than abrupt: in this case, there will no longer be abrupt jumps between 0 and 1 
and so the spectral influence due to the rectangular window should be diminished. A common 
way of achieving this is to multiply the signal with some form of cosine function and two such 
commonly used functions in speech analysis are the Hamming window and the Hanning window 
(the latter is a misnomer, in fact, since the window is due to Julius von Hann). An N-point 
Hamming or Hanning window can be produced with the following function: 
 
w <- function(a=0.5, b=0.5, N=512) 
{ 
   n =  0: (N-1) 
   a - b * cos(2 * pi * n/(N-1) ) 
} 
 
With no arguments, the above w() function defaults to a 512-point Hanning window that can be 
plotted with plot(w()); for a Hamming window, set a and b to 0.54 and 0.46 respectively.  

The bottom left panel of Fig. 8.5 shows the 20.5 cycle sinusoid of the middle left panel 
multiplied with a Hanning window. The spectrum of the resulting Hanning-windowed signal is 
shown in the bottom right of the same figure. The commands to produce these plots are as 
follows: 
 
# Lower panel of Fig. 8.5. Multiply a20.5 with a Hanning window of the same length 
N = length(a20.5) 
a20.5h = a20.5 * w(N=N) 
# The Hanning-windowed 20.5 cycle sinusoid 
plot(0:(N-1), a20.5h,  type="l", xlab="Time (number of points)") 
# Calculate its spectral values 
a20.5h.f = spect(a20.5h) 
plot(a20.5h.f, type="h", xlab="Frequency (number of cycles)", 
ylab="") 
 
A comparison of the middle and bottom right panels of Fig. 8.5 shows that, although the spectral 
leakage has not been eliminated, multiplication with the Hanning window has certainly caused it 
to be reduced. 
 
8.1.7 Time and frequency resolution 

One of the fundamental properties of any kind of spectral analysis is that time resolution 
and frequency resolution are inversely proportional. 'Resolution' in this context defines the extent 
to which two events in time or two components in frequency are distinguishable. Because time 
and frequency resolution are inversely proportional, then if the time resolution is high (i.e., two 
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events that occur very close together in time are distinguishable), then the frequency resolution is 
low (i.e., two components that are close together in frequency are indistinguishable) and vice-
versa. 

In computing a DFT, the frequency resolution is the interval between the spectral 
components and, as discussed in 8.1.2, this depends on N, the length of the signal or window to 
which the DFT is applied. Thus, when N is large (i.e., the DFT is applied to a signal long in 
duration), then the frequency resolution is high, and when N is low, the frequency resolution is 
coarse. More specifically, when a DFT is applied to an N-point signal, then the frequency 
resolution is fs/N, where fs is the sampling frequency. So for a sampling frequency of fs = 16000 
Hz and a signal of length N = 512 points (= 32 ms at 16000 Hz), the frequency resolution is fs/N 
= 16000/512 = 31.25 Hz. Thus magnitudes will show up in the spectrum at 0 Hz, 31.25 Hz, 
62.50 Hz, 93.75 Hz… up to 8000 Hz and at only these frequencies so that  all other frequencies 
are undefined. If, on the other hand, the DFT is applied to a much shorter signal at the same 
sampling frequency, such as to a signal of N = 64 points (4 ms), then the frequency resolution is 
much coarser at fs/N = 250 Hz and this means that there  can only be spectral components at 
intervals of 250 Hz, i.e. at 0 Hz, 250 Hz, 500 Hz… 8000 Hz. 

These principles can be further illustrated by computing DFTs for different values of N 
over the signal shown in Fig. 8.6. This signal is of 512 sampled speech data points extracted 
from the first segment of segment list vowlax of German lax monophthongs. The sampled 
speech data is stored in the trackdata object v.sam (if you have downloaded the kielread 
database, then you can (re)create this object from v.sam = emu.track(vowlax[1,], 
"samples", 0.5, 512) ). The data in Fig. 8.6 was plotted as follows: 
 
plot(v.sam[1,], type="l", xlab="Time (ms)", ylab="Amplitude") 
# Mark vertical lines spanning 4 pitch periods by clicking the mouse twice, 
# once at each of the time points shown in the figure 
v = locator(2)$x 
abline(v=v, lty=2) 
# Interval (ms) between these lines 
diff(v) 
26.37400 
 
Fig. 8.6 about here 
 
The figure shows that four pitch periods have a duration of 26.42 ms, so the fundamental 
frequency over this interval is 4000/26.42  ≈  151 Hz. If a DFT is applied to this signal, then the 
fundamental frequency and its associated harmonics should show up approximately at multiples 
of this fundamental frequency in the resulting spectrum.  In the following, the spect() 
function has been updated to include the various commands discussed earlier for calculating a 
dB-spectrum and for applying a Hanning window: 
 
spect <- function(signal,..., hanning=T, dbspec=T) 
{ 
   # The Hanning window function 
   w <- function(a=0.5, b=0.5, N=512) 
  { 
      n =  0: (N-1) 
      a - b * cos(2 * pi * n/(N-1) ) 
   } 
   # The number of points in this signal 
   N = length(signal) 
   # Apply a Hanning window 
   if(hanning) 
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     signal = signal * w(N=N) 
   # Apply FFT and take the modulus 
   signal.f = fft(signal);  signal.a = Mod(signal.f) 
   # Discard magnitudes above the critical Nyquist and normalise for N 
   signal.a = signal.a[1:(N/2+1)]/N 
   # Convert to dB 
   if(dbspec) 
      signal.a = 20 * log(signal.a, base=10) 
   as.spectral(signal.a, ...) 
} 
 
Here is the dB-spectrum (right panel, Fig. 8.6): 
 
# Store the sampled speech data of the 1st segment in a vector for convenience 
sam512 = v.sam[1,]$data 
# dB-spectrum. The sampling frequency of the signal is the 2nd argument 
sam512.db = spect(sam512, 16000) 
# Plot the log-magnitude spectrum up to 1000 Hz 
plot(sam512.db, type="b", xlim=c(0, 1000), xlab="Frequency 
(Hz)", ylab="Intensity (dB)") 
 
Consider how the harmonics show up in the spectrum. Firstly, since f0 was estimated to be 151 
Hz from the waveform in Fig.8.6, then f0 and harmonics 2-5 are to be expected at the following 
frequencies: 
 
seq(151, by=151, length=5) 
151  302  453  604  755 
 
However, for a sampling frequency of 16000 Hz and a window length of N=512, the first 20 
spectral magnitudes are computed only at these frequencies: 
 
seq(0, by=16000/512, length=20) 
0.00  31.25  62.50  93.75 128.00 156.25 187.50 218.75 250.00 281.25 312.50 
343.75 378.00 406.25 437.50 468.75 500.00 531.25 562.50 593.75 
 
Thus, there can be no peaks in the spectrum due to f0 and the harmonics at exactly their 
frequencies (because there is no frequency in the digital spectrum to support them), but instead at 
whichever spectral component they come closest to. These are  
shown in bold above,  and if you count where they are in the vector, you will see that these are 
the 6th, 11th, 16th, and 20th spectral components. Vertical lines have been superimposed on the 
spectrum at these frequencies as follows: 
 
abline(v=seq(0, by=16000/512, length=20) [c(6, 11, 16, 20)], 
lty=2) 
 
Indeed the spectrum does show peaks at these frequencies. Notice that the relationship between 
the expected peak location (vertical lines) and actual peaks is least accurate for the 3rd vertical 
line. This is because there is quite a large deviation between the estimated frequency of the 3rd 
harmonic (453 Hz) and the (16th) spectral component that is closest to it in frequency (468.75 
Hz). (In fact it can be seen that the estimated 3rd harmonic falls almost exactly halfway in 
frequency between two spectral components). 

The harmonics can only make their presence felt in a spectrum of voiced speech as long 
as the signal over which the DFT is applied includes at least two pitch periods. Consequently, 
harmonics can only be seen in the spectrum if the frequency resolution (interval between 
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frequency components in the spectrum) is quite a lot less than the fundamental frequency. 
Consider, then, the effect of applying a DFT to just the first 64 points of the same signal. A 64-
point DFT at 16000 Hz results in a frequency resolution of 16000/64 = 250 Hz, so there will be 
33 spectral components between 0 Hz and 8000 Hz at intervals of 250 Hz: that is,  at a frequency 
interval that is greater than the fundamental frequency, and therefore too wide for the frequency 
and separate harmonics to have much of an effect on the spectrum. The corresponding spectrum 
up to 3500 Hz in Fig. 8.7 was produced as follows: 
 
sam64 = sam512[1:64] 
ylim = c(10, 70) 
plot(spect(sam64, 16000), type = "b", xlim=c(0, 3500), 
ylim=ylim, xlab="Frequency (Hz)", ylab="Intensity (dB)") 
 
The influence of the fundamental frequency and harmonics is no longer visible, but instead the 
formant structure emerges more clearly. The first four formants, calculated with the Emu LPC-
based formant tracker at roughly the same time point for which the spectrum was calculated, are: 
 
dcut(vowlax.fdat[1,], 0.5, prop=T) 
T1   T2   T3   T4  
562 1768 2379 3399 
 
Fig. 8.7 about here 
 
The frequencies of the first two of these have been superimposed on the spectrum in Fig. 8.7 
(left) as vertical lines with abline(v=c(562, 1768)) . 

As discussed earlier, there are no magnitudes other than those that occur at fs/N and so the 
spectrum in Fig. 8.7 (left) is undefined except at frequencies 0, 250 Hz, 500 Hz…8000 Hz. It is 
possible however to interpolate between these spectral components thereby making the spectrum 
smoother using a technique called zero padding. In this technique, a number of zero-valued data 
samples are appended to the speech waveform to increase its length to, for example, 256 points. 
(NB: these zero data values should be appended after the signal has been Hamming- or Hanning-
windowed, otherwise the zeros will distort the resulting spectrum). One of the main practical 
applications of zero-padding is to fill up the number of data points of a window to a power of 2 
so that the FFT algorithm can be applied to the signal data. Suppose that a user has the option of 
specifying the window length of a signal that is to be Fourier analysed in milliseconds rather 
than points and suppose a user chooses an analysis window of 3 ms. At a sampling frequency of 
16000 Hz, a duration of 3 ms is 48 sampled data points. But if the program makes use of the FFT 
algorithm, there will be a problem because, as discussed earlier, the FFT requires the window 
length, N, to be an integer power of 2, and 48 is not a power 2. One option then would be to 
append 24 zero data sample values to bring the window length up to the next power of 2 that is 
to 64.  
 The command lines to do the zero-padding have been incorporated into the evolving 
spect() function using the argument fftlength that defines the length of the window to 
which the DFT is applied. If fftlength is greater than the number of points in the signal,  
then the signal is appended with a number of zeros equal to the difference between fftlength 
and the signal's length. (For example, if fftlength is 64 and the signal length is 30, then 34 
zeros are appended to the signal). The function with this modification is as follows: 
 
"spect" <- 
function(signal,...,  hanning=T, dbspec=T, fftlength=NULL) 
{ 
   w <- function(a=0.5, b=0.5, N=512) 
   { 
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      n =  0: (N-1) 
     a - b * cos(2 * pi * n/(N-1) ) 
   } 
   # The number of points in this signal 
   N = length(signal) 
   # Apply a Hanning window 
   if(hanning) 
       signal = signal * w(N=N) 
   # If fftlength is specified… 
   if(!is.null(fftlength)) 
  { 
       # and if fftlength is longer than the length of the signal… 
      if(fftlength > N) 
          # then pad out the signal with zeros 
          signal = c(signal, rep(0, fftlength-N)) 
   } 
   # Apply FFT and take the modulus 
   signal.f = fft(signal);  signal.a = Mod(signal.f) 
   # Discard magnitudes above the critical Nyquist and normalise 
   if(is.null(fftlength)) 
       signal.a = signal.a[1:(N/2+1)]/N 
   else 
     signal.a = signal.a[1:(fftlength/2+1)]/N 
   # Convert to dB 
   if(dbspec) 
       signal.a = 20 * log(signal.a, base=10) 
   as.spectral(signal.a, ...) 
} 
 
In the following, the same 64-point signal is zero-padded to bring it up to a signal length of 256 
(i.e., it is appended with 192 zeros). The spectrum of this zero-padded signal is shown as the 
continuous line in Fig. 8.7 (right) superimposed on the 64-point spectrum: 
 
ylim = c(10, 70) 
plot(spect(sam64, 16000), type = "p", xlim=c(0, 3500), 
xlab="Frequency (Hz)", ylim=ylim) 
par(new=T) 
plot(spect(sam64, 16000, fftlength=256), type = "l", xlim=c(0, 
3500), xlab="", ylim=ylim) 
 
As the right panel of Fig. 8.7 shows, a spectrum derived from zero padding passes through the 
same spectral components that were derived without it (thus, zero padding provides additional 
points of interpolation). An important point to remember is that zero padding does not improve 
the spectral resolution: zero-padding does not add any new data beyond providing a few extra 
smooth interpolation points between spectral components that really are in the signal. 
Sometimes, as Hamming (1989) argues, zero-padding can provide misleading information about 
the true spectral content of a signal. 
 
8.1.8 Pre-emphasis 

In certain kinds of acoustic analysis, the speech signal is pre-emphasised which means 
that the resulting spectrum has its energy levels boosted by somewhat under 6 dB per doubling 
of frequency, or (just less than) 6 dB/octave. This is sometimes done to give greater emphasis to 
the spectral content at higher frequencies, but also sometimes to mimic the roughly 6 dB/octave 



    192 

 

lift that is produced when the acoustic speech signal is transmitted beyond the lips. Irrespective 
of these motivations, pre-emphasising the signal can be useful in order to distinguish between 
two speech sounds that are otherwise mostly differentiated by energy at high frequencies. For 
example, the difference in the spectra of the release burst of a syllable-initial [t] and [d] can lie 
not just below 500 Hz if [d] really is produced with vocal fold vibration in the closure and 
release (and often in English or German it is not), but often in a high frequency range above 
4000 Hz. In particular, the spectrum of [t] can be more intense in the upper frequency range 
because the greater pressure build-up behind the closure can cause a more abrupt change in the 
signal from near acoustic silence (during the closure) to noise (at the release). A more abrupt 
change in the signal always has an effect on the higher frequencies (for example a 1000 Hz 
sinusoid changes faster in time than a 1 Hz sinusoid and, of course, has a higher frequency). 
When I explained this [t]-[d] difference to my engineering colleagues during my time at CSTR 
Edinburgh in the 1980s, they suggested pre-emphasising the bursts because this could magnify 
even further the spectral difference in the high frequency range (and so lead to a better separation 
between these stops).  

A 6 dB/octave boost in frequency can be brought about by differencing a speech signal 
where differencing has the meaning of subtracting a signal delayed by one data point from itself. 
You can delay a signal by k data points with the shift() function in the Emu-R library which 
causes x[n] to become x[n+1] in the signal x. For example: 

 
x = c(2, 4, 0, 8, 5, -4, 6) 
shift(x, 1) 
6  2  4  0  8  5 -4 

 
The shifting is done circularly by default in this function which means that the last data point 
becomes the first resulting in a signal of the same length. Other than that, it is clear that the effect 
of delaying the signal by one point is that that x[2] has moved to the 3rd position,  x[3] to the 
4th position, and so on. To difference a signal, the signal is subtracted from a delayed version of 
itself, i.e. the differenced signal is x - shift(x, 1). A spectrum of this differenced signal 
can be shown to have just less than a 6 dB/octave lift relative to the original signal.  

This can be verified with the 64 point signal created in 8.1.7, sam64. To see the 
uncontaminated effect of the boost to higher frequencies, don't apply a Hanning window in the 
spect() function: 
 
# dB-spectrum of  signal 
sam64.db = spect(sam64, 16000, hanning=F) 
# A one-point differenced signal 
dnd = sam64 - shift(sam64, 1) 
# The dB-spectrum of the differenced signal 
dnd.db = spect(dnd, 16000, hanning=F) 
# Superimpose the two spectra 
ylim = range(c(sam64.db[-1], dnd.db[-1])) 
par(mfrow=c(1,2)) 
plot(sam64.db[-1], type="l", ylim=ylim, xlab="Frequency (Hz)", 
ylab="Intensity (dB)") 
par(new=T) 
plot(dnd.db[-1], type="l", ylim=ylim, col="slategray", lwd=2) 
# Plot the difference between the spectra of the differenced and original signal 
# excluding the DC offset 
plot(dnd.db[-1] - sam64.db[-1], type="l", xlab="Frequency (Hz)", 
ylab="Intensity (dB)") 
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The effect of differencing is indeed to increase the energy in frequencies in the upper part of the 
spectrum but also to decrease them in the lower spectral range. Thus, it is as if the entire 
spectrum is tilted upwards about the frequency axis (Fig. 8.8, left panel). The extent of the dB-
change can be seen by subtracting the spectrum of the differenced signal from the spectrum of 
the original signal and this has been done to obtain the spectrum on the right in Fig. 8.8. The 
meaning of an approximate 6 dB/octave change is as follows. Take any two frequencies such 
that one is double the other and read off the dB-levels: the difference between these dB-levels 
will be near 6 dB. For example, the dB-levels at 1000, 2000 and 4000 Hz for the spectrum on the 
right are -8.17 dB, - 2.32 dB and 3.01 dB. So the change in dB from 1000 to 2000 Hz is similar 
to the change from 2000 Hz to 4000 Hz (roughly 5.5 dB). You will notice that the dB-level 
towards 0 Hz gets smaller and smaller and is in fact minus infinity at 0 Hz (this is why the plot 
on the left excludes the DC offset at 0 Hz).  
 
Fig. 8.8 about here 
 
8.1.9  Handling spectral data in Emu-R 
 The usual way of getting spectral data into R is not with the functions like spect() of 
the previous section (which was created simply to show some of the different components that 
make up a dB-spectrum), but with the spectrum option in the Emu-tkassp toolkit (Chapter 3) for 
calculating spectral data allowing the DFT length, frame shift and other parameters to be set. 
These routines create signal files of spectral data that can be read into Emu-R with 
emu.track() which creates a spectral trackdata object.  
 The object plos.dft is such a spectral trackdata object and it contains spectral data 
between the acoustic closure onset and the onset of periodicity for German /b, d/ in syllable-
initial position). The stops were produced by an adult male speaker of a Standard North German 
variety in a carrier sentence of the form ich muss /SVCn/ sagen ( I must /SVCn/ say) where S is 
the syllable-initial /b, d/ and /SVCn/ corresponds to words like /botn/ (boten, past tense of they 
bid), /degn/ (Degen, dagger) etc. The speech data was sampled at 16 kHz so the spectra extend 
up to 8000 Hz. The DFT window length was 256 points and spectra were calculated every 5 ms 
to derive plos.dft which is part of the plos dataset: 
 
plos  Segment list /b, d/ from closure onset to the periodic  
  onset of the following vowel 
plos.l  A vector of labels (b, d) 
plos.w  A vector of the word labels from which the segments were taken 
plos.lv  A vector of labels of the following vowels. 
plos.asp Vector of times at which the burst onset occurs 
plos.sam Sampled speech data of plos 
plos.dft Spectral trackdata object of plos 
 
You can verify that plos.dft is a spectral (trackdata) object by entering 
is.spectral(plos.dft),  which is to ask the question: is this a spectral object? Since the 
sampling frequency for this dataset was 16000 Hz and since the window size used to derive the 
data was 256 points, then, following the discussion of the previous section, there should be 256/2 
+ 1 = 129 spectral components equally spaced between 0 Hz and the critical Nyquist, 8000 Hz.  
 
This information is given as follows: 
ncol(plos.dft) 
129 
trackfreq(plos.dft) 
0.0   62.5  125.0  187.5  250.0… 7812.5 7878.0 7937.5 8000.0 
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Compatibly with the discussion from 8.1.7, the above information shows that the spectral 
components occur at 0 Hz, 62.5 Hz and at intervals of 62.5 Hz up to 8000 Hz. We were also told 
that the frame shift in calculating the DFT was 5 ms. So how many spectra, or spectral slices, can 
be expected for e.g., the  47th segment? The 47th segment is a /d/, which is shown below,  has a 
start time of  316 ms and a duration of just over 80 ms: 
 
plos[47,]  
labels   start     end   utts 
47      d 316.948 397.214 gam070 
dur(plos[47,]) 
80.266 
 
So for this segment, around 16 spectral slices (80/5) are to be expected. Here are the times at 
which these slices occur: 
 
tracktimes(plos.dft[47,])  
317.5 322.5 327.5 332.5 337.5 ... 387.5 392.5 
 
They are at 5 ms intervals and as length(tracktimes(plos.dft[47,])) shows, there 
are indeed 16 of them. So to be completely clear: plos.dft[47,] contains 16 spectral slices 
each of 129 values and spaced on the time-axis at 5 ms intervals. A plot of the last nine of these, 
together with the times at which they occur is shown in Fig. 8.9 and was created as follows: 
 
dat = frames(plos.dft[47,])[8:16,] 
times = tracktimes(dat) 
par(mfrow=c(3,3)); par(mar=c(2, 1, .4, 1)) 
ylim =c(-20, 50) 
for(j in 1:nrow(dat)){ 
   plot(dat[j,],  bty="n", axes=F, ylim=ylim, lwd=2) 
   if(any(j == c(7:9))) 
   { 
      freqs = seq(0, 8000, by=2000) 
      axis(side=1, at=freqs, labels=as.character(freqs/1000)) 
   } 
   abline(h=0, lty=2, lwd=1) 
   mtext(paste(times[j], "ms"), cex=.5) 
   if(j == 8) 
      mtext("Frequency (kHz)", 1, 2, cex=.5) 
   if(j == 4) 
      mtext("Intensity", 2, 1, cex=.75) 
} 
 
Since these spectral data were obtained with a DFT of 256 points and a sampling frequency of 
16000 Hz, the window length is equal to a duration of (256 × 1000/16000) = 256/16 = 16  ms. 
The temporal midpoint of the DFT window is shown above each spectral slice. For example, the 
6th spectral slice in Fig 8.9 (thus the 13th row of plos.dft) has a time stamp of 377.5 ms and 
so the DFT window that was used to calculate this spectrum extends from 377.5 – 8  = 369.5 ms 
to 377.5 + 8 = 388.5 ms. 
 
Fig. 8.9 about here 
 

The dcut() function can be used to extract trackdata between two time points, or at a 
single time point, either from millisecond times or proportionally (see 5.5.3). Thus spectral data 
at the temporal midpoint of the segment list is given by: 
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plos.dft.5 = dcut(plos.dft, .5, prop=T) 
 

For spectral trackdata objects and spectral matrices, what comes after the comma within 
the index brackets refers not to column numbers directly, but to frequencies. The subscripting 
pulls out those spectral components that are closest to the frequencies specified. For example, the 
following command makes a new spectral trackdata object spec from plos.dft but 
containing only the frequencies 2000-4000 Hz. (The subsequent trackfreq() command 
verifies that these are the frequency components of the newly created object): 
 
spec = plos.dft[,2000:4000] 
trackfreq(spec) 
2000.0 2062.5 2125.0 2187.5 2250.0 2312.5 2375.0 2437.5 2500.0 2562.5 2625.0 
2687.5 2750.0 2812.5 2875.0 2937.5 3000.0 3062.5 3125.0 3187.5 3250.0 3312.5 
3375.0 3437.5 3500.0 3562.5 3625.0 3687.5 3750.0 3812.5 3875.0 3937.5 4000.0 

 
Notice that spec now has 33 columns (given by either ncol(spec) or 
length(trackfreq(spec)) ) with each column including data from the frequencies listed 
above. Some further examples of handling spectral objects in Emu-R are as follows: 
 
# Trackdata object 0-3000 Hz 
spec = plos.dft[,0:3000] 
 
# As above, but of segments 1-4 only 
spec = plos.dft[1:4,0:3000] 
dim(spec) 
4 49 
 
# Trackdata object of the data at 1400 Hz only 
spec = plos.dft[,1400] 
trackfreq(spec) 
1375 
ncol(spec) 
1 
 
# Trackdata object of all frequencies except 0-2000 Hz and except 4000-7500 Hz 
spec = plos.dft[,-c(0:2000, 4000:7500)] 
trackfreq(spec) 
2062.5 2125.0 2187.5 2250.0 2312.5 2375.0 2437.5 2500.0 2562.5 2625.0 2687.5 
2750.0 2812.5 2875.0 2937.5 3000.0 3062.5 3125.0 3187.5 3250.0 3312.5 3375.0 
3437.5 3500.0 3562.5 3625.0 3687.5 3750.0 3812.5 3875.0 3937.5 7562.5 7625.0 
7687.5 7750.0 7812.5 7875.0 7937.5 8000.0 

 
# DC offset (0 Hz), segments 1-10: 
spec = plos.dft[1:10,0] 
 
Use -1 to get rid of the DC offset which is the spectral component at 0 Hz: 
 
# All spectral components of segments 1-10, except the DC offset 
spec = plos.dft[1:10,-1] 
 
Exactly the same commands work on spectral matrices that are the output of dcut(). Thus: 
 
# Spectral data at the temporal midpoint 
plos.dft.5 = dcut(plos.dft, .5, prop=T) 
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# As above, but 1-3 kHz 
spec = plos.dft.5[,1000:3000] 
# A plot in the spectral range 1-3 kHz at the temporal midpoint for the 11th segment 
plot(spec[11,], type="l") 
 
Notice that, if you pull out a single row from a spectral matrix, the result is no longer a (spectral) 
matrix but a (spectral) vector: in this special case, just put the desired frequencies inside square 
brackets without a comma (as when indexing any vector). Thus: 
 
spec = plos.dft.5[11,] 
class(spec) 
"numeric"  "spectral" 
# plot the values between 1000-3000 Hz 
plot(spec[1000:3000]) 
 
8.2. Spectral average, sum, ratio, difference, slope. 
 The aim in this section is to consider some of the ways in which spectra can be 
parameterised for distinguishing between different phonetic categories. A spectral parameter 
almost always involves some form of data reduction of the usually very large number of spectral 
components that are derived from the Fourier analysis of a waveform. One of the simplest forms 
of spectral data reduction is averaging and summing energy in frequency bands. The dataset 
fric to which these parameters will be applied is given below: these are German fricatives 
produced by an adult male speaker in read sentences taken from the kielread database. The 
fricatives were produced in an intervocalic environment and are phonetically (rather than just 
phonologically) voiceless and voiced respectively and they occur respectively in words like 
[bø:zә] (böse/angry) and [vasә] (Wasser/water): 
 
fric  Segment list of intervocalic [s,z] 
fric.l  Vector of  (phonetic) labels 
fric.w  Vector of word labels from which the fricatives were taken 
fric.dft Spectral trackdata object (256 point DFT, 16000 Hz sampling freq.) 
 
An ensemble plot of all the [s] and [z] fricatives at the temporal midpoint in the left panel of Fig. 
8.10 is given by: 
 
fric.dft.5 = dcut(fric.dft, .5, prop=T) 
plot(fric.dft.5, fric.l) 
 
Fig. 8.10 about here 
 
It can also be helpful to look at averaged spectral plots per category. However, since decibels are 
logarithms, then the addition and subtraction of logaritms really implies multiplication and 
division respectively; consequently, any arithmetic operation which, like averaging, involves 
summation, cannot (or should not) be directly applied to logarithms. For example, the average of 
0 dB and 10 dB is not 5 dB. Instead, the values first have to be converted back into a linear scale 
where the averaging (or other numerical operation) takes place; the result can then be converted 
back into decibels. Since decibels are essentially power ratios, they could be converted to the 
(linear) power scale prior to averaging. This can be done by dividing by 10 and then taking the 
anti-logarithm (i.e., raising to a power of 10). Under this definition, the average of 0 dB and 10 
dB is calculated as follows: 
 
dbvals = c(0, 10) 
# Convert to powers 
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pow = 10^(dbvals/10) 
# Take the average 
pow.mean = mean(pow) 
# Convert back to decibels 
10 * log(pow.mean, base=10) 
7.403627 
 
For plots of spectral data, this conversion to powers before averaging is done within the plot() 
function by including the argument power=T. Thus the ensemble averaged spectra are given by: 
 
plot(fric.dft.5, fric.l, fun=mean, power=T) 
 
There is clearly a greater amount of energy below about 500 Hz for [z] (Fig. 8.10, right), and this 
is to be expected because of the influence of the fundamental frequency on the spectrum in the 
case of voiced [z]. 
 One way of quantifying this observed difference between [s] and [z] is to sum or to 
average the spectral energy in a low frequency band using the functions sum() or mean() 
respectively. Thus mean(fric.dft.5[1,0:500]) returns the mean energy value in the 
frequency range 0-500 Hz for the first segment. More specifically, this command returns the 
mean of these dB values 
 
fric.dft.5[1,0:500] 
T1      T2      T3      T4      T5      T6      T7      T8      T9  
22.4465 52.8590 63.8125 64.2507 46.0111 60.1562 57.4044 51.6558 51.6887 

 
that occur respectively at these frequencies 
 
trackfreq(fric.dft.5[1,0:500]) 
0.0  62.5 125.0 187.5 250.0 312.5 375.0 437.5 500.0 
 
In order to obtain corresponding mean values separately for the 2nd, 3rd, 4th...34th segment, a for-
loop could be used around this command. Alternatively (and more simply),  the 
fapply(spec, fun) function can be used for the same purpose,  where spec is a spectral 
object and fun a function to be applied to spec. Thus for a single segment, 
mean(fric.dft.5[1,0:500]) and fapply(fric.dft.5[1,0:500], mean) both 
return the same single  mean dB value in the 0-500 Hz range for the first segment. In order to 
calculate the mean values separately for each segment, the command is: 
 
fapply(fric.dft.5[,0:500], mean) 
 
which returns 34 mean values (arranged in a 34 × 1 matrix), one mean value per segment. The 
function fapply() also has an optional argument power=T that converts from decibels to 
power values before the function is applied: for the reasons discussed earlier, this should be done 
when averaging or summing energy in a spectrum. Therefore,  the sum and mean energy levels 
in the frequency band 0-500 Hz at the midpoint of the fricatives are given by: 
 
s500 = fapply(fric.dft.5[,0:500], sum, power=T) 
m500 = fapply(fric.dft.5[,0:500], mean, power=T) 
 
A boxplot (Fig. 8.11) for the first of these, the summed energy in the 0-500 Hz band, shows that 
this parameter distinguishes between [s,z] very effectively: 
 
boxplot(s500 ~ fric.l, ylab="dB") 
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Fig. 8.11 about here 
 
 When two categories are compared on amplitude or intensity levels, there is usually an 
implicit assumption that they are not artificially affected by variations in loudness caused, for 
example, because the speaker did not keep at a constant distance from the microphone, or 
because the speaker happened to produce some utterance with greater loudness than others. This 
is not especially likely for the present corpus, but one way of reducing this kind of artefact is to 
calculate the ratio of energy levels. More specifically, the ratio of energy in the 0-500 Hz band 
relative to the total energy in the spectrum should not be expected to vary too much with, say, 
variations in speaker distance from the microphone. The sum of the energy in the entire spectrum 
(0-8000 Hz) is given by: 
 
stotal = fapply(fric.dft.5, sum, power=T) 
 
To get the desired energy ratio (middle panel of Fig. 8.11), subtract one from the other in 
decibels: 
 
s500r =  s500 - stotal 
boxplot(s500r ~ fric.l, ylab="dB") 
 
The energy ratio could be calculated between two separate bands, rather than between one band 
and the energy in the entire spectrum, and this too would have a similar effect of reducing some 
of the artificially induced differences in the amplitude level discussed earlier. Since Fig. 8.10 
shows that [s] seems to have marginally more energy around 6500 Hz, then the category 
differences might also emerge more clearly by calculating the ratio of summed energy in the 0-
500 Hz band to that in the 6000 - 7000 Hz band (Fig. 8.11, right panel): 
 
shigh = fapply(fric.dft.5[,6000:7000], sum, power=T) 
s500tohigh = s500 - shigh 
boxplot(s500tohigh ~ factor(fric.l), ylab="dB") 
 

Another way of normalising for artificially induced differences in the amplitude level is 
to calculate difference spectra, obtained as its name suggests by subtracting one spectrum from 
another, usually in the same syllable, word, or phrase. (A difference spectrum has already been 
calculated in the discussion of pre-emphasis in 8.1.8). But independently of this consideration, 
difference spectra have been shown to be valuable in distinguish place of articulation in both oral 
(Lahiri et al., 1984) and nasal (Kurowski & Blumstein, 1984; Harrington, 1994) stops. A 
difference spectrum shows how the energy in the spectrum changes between two time points. For 
the following example, difference spectra will be calculated for the database of plosives 
considered earlier. More specifically, spectra are to be calculated (a) during the closure 20 ms 
before the release of the stop and (b) 10 ms after the release of the stop; a difference spectrum 
will then be obtained by subtracting (a) from (b). Because /d/ tends to have a lot more energy in 
the upper part of the spectrum at stop release than /b/, then such differences between these two 
categories should show up above about 4000 Hz in the difference spectrum. The ensemble 
averaged plot of the difference spectrum as well as the summed energy values in the difference 
spectrum between 4-7 kHz confirms this (Fig. 8.12): 

 
# (a) Spectra 20 ms before the stop release 
before = dcut(plos.dft, plos.asp-20) 
# (b) Spectra 10 ms after the stop release 
after = dcut(plos.dft, plos.asp+10) 
# Difference spectra: (b) - (a) 
d = after - before 



    199 

 

# Ensemble-averaged plot of the difference spectra separately for /b, d/ 
par(mfrow=c(1,2)) 
plot(d, plos.l, fun=mean, power=T, xlab="Frequency (Hz)", 
ylab="Intensity (dB)", leg="bottomleft") 
# Summed energy in the difference spectra 4-7 kHz 
dsum = fapply(d[,4000:7000], sum, power=T) 
# Boxplot (Fig. 8.12) 
boxplot(dsum ~ factor(plos.l), ylab="Summed energy 4-7 kHz") 
 
Fig. 8.12 about here 
 

The (linear) spectral slope is a parameter that reduces a spectrum to a pair of values, the 
intercept and the slope of the (straight) line of best fit through the spectral values. There is 
evidence that these differences in spectral slope are important for distinguishing between places 
of articulation in oral stops (Blumstein & Stevens, 1979, 1980). The R function lm() can be 
used to compute the straight line of best fit (a linear regression based on least squares), as 
follows: 
 
# Spectrum of the 1st segment 10 ms after the stop release (Fig. 8.13, left) 
plot(after[1,], xlab="Frequency (Hz)", ylab="Intensity (dB)") 
# Calculate the coefficients of the linear regression equation 
m = lm(after[1,] ~ trackfreq(after)) 
# Superimpose the regression equation 
abline(m) 
m$coeff 
# The intercept and slope 
   Intercept            X  
54.523549132 -0.003075377 
 
Fig. 8.13 about here 
 
The slope is negative because, as Fig. 8.13 (left panel) shows, the spectrum falls with increasing 
frequency.  

A first step in parameterising the data as spectral slopes is to look at ensemble-averaged 
spectra of [b,d] in order to decide roughly over which frequency range the slopes should be 
calculated. These are shown in the right panel of Fig. 8.13 which was created as follows: 

  
plot(after, plos.l, fun=mean, power=T, xlab="Frequency 
(Hz)",ylab="Intensity (dB)") 
 
Spectral slopes will now be calculated in the frequency range 500 – 4000 Hz, because as the 
right panel of Fig. 8.13 shows, this is where the slope differences between the categories emerge 
most clearly. In order to calculate slopes for the entire matrix of spectral data (rather than for a 
single segment, as done in the left panel of Fig. 8.13), the fapply(x, fun) function can be 
used again, where fun is now a function that calculates the slope per spectrum. First of all, the 
function for calculating the slope has to be written: 
 
slope <- function(x) 
{ 
   # Calculate the intercept and slope 
   lm(x ~ trackfreq(x))$coeff 
} 
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The coefficients of the regression through the spectrum for the first segment could be obtained 
from: 
 
slope(after[1,]) 
   Intercept            X  
54.523549132 -0.003075377 
 
The same function can be used inside fapply() in order to calculate the slopes separately for 
each segment in the 500-4000 Hz range: 
 
m <- fapply(after[,500:4000], slope) 
 
The object m is a two-columned matrix with the intercept and slope values per segment in 
columns 1 and 2 respectively. So the extent to which [b,d] are distinguished by the spectral slope 
calculated in the 500-4000 Hz range can be judged from the following display (Fig. 8.14, left 
panel): 
 
boxplot(m[,2] ~ plos.l, ylab="Spectral slope (dB/Hz)") 
 
Fig. 8.14 about here 
 
Compatibly with Blumstein & Stevens (1979, 1980), Fig. 8.14 shows that the slope for [b] is 
predominantly negative whereas for [d] it is mostly positive. 

It is interesting to consider the extent to which this parameter and the one calculated 
earlier, the sum of the energy from a difference spectrum, both contribute to the [b,d] distinction. 
The eplot() function could be used to look at the distribution of these categories on these 
parameters together (Fig. 8.14, right panel): 
 
eplot(cbind(m[,2], dsum), plos.l, dopoints=T, xlab="Spectral 
slope (dB/Hz)", ylab="Summed energy 4-7 kHz") 
 
In fact, both parameters together give just about 100% separation between [b,d]. However, closer 
inspection of the right panel of Fig. 8.14 shows that most of the 'work' in separating them is done 
by the spectral slope parameter: if you draw a vertical line at around -0.00168 (abline(v= -
0.00168)) , then you will see that only 2-3 [b] tokens fall on the wrong, i.e.[d]-side, of the 
line. So the slope parameter separates the data more effectively than does the parameter of 
summed energy values. 
 Finally, these functions have been applied so far to spectral slices extracted from a 
spectral trackdata object at a single point in time. However, they can be just as easily applied to 
spectra spaced at equal time intervals in a trackdata object. Recall from the earlier discussion that 
the spectral trackdata object plos.dft has spectral data from the start time to the end time of 
each segment. The spectra for the first segment are given by frames(plos.dft[1,]) 
which has 24 rows and 129 columns. The rows contain spectra at the points in time given by 
tracktimes(plos.dft[1,]): 
 
412.5 417.5 422.5 427.5 432.5 437.5 442.5 447.5 452.5 457.5 462.5 467.5 472.5 
477.5 482.5 487.5 492.5 497.5 502.5 507.5 512.5 517.5 522.5 527.5 
 
that is, they occur at 5 ms intervals. Thus at time point 412.5 ms there are 129 dB values 
spanning the frequency range given between 0 - 8000 Hz at a frequency interval of 62.5 Hz. 
Then 5 ms on from this, there are another 129 dB value over the same frequency range and so 
on. Thus plos.dft[1,] has 24 spectral slices at 5 ms intervals: these are the spectral slices 
that would give rise to a spectrogram between the start and end time of the first segment in the 
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corresponding segment list plos[1,], a /d/ burst. What if we now wanted to calculate the 
mean dB value for each such spectral slice? One way is to make use of the method presented so 
far: fapply(frames(plos.dft[1,]), mean) returns 24 mean values, one per spectral 
slice per 5 ms. However, fapply() can be more conveniently applied to a spectral trackdata 
object directly. Thus the same result is given without having to use the frames() function just 
with fapply(plos.dft[1,], mean). Moreover a major advantage of using fapply() 
in this way is that the output is also a trackdata object whose times extend over the same 
intervals (between 412.5 to 527.5 in this case). Since the output is a trackdata object, then a plot 
of the mean dB per spectral slice between the start and end time of this segment is given by 
plot(fapply(plos.dft[1,], mean)). In order to produce an ensemble plot on this 
parameter for all segments color-coded by segment type (and synchronised at their onsets), omit 
the subscripting and supply a parallel vector of annotations, thus 
dplot(fapply(plos.dft, mean), plos.l, type="l"). 
 Consider now how this functionality could be applied to produce an ensemble plot of the 
spectral slope values in the 500-4000 Hz range as a function of time between the burst's onset 
and offset. The first step is to apply the slope() function written earlier to the spectral 
trackdata object, thus: 
 
slopetrack = fapply(plos.dft[,500:4000], slope) 
 
Fig. 8.15 about here 
 
slopetrack is now a two-dimensional trackdata object containing the intercept and slope for 
each spectrum at 5 ms intervals per segment between the burst onset and offset. So it is possible 
to inspect how the spectral slope changes between the onset and offset in e.g., the 10th segment 
as follows (left panel, Fig. 8.15): 
 
dplot(slopetrack[10,2], plos.l[10], xlab="Time (ms)", 
ylab="Spectral slope (dB/Hz)") 
 
The right panel of Fig. 8.15 shows an ensemble plot of these data averaged separately by 
phonetic category after synchronization at the burst onset: 
 
dplot(slopetrack[,2], plos.l, plos.asp, prop=F, average = T, 
ylab="Spectral slope (dB/Hz)", xlab="Time (ms)") 
 
These data show very clearly how, beyond the burst onset at t = 0 ms, labials have falling, but 
alveolars rising spectral slopes.  
 
8.3. Spectral moments 

The types of parameters discussed in the preceding section can often effectively 
distinguish between spectra of different phonetic categories. Another useful way of quantifying 
spectral differences is to reduce the spectrum to a small number of parameters that encode basic 
properties of its shape. This can be done by calculating what are often called spectral moments 
(Forrest et al., 1988). The function for calculating moments is borrowed from statistics in which 
the first four moments describe the mean, variance, skew, and kurtosis of a probability 
distribution.  

Before looking at spectral moments, it will be helpful to consider (statistical) moments in 
general. The matrix bridge includes some hypothetical data of counts that were made on three 
separate days of the number of cars crossing a bridge at hourly intervals. It looks like this: 
 
bridge 
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   Mon Tues Wed 
0    9    1   0 
1   35    1   1 
2   68    5   7 
3   94    4  27 
... 
 
The first row shows that between midday and 1 p.m., 9 cars were counted on Monday, one on 
Tuesday, and none on Wednesday. The second row has the same meaning but is the count of cars 
between 1 p.m. and 2 p.m. Fig. 8.16 shows the distribution of the counts on these three separate 
days: 
 
par(mfrow=c(1,3)) 
barplot(bridge[,1], ylab="Observed number of cars", 
main="Monday") 
barplot(bridge[,2], xlab="Hours", main="Tuesday") 
barplot(bridge[,3], main="Wednesday") 
 
There are obviously overall differences in the shape of these distributions. The plot for Monday 
is skewed to the left, the one for Tuesday is a mirror-image of the Monday data and is skewed to 
the right. The data for Wednesday is not as dispersed as for the other days: that is, it has more of 
its values concentrated around the mean. 

Leaving aside kurtosis for the present, the following predictions can be made: 
 

• Monday's mean (1st moment) is somewhere around 4-5 p.m. while the mean for Tuesday 
is a good deal higher (later), nearer 8 or 9 p.m. The mean for Wednesday seems to be 
between these two, around 6-7 p.m. 

 
• The values for Wednesday are not as spread out as for Monday or Tuesday: it is likely 

therefore that its variance (2nd moment) will be lower than for those of the other two 
days. 

 
• As already observed, Monday, Tuesday, and Wednesday are all likely to have different 

values for skew (3rd moment). 
 
Fig. 8.16 about here 
 
The core calculation of moments involves the formula: 
 
(1)

           
 
in which f is the observed frequency (observed number of cars in this example) x is the class 
(hours from 0 to 12 in our example), m is the moment (m =1, 2, 3, 4) and k is a constant (see also 
Harrington, 2009). The above formula can be translated directly into R as: 
 
sum(f * (x - k)^m) / sum(f) 
 
This formula can be put into a function that defaults to calculating the first moment  with m 
defaulting to 1 and k to 0 (the constant is zero when calculating the first moment): 
 
mfun <- function(x, f, k = 0, m = 1) 
{ 
   sum(f * (x - k)^m) / sum(f) 



    203 

 

} 
 
To get the mean or first moment, the class, x, has to be created which in the present bridge 
data consists of the integers 0 through to 12: 
 
hours = 0:12 
 
So the first moment for the Monday data is 
 
first = mfun(hours, bridge[,1]) 
 
For the other moments, the constant, k, is set equal to the first moment that has just been 
calculated, and m, the moment number to be calculated, is set to 2, 3, 4 respectively. Thus for the 
Monday data: 
 
second = mfun(hours, bridge[,1], first, 2) 
third = mfun(hours, bridge[,1], first, 3) 
fourth = mfun(hours, bridge[,1], first, 4) 
 
Two more adjustments need to be made. The third moment has to be divided by the second 
moment raised to the power 1.5: 
 
third = third/second^1.5 
 
and the 4th moment is divided by the square of the second moment and then 3 is subtracted from 
the result (the subtraction of 3 is done to make a normal distribution have zero kurtosis): 
 
fourth = fourth/second^2 - 3 
 
There is a function in the Emu-R library, moments(count, x) that carries out all of the 
above calculations. In this function, count is the observed frequency and x the class. So the 
first four moments for the Monday data are given by moments(bridge[,1], hours)56 
while all four moments for  Monday, Tuesday, Wednesday are given by: 
 
t(apply(bridge, 2, moments, hours)) 
      [,1]     [,2]        [,3]        [,4] 
Mon  4.172 4.422416  0.47063226  0.08290827 
Tues 7.828 4.422416 -0.47063226  0.08290827 
Wed  8.992 2.851936 -0.07963716 -0.39367681 
 
 
(t() is the transpose function and does nothing more than turn the resulting matrix the other 
way round so that the days of the week appear as rows, and the first four moments are in the 
columns). 

As expected, the first moment (column 1) is at about 4-5 p.m. for Monday, close to 6 
p.m. for Wednesday, and higher (later) than this for Tuesday. Also, as expected, the variance 
(second moment), whose unit in this example is hours2, is least for Wednesday.  

The skew is a dimensionless number that varies between -1 and 1. When the skew is 
zero, then the values are distributed evenly about the mean, as they are for a Gaussian normal 
distribution. When the values are skewed to the left so that there is a longer tail to the right, then 

                                                
56  The x argument can be omitted: if it is missing, then it defaults to 0:(N-1), where N is the 
length of count. So moments(bridge[,1]) gives the same result. 
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it is positive (as it is for the Monday data); the skew  is negative when the values are skewed to 
the right (as for the Tuesday data).  

Finally, the kurtosis is also a dimensionless number that is zero for a normal Gaussian 
distribution. Kurtosis is often described as a measure of how ‘peaked’ a distribution is. In very 
general terms, if the distribution is flat – that is, its shape looks rectangular  – then kurtosis is 
negative, whereas if the distribution is peaked, then kurtosis is typically positive. However, this 
general assumption only applies if the distributions are not skewed (skewed distributions tend to 
have positive kurtosis) and kurtosis depends not just on the peak but also on whether there are 
high values at the extremes of the distribution (see Wuensch, 2009 for some good examples of 
this). For all these reasons - and in particular in view of the fact that spectra are not usually 
symmetrical about the frequency axis - it is quite difficult to use kurtosis to make predictions 
about the spectral differences between phonetic categories. 
 When spectral moments are calculated, then x and f in  both (1) and the corresponding R 
function are the frequency in Hz and the corresponding dB values (and not the other way 
round!). This can be understood most easily by having another look at Fig. 8.16 and pretending it 
is a spectrum with a horizontal axis of frequency in Hz and a vertical axis of dB. On this 
assumption, the calculation of the 1st spectral moment results in a value in Hz (analogous to a 
value in hours for the worked example above), and the second spectral moment a value in Hz2, 
while the 3rd and 4th spectral moments are dimensionless, as before.  

Spectral moments will be investigated in the matrix of spectra at the temporal midpoint 
of the [s,z] fricatives extracted earlier with: 

 
fric.dft.5 = dcut(fric.dft, .5, prop=T) 
 
To apply the moments(count, x) function, count is a vector of dB values and x, the class, 
contains the frequencies at which these dB values  occur. Since for example in the 3rd segment, 
the dB values are given by fric.dft.5[3,] and their frequencies by 
trackfreq(fric.dft.5) then the moments for this spectrum must be: 
 
moments(fric.dft.5[3,], trackfreq(fric.dft.5)) 
 
However, the above command may sometimes fail. This is because some of the dB values can be 
negative and yet the calculation of moments assumes that the values for the observations are 
positive (it would never be possible, for example, to have a negative value in counting how many 
cars crossed the bridge in an hourly time interval!). To overcome this problem, the dB values are 
typically rescaled in calculating moments so that the minimum dB value is set to zero (as a result 
of which all dB values are positive and the smallest value is 0 dB). The moments() function 
does this whenever the argument minval=T is included. Thus: 
 
moments(fric.dft.5[3,], trackfreq(fric.dft.5), minval=T) 
 
Finally, since the moments() function can work out for itself the frequencies if it is supplied 
with spectral data, the second argument can be dropped. So the spectral moments for the 3rd 
segment are equivalently and more simply given by: 
 
moments(fric.dft.5[3,], minval=T) 
 
In order to calculate spectral moments not just for the 3rd but for all the segments, use the 
fapply(x, y) function as before. Notice in the following command how any additional 
arguments to y (in this case minval=T of the moments() function ) are appended after y, 
thus: 
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m = fapply(fric.dft.5, moments, minval=T) 
 
So m[3,] gives back the same result as moments(fric.dft.5[3,], minval=T).  
 

Since, as discussed in 8.2,  fapply() can be used to apply a function to a trackdata 
object, then a plot of the 1st spectral moment from the onset to the offset of the third segment is 
given by: 
 
m = fapply(fric.dft, moments, minval=T) 
plot(m[3,1], xlab="Time (ms)", ylab="1st spectral moment (Hz)", 
type="l") 
 
An ensemble plot of the 1st spectral moment for each segment between the acoustic onset and 
offset, synchronised at the temporal midpoint and coded for phonetic category (Fig. 8.17) is 
given by: 
 
dplot(m[,1], fric.l, 0.5, xlab="Time (ms)", ylab="First spectral 
moment (Hz)") 
 
The first spectral moment for [s] is higher than for [z] because, as Fig. 8.10 had shown, [s] has 
less energy at low frequencies and slightly more energy at high frequencies than  [z].  
 
Fig. 8.17 about here 
 
 Finally spectral moments will also be used to assess the extent to which palatal and velar 
fricatives in German are separated: this was a theme presented in the preceding Chapter using 
electropalatographic data. The dorsal fricatives in the Kiel Corpus of Read Speech were 
transcribed with either a front allophone [ç] (MRPA/SAMPA C) or with a back allophone [x]  
(MRPA/SAMPA x). Recall from the EPG analysis in Chapter 7 that there seems to be 
articulatory evidence for a categorical distinction between these two fricatives. The same 
problem will be analysed by comparing the fricative spectra of dorsal fricatives following vowels 
differing in phonetic backness. The dataset in this case is acoustic data of a female speaker taken 
from the Kiel corpus of read speech: 
 
dorfric  Segment list, postvocalic German dorsal fricatives 
dorfric.l  A vector of their labels: C or x 
dorfric.lv A vector of the vowel labels preceding these fricatives 
dorfric.w  A vector of the word labels containing these fricatives 
dorfric.dft Spectral trackdata object, 256 point DFT, 16 kHz sampling freq. 
 
The preceding vowel types arranged from phonetically front to back are I, E, a:, O, o:, u: 
corresponding to IPA [ɪ, ɛ, a:, ɔ, o:, u:] (the long [a:] and short [a] that distinguish German 
Lamm (lamb) and lahm (lame) have been collapsed into a single category because there was only 
one [a] token). As you will see from unique(paste(dorfric.lv, dorfric.l, 
sep=".")), the dorsal fricatives were transcribed in the Kiel Corpus with the palatal [ç] 
following [ɪ,ɛ] and with the velar [x] following the other vowels. The aim in the present analysis 
is to establish whether there is any acoustic justification for this. It will, as always, help to plot 
all the fricative spectra at the temporal midpoint separately by vowel category (Fig. 8.18): 
 
# Fricative spectra at the temporal midpoint 
dorfric.dft.5 = dcut(dorfric.dft, .5, prop=T) 
# Overlaid spectra separately by vowel category 



    206 

 

par(mfrow=c(2,3)); par(mar=rep(2, 4)) 
for(j in unique(dorfric.lv)){ 
   temp = dorfric.lv==j 
   plot(dorfric.dft.5[temp,], main=j) 
} 
 
Fig. 8.18 about here 
 
There do indeed seem to be differences in accordance with the transcriptions. After [ɪ, ɛ], there 
is a concentration of energy around 3-4 kHz whereas after the other vowels, the spectra fall with 
increasing frequency and there is not the same concentration of energy at any one frequency. 
Based on these plots, it seems likely that the fricatives after [ɪ, ɛ] have a lower second spectral 
moment, because the spectral energy is not so diffuse or spread along the frequency axis as it is 
after the other vowel categories. It is also possible that the mean, or first spectral moment, is 
higher for [ɪ, ɛ] because the other fricatives have proportionally slightly more energy in the 
lower part (0-2000 Hz) of the spectrum.  

These predictions can be tested by calculating spectral moments for the fricatives shown 
in Fig. 8.18. In calculating moments, researchers sometimes leave out at least the DC offset 
(frequency at 0 Hz) which is just the average amplitude of the spectrum multiplied by the signal 
length, N; and it is also a good idea to cut out the frequencies near the Nyquist frequency because 
these are often not very reliable. In the example, the frequencies below 500 Hz and above 7000 
Hz were removed. The 2nd spectral moment (variance) has also been converted into the spectral 
standard-deviation by taking its square root, in order to have more manageable values in Hz 
(rather than values in the region of 105 for Hz2). 
 
# Spectral moments 500 – 7000 Hz range 
m = fapply(dorfric.dft.5[,500:7000], moments, minval=T) 
# Spectral standard deviation in Hz 
m[,2] = sqrt(m[,2]) 
 
Fig. 8.19 shows ellipse plots for these calculated spectral moments of the fricatives but showing 
the vowel labels at the data points: 
 
eplot(m[,1:2], dorfric.l, dorfric.lv, dopoints=T, xlab="First 
spectral moment (Hz)", ylab="Second spectral moment (Hz)") 
 
Fig. 8.19 about here 
 
This Figure shows that there does indeed seem to be a very good separation between the tokens 
labelled as C and x. Also, the relative positions according to context are roughly in accordance 
with the predictions made earlier from the spectra: the dorsal fricatives following the front 
vowels [ɪ,ɛ] have a high first spectral moment; and  [ɔ, o:, u:] have a higher second spectral 
moment than [ɪ,ɛ] with the open vowel [a:] falling roughly between these vowel groups on this 
parameter.  
 
8.4. The discrete cosine transformation 

The discrete cosine transformation (DCT) is a mathematical operation that is very much 
like a discrete Fourier transform: it decomposes a signal into a set of sinusoids such that, when 
these are summed the same signal is reconstructed. One of the main differences between the two 
is that in the DCT the sinusoids are at half-cycles, that is,  at k = 0, 0.5, 1, 1.5… ½(N – 1) rather 
than, as for the DFT, at integer cycles (k = 0, 1, 2, …N-1). Another is that the output of the DCT 
is sinusoids with no phase. But any sinusoid with no phase is a cosine wave, so we may say that 
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a DCT decomposes a signal into a set of cosine waves at frequencies k = 0, 0.5, 1.0, 1.5, … ½(N 
– 1); and hence the name, discrete cosine transformation. 

The amplitudes of these cosine waves are called DCT coefficients and they are usually 
labelled from 0 to N-1. So the 0th coefficient, k0, is the amplitude of the k = 0 cosine wave; k1, the 
1st coefficient, is the amplitude of the k = 0.5 cosine wave, and so on. Now it turns out that these 
DCT coefficients encode global properties of the signal's shape: in particular, as will be shown 
below, k0, k1, k2 are proportional to the signal's mean, slope, and curvature respectively. For this 
reason, they serve the same important function as do spectral moments that were discussed in the 
previous section: DCT-coefficients, like spectral moments, reduce the quantity of information in 
a spectrum to a handful of values and, importantly, in such a way that different phonetic 
categories are often quite well separated (assuming these categories have differently shaped 
spectra).  

The DCT has another useful application in phonetics: it can be used to smooth a signal. 
The way that this works is as follows. Suppose you are driving along a road and your task is to 
draw a crescent or an arc on a sheet of paper. Just as you draw the arc, the car goes over a long 
cattle-grid that produces a series of bumps throughout the car. You find that your drawing looks 
like an arc (assuming that size of the bumps is not too big), but also has a minor deviations from 
an arc that are caused by the regularly spaced bumps of the cattle grid. It turns that if you make a 
spectrum of what you drew, then the bits of the signal that are due to the bumps would show up 
at high frequencies. This is to be expected: the bumps cause the pencil to change rapidly up and 
down above the arc that you are trying to draw. But anything that changes rapidly also shows up 
as a high frequency in the spectrum. Now we said that when a DCT is applied to a signal, then 
the signal is decomposed into cosine waves of progressively increasing frequency (k = 0, ½ , 
1…). Therefore, if a DCT is applied to the bumpy arc, then the bumpy part should show up at 
high cosine frequencies. If all of the cosine waves are summed, then the same bumpy arc is 
reconstructed, but if only the first few frequencies are summed, then the influence of the bumps, 
which only affect the high frequencies, should be more or less removed: the net result is a 
smoother arc than the one that was drawn (more like the one you intended to draw), which can 
be called a DCT-smoothed signal. Moreover, the fewer cosine waves that are summed, the 
smoother the result: so a summation of the first three cosine waves at frequencies k = 0, 0.5, 1 is 
going to produce a smoother result than summing cosine waves at frequencies k = 0, 0.5, 1, 1.5, 
2 cycles.  

Now dB-spectra of speech derived using Fourier analysis techniques discussed in this 
Chapter often have just this of property of bumpiness superimposed on a trend line. In voiced 
speech, the trend line is due to the formants which are responsible for a number of large peaks 
and troughs up and down the frequency axis. However, as discussed in 8.1, there is also a 
superimposed jaggedness or bumpiness that is the result of the harmonics due to vocal fold 
vibration that are spaced on the frequency axis at roughly pitch frequency. Thus in speech 
production, the filter is due to the shape of the vocal tract and produces a fairly smooth trend line 
in the spectrum while the source causes short-term changes (the bumpiness or saw-tooth effect). 
Following the earlier analogy, if a DCT is applied to a spectrum of speech but only the lower 
frequency cosine waves are summed, then the result will essentially be to filter out much of the 
bumpy part due to the source leaving predominantly the 'trend-line' due to the filter which is the 
spectrum that is due to the shape of the vocal tract. 

Finally, before looking in closer detail at how the DCT can be applied in Emu-R, it 
should be mentioned that there is more or less an equivalence between the application of a DCT 
to a spectrum and cepstral analysis. In speech technology research, the output of a DCT applied 
to a spectrum is considered to be (a very close) approximation to cepstral analysis (Milnar & 
Shao, 2006), but the differences between the two are negligible for most kinds of phonetic and 
indeed speech signal processing analysis. Thus leaving these minor differences aside, the 
amplitudes of the ½ cycle cosine waves into which a spectrum is decomposed by a DCT analysis 
are the DCT-coefficients which are essentially cepstral coefficients. A plot of the DCT-
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coefficients as a function of the coefficient number (a plot of k0, k1, k2... as a function of 0, 1, 2...) 
is a cepstrum; and a DCT-smoothed spectrum is a cepstrally smoothed spectrum. In automatic 
speech recognition, speech scientists often parameterise the signal every 5 or 10 ms in terms of 
what they call mel-scaled cepstral coefficients. These are DCT coefficients that are derived by 
applying a discrete cosine transformation to a Mel-scaled spectrum. This point will be explored 
in more detail at the end of this Chapter. 
 
8.4.1 Calculating DCT-coefficients in EMU-R 

In order to emphasise the very important point that the DCT is a transformation that is 
not specific to speech, the first example will be of a DCT applied to some of the data in bridge 
(a hypothetical count of cars crossing a bridge between midday and midnight). In the example 
below, the DCT is applied to the data in column 1 which is initially stored (for convenience) in a 
vector x. The function for calculating DCT coefficients is the Emu-R function dct(). 
(Formulae for the DCT are not given here, but see Harrington et al, 2008, Harrington, 2009; 
Nossair & Zahorian, 1991; Watson & Harrington, 1999). 
 
x = bridge[,1] 
# DCT coefficients 
x.dct = dct(x) 
# round to 2 places for convenience 
round(x.dct, 2) 
    0      1      2      3      4      5      6      7      8      9     10  
 54.39  29.54 -26.13 -24.65  -8.77  -2.96  -0.58  -0.06   0.59   2.14  -1.75  
    11     12  
 -3.31   3.26 
 

x.dct contains the DCT-coefficients: remember that these are amplitudes of ½-cycle cosine 
waves. The cosine waves into which the signal has been decomposed using the DCT can be 
inspected using this function: 
 
cfun <- function(A, j=0) 
{ 
   # A: DCT-coefficients (amplitude of ½ cycle cosine wave) 
   # j: frequency (cycles) of ½ cycle cosine wave 
   N = length(A) 
A[1] = A[1]/sqrt(2)    
n = 0:(N-1) 
   k = seq(0, by=.5, length=N) 
   # The cosine wave corresponding to kj 
   A[j+1] * cos(2 * pi * k[j+1] * (n+0.5)/N) 
} 
 
Here is a plot of the first four cosine waves corresponding to k0, k1, k2, k3 (Fig. 8.20): 
 
par(mfrow=c(2,2)); par(mar=rep(2,4)) 
for(j in 0:3){ 
   plot(cfun(x.dct, j), type="l", xlab="", ylab="", 
main=paste("k", j, sep="")) 
} 
 
Fig. 8.20 about here 
 
k0 has a frequency of 0 cycles and so, for the reasons discussed earlier (Fig. 8.2), it is a straight 
line. Also its amplitude is equal to the mean of the signal to which the DCT was applied. The 
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figure also shows that cosine waves are produced at frequencies of ½, 1, and 1½ cycles for the 
next higher coefficients respectively (the reason why k2 and k3 are upside-down cosine waves is 
because these coefficients are negative). Notice that, with the exception of k0,  the peak 
amplitudes of these cosine waves are equal to the corresponding DCT-coefficients57 (see 
round(x.dct, 2) given above). This is to be expected since DCT-coefficients are just the 
(peak) amplitudes of these cosine waves. 

If all of these half-cycle cosine waves are summed, then the result is the original signal to 
which the DCT transformation has just been applied: 
 
N = length(x.dct) 
mat = rep(0, length(x.dct)) 
for(j in 0:(N-1)){ 
   mat = mat+cfun(x.dct, j) 
} 
 
Apart from rounding errors, mat, the reconstructed signal, is the same as the original signal x, as 
the following subtraction of the original from the reconstructed signal shows:  
 
round(mat-x, 5) 
0  1  2  3  4  5  6  7  8  9 10 11 12  
0  0  0  0  0  0  0  0  0  0  0  0  0 
 
Following the reasoning in 8.4.1 above, if only the few lowest frequencies are summed, e.g., the 
cosine waves corresponding to k0 through to k3 shown in Fig. 8.20, then the result is a DCT-
smoothed signal, i.e. a smoother version of the original signal. The summation could be 
accomplished with the for-loop given above. Alternatively, and more conveniently, the same 
dct() function can be used not just for DCT-analysis but also for DCT-synthesis to add up the 
cosine waves into which the signal was decomposed. The following adds up the first four half-
cycle cosine waves shown in Fig. 8.20: 
 
# Sum to k3 
dctsum = dct(x, 3, T) 
 
# The above is the same as: 
dctsum= rep(0, length(x.dct)) 
for(j in 0:3){ 
   dctsum = dctsum+cfun(x.dct, j) 
} 
 
A plot of the original signal and DCT-smoothed signal using coefficients 0-3 is shown in Fig. 
8.21 and is given by the following commands: 
 
ylim = range(c(dctsum, x)) 
plot(x, type="l", ylim=ylim, xlab="Time (points)", ylab="", 
col="slategray", axes=F) 
par(new=T) 
plot(dctsum, type="b", ylim=ylim, xlab="Time (points)", 
ylab="Amplitude") 
 
The more coefficients that are used, the closer the DCT-smoothed signal approximates the 
original signal. 

                                                
57 For reasons to do with the implementation of the DCT algorithm (see Watson & Harrington, 1999 and Harrington, 
2009 for formlae), k0 is the value shown in Fig. 8.20 multiplied by √2. 
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Fig. 8.21 about here 
 
8.4.2 DCT-coefficients of a spectrum 

The leftmost panel of Fig. 8.22 shows a 512-point dB-spectrum calculated at the temporal 
midpoint of an [ɛ] vowel sampled at 16000 Hz (the midpoint of the first segment in vowlax as 
it happens) and plotted with plot(e.dft, type="l"). Following the discussion earlier in 
this Chapter, the 512 point window is easily wide enough so that harmonics appear: there is a 
gradual rise and fall due to the presence of formants and superimposed on this is a jaggedness 
produced by the fundamental frequency and its associated harmonics. The DCT-coefficients of 
this spectrum can be calculated following the procedure in 8.4.1. Such a calculation produces the 
amplitudes of the ½ cycle cosine waves and a plot of them as a function of the corresponding 
DCT-coefficient number (middle panel, Fig. 8.22) is a cepstrum: 
 
# DCT coefficients 
e.dct = dct(e.dft) 
N = length(e.dct); k = 0:(N-1) 
# Cepstrum 
plot(k, e.dct,  ylim=c(-5, 5), type="l", xlab="Time (number of 
points", ylab="Amplitude of cosine waves") 
 
Fig. 8.22 about here 
 
In the earlier example of trying to draw an arc while driving over a cattle-grid, it was argued that 
the deviations caused by the bumps show up at high frequency cosine waves and that 
analogously so would the oscillations due to the harmonics caused by vocal fold vibration (the 
source) that produce the jaggedness in a spectrum. In the present example, their effect is visible 
as the pronounced spike in the cepstrum between 100 and 150 points. The spike occurs at the 
107th DCT-coefficient (k107). With this information, the fundamental frequency of the signal can 
be estimated: 107 points corresponds to 0.0066875 s at the sampling frequency of 16000 Hz and 
therefore to a fundamental frequency of 1/0.0066875 = 149.5 Hz. The estimated f0 can be 
checked against the spectrum. For example, the 4th harmonic in the spectrum in the left panel of 
Fig.8.22 is associated with a peak at 593.75 Hz which means that the fundamental frequency is 
593.75/4 = 148.4 Hz, which is a value that is within about 1 Hz of the f0 estimated from the 
cepstrum. So this demonstrates another use of DCT (cepstral) analysis: it can be used to estimate 
whether or not the signal is voiced (whether there is/is not a spike) and also for estimating the 
signal's fundamental frequency. 

A DCT or cepstrally-smoothed version of the spectrum that excludes the contribution 
from the source signal can be obtained as long as the summation does not include the higher 
frequency cosine waves around k107 that encode the information about the fundamental 
frequency and harmonics. Beyond this, there can be no guidelines about how many cosine waves 
should be summed: the more that are summed, the more the resulting signal approximates the 
original spectrum. In the right panel of Fig. 8.22, the first 31 coefficients have been summed and 
the result superimposed on the original raw spectrum as follows: 
 
# Carry out DCT analysis then sum from k0 to k30 
coeffto30 = dct(e.dft, 30, T) 
# We have to tell R that this is spectral data at a sampling frequency of 16000 Hz 
coeffto30 = as.spectral(coeffto30, 16000) 
ylim = range(coeffto30, e.dft) 
# Raw dB-spectrum  
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plot(e.dft, ylim=ylim, xlab="", ylab="", axes=F, 
col="slategray", type="l") 
par(new=T) 
# Superimposed DCT-smoothed (cepstrally-smoothed) spectrum 
plot(coeffto30, ylim=ylim, xlab="Frequency (Hz)", 
ylab="Intensity (dB) ") 
 
The smooth line through the spectrum, a cepstrally-smoothed spectrum, has none of the 
influence due to the source. Finally, if you want to derive cepstrally smoothed spectra from 
either a spectral matrix or trackdata object58, then this can be done using dct() with the 
argument fit=T inside fapply(). For example, a plot of cepstrally smoothed spectra using 5 
coefficients for a spectral matrix of stop bursts is given by: 
 
smooth = fapply(keng.dft.5, dct, 5, fit=T) 
plot(smooth, keng.l) 
 
8.4.3 DCT-coefficients and trajectory shape 
 The lowest three DCT-coefficients are, as has already been mentioned, related to the 
mean, slope, and curvature respectively of the signal to which the DCT transformation is applied. 
k0 in the DCT-algorithm that is implemented here (and discussed in Watson & Harrington, 1999) 
is the mean of the signal multiplied by . k1 is directly proportional to the linear slope of the 
signal. This relationship can be verified by calculating the linear slope using the slope() 
function created in 8.2 and then correlating the slope with k1. For example, for the dorsal 
fricative data: 
 
slope <- function(x) 
{ 
   # Calculate the intercept and slope  in a spectral vector 
   lm(x ~ trackfreq(x))$coeff 
} 
 
# Spectra at the temporal midpoint 
dorfric.dft.5 = dcut(dorfric.dft, .5, prop=T) 
 
# Spectral slope – N.B. the slope is stored in column 2 
sp = fapply(dorfric.dft.5, slope) 
 
# Coefficients up to k1 (N.B. k1 is in column 2) 
k = fapply(dorfric.dft.5, dct, 1) 
# How strongly is the linear slope correlated with k1? 
cor(sp[,2], k[,2]) 
-0.9979162 
 
The above shows that there is almost complete (negative) correlation between these variables, 
i.e. greater positive slopes correspond to greater negative k1 values and vice-versa (this is clearly 
seen in plot(sp[,2], d[,2]) where you can also see that when the linear slope is zero, 
so is k1). 

                                                
58 Calculating cepstrally smoothed spectra on a spectral trackdata object is at the time of writing very slow in R. 
There is a signal processing routine in Emu-tkassp for calculating cepstrally smoothed spectra directly from the 
audio signals (LP type CSS in the spectrum pane). 
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 k2 is most closely related to the signal's curvature, where curvature has the definition 
given in 6.6 of Chapter 6, i.e., it is the coefficient c2 in a parabola y = c0 + c1x + c2x2.  Recall that 
the coefficient c2 can be calculated as follows: 
 
# c2 for F1 data, lax vowels. c2 is stored in coeffs[,3] 
coeffs= trapply(vowlax.fdat[,1], plafit, simplify=T) 
 
# The DCT-coefficients: k2 is stored in k[,3] 
k = trapply(vowlax.fdat[,1], dct, 3, simplify=T) 
 
# The correlation between c2 and k2 is very high: 
cor(coeffs[,3], k[,3]) 
0.939339 
 
In general, there will only be such a direct correspondence between curvature in a parabola and 
k2 as long as the signal has a basic parabolic shape. If it does not, then the relationship between 
the two is likely to be much weaker. 
 
8.4.4 Mel- and Bark-scaled DCT (cepstral) coefficients 
 The Bark scale has already been discussed in the chapter on vowels: it is a scale that 
warps the physical frequency axis in Hz into one which corresponds more closely to the way in 
which frequency is processed in the ear. Another auditory scale that was more commonly used in 
phonetics in the 1970s and which is used in automatic speech recognition research today is the 
Mel scale. As discussed in Fant (1968), the Mel scale is obtained in such a way that a doubling 
on the Mel scale corresponds roughly to a doubling of perceived pitch. Also, 1000 Mel = 1000 
Hz. If you want to see the relationship between Mel and Hz, then enter: 
 
plot(0:10000, mel(0:10000), type="l", xlab="Frequency (Hz)", 
ylab="Frequency (mels)") 
 
In fact, the Bark and Mel scale warp the frequency scale in rather a similar way, especially for 
frequencies above about 1000 Hz.   
 There are two main ways to see what a spectrum looks like when its frequency axis is 
converted to an auditory scale. The first just converts trackfreq(x) from Hz into Mel or 
Bark (where x is a spectral object). Since the auditory scales are approximately linear up to 
1000 Hz and quasi-logarithmic thereafter, the result of the first method is that there are more data 
points at higher frequencies in the auditorily-scaled spectra: this is because the interval in Bark 
or Mel for the same frequency width in Hz becomes progressively smaller with increasing 
frequency (compare for example the difference in Bark between 7000 Hz and 6000 Hz given by 
bark(7000) - bark(6000)  with the Bark difference between 2000 Hz and 1000 Hz ). 
The second method uses a linear interpolation technique (see 6.6 and Fig. 6.18) so that the data 
points in the spectrum are spaced at equal Mel or Bark intervals along the frequency axis. 
Therefore, with this second method, there is the same number of data points between 1 and 2 
Bark as between 3 and 4 Bark and so on. Both methods give more or less the same spectral 
shape, but obviously some of the detail is lost in the high frequency range with the second 
method because there are fewer data points. Here finally are the two methods for the spectrum of 
the [ɛ] vowel considered earlier: 
 
# Method 1 
plot(e.dft, freq=bark(trackfreq(e.dft)), type="l", 
xlab="Frequency (Bark)") 
# Method 2 
plot(bark(e.dft), type="l", xlab="Frequency (Bark)") 
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 A Bark-scaled DCT-transformation is just a DCT transformation that is applied to a 
spectrum after the spectrum's frequency axis has been converted into Bark (or into Mel for a 
Mel-scaled DCT-transformation). Only the second method, in which the data points represent 
equal intervals of frequency is available for DCT-analysis, and not the first59.  This is because 
the DCT-analysis is predicated on the assumption that the digital points are at equal intervals (of 
time or of frequency).  

The motivation for converting to an auditory scale is not just that this scale is obviously 
more closely related to the way in which frequency is perceived, but also because, as various 
studies in automatic speech recognition have shown, fewer Bark- or Mel-scaled DCT (cepstral) 
coefficients are needed to distinguish effectively between different phonetic categories than 
when DCT coefficients are derived from a Hz scale.  In order to illustrate this point, calculate a 
DCT-smoothed spectrum with and without auditory scaling using only a small number of 
coefficients (six in this example, up to k5), as follows: 
 
# DCT (cepstrally) smoothed Hz spectrum with 6 coefficients 
hz.dft = dct(e.dft, 5, T) 
hz.dft = as.spectral(hz.dft, trackfreq(e.dft)) 
 
# DCT (cepstrally) smoothed Bark spectrum with 6 coefficients 
bk.dft = dct(bark(e.dft), 5, T) 
bk.dft = as.spectral(bk.dft, trackfreq(bark(e.dft))) 
par(mfrow=c(1,2)) 
plot(hz.dft, xlab="Frequency (Hz)", ylab="Intensity (dB)") 
plot(bk.dft, xlab="Frequency (Bark)") 
 
# Superimpose a kHz axis up to 3.5 kHz 
values = seq(0, 6000, by=500) 
axis(side=3, at=bark(values), labels=as.character(values/1000)) 
mtext("Frequency (kHz)", side=3, line=2) 
 
Fig. 8.23 about here 
 
The DCT-smoothed Hz spectrum (left panel, Fig. 8.23) is too smooth: above all it does not allow 
the most important information that characterises an [ɛ] vowel, i.e. F1 and F2 to be 
distinguished. The DCT-smoothed Bark spectrum seems to be as smooth and is perhaps 
therefore just as ineffective as the Hz spectrum for characterising the salient acoustic properties 
of [ɛ]. But a closer inspection shows that this is not so. There are evidently two broad peaks in 
the DCT-smoothed Bark spectrum that are at 4.32 Bark and 12.63 Bark respectively. The 
conversion bark(c(4.32, 12.64), inv=T), shows that these Bark frequencies are 432 
Hz and 1892 Hz – in other words the frequency location of these peaks is strongly influenced by 
the first two formant frequencies60. So the DCT-smoothed Bark-spectrum, in contrast to the 
DCT-smoothed Hz-spectrum, seems to have given greater prominence to just those attributes of 
[ɛ] that are most important for identifying it phonetically. 
 A comparison can now be made of how the raw and auditorily-transformed DCT-
coefficients distinguish between the same German lax vowel categories that were the subject of 

                                                
59 In fact, there is a third method. In automatic speech recognition, energy values are often summed in a filter-bank 
at intervals of 1 Bark. This reduces a spectrum to a series of about 20 values, and it is this data-reduced form that is 
then subjected to a DCT (Milner & Shao, 2006). The filter bank approach is discussed in Chapter 9. 
60 Recall that this spectrum was taken at the onset of the first vowel in vowlax. The peaks in the Bark-smoothed 
cepstrum on the right of Fig. 8.23 are quite close to the F1 and F2 in the first few frames of the calculated formants 
for this vowel given by frames(vowlax.fdat[1,1:2]). 
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analysis in Chapter 6. For this purpose, there is a spectral object vowlax.dft.5 which 
contains 256-point dB-spectra at the temporal midpoint of the segment list vowlax. The 
relevant objects for the present investigation include: 
 
vowlax.dft.5  Matrix of dB-spectra 
vowlax.l   Vector of vowel labels 
vowlax.spkr  Vector of speaker labels  
vowlax.fdat.5  F1-F4 formant frequency data at the temporal midpoint 
 
Given that the salient acoustic information for distinguishing between vowel categories is 
typically between 200-4000 Hz, the first few DCT coefficients will be calculated in this 
frequency range only: 
 
# First four DCT-coefficients calculated on Hz spectra 
dcthz = fapply(vowlax.dft.5[,200:4000], dct, 3) 
 
# ...on Bark-scaled  spectra 
dctbk = fapply(bark(vowlax.dft.5[,200:4000]), dct, 3) 
# ...on Mel-scaled spectra. 
dctml = fapply(mel(vowlax.dft.5[,200:4000]), dct, 3) 
 
Remember that at least 6 or 7 auditorily scaled DCT-coefficients are usually necessary to obtain 
a discrimination between vowel categories that is as effective as the one from the first two 
formant frequencies. Nevertheless, there is a reasonably good separation between the vowels for 
female speaker 68 in the plane of k1 × k2 (the reader can experiment with other coefficients pairs 
and at the same time verify that the separation is not as good for the male speaker's data on these 
coefficients). The same vowels in the formant plane are shown for comparison in the  bottom 
right pane of  Fig. 8.24. 
 
temp = vowlax.spkr == "68" 
par(mfrow=c(2,2)) 
eplot(dcthz[temp,2:3], vowlax.l[temp], centroid=T, main="DCT-
Hz") 
eplot(dctbk[temp,2:3], vowlax.l[temp], centroid=T, main="DCT-
Bark") 
eplot(dctml[temp,2:3], vowlax.l[temp], centroid=T, main="DCT-
mel") 
eplot(dcut(vowlax.fdat[temp,1:2], .5, prop=T), vowlax.l[temp], 
centroid=T, form=T, main="F1 x F2") 
 
Fig. 8.24 about here 
 
There are a couple of interesting things about the data in Fig. 8.24. The first is that in all of the 
DCT-spaces, there is a resemblance to the shape of the vowel quadrilateral, with the vowel 
categories distributed in relation to each other very roughly as they are in the formant plane. This 
is perhaps not surprising given the following three connected facts:  
 

• a DCT transformation encodes the overall shape of the spectrum 
• The overall spectral shape for vowels is predominantly determined by F1-F3 
• F1 and F2 are proportional to phonetic height and backness respectively, and therefore to 

the axes of a vowel quadrilateral.  
 



    215 

 

Secondly, the vowel categories are distinguished to a slightly greater extent in the auditorily 
transformed DCT-spaces (Bark and Mel) than in the DCT-Hertz spaces. This is especially so as 
far as the overlap of [a] with [ɪ, ɛ] is concerned.  

Finally, one of the advantages of the DCT over the formant analysis is that there has been 
no need to use complicated formant tracking algorithms and above all no need to make any 
corrections for outliers. This is one of the reasons why they are preferred in automatic speech 
recognition. Another is that, while it makes no sense to track formants for voiceless sounds, the 
same DCT coefficients, or auditorily-transformed DCT coefficients, can be used for quantifying 
both voiced and voiceless speech. 
 
8.5. Questions 
 
1. This question is about digital sinusoids. 
 
1.1. Use the crplot() function in the Emu-R library to plot the alias of the cosine wave of 
length 20 points and with frequency 4 cycles.  
 
1.2. Use the crplot() function to plot a sine wave.  
 
1.3. The alias also requires the phase to be opposite in sign compared with the non-aliased 
waveform. Use crplot() to plot the alias of the above sine wave.  
 

1.4. The cr() function produces a plot of  where A, k, φ are the cosine's 
amplitude, frequency (in cycles) and phase (in radians) respectively. Also, N is the length of the 
signal and n is a vector of integers,  0, 1, 2, … N-1.  Convert the equation into an R function that 
takes A, k, p, N as its arguments, and verify that you get the same results as from cr() for any 
choice of amplitude, frequency, phase, and N. (Plot the cosine wave from your function against n 
on the x-axis).  
 
1.5. What is the effect of adding to a cosine wave another cosine wave that has been phase-
shifted by π radians (180 degrees)? Use the cr() function with values=T (and round the 
result to the nearest 4 places) to check your assumptions.  
 
2. According to Halle, Hughes & Radley (1957), the two major allophones of /k/ before front and 
back vowels can be distinguished by a – b , where  a and b have the following definitions: 
 
a the sum of the dB-values in the 700 Hz – 9000 Hz range. 
b the sum of the dB-values in the 2700 – 9000 Hz range. 
 
Verify (using e.g., a boxplot) whether this is so for the following data: 
 
keng   Segment list of the aspiration of syllable-initial  

 Australian English /k/ before front /ɪ,ɛ/  
 (e.g., kin, kept) and back /ɔ:, ʊ/ vowels (e.g., caught, could). 

keng.dft.5 Spectral matrix of the above at the  
   temporal midpoint of the segment. 
keng.l  Labels of the following vowel (front or  back) 
 
3. If vowel lip-rounding has an anticipatory coarticulatory influence on a preceding consonant in 
a CV sequence, how would you expect the spectra of alveolar fricatives to differ preceding 
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unrounded and rounded vowels? Plot the spectra of the German syllable-initial [z] fricatives 
defined below at their temporal midpoint separately in the unrounded and rounded contexts to 
check your predictions.  
 
sib  Segment list, syllable-initial [z] preceding [i:, ɪ, u:, ʊ], one male and 
  one female  speaker. 
sib.l A vector of labels: f, for [z] preceding front unrounded [i:, ɪ],  
  b for [z] preceding back rounded [u:, ʊ] 
sib.w A vector of word labels. 
sib.dft Spectral trackdata object  (256 point DFT)  

from the onset to the offset of [z] with a frame shift of 5 ms. 
 
Apply a metric to the spectra that you have just plotted to see how effectively you can 
distinguish between [z] before unrounded and rounded vowels. 
 
4. Here are some F2-data of Australian English and Standard German [i:] vowels, both produced 
in read sentences each by one male speaker. 
 
f2geraus  Trackdata object of F2  
f2geraus.l Vector of labels: either aus or ger corresponding to 
   whether the F2-trajectories in f2geraus were produced by 
   the Australian or German speaker. 
 
4.1 It is sometimes said that Australian English [i:] has a 'late target' (long onglide). How are the 
trajectories between the languages likely to differ on skew? 
 
4.2 Produce a time-normalised, averaged plot of F2 colour-coded for the language to check your 
predictions. 
 
4.3 Quantify these predictions by calculating moments for these F2 trajectories (and e.g., making 
a boxplot of skew for the two language categories). 
 
5. Sketch (by hand) the likely F2-trajectories of [aɪ, aʊ, a] as a function of time. How are these 
F2-trajectories likely to differ on skew? Check your predictions by calculating F2-moments for  
[aɪ, aʊ]  and [a] for speaker 68. Use the following objects: 
 
dip.fdat  Trackdata object of formants containing the diphthongs 
dip.l  Vector of diphthong labels 
dip.spkr  Vector of speaker labels for the diphthongs 
vowlax.fdat Trackdata object of formants containing [a] 
vowlax.l  Vector of vowel labels 
vowlax.spkr Vector of speaker labels 
 
Make a boxplot showing the skew for these three categories. 
 
6. The features diffuse vs. compact are sometimes used to distinguish between sounds whose 
energy is more distributed (diffuse) as opposed to concentrated predominantly in one region 
(compact) in the spectrum. 
 
6.1 On which of the moment parameters might diffuse vs. compact spectra be expected to differ? 
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6.2 In their analysis of stops, Blumstein & Stevens (1979) characterise (the burst of) velars as 
having a compact spectrum with mid-frequency peaks as opposed to labials and alveolars for 
which the spectra are diffuse in the frequency range 0-4000 Hz.  Check whether there is any 
evidence for this by plotting ensemble-averaged spectra of the bursts of [b,d,g] overlaid on the 
same plot (in the manner of Fig. 8.10, right). All of the data is contained in a spectral matrix 
calculated from a 256-point DFT centered 10 ms after the stop release and includes the same 
[b,d] spectral data as after derived in 8.2 as well as [g]-bursts before the non-back vowels [i:, 
e:, a:, aʊ]. 
 
stops10  spectral matrix, 256-point DFT 
stops10.lab vector of stop labels 
 
6.3 Calculate in the 0-4000 Hz range whichever moment you think might be appropriate for 
distinguishing [g] from the other two stop classes and make a boxplot of the chosen moment 
parameter separately for the three classes. Is there any evidence for the diffuse ([b,d]) vs. 
compact ([g]) distinction? 
 
7. A tense vowel is often phonetically more peripheral than a lax vowel, and acoustically this can 
sometimes be associated with a greater formant curvature (because there is often a greater 
deviation in producing a tense vowel from the centre of the vowel space). 
 
7.1 Verify whether there is any evidence for this using dplot() to produce time-normalised, 
ensemble-averaged F2-trajectories as a function of time of the German tense and lax [i:, ɪ] 
vowels produced by male speaker 67.  The data to be plotted is from a trackdata object dat 
with a parallel vector of labels lab that can be created as follows: 
 
temp = f2geraus.l == "ger" 
# F2-trackdata of tense [i:] 
dati = f2geraus[temp,] 
 
# A parallel vector of labels 
labi = rep("i:", sum(temp)) 
 
temp = vowlax.l == "I" & vowlax.spkr == "67" 
# F2-trackdata of lax [ɪ] 
datI = vowlax.fdat[temp,2] 
# A parallel vector of labels 
labI = rep("I", sum(temp)) 
 
# Here are the data and corresponding labels to be plotted 
dat = rbind(dati, datI) 
lab = c(labi, labI) 
 
7.2. Quantify the data by calculating k2 and displaying the results in a boxplot separately for [i:] 
and [ɪ]. 
 
8. This question is concerned with the vowels [ɪ, ʊ, a] in the timetable database. The 
following objects are available from this database in the Emu-R library: 
timevow   Segment list of these three vowels 
timevow.dft   Spectral trackdata object of spectra between 
   the start and end times of these vowels 
timevow.l   Vector of labels 
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8.1 Make an ensemble-averaged spectral plot in the 0-3000 Hz range (with one average per 
vowel category) of spectra extracted at the temporal midpoint of these vowels. Produce the plot 
with the x-axis proportional to the Bark scale. Look at the global shape of the spectra and try to 
make predictions about how the three vowel categories are likely to differ on Bark-scaled k1 and 
k2. 
 
8.2 Calculate Bark-scaled k1 and k2 for these spectra and make ellipse plots of the vowels in this 
plane. To what extent are your predictions in 9.1 supported? 
 
8.3 Produce for the first [ɪ] at its temporal midpoint a Bark-spectrum in the 0-4000 Hz range 
overlaid with a smoothed spectrum calculated from the first 6 Bark-scaled DCT-coefficients. 
Produce the plot with the axis proportional to the Bark scale. 
 
8.6 Answers 
  
1.1. 
crplot(k=16, N=20) 
 
1.2. 
crplot(p=-pi/2) 
 
1.3. 
crplot(k=15, p=pi/2) 
 
1.4. 
cfun <- function(A, k, p, N) 
{ 
n = 0:(N-1) 
A * cos((2 * pi * k * n)/N + p) 
} 
 
For example: 
 
res = cfun(1.5, 1.4, pi/3, 20) 
n = 0:19 
plot(n, res, col=2) 
par(new=T) 
cr(1.5, 1.4, pi/3, 20, type="l") 
 
1.5. The sinusoids cancel each other out. 
 
o = cr(p=c(0, pi), values=T) 
round(o, 4) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 
2.  
a = fapply(keng.dft.5[,700:9000], sum, power=T) 
b = fapply(keng.dft.5[,2700:9000], sum, power=T) 
d = a - b 
boxplot(d ~ factor(keng.l), ylab="dB-difference") 
Yes, this parameter separates the front and back allophones of /k/ quite well (Fig. 8.25). 
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Fig. 8.25 about here 
 
3. You would expect an overall lowering of the spectral energy: lip-rounding should produce a 
decrease in the spectral centre of gravity or first spectral moment (Mann & Repp, 1980). The 
parameter chosen here (Fig. 8.26)  is the 1st spectral moment in the 2000-7700 Hz range. 
 
Fig. 8.26 about here 
 
sib.mid= dcut(sib.dft, .5, prop=T) 
plot(sib.mid, sib.l, fun=mean, power=T, xlab="Frequency (Hz)", 
ylab="Intensity (dB)") 
 
m = fapply(sib.mid[,2000:7700], moments, minval=T) 
boxplot(m[,1] ~ factor(sib.l), ylab="1st spectral moment (Hz)") 
 
4.1 The F2-trajectories for late target vowels should be skewed to the right. 
 
4.2 The plots are shown in Fig. 8.27 and were created as follows. 
 
par(mfrow=c(1,2)) 
dplot(f2geraus, f2geraus.l, average=T, normalise=T, xlab= 
"Normalized time", ylab="F2 (Hz)", leg="bottomright") 
 
Fig. 8.27 about here 
 
4.3 
m = trapply(f2geraus, moments, simplify=T) 
skew = m[,3] 
boxplot(skew ~ factor(f2geraus.l), ylab="F2-skew") 
 
5. [aɪ] has a late  F2 peak, [aʊ] has a late F2-trough (and thus effectively an early peak), and [a] 
has its F2 peak near the temporal midpoint. The skew for these three categories should therefore 
be negative, positive, and close to zero respectively (Fig. 8.28). 
 
temp1 = dip.l %in% c("aI", "aU") & dip.spkr == "68" 
temp2 = vowlax.l == "a" & vowlax.spkr == "68" 
dat = rbind(dip.fdat[temp1,2], vowlax.fdat[temp2,2]) 
labs = c(dip.l[temp1], vowlax.l[temp2]) 
coeffs = trapply(dat, moments, simplify=T) 
boxplot(coeffs[,3] ~ labs, ylab="F2-skew") 
 
Fig. 8.28 about here 
 
6.1 Diffuse and compact should differ on the 2nd moment (i.e., variance).  
 
6.2  
plot(stops10[,0:4000], stops10.lab, fun=mean, power=T, 
xlab="Frequency (Hz)", ylab="Intensity (dB)", leg="bottomleft") 
 
The averaged spectra in Fig. 8.29 do indeed seem to show a greater concentration of energy in 
the mid frequency range for [g] than for the other stop categories and so the spectral variance 
should be less. 
 
Fig. 8.29 about here 
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6.3  
m = fapply(stops10[,0:4000], moments, minval=T) 
boxplot(sqrt(m[,2]) ~ stops10.lab, ylab="Square root of 2nd 
moment (Hz)") 
 
There is some evidence that the spectral variance is less for [g] in the right panel of Fig. 8.29. 
However, the data for [g] is dispersed as shown by the large inter-quartile range (the extent of 
the rectangle) in comparison with [b, d]: this probably comes about because [g] bursts occur 
before both front and back vowels which, of course, induce a good deal of variation in initial [g].  
 
7.1.  
dplot(dat, lab, ylab="F2 (Hz)", norm=T, average=T, ylim=c(1600, 
2100)) 
 
There is evidence from Fig. 8.30 (left) for greater curvature in [i:] as shown by the greater 
negative values for /i:/ on  k2. 
 
Fig. 8.30 about here 
 
7.2 
m = trapply(dat, dct, 2, simplify=T) 
boxplot(m[,3] ~ factor(lab), ylab="k2") 
 
8.1. 
mid = dcut(timevow.dft, .5, prop=T) 
plot(bark(mid[,0:3000]), timevow.l, fun=mean, power=T, 
xlab="Frequency (Bark)", ylab="Intensity (dB)") 
 
Since the slope of the spectrum for [ʊ] in the left panel of Fig. 8.31 falls more steeply than for 
the other vowels, it should be distinguished from them on k1. The spectra for [ɪ, a] have a ⋃-
shape and ⋂-shape respectively whereas that of [ʊ] shows less evidence of a parabolic shape. 
Therefore, k2 should certainly distinguish [ɪ] and [a] (they might have roughly the same value on 
k2 but one will be positive and the other negative) and both [ɪ, a] should be distinguished on k2 
from the comparatively more flat [ʊ] spectra. 
 
8.2 
mid.dct = fapply(bark(mid[,0:3000]), dct, 2) 
eplot(mid.dct[,2:3], timevow.l, centroid=T, xlab="Bark-scaled 
k1", ylab="Bark-scaled k2") 
 
As Fig. 8.31 shows, the predictions from 8.1 are more or less supported. 
 
Fig. 8.31 about here 
 
8.3 
# Logical vector for [ɪ] 
temp = timevow.l == "I" 
 
# n is an index of the first [ɪ] 
n = 1:length(timevow.l) 
n = n[temp][1] 
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# Bark spectrum for this [ɪ] at the segment's temporal midpoint 
ispec = bark(dcut(timevow.dft[n,0:4000], .5, prop=T)) 
 
# Smoothed-Bark spectrum 
smooth = dct(ispec, 5, fit=T) 
 
# Equivalently 
# smooth = fapply(ispec, dct, 5, fit=T) 
 
# Row bind the raw and smooth spectra 
both = rbind(ispec, smooth) 
 
# Make both into a spectral object with the same frequency range 
fs = 2 * max(trackfreq(ispec)) 
both = as.spectral(both, fs) 
 
# A plot of the raw and overlaid smoothed spectrum 
plot(both, c("raw", "smooth"), xlab="Frequency (Bark)", 
ylab="Intensity (dB)") 
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Chapter 9. Classification. 
  
 At various stages in this book, different classes of speech sounds have been compared 
with each other in terms of their acoustic or articulatory proximity. In this Chapter, the 
quantification of the similarity between speech sounds is extended by introducing some topics in 
classification. This will provide an additional set of tools for establishing both how effectively 
classes of speech sounds are separated from each other based on a number of parameters and for 
determining the likelihood that a given value within the parameter space belongs to one of the 
classes. One of the applications of this methodology in experimental phonetics is to quantify 
whether adding a new parameter contributes any further information to the separation between 
classes; another is to assess the extent to which there is a correspondence between acoustic and 
perceptual classification of speech data. More generally, using probability in experimental 
phonetics has become increasingly important in view of research advances in probabilistic 
linguistics (Bod et al, 2003) and developments in exemplar models of speech perception and 
production that are founded on a probabilistic treatment of speech signals. Probability theory has 
been used in recent years in forensic phonetics (Rose, 2002) as a way of expressing the 
likelihood of the evidence given a particular hypothesis. 
 The introduction to this topic that is presented in this Chapter will begin with a brief 
overview of Bayes' theorem and with the classification of single-parameter data using a Gaussian 
distribution. This will be extended to two parameter classifications which will provide the tools 
for defining an ellipse and the relationship to principal components analysis.  Some 
consideration will also be given to a support vector machine, a non-Gaussian technique for 
classification. At various stages in this Chapter, the problem of how to classify speech signals as 
a function of time will also be discussed. 
 
9.1. Probability and Bayes theorem 

The starting point for many techniques in probabilistic classification is Bayes' theorem 
which provides a way of relating evidence to a hypothesis. In the present context, it allows 
questions to be answered such as: given that there is a vowel with a high second formant 
frequency, what is the probability that the vowel is /i/ as opposed to /e/ or /a/?  In this case, 'F2 is 
high' is the evidence and 'the vowel is /i/ as opposed to /e/ or /a/' is the hypothesis.  

Consider now the following problem. In a very large labelled corpus of speech, syllables 
are labelled categorically depending on whether they were produced with modal voice or with 
creak and also on whether they were phrase-final or not.  After labelling the corpus, it is 
established that 15% of all syllables are phrase-final. It is also found that creak occurs in 80% of 
these phrase-final syllables and in 30% of non-phrase final syllables. You are given a syllable 
from the corpus that was produced with creak but are not told anything about its phrase-label. 
The task is now to find an answer to the following question: what is the probability that the 
syllable is phrase-final (the hypothesis) given (the evidence) that it was produced with creak?  

Since the large majority of phrase-final syllables were produced with creak while most of 
the non phrase-final syllables were not, it would seem that the probability that the creak token is 
also a phrase-final syllable is quite high. However, the probability must be computed not just by 
considering the proportion of phrase-final syllables that were produced with creak, but also 
according to both the proportion of phrase-final syllables in the corpus and the extent to which 
creak is found elsewhere (in non-phrase final syllables). Bayes' theorem allows these quantities 
to be related and the required probability to be calculated from the following formula: 

                                                                         (1) 
 
 

 
 € 

p(H | E) =
p(E |H)p(H)

p(E)
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In (1), H is the hypothesis (that the syllable is phrase-final), E is the evidence (the syllable token 
has been produced with creak) and p(H|E) is to be read as the probability of the hypothesis given 
the evidence. It can be shown that (1) can be re-expressed as (2): 
 

                                                           (2) 
 
where, as before, H is the hypothesis that the syllable is phrase-final and ¬H is the hypothesis 
that it is not phrase-final. For the present example, the quantities on the right hand side of (2) are 
the following: 
   

• p(E|H ) i.e., p(creak|final):  the probability of there being creak, given that the syllable is 
phrase-final, is 0.8. 

 
• p(H), i.e., p(final): the probability of a syllable in the corpus being phrase final is 0.15. 

 
• p(E|¬H), i.e. p(creak|not-final): the probability that the syllable is produced with creak,  

given that the syllable is phrase-medial or phrase-initial, is 0.3. 
 

• p(¬H) = 1 - p(H), i.e., p(not-final): the probability of a syllable in the corpus being 
phrase-initial or medial (in non-phrase-final position) is 0.85. 

 
The answer to the question, p(H|E), the probability that the observed token with creak is also 
phrase-final is given using (2) as follows: 
 
(0.8 * 0.15) /((0.8 * 0.15) + (0.3 * 0.85)) 
 
which is 0.32. Since there are two competing hypothesis (H, the syllable is phrase-final or its 
negation, ¬H, the syllable is not phrase-final) and since the total probability must add up to one, 
then it follows that the probability of a syllable produced with creak being in non-phrase-final 
position is 1-0.32 or 0.68. This quantity can also be derived by replacing H with ¬H in (2), thus: 
 
(0.3 * 0.85)/((0.3 * 0.85) + (0.8 * 0.15)) 
0.68 
 
Notice that the denominator is the same whichever of these two probabilities is calculated.  

These calculations lead to the following conclusion. If you take a syllable from this 
corpus without knowing its phrase label, but observe that it was produced with creak, then it is 
more likely that this syllable was not phrase-final. The probability of the two hypotheses (that 
the syllable is phrase-final or non-phrase-final) can also be expressed as a likelihood ratio (LR) 
which is very often used in forensic phonetics (Rose, 2002). For this example: 
 
LR = 0.68/0.32 
LR 
2.125 
 
from which it follows that it is just over twice as likely for a syllable produced with creak to be 
non phrase-final than phrase-final. The more general conclusion is, then, that creak is really not a 
very good predictor of the position of the syllable in the phrase, based on the above hypothetical 
corpus at least. 

€ 

p(H | E) =
p(E |H)p(H)

p(E |H)p(H) + p(E |¬H)p(¬H)
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 The above example can be used to introduce some terminology that will be used in later 
examples. Firstly, the quantities p(H) and p(¬H) are known as the prior probabilities: these are 
the probabilities that exist independently of any evidence. Thus, the (prior) probability that a 
syllable taken at random from the corpus is non phrase-final is 0.85, even without looking at the 
evidence (i.e., without establishing whether the syllable was produced with creak or not). The 
prior probabilities can have a major outcome on the posterior probabilities and therefore on 
classification. In all the examples in this Chapter, the prior probabilities will be based on the 
relative sizes of the classes (as in the above examples) and indeed this is the default of the 
algorithms for discriminant analysis that will be used later in this Chapter (these prior 
probabilities can be overridden, however and supplied by the user). p(E|H ) and p(E|¬H) are 
known as conditional probabilities. Finally the quantities that are to be calculated,  p(H|E) and 
p(¬H|E), which involve assigning a label given some evidence,  are known as the posterior 
probabilities. Thus for the preceding example, the posterior probability is given by: 
 
conditional = 0.8  
prior = 0.15 
conditional.neg = 0.3 
prior.neg = 1 - prior 
posterior = (conditional * prior) / (( conditional * prior) + 
(conditional.neg * prior.neg)) 
posterior 
0.32 

 
The idea of training and testing is also fundamental to the above example: the training 

data is made up of a large number of syllables whose phrase-position and voice quality labels are 
known while training itself consists of establishing a quantifiable relationship between the two. 
Testing involves taking a syllable whose phrase-label is unknown and using the training data to 
make a probabilistic prediction about what the phrase-label is. If the syllable-token is taken from 
the same data used for training (ithe experimenter 'pretends' that the phrase label for the syllable 
to be tested is unknown), then this is an example of a closed test. An open test is if the token, or 
tokens, to be tested are taken from data that was not used for training. In general, an open test 
gives a much more reliable indication of the success with which the association between labels 
and parameters has been learned in the training data. All of the examples in this Chapter are of 
supervised learning because the training phase is based on prior knowledge (from a database) 
about how the parameters are associated with the labels. An example of unsupervised learning 
is kmeans-clustering that was briefly touched upon in Chapter 6: this algorithm divides up the 
clusters into separate groups or classes without any prior training stage. 
 
9.2 Classification: continuous data 

The previous example of classification was categorical because the aim was to classify a 
syllable in terms of its position in the phrase based on whether it was produced with creak or not. 
The evidence, then allows only two choices. There might be several choices (creak, modal, 
breathy) but this would still be an instance of a categorical classification because the evidence 
(the data to be tested) can only vary over a fixed number of categories. In experimental phonetics 
on the other hand, the evidence is much more likely to be continuous: for example, what is the 
probability, if you observe an unknown (unlabelled) vowel with F1 = 380 Hz, that the vowel is 
/ɪ/ as opposed to any other vowel category? The evidence is continuous because a parameter like 
F1 does not jump between discrete values but can take on an infinite number of values within a 
certain range. So this in turn means that the basis for establishing the training data is somewhat 
different. In the categorical example from the preceding section, the training consisted of 
establishing a priori the probability that a phrase-final syllable was produced with creak: this 
was determined by counting the number of times that syllables with creak occurred in phrase-
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final and non-phrase-final position. In the continuous case, the analogous probability that /ɪ/ 
could take on a value of 380 Hz needs to be determined not by counting but by fitting a 
probability model to continuous data. One of the most common, robust and mathematically 
tractable probability models is based on a Gaussian or normal distribution that was first 
derived by Abraham De Moivre (1667-1754) but which is more commonly associated with Karl 
Friedrich Gauss (1777-1855) and Pierre-Simon Laplace (1749-1827). Some properties of the 
normal distribution and its derivation from the binomial distribution are considered briefly in the 
next section. 
 
9.2.1 The binomial and normal distributions 

Consider tossing an unbiased coin 20 times. What is the most likely number of times that 
the coin will come down Heads? Intuitively for an unbiased coin this is 10 and quantitatively is it 
given by µ =  np, where µ is a theoretical quantity known as the population mean, n is the 
number of times that the coin is flipped, and p the probability of 'success', i.e., of the coin 
coming down Heads. Of course, in flipping a coin 20 times, the outcome is not always equal to 
the population mean of 10: sometimes there will be fewer and sometimes more, and very 
occasionally there may even be 20 Heads from 20 coin flips, even if the coin is unbiased. This 
variation comes about because of the randomness that is inherent in flipping a coin: it is random 
simply because, if the coin is completely unbiased, there is no way to tell a priori whether the 
coin is going to come down Heads or Tails.  
 The process of flipping the coin 20 times and seeing what the outcome is can be 
simulated as follows in R with the sample() function.  
 
sample(c("H", "T"), 20, replace=T) 
# (You are, of course, most likely to get a different output.) 
"T" "H" "H" "H" "H" "H" "H" "H" "H" "H" "T" "T" "H" "T" "H" "T" "T" "T" "T" "T" 

 
The above lines have been incorporated into the following function coin() with parameters n, 
the number of times the coin is tossed, and k, the number of trials, that is the number of times 
that this experiment is repeated. In each case, the number of Heads is summed.  
 
coin<- function(n=20, k=50) 
{ 
   # n: the number of times a coin is flipped 
   # k: the number of times the coin-flipping experiment is repeated 
   result = NULL 
   for(j in 1:k){ 
      singleexpt = sample(c("H", "T"), n, replace=T) 
      result = c(result, sum(singleexpt=="H")) 
   } 
   result 
} 
 
Thus in the following, a coin is flipped 20 times, the number of Heads is summed, and then this 
procedure (of flipping a coin 20 times and counting the number of Heads) is repeated 8 times.  
 
trials8 = coin(k=8) 
trials8 
# The number of Heads from each of the 20 coin flips: 
14  5 11  8  8 11  7  8 
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Notice that (for this case) no trial actually resulted in the most likely number of Heads, µ =  np = 
10. However, the sample mean, m, gets closer to the theoretical population mean, µ, as n 
increases. Consider now 800 trials: 
 
trials800 = coin(k=800) 
 
mean(trials800) is likely to be closer to 10 than mean(trials8). More generally, the 
greater the number of trials, the more m, the sample mean, is likely to be closer to µ so that if it 
were ever possible to conduct the experiment over an infinite number of trials, m would equal µ 
(and this is one of the senses in which µ is a theoretical quantity). 

In this coin flipping experiment, there is, then, variation about the theoretical population 
mean, µ, in the number of Heads that are obtained per 20 coin flips and in Fig. 9.1, this variation 
is displayed in the form of histograms for 50, 500, and 5000 trials. The histograms were 
produced as follows: 
 
par(mfrow=c(1,3)); col="slategray"; xlim=c(2, 18)  
k50 = coin(k=50); k500 = coin(k=500); k5000 = coin(k=5000) 
hist(k50,col=col,xlim=xlim, xlab="",ylab ="Frequency 
count",main="k50") 
hist(k500, col=col, xlim=xlim, , xlab = "", ylab = "", 
main="k500") 
hist(k5000, col=col, xlim=xlim, , xlab = "", ylab = "", 
main="k5000")  
 
Fig. 9.1 about here 
 
In all three cases, the most frequently observed count of the number of Heads is near µ = 10. But 
in addition, the number of Heads per 20 trials falls away from 10 at about the same rate, certainly 
for the histograms with 500 and 5000 trials in the middle and right panels of Fig 9.1. The rate at 
which the values fall away from the mean is governed by σ, the population standard deviation. In 

the case of flipping a coin and counting the number of Heads, σ is given by where n and p 
have the same interpretation as before and q = 0.5 = 1 - p is the probability of 'failure', i.e., of 
getting Tails. So the population standard deviation for this example is given by sqrt(20 * 
0.5 * 0.5) which evaluates to 2.236068. The relationship between the sample standard 
deviation, s, and the population standard deviation σ is analogous to that between m and µ: the 
greater the number of trials, the closer s tends to σ. (For the data in Fig. 9.1, the sample standard-
deviations can be evaluated with the sd() function: thus sd(k5000) should be the closest to 
sqrt(20 * 0.5 * 0.5) of the three).  

When a coin is flipped 20 times and the number of Heads is counted as above, then 
evidently there can only be any one of 21 outcomes ranging in discrete jumps from 0 to 20 
Heads. The probability of any one of these outcomes can be calculated from the binomial 
expansion given by the dbinom(x, size, prob) function in R. So the probability of 
getting 3 Heads if a coin is flipped four times is dbinom(3, 4, 0.5) and the probability of 
8 Heads in 20 coin flips is dbinom(8, 20, 0.5). Notice that an instruction such as 
dbinom(7.5, 20, 0.5) is meaningless because this is to ask the probability of there being 
7 ½ Heads in 20 flips (and appropriately there is a warning message that x is a non-integer). The 
binomial probabilities are, then, those of discrete outcomes. The continuous case of the 
binomial distribution is the Gaussian or normal distribution which is defined for all values 
between plus and minus infinity and is given in R by the dnorm(x, mean, sd) function. In 
this case, the three arguments are respectively the number of successful (Heads) coin flips, µ, 

npq
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and σ. Thus the probability of there being 8 Heads in 20 coin flips can be estimated from the 
normal distribution with: 
 
dnorm(8, 20*0.5, sqrt(20*0.5*0.5)) 
0.1195934 
 
Since the normal distribution is continuous, then it is also defined for fractional values: thus 
dnorm(7.5, 20*0.5, sqrt(20*0.5*0.5)) can be computed and it gives a result that 
falls somewhere between the probabilities of getting 7 and 8 heads in 20 coin flips. There is a 
slight discrepancy between the theoretical values obtained from the binomial and normal 
distributions (dbinom(8, 20, 0.5) evaluates to 0.1201344) but the values from the 
binomial distribution get closer to those from the normal distribution as n, the number of coin 
flips, tends to infinity. 
 
Fig. 9.2 about here 
 
 The greater the number of trials in this coin-flipping experiment, k, the closer the sample 
approximates the theoretical probability values obtained from the binomial/normal distributions. 
This is illustrated in the present example by superimposing the binomial/normal probabilities for 
obtaining between 0 and 20 Heads when the experiment of flipping a coin 20 times was repeated 
k =50, 500, and 5000 times. The plots in Fig. 9.2 were produced as follows: 
 
par(mfrow=c(1,3)); col="slategray"; xlim=c(2, 18); main="" 
hist(k50, freq=F, main="50 trials", xlab="", col=col) 
curve(dnorm(x, 20*.5, sqrt(20*.5*.5)), 0, 20, add=T, lwd=2) 
 
# These are the probabilities of getting 0, 1, ..20 Heads from the binomial distribution 
binprobs = dbinom(0:20, 20, .5) 
points(0:20, binprobs) 
hist(k500, freq=F, main="500 trials", xlab="Number of Heads in 
20 coin flips", col=col) 
curve(dnorm(x, 20*.5, sqrt(20*.5*.5)), 0, 20, add=T, lwd=2) 
points(0:20, binprobs) 
hist(k5000, freq=F, main="5000 trials", xlab="", col=col) 
curve(dnorm(x, 20*.5, sqrt(20*.5*.5)), 0, 20, add=T, lwd=2) 
points(0:20, binprobs) 
 
 
Fig. 9.2 about here 
 
The vertical axis in Fig. 9.2 (and indeed the output of the dnorm() function) is probability 
density and it is derived in such a way that the sum of the histogram bars is equal to one, which 
means that the area of each bar becomes a proportion. Thus, the area of the 2nd bar from the left 
of the k500 plot in Fig. 9.2 is given by the probability density multiplied by the bar-width which 
is 0.05 * 1 or 0.05. This is also the proportion of values falling within this range: 0.05 * 
500 is 25 (Heads), as the corresponding bar of the histogram in the middle panel of Fig. 9.1 
confirms. More importantly, the correspondence between the distribution of the number of 
Heads in the sample and the theoretical binomial/normal probabilities is evidently much closer 
for the histogram on the right with the greatest number of trials.  
 Some of the other important properties of the normal distribution are: 

• the population mean is at the centre of the distribution and has the highest probability. 
• the tails of the distribution continue at the left and right edge to plus or minus infinity. 
• the total area under the normal distribution is equal to 1. 
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• the probability that a value is either less or greater than the mean is 0.5. 
 
The R function  pnorm(q, mean, sd) calculates cumulative probabilities, i.e.,  the area 
under the normal curve from minus infinity to a given quantile,  q. Informally, this function 
returns the probability that a sample drawn from the normal distribution is less than that sample. 
Thus, pnorm(20, 25, 5)returns the probability of drawing a sample of 20 or less from a 
normal distribution with mean 25 and standard deviation 5. To calculate the probabilities within 
a range of values requires, therefore, subtraction: 
 
pnorm(40, 25, 5) - pnorm(20, 25, 5) 
0.8399948 
 
gives the probability of drawing a sample between 20 and 40 from the same normal distribution.  
 
Here is how qnorm() could be used to find the range of samples whose probability of 
occurrence is greater than 0.025 and less than 0.975: 
 
qnorm(c(0.025, 0.975), 25, 5) 
15.20018 34.79982 
 
In other words, 95% of the samples (i.e., 0.975-0.025 = 0.95) in a normal distribution with mean 
25 and standard deviation 5 extend between 15.20018 and 34.79982.  
 Without the second and third arguments, the various functions for computing values from 
the normal distribution return so-called z-scores or the values from the standard normal 
distribution with µ = 0 and σ = 1. This default setting of qnorm() can be used to work out the 
range of values that fall within a certain number of standard deviations from the mean. Thus 
without the second and third arguments, qnorm(c(0.025, 0.975)) returns the number of 
standard deviations for samples falling within 95% of the mean of any  normal distribution, i.e. 
the well-known value of ±1.96 from the mean (rounded to two decimal places). Thus the 
previously calculated range can also be obtained as follows: 
 
# Lower range, -1.959964 standard deviations from the mean (of 25): 
25 - 1.959964 * 5 
15.20018 
 
# Upper range 
25 + 1.959964 * 5 
34.79982 
 
An example of the use of dnorm() and qnorm() over the same data is given in Fig. 9. 3 
which was produced with the following commands: 
 
xlim = c(10, 40); ylim = c(0, 0.08) 
curve(dnorm(x, 25, 5), 5, 45, xlim=xlim, ylim=ylim, ylab="", 
xlab="") 
region95 = qnorm(c(0.025, 0.975), 25, 5) 
values = seq(region95[1], region95[2], length=2000) 
values.den = dnorm(values, 25, 5) 
par(new=T) 
plot(values, values.den, type="h", col="slategray", xlim=xlim, 
ylim=ylim, ylab="Probability density", xlab="Values") 
 
Fig. 9.3 about here 
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9.3 Calculating conditional probabilities 

Following this brief summary of the theoretical normal distribution, we can now return to 
the matter of how to work out the conditional probability p(F1=380|ɪ) which is the probability 
that a value of F1 = 380 Hz could have come from a distribution of /ɪ/ vowels. The procedure is 
to sample a reasonably large size of F1 for /ɪ/ vowels and then to assume that these follow a 
normal distribution. Thus, the assumption here is that the sample of F1 of /ɪ/ deviates from the 
normal distribution simply because not enough samples have been obtained (and analogously 
with summing the number of Heads in the coin flipping experiment, the normal distribution 
would be the theoretical distribution from an infinite number of F1 samples for /ɪ/). It should be 
pointed out right away that this assumption of normality could well be wrong. However, the 
normal distribution is fairly robust and so it may nevertheless be an appropriate probability 
model, even if the sample does deviate from normality; and secondly, as outlined in some detail 
in Johnson (2008) and summarised again below, there are some diagnostic tests that can be 
applied to test the assumptions of normality. 
 As the discussion in 9.2.1 showed, only two parameters are needed to characterise any 
normal distribution uniquely, and these are µ and σ, the population mean and population 
standard deviation respectively. In contrast to the coin flipping experiment, these population 
parameters are unknown in the F1 sample of vowels. However, it can be shown that the best 
estimates of these are given by m and s, the mean and standard deviation of the sample which 
can be calculated with the mean() and sd() functions61. In Fig. 9.4, these are used to fit a 
normal a distribution to F1 of /ɪ/ for data extracted from the temporal midpoint of the male 
speaker's vowels in the vowlax dataset in the Emu-R library.   
 
temp = vowlax.spkr == "67" & vowlax.l == "I" 
f1 = vowlax.fdat.5[temp,1] 
m  = mean(f1); s = sd(f1) 
hist(f1, freq=F, xlab="F1 (Hz)", main="", col="slategray") 
curve(dnorm(x, m, s), 150, 550, add=T, lwd=2) 
 
Fig. 9.4 about here 
 
The data in Fig. 9.4 at least look as if they follow a normal distribution and if need be, a test for 
normality can be carried out with the Shapiro test: 
 
shapiro.test(f1) 
Shapiro-Wilk normality test 
data:  f1  
W = 0.9834, p-value = 0.3441 
 
If the test shows that the probability value is greater than some significance threshold, say 0.05, 
then there is no evidence to suggest that these data are not normally distributed. Another way, 
described more fully in Johnson (2008) of testing for normality is with a quantile-quantile plot: 
 
qqnorm(f1); qqline(f1) 

                                                
61 The sample standard-deviation, s, of a random variable, x, which provides the best estimate of the population 

standard deviation, σ, is given by 

€ 

s =
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∑
 where n is the sample size and m is the sample mean 

and this is also what is computed in R with the function sd(x).  
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If the values fall more or less on the straight line, then there is no evidence that the distribution 
does not follow a normal distribution. 
 Once a normal distribution has been fitted to the data, the conditional probability can be 
calculated using the dnorm() function given earlier (see Fig. 9.3). Thus p(F1=380|I), the 
probability that a value of 380 Hz could have come from this distribution of /ɪ/ vowels,  is given 
by:  
 
conditional  = dnorm(380, mean(f1), sd(f1)) 
conditional 
0.006993015 
 
which is the same probability given by the height of the normal curve in Fig. 9.4 at F1 = 380 Hz. 
 
9.4 Calculating posterior probabilities 

Suppose you are given a vowel whose F1 you measure to be 500 Hz but you are not told 
what the vowel label is except that it is one of /ɪ, ɛ, a/. The task is to find the most likely label, 
given the evidence that F1 = 500 Hz. In order to do this, the three posterior probabilities, one for 
each of the three vowel categories, has to be calculated and the unknown is then labelled as 
whichever one of these posterior probabilities is the greatest. As discussed in 9.1, the posterior 
probability requires calculating the prior and conditional probabilities for each vowel category. 
Recall also from 9.1 that the prior probabilities can be based on the proportions of each class in 
the training sample. The proportions in this example can be derived by tabulating the vowels as 
follows: 
 
temp = vowlax.spkr == "67" & vowlax.l != "O" 
f1 = vowlax.fdat.5[temp,1] 
f1.l = vowlax.l[temp] 
table(f1.l) 
E  I  a  
41 85 63 
 
Each of these can be thought of as vowel tokens in a bag: if a token is pulled out of the bag at 
random, then the prior probability that the token’s label is /a/ is 63 divided by the total number of 
tokens (i.e. divided by 41+85+63 = 189). Thus the prior probabilities for these three vowel 
categories are given by: 
 
prior = prop.table(table(f1.l)) 
prior 
E         I         a  
0.2169312 0.4497354 0.3333333 
 
So there is a greater prior probability of retrieving /ɪ/ simply because of its greater proportion 
compared with the other two vowels. The conditional probabilities have to be calculated 
separately for each vowel class, given the evidence that F1 = 500 Hz. As discussed in the 
preceding section, these can be obtained with the dnorm() function. In the instructions below, 
a for-loop is used to obtain each of the three conditional probabilities, one for each category: 
 
cond = NULL 
for(j in names(prior)){ 
 temp = f1.l==j 
 mu = mean(f1[temp]); sig = sd(f1[temp]) 
 y = dnorm(500, mu, sig) 
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 cond = c(cond, y) 
    } 
names(cond) = names(prior) 
cond 
E            I            a  
0.0063654039 0.0004115088 0.0009872096   
 
The posterior probability that an unknown vowel could be e.g., /a/ given the evidence that its F1 
has been measured to be 500 Hz can now be calculated with the formula given in (2) in 9.1. By 
substituting the values into (2), this posterior probability, denoted by p(a |F1 = 500), and with the 
meaning "the probability that the vowel could be /a/, given the evidence that F1 is 500 Hz", is 
given by: 
 

     (3) 
 
The denominator in (3) looks fearsome but closer inspection shows that it is nothing more than 
the sum of the conditional probabilities multiplied by the prior probabilities for each of the three 
vowel classes. The denominator is therefore  sum(cond * prior). The 
numerator in (3) is the conditional probability for /a/ multiplied by the prior probability for /a/. In 
fact, the posterior probabilities for all categories, p(ɛ|F1 = 500), p(ɪ|F1 = 500), and p(a|F1 = 500) 
can be calculated in R in one step as follows: 
 
post = (cond * prior)/sum(cond * prior) 
post 
E          I          a  
0.72868529 0.09766258 0.17365213 
 
As explained in 9.1, these sum to 1 (as sum(post) confirms). Thus, the unknown vowel with 
F1 = 500 Hz is categorised as /ɛ/ because, as the above calculation shows, this is the vowel class 
with the highest posterior probability, given the evidence that F1 = 500 Hz. 
 All of the above calculations of posterior probabilities can be accomplished with qda() 
and the associated predict() functions in the MASS library for carrying out a quadratic 
discriminant analysis (you may need to enter library(MASS) to access these functions). 
Quadratic discriminant analysis models the probability of each class as a normal distribution and 
then categorises unknown tokens based on the greatest posterior probabilities (Srivastava et al, 
2007): in other words, much the same as the procedure carried out above. 

The first step in using this function involves training (see 9.1 for the distinction between 
training and testing) in which normal distributions are fitted to each of the three vowel classes 
separately and in which they are also adjusted for the prior probabilities. The second step is the 
testing stage in which posterior probabilities are calculated (in this case, given that an unknown 
token has F1 = 500 Hz).  

The qda() function expects a matrix as its first argument, but f1 is a vector: so in order 
to make these two things compatible, the cbind() function is used to turn the vectors into one-
dimensional matrices at both the training and testing stages. The training stage, in which the 
prior probabilities and class means are calculated, is carried out as follows: 
 
f1.qda = qda(cbind(f1), f1.l) 
 
 
The prior probabilities obtained in the training stage are: 
 

€ 

p(a | F1= 500) =
p(F1= 500 | a)p(a)

p(F1= 500 | E)p(E)+ p(F1= 500 | a)p(a)+ p(F1= 500 | I)p(I)
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f1.qda$prior 
        E         I         a  
0.2169312 0.4497354 0.3333333 
 
which are the same as those calculated earlier. The calculation of the posterior probabilities, 
given the evidence that F1 = 500 Hz, forms part of the testing stage. The predict() function 
is used for this purpose, in which the first argument is the model calculated in the training stage 
and the second argument is the value to be classified: 
 
pred500 = predict(f1.qda, cbind(500)) 
 
The posterior probabilities are given by: 
 
pred500$post 
E          I         a 
0.7286853 0.09766258 0.1736521 
 
which are also the same as those obtained earlier. The most probable category, E, is given by: 
 
pred500$class 
E 
Levels: E I a 
 
 This type of single-parameter classification (single parameter because there is just one 
parameter, F1) results in n-1 decision points for n categories (thus 2 points given that there are 
three vowel categories in this example): at some F1 value, the classification changes from /a/ to 
/ɛ/ and at another from /ɛ/ to /ɪ/. In fact, these decision points are completely predictable from 
the points at which the product of the prior and conditional probabilities for the classes overlap 
(the denominator can be disregarded in this case, because, as (2) and (3) show, it is the same for 
all three vowel categories). For example, a plot of the product of the prior and the conditional 
probabilities over a range from 250 Hz to 800 Hz for /ɛ/is given by: 
 
Fig. 9.5 about here 
 
temp = vowlax.spkr == "67" & vowlax.l != "O" 
f1 = vowlax.fdat.5[temp,1] 
f1.l = vowlax.l[temp] 
f1.qda = qda(cbind(f1), f1.l) 
 
temp = f1.l=="E"; mu = mean(f1[temp]); sig = sd(f1[temp]) 
curve(dnorm(x, mu, sig)* f1.qda$prior[1], 250, 800) 
 
Essentially the above two lines are used inside a for-loop in order to superimpose the three 
distributions of the prior multiplied by the conditional probabilities, one per vowel category, on 
each other (Fig. 9.5): 
 
xlim = c(250,800); ylim = c(0, 0.0035); k = 1; cols = 
c("grey","black","lightblue") 
for(j in c("a", "E", "I")){ 
   temp = f1.l==j 
   mu = mean(f1[temp]); sig = sd(f1[temp]) 
   curve(dnorm(x, mu, sig)* f1.qda$prior[j],xlim=xlim, 
ylim=ylim, col=cols[k], xlab=" ", ylab="", lwd=2, axes=F) 
   par(new=T) 
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   k = k+1 
} 
axis(side=1); axis(side=2); title(xlab="F1 (Hz)", 
ylab="Probability density") 
par(new=F) 
 
From Fig. 9.5, it can be seen that the F1 value at which the probability distributions for /ɪ/ and 
/ɛ/ bisect each other is at around 460 Hz while for  /ɛ/ and /a/ it is about 100 Hz higher.  
Thus any F1 value less than (approximately) 460 Hz should be classified as /ɪ/; any value 
between 460 and 567 Hz as /ɛ/; and any value greater than 567 Hz as /a/. A classification of 
values at 5 Hz intervals between 445 Hz and 575 Hz confirms this: 
 
# Generate a sequence of values at 5 Hz intervals between 445 and 575 Hz 
vec = seq(445, 575, by = 5) 
 
# Classify these using the same model established earlier 
vec.pred = predict(f1.qda, cbind(vec)) 
 
# This is done to show how each of these values was classified by the model 
names(vec) = vec.pred$class 
vec 
I   I   I   E   E   E   E   E   E   E   E   E   E   E   E   E   E   E   E   E   E  
445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545  
  E   E   E   E   a   a  
550 555 560 565 570 575 
 
 

9.5 Two-parameters: the bivariate normal distribution and ellipses 
So far, classification has been based on a single parameter, F1. However, the mechanisms 

for extending this type of classification to two (or more dimensions) are already in place. 
Essentially, exactly the same formula for obtaining posterior probabilities is used, but in this case 
the conditional probabilities are based on probability densities derived from the bivariate (two 
parameters) or multivariate (multiple parameters) normal distribution. In this section, a few 
details will be given of the relationship between the bivariate normal and ellipse plots that have 
been used at various stages in this book; in the next section, examples are given of classifications 
from two or more parameters. 

 
Fig. 9.6 about here 
 
 In the one-parameter classification of the previous section, it was shown how the 

population mean and standard deviation could be estimated from the mean and standard 
deviation of the sample for each category, assuming a sufficiently large sample size and that 
there was no evidence to show that the data did not follow a normal distribution. For the two-
parameter case, there are five population parameters to be estimated from the sample: these are 
the two population means (one for each parameter), the two population standard deviations, and 
the population correlation coefficient between the parameters. A graphical interpretation of 
fitting a bivariate normal distribution for some F1 × F2 data for [æ] is shown in Fig. 9.6. On the 
left is the sample of data points and on the right is a two dimensional histogram showing the 
count in separate F1 × F2 bins arranged over a two-dimensional grid. A bivariate normal 
distribution that has been fitted to these data is shown in Fig. 9.7. The probability density of any 
point in the F1 × F2 plane is given by the height of the bivariate normal distribution above the 
two-dimensional plane: this is analogous to the height of the bell-shaped normal distribution for 
the one-dimensional case. The highest probability (the apex of the bell) is at the point defined by 
the mean of F1 and by the mean of F2: this point is sometimes known as the centroid.  
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Fig. 9.7 about here 
 
The relationship between a bivariate normal and the two-dimensional scatter can also be 

interpreted in terms of an ellipse. An ellipse is any horizontal slice cut from the bivariate normal 
distribution, in which the cut is made at right angles to the probability axis. The lower down on 
the probability axis that the cut is made – that is, the closer the cut is made to the base of the F1 
× F2 plane, the greater the area of the ellipse and the more points of the scatter that are included 
within the ellipse's outer boundary or circumference. If the cut is made at the very top of the 
bivariate normal distribution, the ellipse is so small that it includes only the centroid and a few 
points around it. If on the other hand the cut is made very close to the F1 × F2 base on which the 
probability values are built, then the ellipse may include almost the entire scatter.  

The size of the ellipse is usually measured in ellipse standard deviations from the 
mean. There is a direct analogy here to the single parameter case. Recall from Fig. 9.3 that the 
number of standard deviations can be used to calculate the probability that a token falls within a 
particular range of the mean. So too with ellipse standard deviations. When an ellipse is drawn 
with a certain number of standard deviations, then there is an associated probability that a token 
will fall within its circumference. The ellipse in Fig. 9.8 is of F2 × F1 data of [æ] plotted at two 
standard deviations from the mean and this corresponds to a cumulative probability of 0.865: this 
is also the probability of any vowel falling inside the ellipse (and so the probability of it falling 
beyond the ellipse is 1 – 0.865 = 0.135). Moreover, if [æ] is normally, or nearly normally, 
distributed on F1 × F2 then, for a sufficiently large sample size, approximately 0.865 of the 
sample should fall inside the ellipse. In this case, the sample size was 140, so roughly 140 ⋅ 
0.865 ≈ 121 should be within the ellipse, and 19 tokens should be beyond the ellipse's 
circumference (in fact, there are 20 [æ] tokens outside the ellipse's circumference in Fig. 9.8)62. 

 
Fig. 9.8 about here 
 
Whereas in the one-dimensional case, the association between standard-deviations and 

cumulative probability was given by qnorm(), for the bivariate case this relationship is 
determined by the square root of the quantiles from the χ2 distribution  with two degrees of 
freedom. In R, this is given by qchisq(p, df) where the two arguments are the cumulative 
probability and the degrees of freedom respectively. Thus just under 2.45 ellipse standard 
deviations correspond to a cumulative probability of 0.95, as the following shows63:  

 
sqrt(qchisq(0.95, 2)) 
2.447747 
 
The function pchisq() provides the same information but in the other direction. Thus the 
cumulative probability associated with 2.447747 ellipse standard deviations from the mean is 
given by: 
 
pchisq(2.447747^2, 2) 
0.95 
 

An ellipse is a flattened circle and it has two diameters, a major axis and a minor axis 
(Fig. 9.8). The point at which the major and minor axes intersect is the distribution's centroid. 
One definition of the major axis is that it is the longest radius that can be drawn between the 

                                                
62 The square of the number of ellipse standard-deviations from the mean is equivalent to the Mahalanobis distance. 
63 In fact, the χ2 distribution with 1 degree of freedom gives the corresponding values for the single parameter 
normal curve. For example, the number of standard deviations for a normal curve on either side of the mean 
corresponding to a cumulative probability of 0.95 is given by either qnorm(0.975) or sqrt(qchisq(0.95, 1)). 
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centroid and the ellipse circumference. The minor axis is the shortest radius and it is always at 
right-angles to the major axis. Another definition that will be important in the analysis of data 
reduction technique in section 9.7 is that the major ellipse axis is the first principal component 
of the data.  

 
Fig. 9.9 about here 
 

The first principal component is a straight line that passes through the centroid of the scatter that 
explains most of the variance of the data. A graphical way to think about what this means is to 
draw any line through the scatter such that it passes through the scatter's centroid. We are then 
going to rotate our chosen line and all the data points about the centroid in such a way that it 
ends up parallel to the x-axis (parallel to F2-axis for these data). If the variance of F2 is measured 
before and after rotation, then the variance will not be the same: the variance might be smaller or 
larger after the data has been rotated in this way. The first principal component, which is also the 
major axis of the ellipse, can now be defined as the line passing through the centroid that 
produces the greatest amount of variance on the x-axis variable (on F2 for these data) after this 
type of rotation has taken place. 

If the major axis of the ellipse is exactly parallel to the x-axis (as in the right panel of Fig. 
9.9), then there is an exact equivalence between the ellipse standard deviation and the standard 
deviations of the separate parameters. Fig. 9.10 shows the rotated two standard deviation ellipse 
from the right panel of Fig. 9.9 aligned with a two standard deviation normal curve of the same 
F2 data after rotation. The mean of F2 is 1599 Hz and the standard deviation of F2 is 92 Hz. The 
major axis of the ellipse extends, therefore, along the F2 parameter at ± 2 standard deviations 
from the mean i.e., between 1599 + (2 ⋅  92) = 1783 Hz   and 1599 - (2 ⋅  92)  =  1415  Hz. 
Similarly, the minor axis extends  2 standard deviations in either direction from  the mean of  the 
rotated F1 data. However,  this relationship only applies as long as the major axis is parallel to 
the x-axis. At other inclinations of the ellipse, the lengths of the major and minor axes depend on 
a complex interaction between the correlation coefficient, r, and the standard deviation of the 
two parameters. 
 
Fig. 9.10 about here 
 

In this special case in which the major axis of the ellipse is parallel to the x-axis, the two 
parameters are completely uncorrelated or have zero correlation. As discussed in the next 
section on classification, the less two parameters are correlated with each other, the more 
information they can potentially contribute to the separation between phonetic classes. If on the 
other hand two parameters are highly correlated, then it means that one parameter can to a very 
large extent be predicted from the other: they therefore tend to provide less useful information 
for distinguishing between phonetic classes than uncorrelated ones. 
 
9.6 Classification in two dimensions 

The task in this section will be to carry out a probabilistic classification at the temporal 
midpoint of five German fricatives [f, s, ʃ, ç, x] from a two-parameter model of the first two 
spectral moments (which were shown to be reasonably effective in distinguishing between 
fricatives in the preceding Chapter). The spectral data extends from 0 Hz to 8000 Hz and was 
calculated at 5 ms intervals with a frequency resolution of 31.25 Hz. The following objects are 
available in the Emu-R library: 

 
fr.dft   Spectral trackdata object containing spectral data between 
    the segment onset and offset at 5 ms intervals 
fr.l    A vector of phonetic labels 
fr.sp   A vector of speaker labels 
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The analysis will be undertaken using the first two spectral moments calculated at the fricatives' 
temporal midpoints over the range 200 Hz - 7800 Hz. The data are displayed as ellipses in Fig. 
9.11 on these parameters for each of the four fricative categories and separately for the two 
speakers. The commands to create these plots in Fig. 9.11 are as follows: 
 
# Extract the spectral data at the temporal midpoint 
fr.dft5 = dcut(fr.dft, .5, prop=T) 
 
# Calculate their spectral moments 
fr.m = fapply(fr.dft5[,200:7800], moments, minval=T) 
 
# Take the square root of the 2nd spectral moment so that the values are within sensible ranges 
fr.m[,2] = sqrt(fr.m[,2]) 
 
# Give the matrix some column names 
colnames(fr.m) = paste("m", 1:4, sep="") 
 
par(mfrow=c(1,2)) 
xlab = "1st spectral moment (Hz)"; ylab="2nd spectral moment 
(Hz)" 
 
# Logical vector to identify the male speaker 
temp = fr.sp == "67" 
eplot(fr.m[temp,1:2], fr.l[temp], dopoints=T, ylab=ylab, 
xlab=xlab) 
eplot(fr.m[!temp,1:2], fr.l[!temp], dopoints=T, xlab=xlab) 
 
Fig. 9.11 about here 
 
As discussed in section 9.5, the ellipses are horizontal slices each taken from a bivariate  normal 
distribution and the ellipse standard-deviations have been set to the default such that each 
includes at least 95% of the data points. Also, as discussed earlier, the extent to which the 
parameters are likely to provide independently useful information is influenced by how 
correlated they are. For the male speaker, cor.test(fr.m[temp,1], fr.m[temp,2]) 
shows both that the correlation is low (r = 0.13) and not significant; for the female speaker, it is 
significant although still quite low (r = -0.29). Thus the 2nd spectral moment may well provide 
information beyond the first that might be useful for fricative classification and, as Fig. 9.11 
shows, it separates [x, s, f] from the other two fricatives reasonably well in both speakers, 
whereas the first moment provides a fairly good separation within [x, s, f].  

The observations can now be quantified probabilistically using the qda() function in 
exactly the same way for training and testing as in the one-dimensional case: 

 
# Train on the first two spectral moments, speaker 67 
temp = fr.sp == "67" 
x.qda = qda(fr.m[temp,1:2], fr.l[temp]) 
 
Classification is accomplished by calculating whichever of the five posterior probabilities is the 
highest, using the formula in (2) in an analogous way to one-dimensional classification discussed 
in section 9.4. Consider then a point [m1, m2] in this two-dimensional moment space with 
coordinates [4500, 2000]. Its position in relation to the ellipses in the left panel of Fig. 9.11 
suggests that it is likely to be classified as /s/ and this is indeed the case: 
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unknown = c(4500, 2000) 
result = predict(x.qda, unknown) 
 
# Posterior probabilities 
round(result$post, 5) 
C       S   f      s   x 
0.0013  0.0468  0  0.9519  0 
 
# Classification label: 
result$class 
s 
Levels: C S f s x 
 
In the one-dimensional case, it was shown how the classes were separated by a single point that 
marked the decision boundary between classes (Fig. 9.5). For two dimensional classification, the 
division between classes is not a point but one of a family of quadratics (and hyperquadratics for 
higher dimensions) that can take on forms such as planes, ellipses, parabolas of various kinds: 
see Duda et al, 2001 Chapter 2 for further details)64. This becomes apparent in classifying a large 
number of points over an entire two-dimensional surface that can be done with the 
classplot() function in the Emu-R library: its arguments are the model on which the data 
was trained (maximally 2 dimensional) and the range over which the points are to be classified. 
The result of such a classification for a dense region of points in a plane with similar ranges as 
those of the ellipses in Fig. 9.11 is shown in the left panel of Fig 9.12, while the right panel 
shows somewhat wider ranges. The first of these was created as follows: 
 
classplot(x.qda, xlim=c(3000, 5000), ylim=c(1900, 2300), 
xlab="First moment (Hz)", ylab="Second moment (Hz)") 
text(4065, 2060, "C", col="white"); text(3820, 1937, "S");  
text(4650, 2115, "s"); text(4060, 2215, "f"); text(3380, 2160, 
"x") 
 
Fig. 9.12 about here 
 
It is evident from the left panel of Fig. 9.12 that points around the edge of the region are 
classified (clockwise from top left) as [x, f, s ,ʃ]  with the region for the palatal fricative [ç] (the 
white space) squeezed in the middle. The right panel of Fig. 9.12, which was produced in exactly 
the same way except with ylim = c(1500, 3500), shows that these classifications  do  not 
necessarily give contiguous regions, especially for regions far away from the class centroids: as 
the right panel of Fig. 9.12 shows, [ç] is split into two by [ʃ] while the territories for /s/ are also 
non-contiguous and divided by /x/. The reason for this is to a large extent predictable from the 
orientation of the ellipses. Thus since, as the left panel of Fig. 9.11 shows, the ellipse for [ç] has 
a near vertical orientation, then points below it will be probabilistically quite close to it. At the 
same time, there is an intermediate region at around m2 = 1900 Hz at which the points are 
nevertheless probabilistically closer to [ʃ], not just because they are nearer to the [ʃ]-centroid, 
but also because the orientation of the [ʃ] ellipse in the left panel of Fig. 9.11 is much closer to 
horizontal. One of the important conclusions that emerges from Figs. 9.10 and 9.11 is that it is 
not just the distance to the centroids that is important for classification (as it would be in a 
classification based on whichever Euclidean distance to the centroids was the least), but also the 

                                                
64 All of the above commands including those to classplot() can be repeated by substituting qda() with 
lda(), the function for linear discriminant analysis which is a Gaussian classification technique based on a shared 
covariance across the classes. The decision boundaries between the classes from LDA are  straight lines as the 
reader can verify with the classplot() function.  
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size and orientation of the ellipses, and therefore the probability distributions, that are established 
in the training stage of Gaussian classification.  
 As described earlier, a closed test involves training and testing on the same data and for 
this two dimensional spectral moment space, a confusion matrix and 'hit-rate' for the male 
speaker’s data is produced as follows: 
 
# Train on the first two spectral moments, speaker 67 
temp = fr.sp == "67" 
x.qda = qda(fr.m[temp,1:2], fr.l[temp]) 
 
# Classify on the same data 
x.pred = predict(x.qda) 
 
# Equivalent to the above 
x.pred = predict(x.qda, fr.m[temp,1:2]) 
 
# Confusion matrix 
x.mat = table(fr.l[temp], x.pred$class) 
x.mat 
     C  S  f  s  x 
  C 17  3  0  0  0 
  S  3 17  0  0  0 
  f  1  0 16  1  2 
  s  0  0  0 20  0 
  x  0  0  1  0 19 
 
The confusion matrix could then be sorted on place of articulation as follows: 
 
m = match(c("f", "s", "S", "C", "x"), colnames(x.mat)) 
x.mat[m,m] 
x.l  f  s  S  C  x 
  f 16  1  0  1  2 
  s  0 20  0  0  0 
  S  0  0 17  3  0 
  C  0  0  3 17  0 
  x  1  0  0  0 19 
 
The correct classifications are in the diagonals and the misclassifications in the other cells. Thus 
16 [f] tokens were correctly classified as /f/, one was misclassified as /s/, and so on. The hit-rate 
per class is obtained by dividing the scores in the diagonal by the total number of tokens in the 
same row: 
 
diag(x.mat)/apply(x.mat, 1, sum) 
C    S    f    s    x  
0.85 0.85 0.80 1.00 0.95 
 
The total hit rate across all categories is the sum of the scores in the diagonal divided by the total 
scores in the matrix: 
 
sum(diag(x.mat))/sum(x.mat) 
0.89 
 
The above results show, then, that based on a Gaussian classification in the plane of the first two 
spectral moments at the temporal midpoint of fricatives, there is an 89% correct separation of the 
fricatives for the data shown in the left panel of Fig. 9.11 and, compatibly with that same Figure, 
the greatest confusion is between [ç] and [ʃ]. 
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 The score of 89% is encouragingly high and it is a completely accurate reflection of the 
way in which the data in the left panel of Fig. 9.11 are distinguished after a bivariate normal 
distribution has been fitted to each class. At the same time, the scores obtained from a closed test 
of this kind can be, and often are, very misleading because of the risk of over-fitting the training 
model. When over-fitting occurs, which is more likely when training and testing are carried out 
in increasingly higher dimensional spaces, then the classification scores and separation may well 
be nearly perfect, but only for the data on which the model was trained. For example, rather than 
fitting the data with ellipses and bivariate normal distributions, we could imagine an algorithm 
which might draw wiggly lines around each of the classes in the left panel of Fig. 9.11 and 
thereby achieve a considerably higher separation of perhaps nearer 99%. However, this type of 
classification would in all likelihood be entirely specific to this data, so that if we tried to 
separate the fricatives in the right panel of Fig. 9.11 using the same wiggly lines established in 
the training stage, then classification would almost certainly be much less accurate than from the 
Gaussian model considered so far: that is, over-fitting means that the classification model does 
not generalise beyond the data that it was trained on. 
 An open test, in which the training is carried out on the male data and classification on 
the female data in this example, can be obtained in an analogous way to the closed test 
considered earlier (the open test could be extended by subsequently training on the female data 
and testing on the male data and summing the scores across both classifications): 
 
# Train on male data, test on female data. 
y.pred = predict(x.qda, fr.m[!temp,1:2]) 
 
# Confusion matrix. 
y.mat = table(fr.l[!temp], y.pred$class) 
y.mat 
     C  S  f  s  x 
  C 15  5  0  0  0 
  S 12  2  3  3  0 
  f  4  0 13  0  3 
  s  0  0  1 19  0 
  x  0  0  0  0 20 
 
# Hit-rate per class.: 
diag(y.mat)/apply(y.mat, 1, sum) 
C    S    f    s    x  
0.75 0.10 0.65 0.95 1.00 
 
# Total hit-rate: 
sum(diag(y.mat))/sum(y.mat) 
0.69 
 
The total correct classification has now fallen by 20% compared with the closed test to 69% and 
the above confusion matrix reflects more accurately what we see in Fig. 9.11: that the confusion 
between [ʃ] and [ç] in this two-dimensional spectral moment space is really quite extensive. 
 
9.7 Classifications in higher dimensional spaces 

The same mechanism can be used for carrying out Gaussian training and testing in higher 
dimensional spaces, even if spaces beyond three dimensions are impossible to visualise. 
However, as already indicated there is an increasingly greater danger of over-fitting as the 
number of dimensions increases: therefore, if the dimensions do not contribute independently 
useful information to category separation, then the hit-rate in an open test is likely to go down. 
Consider as an illustration of this point the result of training and testing on all four spectral 
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moments. This is done for the same data as above, but to save repeating the same instructions, 
the confusion matrix for a closed test is obtained for speaker 67 in one line as follows: 
 
temp = fr.sp == "67" 
table(fr.l[temp], predict(qda(fr.m[temp,], fr.l[temp]), 
fr.m[temp,])$class) 
     C  S  f  s  x 
  C 20  0  0  0  0 
  S  0 20  0  0  0 
  f  0  0 19  0  1 
  s  0  0  0 20  0 
  x  0  0  2  0 18 
 
Here then, there is an almost perfect separation between the categories, and the total hit rate is  
97%. The corresponding open test on this four dimensional space in which, as before, training 
and testing are carried out on the male and female data respectively is given by the following 
command: 
 
table(fr.l[!temp], predict(qda(fr.m[temp,], fr.l[temp]), 
fr.m[!temp,])$class) 
     C  S  f  s  x 
  C 17  0  0  3  0 
  S  7  7  1  1  4 
  f  3  0 11  0  6 
  s  0  0  0 20  0 
  x  0  0  1  0 19 
 
Here the hit-rate is 74%, a more modest 5% increase on the two-dimensional space. It seems 
then that including m3 and m4 do provide only a very small amount of additional information for 
separating between these fricatives.  
 An inspection of the correlation coefficients between the four parameters can give some 
indication of why this is so. Here these are calculated across the male and female data together 
(see section 9.9. for a reminder of how the object fr.m was created): 
round(cor(fr.m), 3) 
 

[,1]   [,2]   [,3]   [,4] 
[1,]  1.000 -0.053 -0.978  0.416 
[2,] -0.053  1.000 -0.005 -0.717 
[3,] -0.978 -0.005  1.000 -0.429 
[4,]  0.416 -0.717 -0.429  1.000 
 
The correlation in the diagonals is always 1 because this is just the result of the parameter being 
correlated with itself. The off-diagonals show the correlations between different parameters. So 
the second column of row 1 shows that the correlation between the first and second moments is 
almost zero at -0.053 (the result is necessarily duplicated in row 2, column 1, the correlation 
between the second moment and the first). In general, parameters are much more likely to 
contribute independently useful information to class separation if they are uncorrelated with each 
other. This is because correlation means predictability: if two parameters are highly correlated 
(positively or negatively), then one is more or less predictable from another. But in this case, the 
second parameter is not really contributing any new information beyond the first and so will not 
improve class separation. 
 For this reason, the correlation matrix above shows that including both the first and third 
moments in the classification is hardly likely to increase class separation, given that the 
correlation between these parameters is almost complete (-0.978). This comes about for the 
reasons discussed in Chapter 8: as the first moment, or spectral centre of gravity, shifts up and 
down the spectrum, then the spectrum becomes left- or right-skewed accordingly and, since m3 is 
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a measure of skew, m1 and m3 are likely to be highly correlated. There may be more value in 
including m4, however, given that the correlation between m1 and m4 is moderate at 0.416; on the 
other hand, m2 and m4 for this data are quite strongly negatively correlated at -0.717, so perhaps 
not much more is to be gained as far as class separation is concerned beyond classifications from 
the first two moments. Nevertheless, it is worth investigating whether classifications from m1, 
m2, and m4 give a better hit-rate in an open-test than from m1 and m2 alone: 
 
# Train on male data, test on female data in a 3D-space formed from m1, m2, and m4 
temp = fr.sp == "67" 
res = table(fr.l[!temp], predict(qda(fr.m[temp,-3], fr.l[temp]), 
fr.m[!temp,-3])$class) 
 
# Class hit-rate 
diag(res)/apply(res, 1, sum) 
C    S    f    s    x  
0.95 0.40 0.75 1.00 1.00 
 
# Overall hit rate 
sum(diag(res))/sum(res) 
0.82 
 
In fact, including m4 does make a difference: the open-test hit-rate is 82% compared with 69% 
obtained from the open test classification with m1 and m2 alone. But the result is also interesting 
from the perspective of over-fitting raised earlier: notice that this open test score from three 
moments is higher than from all four moments together which shows not only that there is 
redundant information as far as class separation is concerned in the four-parameter space, but 
also that the inclusion of this redundant information leads to an over-fit and therefore a poorer 
generalisation to new data. 
 The technique of principal components analysis (PCA) can sometimes be used to 
remove the redundancies that arise through parameters being correlated with each other. In PCA, 
a new set of dimensions is obtained such that they are orthogonal to, or uncorrelated with, each 
other and also such that the lower dimensions 'explain' or account for most of the variance in the 
data (see Figs. 9.9 and 9.10 for a graphical interpretation of 'explanation of the variance'). The 
new rotated dimensions derived from PCA are weighted linear combinations of the old ones and 
the weights are known as the eigenvectors. The relationship between original dimensions, rotated 
dimensions, and eigenvectors can be demonstrated by applying PCA to the spectral moments 
data from the male speaker using prcomp(). Before applying PCA, the data should be 
converted to z-scores by subtracting the mean (which is achieved with the default argument 
center=T) and by dividing by the standard-deviation65 ( the argument scale=T needs to be 
set). Thus to apply PCA to the male speaker's spectral moment data: 
 
temp = fr.sp == "67" 
p = prcomp(fr.m[temp,], scale=T) 
 
The eigenvectors or weights that are used to transform the original data are stored in 
p$rotation which is a 4 × 4 matrix (because there were four original dimensions to which 
PCA was applied). The rotated data points themselves are stored in p$x and there is the same 
number of dimensions (four) as those in the original data to which PCA was applied. 

The first new rotated dimension is obtained by multiplying the weights in column 1 of 
p$rotation with the original data and then summing the result (and it is in this sense that the 

                                                
65 z-score normalisation prior to PCA should be applied  because otherwise, as discussed in Harrington & Cassidy 
(1999) any original dimension with an especially high variance may exert too great an influence on the outcome. 
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new PCA-dimensions are weighted linear combinations of the original ones). In order to 
demonstrate this, we first have to carry out the same z-score transformation that was applied by 
PCA to the original data: 
 
# Function to carry out z-score normalisation 
zscore = function(x)(x-mean(x))/sd(x) 
 
# z-score normalised data 
xn = apply(fr.m[temp,], 2, zscore) 
 
The value on the rotated first dimension for, say, the 5th segment is stored in p$x[5,1] and is 
equivalently given by a weighted sum of the original values,  thus: 
 
sum(xn[5,] * p$rotation[,1]) 
 
The multiplications and summations for the entire data are more simply derived with matrix 
multiplication using the %*% operator66. Thus the rotated data in p$x is equivalently given by: 
 
xn %*% p$rotation 
 
The fact that the new rotated dimensions are uncorrelated with each other is evident by applying 
the correlation function, as before: 
 
round(cor(p$x), 8) 
 

PC1 PC2 PC3 PC4 
PC1   1   0   0   0 
PC2   0   1   0   0 
PC3   0   0   1   0 
PC4   0   0   0   1 
 
The importance of the rotated dimensions as far as explaining the variance is concerned is given 
by either plot(p) or summary(p). The latter returns the following: 
 
Importance of components: 
                         PC1   PC2    PC3     PC4 
Standard deviation     1.455 1.290 0.4582 0.09236 
Proportion of Variance 0.529 0.416 0.0525 0.00213 
Cumulative Proportion  0.529 0.945 0.9979 1.00000 
 
The second line shows the proportion of the total variance in the data that is explained by each 
rotated dimension, and the third line adds this up cumulatively from lower to higher rotated 
dimensions. Thus, 52.9% of the variance is explained alone by the first rotated dimension, PC1, 
and, as the last line shows, just about all of the variance (99%) is explained by the first three 
rotated dimensions. This result simply confirms what had been established earlier:  that there is 
redundant information in all four dimensions as far separating the points in this moments-space 
are concerned. 
 Rather than pursue this example further, we will explore a much higher dimensional 
space that is obtained from summed energy values in Bark bands calculated over the same 
fricative data. The following commands make use of some of the techniques from Chapter 8 to 
derive the Bark parameters. Here, a filter-bank approach is used in which energy in the spectrum 
is summed in widths of 1 Bark with centre frequencies extending from 2-20 Bark: that is, the 
first parameter contains summed energy over the frequency range 1.5 - 2.5 Bark, the next 
                                                
66 See Harrington & Cassidy, 1999, Ch.9 and the Appendix therein for further details of matrix operations. 
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parameter over the frequency range 2.5 - 3.5 Bark and so on up to the last parameter that has 
energy from 19.5 - 20.5 Bark. As bark(c(1.5, 20.5), inv=T) shows, this covers the 
spectral range from 161-7131 Hz (and reduces it to 19 values). The conversion from Hz to Bark 
is straightforward: 
 
fr.bark5 = bark(fr.dft5) 
 
and, for a given integer value of j, the following line is at the core of deriving summed energy 
values in Bark bands: 
 
fapply(fr.bark5[,(j-0.5):(j+0.5)], sum, power=T) 
 
So when e.g., j is 5, then the above has the effect of summing the energy in the spectrum 
between 4.5 and 5.5 Bark. This line is put inside a for-loop in order to extract energy values in 
Bark bands over the spectral range of interest and the results are stored in the matrix fr.bs5: 
 
fr.bs5 = NULL 
for(j in 2:20){ 
   sumvals = fapply(fr.bark5[,(j-0.5):(j+0.5)], sum, power=T) 
   fr.bs5 = cbind(fr.bs5, sumvals) 
} 
colnames(fr.bs5) = paste("Bark", 2:20) 
 
fr.bs5 is now a matrix with the same number of rows as in the original spectral matrix 
fr.dft and with 19 columns (so whereas for the spectral-moment data, each fricative was 
represented by a point in a four-dimensional space, for these data, each fricative is a point in a 
19-dimensional space). 
 We could now carry out a Gaussian classification over this 19-dimensional space as 
before although this is hardly advisable, given that this would almost certainly produce extreme 
over-fitting for the reasons discussed earlier. The alternative solution, then, is to use PCA to 
compress much of the non-redundant information into a smaller number of dimensions. 
However, in order to maintain the distinction between training and testing  - that is between the 
data of the male and female speakers in these examples - PCA really should not be applied 
across the entire data in one go. This is because a rotation matrix (eigenvectors) would be 
derived based on the training and testing set together and, as a result, the training and testing data 
are not strictly separated. Thus, in order to maintain the strict separation between training and 
testing sets, PCA will be applied to the male speaker's data; subsequently, the rotation-matrix 
that is derived from PCA will be used to rotate the data for the female speaker. The latter 
operation can be accomplished simply with the generic function predict() which will have 
the effect of applying z-score normalisation to the data from the female speaker. This operation 
is accomplished by subtracting the male speaker's means and dividing by the male speaker's 
standard-deviations (because this is how the male speaker's data was transformed before PCA 
was applied): 
 
# Separate out the male and female's Bark data  
temp = fr.sp == "67" 
 
# Apply PCA to the male speaker's z-normalised data 
xb.pca = prcomp(fr.bs5[temp,], scale=T) 
 
# Rotate the female speaker's data using the eigenvectors and z-score 
# parameters from the male speaker 
yb.pca = predict(xb.pca, fr.bs5[!temp,]) 
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Before carrying out any classifications, the summary() function is used as before to get an 
overview of the extent to which the variance in the data is explained by the rotated dimensions 
(the results are shown here for just the first eight dimensions, and the scores are rounded to three 
decimal places):  
 
sum.pca = summary(xb.pca) 
round(sum.pca$im[,1:8], 3) 
    PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8 
Standard deviation     3.035 2.110 1.250 1.001 0.799 0.759 0.593 0.560 
Proportion of Variance 0.485 0.234 0.082 0.053 0.034 0.030 0.019 0.016 
Cumulative Proportion  0.485 0.719 0.801 0.854 0.887 0.918 0.936 0.953 
 
Thus, 48.5% of the variance is explained by the first rotated dimension, PC1, alone and just over 
95% by the first eight dimensions: this result suggests that higher dimensions are going to be of 
little consequence as far as distinguishing between the fricatives is concerned.  

We can test this by carrying out an open test Gaussian classification on any number of 
rotated dimensions using the same functions that were applied to spectral moments. For example, 
the total hit-rate (of 76%) from training and testing on the first six dimensions of the rotated 
space is obtained from: 
 
# Train on the male speaker's data 
n = 6 
xb.qda = qda(xb.pca$x[,1:n], fr.l[temp]) 
 
# Test on the female speaker's data 
yb.pred = predict(xb.qda, yb.pca[,1:n]) 
z = table(fr.l[!temp], yb.pred$class) 
sum(diag(z))/sum(z) 
 
Fig. 9.13  shows the total hit-rate when training and testing were carried out successively on  the 
first 2, first 3, …all 19 dimensions and it was produced by putting the above lines inside a for-
loop, thus: 
 
scores = NULL 
for(j in 2:19){ 
   xb.qda = qda(xb.pca$x[,1:j], fr.l[temp]) 
   yb.pred = predict(xb.qda, yb.pca[,1:j]) 
   z = table(fr.l[!temp], yb.pred$class) 
   scores = c(scores, sum(diag(z))/sum(z)) 
} 
 
plot(2:19, scores, type="b", xlab="Rotated dimensions 2-n", 
ylab="Total hit-rate (proportion)") 
 
Fig. 9.13 about here 
 
Apart from providing another very clear demonstration of the damaging effects of over-fitting, 
the total hit-rate, which peaks when training and testing are carried out on the first six rotated 
dimensions, reflects precisely what was suggested by examining the proportion of variance 
examined earlier: that there is no more useful information for distinguishing between the data-
points and therefore fricative categories beyond this number of dimensions. 
 
9.8 Classifications in time 
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 All of the above classifications so far have been static, because they have been based on 
information at a single point in time. For fricative noise spectra this may be appropriate under the 
assumption that the spectral shape of the fricative during the noise does not change appreciably 
in time between its onset and offset. However, a static classification from a single time slice 
would obviously not be appropriate for the distinction between monophthongs and diphthongs 
nor perhaps for differentiating the place of articulation from the burst of oral stops, given that 
there may be dynamic information that is important for their distinction (Kewley-Port, 1982; 
Lahiri et al, 1984). An example of how dynamic information can be parameterised and then 
classified is worked through in the next sections using a corpus of oral stops produced in initial 
position in German trochaic words.  
 It will be convenient, by way of an introduction to the next section, to relate the time-
based spectral classifications of consonants with vowel formants, discussed briefly in Chapter 6 
(e.g., Fig. 6.21). Consider a vowel of duration 100 ms with 20 first formant frequency values at 
intervals of 5 ms between the vowel onset and offset. As described in Chapter 6, the entire F1 
time-varying trajectory can be reduced to just three values either by fitting a polynomial or by 
using the discrete-cosine-transformation (DCT): in either case, the three resulting values express 
the mean, the slope, and the curvature of F1 as a function of time. The same can be done to the 
other two time-varying formants, F2 and F3. Thus after applying the DCT to each formant 
number separately, a 100 ms vowel, parameterized in raw form by triplets of F1-F3 every 5 ms 
(60 values in total) is converted to a single point in a nine-dimensional space. 
 The corresponding data reduction of spectra is the same, but it needs one additional step 
that precedes this compression in time. Suppose an /s/ is of duration 100 ms and there is a 
spectral slice every 5 ms (thus 20 spectra between the onset and offset of the /s/). We can use the 
DCT in the manner discussed in Chapter 8 to compress each spectrum, consisting originally of 
perhaps 129 dB values (for a 256 point DFT) to 3 values. As a result of this operation, each 
spectrum is represented by three DCT or cepstral (see 8.4) coefficients which can be denoted by 
k0, k1, k2. It will now be helpful to think of k0, k1, k2 as analogous to F1-F3 in the case of the 
vowel. Under this interpretation, /s/ is parameterized by a triplet of DCT coefficients every 5 ms 
in the same way that the vowel in raw form is parameterized by a triplet of formants every 5 ms. 
Thus there is time-varying k0, time-varying k1, and time-varying k2 between the onset and offset 
of /s/ in the same way that there is time-varying F1, time-varying F2, and time-varying F3 
between the onset and offset of the vowel. The final step involves applying the DCT to compress 
separately each such time-varying parameter to three values, as summarised in the preceding 
paragraph: thus after this second transformation, k0 as a function of time will be compressed to 
three values, in the same way that F1 as a function of time is reduced to three values. The same 
applies to time-varying k1 and to time-varying k2 which are also each compressed to three values 
after the separate application of the DCT. Thus a 100 ms /s/ which is initially parameterised as 
129 dB values per spectrum that occur every 5 ms (i.e., 2580 values in total since for 100 ms 
there are 20 spectral slices)  is also reduced after these transformations to a single point in a nine-
dimensional space. 
 These issues are now further illustrated in the next section using the stops data set. 
  
9.8.1 Parameterising dynamic spectral information 
 The corpus fragment for the analysis of dynamic spectral information includes a word-
initial stop, /C = b, d, ɡ/ followed by a tense vowel or diphthong V = /a: au e: i: o: ø: oɪ u:/ in 
meaningful German words such as  baten, Bauten, beten, bieten, boten, böten, Beute, Buden. The 
data were recorded as part of a seminar in 2003 at the IPDS, University of Kiel from 3 male and 
4 female speakers (one of the female speakers only produced the words once or twice rather than 
3 times which is why the total number of stops is 470 rather than the expected 504 from 3 stops x 
8 vowels x 7 speakers x 3 repetitions). The sampled speech data were digitised at 16 kHz and 
spectral sections were calculated from a 512 point (32 ms) DFT at intervals of 2 ms. The 
utterances of the downloadable stops database were segmented into a closure, a burst 
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extending from the stop-release to the periodic vowel onset, and the following vowel (between 
its periodic onset and offset). The objects from this database in the Emu-R library include the 
stop burst only (which across all speakers has a mean duration of just over 22 ms): 
 
stops  Segment list of the stop-burst. 
stops.l  A vector of stops labels for the above. 
stopsvow.l A vector of labels of the following vowel context. 
stops.sp  A vector of labels for the speaker. 
stops.dft  Trackdata object of spectral data between the onset and offset of the burst. 
stops.bark Trackdata object as stops.dft but  
   with the frequency axis converted into Bark. 
stops.dct  Trackdata object of the lowest three DCT c 
   coefficients derived from stops.bark. 
 

The procedure that will be used here for parameterizing spectral information draws upon the 
techniques discussed in Chapter 8. There are three main steps, outlined below, which together 
have the effect of compressing the entire burst spectrum, initially represented by spectral slices at 
2 ms intervals, to a single point in a nine-dimensional space, as described above. 
 

1. Bark-scaled, DFT-spectra (stops.bark). The frequency axis is warped from the 
physical Hertz to the auditory Bark scale in the frequency range 200 - 7800 Hz (this 
range is selected both to discount information below 200 Hz that is unlikely to be useful 
for the acoustic distinction between stop place of articulation and to remove frequency 
information near the Nyquist frequency that may be unreliable). 

2. Bark-scaled DCT coefficients (stops.dct). A DCT-transformation is applied to the 
output of 1. in order to obtain Bark-scaled DCT (cepstral) coefficients. Only the first 
three coefficients are calculated, i.e. k0, k1, k2 which, as explained in Chapter 8, are 
proportional to the spectrum's mean, linear slope, and curvature. These three parameters 
are obtained for each spectral slice resulting in three trajectories between the burst onset 
and offset, each supported by data points at 2 ms intervals. 

3. Polynomial fitting. Following step 2, the equivalent of a 2nd order polynomial is fitted 
again using the DCT to each of the three trajectories thereby reducing each trajectory to 
just 3 values (the coefficients of the polynomial).  

 
Steps 1-3 are now worked through in some more detail using a single stop burst token for a /d/ 
beginning with a perspective plot showing how its spectrum changes in time over the extent of 
the burst using the persp() function. Fig. 9.14(a) which shows the raw spectrum in Hz was 
created as follows. There are a couple of fiddly issues in this type of plot to do with arranging the 
display so that the burst onset is at the front and the vowel onset at the back: this requires 
changing the time-axis so that increasing negative values are closer to the vowel onset and 
reversing the row-order of the dB-spectra. The arguments theta and phi in the persp() 
function define the viewing direction67. 
 
# Get the spectral data between the burst onset and offset for the 2nd stop from 200-7800 Hz 
d.dft = stops.dft[2,200:7800] 
 
# Rearrange the time-axis 
times = tracktimes(d.dft) - max(tracktimes(d.dft)) 

                                                
67 The reader will almost certainly have to adjust other graphical parameters to reproduce Fig. 9.14. Within the 
persp() function, I used cex.lab=.75 and cex.axis=.6 to control the font-size of the axis label and titles; 
lwd=1 for panel (a) and lwd=.4 for the  other panels to control the line-width and hence darkness of the plot. I 
also used par(mar=rep(3, 4)) to reset the margin size before plotting (d).  
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# These are the frequencies of the spectral slices 
freqs = trackfreq(d.dft) 
 
# These are the dB-values at those times (rows) and frequencies (columns) 
dbvals = frames(d.dft) 
par(mfrow=c(2,2)); par(mar=rep(.75, 4)) 
persp(times, freqs, dbvals[nrow(dbvals):1,], theta = 120, phi = 
25, col="lightblue", expand=.75, ticktype="detailed", 
main="(a)",xlab="Time (ms)", ylab="Frequency (Hz)", zlab="dB") 
 
Fig. 9.14(a) shows that the overall level of the spectrum increases from the burst onset at t = 0 
ms (the front of the display) towards the vowel onset at t = - 20 ms (which is to be expected, 
given that the burst follows the near acoustic silence of the closure) and there are clearly some 
spectral peaks, although it is not easy to see where these are. However, the delineation of the 
peaks and troughs can be brought out much more effectively by smoothing the spectra with the 
discrete-cosine-transformation in the manner described in Chapter 8 (see Fig. 8.22, right panel) 
to obtain DCT-smoothed Hz-spectra. The corresponding spectral plot is shown in Fig. 9.14(b). 
This was smoothed with the first 11 DCT-coefficients, thereby retaining a fair amount of detail 
in the spectrum: 
 
d.sm = fapply(d.dft, dct, 10, T) 
persp(times, freqs, frames(d.sm)[nrow(dbvals):1,], theta = 120, 
phi = 25, col="lightblue", expand=.75, ticktype="detailed", 
main="(b)",xlab="Time (ms)", ylab="Frequency (Hz)", zlab="dB") 
 
Fig. 9.14 about here 
 
The smoothed display in Fig. 9.14(b) shows more clearly that there are approximately four peaks 
and an especially prominent one at around 2.5 kHz.   

Steps 1 and 2, outlined earlier (9.8.1), additionally involve warping the frequency axis to 
the Bark scale and calculating only the first three DCT-coefficients. The commands for this are: 
 
d.bark = bark(d.dft) 
d.dct = fapply(d.bark, dct, 2) 
 
d.dct contains the Bark-scaled DCT-coefficients (analogous to MFCC, mel-frequency cepstral 
coefficients in the speech technology literature). Also, there are three coefficients per time slice 
(which is why frames(d.dct) is a matrix of 11 rows and 3 columns) which define the shape 
of the spectrum at that point in time. The corresponding DCT-smoothed spectrum is calculated in 
the same way, but with the additional argument to the dct() function fit=T.  This  becomes 
one of the arguments appended after dct, as described in Chapter 8: 
 
# DCT-smoothed spectra; one per time slice 
d.dctf = fapply(d.bark, dct, 2, fit=T) 
 
d.dctf is a spectral trackdata object containing spectral slices at intervals of 5 ms. Each 
spectral slice will, of course, be very smooth indeed (because of the small number of 
coefficients). In Fig. 9.14(c) these spectra smoothed with just 3 DCT coefficients are arranged in 
the same kind of perspective plot: 
 
freqs = trackfreq(d.dctf) 
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persp(times, freqs, frames(d.dctf)[nrow(dbvals):1,], theta = 
120, phi = 25, col="lightblue", expand=.75, ticktype="detailed", 
main="(c)",xlab="Time (ms)", ylab="Frequency (Hz)", zlab="dB") 
 
The shape of the perspective spectral plot is now more like a billowing sheet and the reader may 
wonder whether we have not smoothed away all of the salient information in the /d/ spectra! 
However, the analogous representation of the corresponding Bark-scaled coefficients as a 
function of time in Fig. 9.14(d) shows that even this radically smoothed spectral representation 
retains a fair amount of dynamic information. (Moreover, the actual values of these trajectories 
may be enough to separate out the three separate places of articulation). Since d.dct (derived 
from the commands above) is a trackdata object, it can be plotted with the generic plot() 
function. The result of this is shown in Fig. 9.14(d) and given by the following command: 
 
plot(d.dct, type="b", lty=1:3, col=rep(1, 3),  lwd=2, main = 
"(d)", ylab="Amplitude", xlab="Time (ms)") 
 
 It should be noted at this point that, as far as classification is concerned, the bottom two 
panels of Fig. 9.14 contain equivalent information:  that is, they are just two ways of looking at 
the same phenomenon. In the time-series plot, the three Bark-scaled DCT-coefficients are 
displayed as a function of time. In the 3D-perspective plot, each of these three numbers is 
expanded into its own spectrum. It looks as if the spectrum contains more information, but it 
does not. In the time-series plot, the three numbers at each time point are the amplitudes of 
cosine waves at frequencies 0, ½, and 1 cycles. In the 3D-perspective plot, the three cosine 
waves at these amplitudes are unwrapped over 256 points and then summed at equal frequencies. 
Since the shapes of these cosine waves are entirely predictable from the amplitudes (because the 
frequencies are known and the phase is zero in all cases), there is no more information in the 3D-
perspective plot than in plotting the amplitudes of the ½ cycle cosine waves (i.e., the DCT-
coefficients) as a function of time.  
 We have now arrived at the end of step 2 outlined earlier. Before proceeding to the next 
step, which is yet another compression and transformation of the data in Fig. 9.14(d), here is a 
brief recap of the information that is contained in the trajectories in Fig. 9.14(d). 
 
k0 (the DCT coefficient at a frequency of k = 0 cycles) encodes the average level in the spectrum. 
Thus, since k0 (the top track whose points are marked with circles in Fig. 9.14(d)) rises as a 
function of time, then the mean dB-level of the spectrum from one spectra slice to the next must 
also be rising. This is evident from any of Figs 9.14(a, b, c) which all show that the spectra have 
progressively increasing values on the dB-axis in progressing in time towards the vowel 
(compare in particular the last spectrum at time t = -20 ms with the first at the burst onset). The 
correspondence between k0 and the spectral mean can also be verified numerically: 
 
# Calculate the mean dB-value per spectral slice across all frequencies 
m = fapply(d.bark, mean) 
# This shows a perfect correlation between the mean dB and k0 
cor(frames(m), frames(d.dct[,1])) 
1 
 
k1, which is the middle track in Fig. 9.14(d), encodes the spectral tilt i.e, the linear slope 
calculated with dB on the y-axis and Hz (or Bark) on the x-axis in the manner of Fig. 8.13 of 
Chapter 8. Fig. 9.14(d) suggests that there is not much change in the spectral slope as a function 
of time and also that the slope is negative (positive values on k1 denote a falling slope). The fact 
that the spectrum is tilted downwards with increasing frequency is evident from any of the 
displays in Fig. 9.14 (a, b, c). The association between k1 and the linear slope can be 
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demonstrated in the manner presented in Chapter 8 by showing that they are strongly negatively 
correlated with each other: 
 
# Function to calculate the linear slope of a spectrum 
slope <- function(x)  
{ 
   lm(x ~ trackfreq(x))$coeff[2] 
} 
specslope = fapply(d.bark, slope) 
cor(frames(specslope), frames(d.dct[,2])) 
-0.991261 
 

Finally, k2 which is the bottom track in Fig. 9.14(d), shows the spectral curvature as a function of 
time. If each spectral slice could be modelled entirely by a straight line, then the values on this 
parameter would be zero. Evidently they are not and since these values are negative, then the 
spectra should be broadly ∩-shaped, and this is most apparent in the heavily smoothed spectrum 
in Fig. 9.14(c). Once again it is possible to show that k2 is related to curvature by calculating a 
2nd order polynomial regression on each spectral slice, i.e. by fitting a function to each spectral 
slice of the form: 
 
dB = a0 + a1f + a2f2        (4) 
 
The second coefficient a2 of (4) defines the curvature and the closer it is to zero, the less curved 
the trajectory. Fitting a 2nd order polynomial to each spectral slice can be accomplished in an 
analogous manner to obtaining the linear slope above. Once again, the correlation between k2 
and curvature is very high: 
 
# Function to apply 2nd order polynomial regression to a spectrum. Only a2 is stored. 
regpoly <- function(x) 
{ 
   lm(x ~ trackfreq(x) + I(trackfreq(x)^2))$coeff[3] 
} 
 
# Apply this function to all 11 spectral slices 
speccurve = fapply(d.bark, regpoly) 
# Demonstrate the correlation with k2 
cor(frames(speccurve), frames(d.dct[,3])) 
0.9984751 
 
 So far, then, the spectral slices as a function of time have been reduced to three tracks 
that encode the spectral mean, linear slope, and curvature also as a function of time. In step 3 
outlined earlier, this information is compressed further still by applying the discrete-cosine-
transformation once more to each track in Fig. 9.14(d). In the command below, this 
transformation is applied to k0: 
 
trapply(d.dct[,1], dct, 2, simplify=T) 
63.85595 -18.59999 -9.272398 
 
So following the earlier discussion, k0 as a function of time must have a positive linear slope 
(because the middle coefficient, -18.6, that defines the linear slope, is negative). It must also be 
curved (because the last coefficient that defines the curvature is not zero) and it must also be ∩-
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shaped (because the last coefficient is negative): indeed, this is what we see in looking at the 
overall shape of k0 as a function of time in Fig. 9.14(d)68.  

The same operation can be applied separately to the other two tracks in Fig. 9.14(d), so 
that we end up with 9 values. Thus the time-varying spectral burst of /d/ has now been reduced to 
a point in a 9-dimensional space (a considerable compression from the original 11 times slices x 
257 DFT  = 2827 dB values). To be sure, the dimensions are now necessarily fairly abstract, but 
they do still have an interpretation: they are the mean, linear slope, and curvature each calculated 
on the spectral mean (k0), spectral tilt (k1), and spectral curvature (k2) as a function of time. 
 This 9 dimensional representation is now derived for all of the stops in this mini-database 
with the commands below and it is stored in a 470 × 9 matrix (470 rows because there are 470 
segments). You can leave out the first step (in calculating stops.dct) because this object is in 
the Emu-R library (and can take a few minutes to calculate, depending on the power of your 
computer): 
 
# Calculate k0, k1, k2, the first three Bark-scaled DCT coefficients:  this object is available. 
# stops.dct = fapply(stops.bark, dct, 2) 
 
# Reduced k0, k1, and k2, each to  three values: 
dct0coefs = trapply(stops.dct[,1], dct, 2, simplify=T) 
dct1coefs = trapply(stops.dct[,2], dct, 2, simplify=T) 
dct2coefs = trapply(stops.dct[,3], dct, 2, simplify=T) 
 
# Put them into a data-frame after giving the matrix some column names. 
d = cbind(dct0coefs, dct1coefs, dct2coefs) 
n = c("a0", "a1", "a2") 
m = c(paste("k0", n, sep="."), paste("k1", n, sep="."), 
paste("k2", n, sep=".")) 
colnames(d) = m 
 
# Add the stop labels as a factor. 
bdg = data.frame(d,  phonetic=factor(stops.l)) 
 
We are now ready to classify. 
 
9.9 Support vector machines 

Or are we? One of the real difficulties in classifying velar stops is that they are highly 
context-dependent, i.e. the place of articulation with which /k, ɡ/ is produced shifts with the 
frontness of the vowel, often ranging between a palatal, or post-palatal articulation before front 
vowels like /i/ to a post-velar production before /u/. Moreover, as theoretical models of 
articulatory-acoustic relationships show, this shift has a marked effect on the acoustic signal such 
that the front and back velar allophones can be acoustically more similar to alveolar and labial 
stops (e.g., Halle, Hughes & Radley, 1957) respectively rather than to each other.  

This wide allophonic variation of /ɡ/ becomes evident in inspecting them on two of the   
previously calculated parameters. In Fig. 9.15, the display on the left shows the distribution of /ɡ/ 
in the plane of parameters 4 and 7 as a function of the following vowel context. On the right are 
ellipse plots of the other two stops on the same parameters. The plot was created as follows: 
  
par(mfrow=c(1,2)); xlim = c(-5, 35); ylim = c(-15, 10) 
temp = stops.l=="g"; xlab="Mean of the slope"; ylab="Mean of the 
curvature" 

                                                
68 The first coefficient 63.85595 is equal to √2 multiplied by the mean of k0 as can be verified from sqrt(2) * 
trapply(d.dct[,1], mean, simplify=T) . 



    251 

 

plot(d[temp,c(4, 7)], type="n", xlab=xlab, ylab=ylab, bty="n", 
xlim=xlim, ylim=ylim) 
text(d[temp,4], d[temp,7], stopsvow.l[temp]) 
eplot(d[!temp,c(4,7)], stops.l[!temp], col=c("black", 
"slategray"), dopoints=T, xlab=xlab, ylab="", xlim=xlim, 
ylim=ylim) 
 
Fig. 9.15 about here 
 
It is evident from the right panel of Fig. 9.15 that, although /b, d/ are likely to be quite well 
separated on these two parameters in a classification model, the distribution for /ɡ/ shown in the 
left panel of the same figure is more or less determined by the vowel context (and follows the 
distribution in the familiar F2 × F1 vowel formant plane). Moreover, fitting a Gaussian model to 
these /ɡ/ data is likely to be inappropriate for at least two reasons. Firstly, they are not normally 
distributed: they do not cluster around a mean and they are not distributed along a principal 
component in the way that /b, d/ are. Secondly, the mean of /ɡ/ falls pretty much in the same 
region as the means of /b, d/ in the right panel of Fig. 9.15. Thus the ellipse for /ɡ/ would 
encompass almost all of /b, d/, perhaps resulting in large number of misclassifications. Given 
that a Gaussian distribution may be inappropriate for these data, we will consider another way of 
classifying the data using a support vector machine (SVM) that makes no assumptions about 
normality. 
 The development of SVMs can be traced back to the late 1970s, but in recent years they 
have been used for a variety of classification problems, including the recognition of handwriting, 
digits, speakers, and faces (Burges, 1998) and they have also been used in automatic speech 
recognition (Ganapathiraju et al, 2004). The following provides a very brief and non-technical 
overview of SVMs - for more mathematical details, see Duda et al. (2001). 
 Consider firstly the distribution of two classes, the filled and open circles, in a two-
parameter space in Fig. 9.16. It is evident that the two classes could be separated by a drawing a 
line between them. In fact, as the left panel shows, there is not just one line but an infinite 
number of lines that could be used to separate them. But is there any principled way of choosing 
the line that optimally separates these categories? In SVM this optimal line is defined in terms of 
finding the widest so-called margin of parallel lines that can be created before hitting a data 
point from either class, as shown in the right panel of Fig. 9.16. These data points through which 
the margin passes are called the support vectors. 
 
Fig. 9.16 about here 
  
The right panel in Fig. 9.16 is a schematic example of a linear SVM classifier in which the  
categories are separated by a straight line. But there will, of course, be many instances in which 
this type of linear separation cannot be made. For example, it is not possible to separate linearly 
the two categories displayed in one dimension in the left panel of Fig. 9.17, nor can any single 
line be drawn to categorise the exclusive-OR example in the left panel of Fig. 9.18 in which the 
points from the two categories are in opposite corners of the plane. Now it can be shown (see 
e.g., Duda et al, 2001) that two categories can be separated by applying a non-linear 
transformation that projects the points into a higher dimensional space. The function that does 
this mapping to the higher dimensional space is called the kernel: although there are many 
different kinds of kernel functions that could be used for this purpose, a few have been to found 
to work especially well as far as category separation is concerned including the radial basis 
function which is a type of Gaussian transformation (and the default kernel for  svm() in 
library(e1071) in R). This is also the same as the sigmoid kernel that is used in 
feedforward neural networks.  
 A schematic example, taken from Moore (2003), of how projection into a higher 
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dimensional space enables classes to be separated using the same sort of margin as in Fig. 9.16 is 
shown for the data in Fig. 9.17. As already stated, it is not possible to separate completely the 
classes on the left in Fig. 9.17 with a straight line. However, when these data are projected into a 
two-dimensional space by applying a second order polynomial transformation, x → x2, or 
informally by plotting the squared values as a function of the original values, then the two 
classes can be separated by the same kind of wide margin as considered earlier.  
 
Fig. 9.17 about here 
 
For the X-OR data in the left panel of Fig. 9.18, the separation with a margin can be made by 
applying a kernel function to transform the data to a six-dimensional space (Duda et al, 2001). It 
is of course not possible to draw this in the same way as for Fig. 9.17, but it is possible to make a 
classification plot to show how svm() classifies the regions in the vicinity of these points. This 
is shown in the right panel of Fig. 9.18. In order to create this plot, the first step is to train the 
data as follows69: 
 
# The four points and their hypothetical labels. 
x = c(-1, -1, 1, 1); y = c(-1, 1, -1, 1) 
lab = c("d", "g", "g", "d") 
 
# Bundle all of this into a data-frame and attach the data-frame. 
d.df = data.frame(phonetic=factor(lab), X=x, Y=y) 
attach(d.df) 
 
# Train the labels on these four points. 
m  = svm(phonetic ~ X+Y) 
 
A closed test (i.e., a classification of these four points) can then be carried out using the generic 
predict() function in the same way that was done with the Gaussian classification: 
 
predict(m) 
1 2 3 4  
d g g d  
Levels: d g 
 
Thus the four points have been correctly classified on this closed test. A classification plot could 
be produced with the same function used on the Gaussian data, i.e. classplot(m, 
xlim=c(-1, 1), ylim=c(-1, 1)). Alternatively, there is a simpler (and prettier) way 
of achieving the same result with the generic plot() function which takes the SVM-model as 
the first argument and the data-frame as the second: 
 
plot(m, d.df) 
 
Fig. 9.18 about here 
 
After training on these four data points, the support vector machine has partitioned the space into 
four quadrants so that all points in the bottom left and top right quadrants are classified as /d/ and 
the other two quadrants as /ɡ/. It would certainly be beyond the capabilities of any Gaussian 
classifier to achieve this kind of (entirely appropriate) classification and separation over this 
space from such a small number of data points! 

                                                
69 You might need to install the e1071 package with install.packages("e1071").   Then enter 
library(e1071) to access the svm() function. 
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 We can now compare the classifications using an SVM and Gaussian classification on the 
same two-parameter space as in Fig. 9.15. A support vector machine is a two-category 
classificatory system, but it can be extended to the case when there are more than two classes 
using a so-called ‘one-against-one’ approach by training  k(k-1)/2 binary SVM classifiers, where 
k is the number of classes (see Duda et al, 2001 for some further details).   

We begin by comparing classification plots to see how the Gaussian and SVM models  
divide up the two-parameter space: 
 
detach(d.df) 
attach(bdg) 
 
# Train using SVM on parameters 4 and 7 
p47.svm = svm(bdg[,c(4, 7)], phonetic) 
 
# Train using a Gaussian model on the same parameters 
p47.qda = qda(bdg[,c(4, 7)], phonetic) 
 
# SVM and Gaussian classification plots over the range of Fig. 9.15 
xlim = c(-10, 40); ylim = c(-15, 10); col=c("black", 
"lightblue", "slategray") 
ylab = "Parameter 7"; xlab="Parameter 4" 
par(mfrow=c(1,2)) 
classplot(p47.svm, xlim=xlim, ylim=ylim, col=col, ylab=ylab, 
xlab=xlab) 
text(c(25, 5, 15, -5), c(0, 0, -10, -8), c("b", "d", "g", "b"), 
col=c("white", "black", "black", "white")) 
classplot(p47.qda, xlim=xlim, ylim=ylim, col=col, xlab=xlab, 
ylab="") 
text(c(25, 5, 15), c(0, 0, -10), c("b", "d", "g"), 
col=c("white", "black", "black")) 
 
Fig. 9.19 about here 
 
There are similarities in the way that the two classification techniques have partitioned the plane: 
the regions for /b, d, ɡ / are broadly similar and in particular /ɡ/ engulfs the /b, d/ territories in 
both cases. But there are also obvious differences. The /b, d/ shapes from the Gaussian classifier 
are much more ellipsoidal whereas the SVM has carved out boundaries more in line with the 
way that the tokens are actually distributed in Fig. 9.15. For this reason, a separate small region 
for /b/ is produced with SVM classification, presumably because of the handful of /b/-outliers at 
coordinates [0, -5] in the right panel of Fig. 9.15. 
 The reader can manipulate the commands below by selecting columns 4 and 7 to see 
which approach actually gives the higher classification performance in an open-test. In the 
commands below, training and testing are carried out on all 9 dimensions. Moreover, in the 
training stage, training is done on only 6 of the 7 speakers; then the data values for the speaker 
who is left out of the training stage are classified. This is done iteratively for all speakers. In this 
way, a maximum amount of data is submitted to the training algorithm while at the same time, 
the training and testing are always done on different speakers. (If not already done, enter 
attach(bdg)). 
 
# A vector in which the classificatory labels will be stored. 
svm.res = qda.res  = rep("", length(phonetic)) 
 
# Loop over each speaker separately 
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for(j in unique(stops.sp)){ 
 
   # Logical vector to identify the speaker 
   temp = stops.sp == j 
 
   # Train on the other speakers 
   train.qda = qda(bdg[!temp,1:9], phonetic[!temp]) 
 
   # Test on this speaker 
   pred.qda = predict(train.qda, bdg[temp,1:9]) 
 
   # Store the classificatory label 
   qda.res[temp] = as.character(pred.qda$class) 
 
   # As above but for the SVM 
   train.svm = svm(bdg[!temp,1:9], phonetic[!temp]) 
   pred.svm = predict(train.svm, bdg[temp,1:9]) 
   svm.res[temp] = as.character(pred.svm) 
} 
 
# Confusion matrix from the Gaussian classifier. 
tab.qda = table(phonetic, qda.res); tab.qda 
qda.res 
phonetic   b   d   g 
       b 116  16  23 
       d   8 133  16 
       g  23  22 113 
 
# And from the SVM 
tab.svm = table(phonetic, svm.res); tab.svm 
svm.res 
phonetic   b   d   g 
       b 120  15  20 
       d   8 131  18 
       g  16  21 121 
 
# Total hit rates for the Gaussian and SVM classifiers 
n = length(phonetic);  sum(diag(tab.qda)/n);  
sum(diag(tab.svm)/n) 
0.7702128 
0.7914894 
 
So in fact the scores (77% and 79%) are quite similar from both techniques and this is an 
example of just how robust the Gaussian model can be, even though the data for /ɡ / are so 
obviously not normally distributed on at least two parameters, as the left panel of Fig. 9.15 
shows. However, the confusion matrices also show that while /b, d/ are quite similarly classified 
in both techniques, the hit-rate for /ɡ/ is slightly higher with the SVM (79.6%) than with the 
Gaussian classifier (71.5%). 
 
9.10 Summary 
 Classification in speech involves assigning a label or category given one or more 
parameters such as formant frequencies, parameters derived from spectra or even physiological 
data. In order for classification to be possible, there must have been a prior training stage (also 
known as supervised learning) that establishes a relationship between categories and parameters 
from an annotated database. One of the well-established ways of carrying out training is by using 
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a Gaussian model in which a normal distribution is fitted separately to each category. If there is 
only one parameter, then the fitting is done using the category's mean and standard-deviation; 
otherwise a multidimensional normal distribution is established using the parameter means, or 
centroid, and the so-called covariance matrix that incorporates the standard deviation of the 
parameters and the correlation between them. Once Gaussian models have been fitted in this 
way, then Bayes' theorem can be used to calculate the probability that any point in a parameter 
space is a member of that category: specifically, it is the combination of supervised training and 
Bayes' theorem that allows a question to be answered such as: given an observed formant 
pattern, what is the probability that it could be a particular vowel?  
 The same question can be asked for each category in the training model and the point is 
then classified, i.e., labelled as one of the categories based on whichever probability is the 
greatest. This can be done for every point in a chosen parameter space resulting in a 'categorical 
map' marking the borders between categories (e.g., Fig. 9.19) from which a confusion matrix 
quantifying the extent of category overlap can be derived.  
 An important consideration in multi-dimensional classification is the extent to which the 
parameters are correlated with each other: the greater the correlation between them, the less 
likely they are to make independent contributions to the separation between categories. The 
technique of principal components analysis can be used to rotate a multi-parameter space and 
thereby derive new parameters that are uncorrelated with each other. Moreover classification 
accuracy in a so-called open-test, in which training and testing are carried out on separate sets of 
data, is often improved using a smaller set of PCA-rotated parameters than the original high-
dimensional space from which they were derived. Independently of these considerations, an 
open-test validation of classifications is always important in order to discount the possibility of 
over-fitting: this comes about when a high classification accuracy is specific only to the training 
data so that the probability model established from training does not generalise to other sets of 
data. 
 Two further issues were discussed in this Chapter. The first is classification based on 
support vector machines which have not yet been rigorously tested on speech data, but which 
may enable a greater separation between categories to be made than using Gaussian techniques, 
especially if the data do not follow a normal distribution. The second is to do with classifications 
in time:  in this Chapter, time-based classifications were carried out  by fitting the  equivalent of 
a 2nd order polynomial to successive, auditorily-scaled and data-reduced spectra. Time-based 
classifications are important in speech research given that speech is an inherently dynamic 
activity and that the cues for a given speech category are very often distributed in time.  
 
9.11 Questions 
1.  This exercise makes use of the vowel monophthong and diphthong formants in the dataset 
stops that were described in some detail at the beginning of section  9.8 and  also analysed in 
this Chapter. The vowels/diphthongs occur in the first syllable of German trochaic words with 
initial C = /b, d, g/. There are 7 speakers, 3 male (gam, lbo, sbo) 4 female (agr, gbr, rlo, 
tjo). The relevant objects for this exercise are given below: enter table(stops.l, 
stopsvow.l, stops.sp) to see the distribution of stops × vowel/diphthongs × speaker). 
 
stops.l  A vector of stops labels preceding the vowels/diphthongs 
stopsvow  Segment list of the vowels/diphthongs following the stop burst 
stopsvow.l A vector of labels of the vowels/diphthongs 
stops.sp  A vector of labels for the speaker 
stopsvow.fm Trackdata object, first four formants for the vowels/diphthongs  
   (derived from emu.track(stopsvow, "fm")  ) 
 
The question is concerned with the F1 and F2 change as a function of time in distinguishing 
between [a: aʊ ɔʏ] (MRPA/SAMPA a: au oy). 
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(a) Sketch possible F1 and F2 trajectories for these three segments. Why might the 
parameterisation of these formants with the third moment (see Chapter 8) be a useful way of 
distinguishing between these three classes? Why might speaker normalization not be necessary 
in classifying speech data with this parameter? 
  
(b) Use trapply() on the trackdata object stopsvow.fm in order to calculate spectral 
moments in each segment separately for F1 and F2. 
 
(c) Produce ellipse plots in the plane of F1m3 × F2m3 (the third moment of F1 × the third 
moment of F2) for the three classes [a: aʊ ɔʏ] in the manner shown in the left panel of Fig. 9.20. 
 
Fig. 9.20 about here 
 
 (d) Establish a training model using quadratic discriminant analysis in order to produce the 
classification plot for these three classes shown in the right panel of Fig. 9.20. 
 
(e) Calculate the third moment for the diphthong aI (German diphthong [aɪ], one male, one 
female speaker, read speech) separately for F1 and F2 in the diphthong dataset: 
 
dip.fm   Trackdata object, F1-F4 
dip.l   Vector of phonetic labels 
 
(f) Use points() to superimpose on the right panel of Fig. 9.20 the F1m3 × F2m3  values 
for these [aɪ] diphthongs.  
 
(g) As the right panel of Fig. 9.20 shows, the values for [aɪ] are around the border between 
[aʊ] and [ɔʏ] and do not overlap very much with [a:]. How can this result be explained in terms 
of the relative phonetic similarity between [aɪ] and the three classes on which the model was 
trained in (d)? 
 
2. The object of this exercise is to test the effectiveness of some of the shape parameters derived 
from a DCT-analysis for vowel classification.  
 
(a) Calculate the first three DCT-coefficients firstly for F1 and then for F2 between the acoustic 
onset and offset of the vowels/diphthongs in the trackdata object stopsvow.fm described in 
question 1. above. (You should end up with two 3-columned matrices: the first matrix has  k0, k1, 
k2 calculated on F1 in columns 1-3; and the second matrix also contains the first three DCT-
coefficients, but calculated on F2. The number of rows in each matrix is equal to the number of 
segments in the trackdata object). 
 
(b) The following function can be used to carry out an open-test classification using a 'leave-one-
out' procedure similar to the one presented at the end of 9.9.  
 
cfun <- function(d, labs, speaker) 
{ 
   # The next three lines allow the function to be applied when d is one-dimensional 
   if(is.null(dimnames(d))) 
   d = as.matrix(d) 
   dimnames(d) = NULL 
   qda.res = rep("", length(labs)) 
   for(j in unique(speaker)){ 
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      temp = speaker == j 
      # Train on all the other speakers 
      train.qda = qda(as.matrix(d[!temp,]), labs[!temp]) 
      # Test on this speaker 
      pred.qda = predict(train.qda, as.matrix(d[temp,])) 
      # Store the classificatory label 
      qda.res[temp] = pred.qda$class 
   } 
   # The confusion matrix 
   table(labs, qda.res) 
}  
 
In this function, training is carried out on k -1 speakers and testing on the speaker that was left 
out of the training. This is done iteratively for all speakers. The results of the classifications from 
all speakers are summed and presented as a confusion matrix. The arguments to the function are: 
 
d  a matrix or vector of data 
labs  a parallel vector of vowel labels 
speaker a parallel vector of speaker labels 
 
Use the function to carry out a classification on a four-parameter model using k0 and k2 (i.e., the 
mean and curvature of each formant) of F1 and of F2 calculated in (a) above. What is the hit-rate 
(proportion of correctly classified vowels/diphthongs)? 
 
(c) To what extent are the confusions that you see in (b) explicable in terms of the phonetic 
similarity between the vowel/diphthong classes? 
 
(d) In what way might including the third moment calculated on F1 reduce the confusions? Test 
this hypothesis by carrying out the same classification as in (b) but with a five-parameter model 
that includes the third moment of F1. 
 
(e) Some of the remaining confusions may come about because of training and testing on male 
and female speakers together. Test whether the misclassifications are reduced further by 
classifying on the same 5-parameter model as in (d), but on the 4 female speakers (agr, gbr, 
rlo, tjo) only. 
 
9.11 Answers 
1 (a) The three vowel classes are likely to differ in the time at which their  F1- and F2-peaks 
occur. In particular, F1 for [aʊ] is likely to show an early prominent peak centered on the first 
phonetically open diphthong component, while [ɔʏ] should result in a relatively late F2-peak due 
to movement towards the phonetically front [ʏ]. Thus the vowel classes should show some 
differences on the skew of the formants which is quantified by the third moment. The reason 
why speaker normalization may be unnecessary is both because skew parameterizes the global 
shape of the formant trajectory but in particular because skew is dimensionless. 
 
1 (b) 
f1.m3 = trapply(stopsvow.fm[,1], moments, simplify=T)[,3] 
f2.m3 = trapply(stopsvow.fm[,2], moments, simplify=T)[,3] 
 
1 (c) 
m3= cbind(f1.m3, f2.m3) 
temp = stopsvow.l  %in% c("a:", "au", "oy") 
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xlim = c(-.2, .6); ylim=c(-.6, .6) 
eplot(m3[temp,], stopsvow.l[temp], centroid=T, xlab= "Third 
moment (F1)", ylab= "Third moment (F2)", xlim=xlim, ylim=ylim) 
 
1 (d) 
m3.qda = qda(m3[temp,], stopsvow.l[temp]) 
xlim = c(-.2, .6); ylim=c(-.6, .6) 
classplot(m3.qda, xlim=xlim, ylim=ylim) 
 

1 (e) 
m.f1 = trapply(dip.fdat[,1], moments, simplify=T) 
m.f2 = trapply(dip.fdat[,2], moments, simplify=T) 
 
1 (f) 
points(m.f1[,3], m.f2[,3], col="gray100") 
 
1 (g) 
[aɪ] shares in common with [aʊ, ɔʏ] that it is a diphthong. For this reason, its formants are likely 
to be skewed away from the temporal midpoint. Consequently (and in contrast to [a:]) the third 
moment of the formants will have values that are not centered on [0, 0]. [aɪ] falls roughly on the 
border between the other two diphthongs because it shares phonetic characteristics with both of 
them: like [aʊ], the peak in F1 is likely to be early, and like [ɔʏ] the F2-peak is comparatively 
late. 
 
2(a) 
f1.dct = trapply(stopsvow.fm[,1], dct, 2, simplify=T) 
f2.dct = trapply(stopsvow.fm[,2], dct, 2, simplify=T) 
 
2(b) 
d = cbind(f1.dct[,c(1, 3)], f2.dct[,c(1, 3)]) 
result = cfun(d, stopsvow.l, stops.sp) 
 
qda.res 
labs  1  2  3  4  5  6  7  8 
  a: 50  8  0  0  0  0  0  0 
  au 10 47  0  0  1  0  3  0 
  e:  0  0 48  8  0  3  0  0 
  i:  0  0  4 54  0  0  0  0 
  o:  0  1  0  0 48  0  0 10 
  oe  0  0  2  0  0 52  5  0 
  oy  0 11  0  0  0  4 42  0 
  u:  0  1  0  0  6  0  4 48 
 
# Hit-rate 
sum(diag(result)/sum(result)) 
0.8276596 
 
2(c) Most of the confusions arise between phonetically similar classes. In particular the 
following pairs of phonetically similar vowels/diphthongs are misclassified as each other: 

• 18 (8 + 10) misclassifications of [a:]/[aʊ] 
• 12 (8 + 4) misclassifications of [e:]/[i:] 
• 16 (10+6) misclassifications of [o:]/[u:] 
• 14 (11+3) misclassifications of [aʊ]/[ɔʏ] 
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2(d) Based on the answers to question 1, including the third moment of F1 might reduce the  
diphthong misclassifications in particular [a:]/[aʊ] and [aʊ]/[ɔʏ]. 
 
# Third moment of F1 
m3.f1 = trapply(stopsvow.fm[,1], moments, simplify=T)[,3] 
d = cbind(d, m3.f1) 
result = cfun(d, stopsvow.l, stops.sp) 
result 
qda.res 
labs  1  2  3  4  5  6  7  8 
  a: 58  0  0  0  0  0  0  0 
  au  1 57  0  0  0  0  3  0 
  e:  0  0 51  7  0  1  0  0 
  i:  0  0  4 54  0  0  0  0 
  o:  0  1  0  0 48  0  0 10 
  oe  0  0  2  1  0 53  3  0 
  oy  3  1  0  0  0  3 50  0 
  u:  0  1  0  0  6  0  4 48 
 
# Hit-rate 
sum(diag(result)/sum(result)) 
[1] 0.8914894 
 
Yes, the diphthong misclassifications have been reduced. 
 
2(e) 
temp = stops.sp %in% c("agr", "gbr", "rlo", "tjo") 
result = cfun(d[temp,], stopsvow.l[temp], stops.sp[temp]) 
result 
qda.res 
labs  1  2  3  4  5  6  7  8 
  a: 31  0  0  0  0  0  0  0 
  au  0 31  0  0  1  0  1  0 
  e:  0  0 32  0  0  0  0  0 
  i:  0  0  1 30  0  0  0  0 
  o:  0  0  0  0 29  0  0  3 
  oe  0  0  0  0  0 32  0  0 
  oy  0  1  0  0  0  1 29  0 
  u:  0  0  0  0  4  0  0 28 
 
sum(diag(result)/sum(result)) 
[1] 0.952756 
 
Yes, training and testing on female speakers has reduced misclassifications further: there is now 
close to 100% correct classification on an open test. 
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Figure legends 
 
Fig. 2.1 An overview of the relationship between the stages of creating, querying, and analysing 
speech corpora. 
 
Fig. 2.2. The Emu Database Tool as it appears when you first start up Emu. The left pane is 
for showing the available databases, the right pane for the utterances that each database is 
composed of. 
 
Fig. 2.3. The Emu DatabaseInstaller is accessible from Arrange Tools. To install 
any of the available databases, first specify a path to which you want to save the data from  New 
Database Storage and then click on any of the zip files. You must have an internet 
connection for this to work. 
 
Fig. 2.4. The result of following the procedure described in Fig. 2.3 is access to the database 
first that is made up of five utterances shown on the right. The utterance names are displayed 
by selecting first in Databases on the left followed by Load Database. Double 
clicking any of the names in the Utterances pane on the right causes the utterance to be 
opened (Fig. 2.5). 
 
Fig. 2.5. The display that appears when opening utterance gam001 showing four labelling tiers, 
a waveform, and a spectrogram. The two vertical lines show a selection. To make a selection, 
position the mouse in the waveform, hold down the left button and sweep without letting go of 
the left button to the desired position later in time, then release the button. To zoom in to the 
selection (Fig. 2.6),  click the ↔ symbol in the top left of the display. 
 
Fig. 2.6. The resulting display after zooming in to the segment marks in Fig. 2.5. The following 
further adjustments were also made. Firstly, click the button inside the ellipse on the left to get 
the pull out menu shown over the spectrogram and then adjust the contrast and brightness sliders 
and reset the maximum spectral range to 4000 Hz. You can also produce a narrow band 
spectrogram showing harmonics by resetting the bandwidth to e.g., 45 Hz. The waveform and 
spectrogram windows can be made bigger/smaller using the triangles shown inside the ellipse on 
the right. 
 
Fig. 2.7. The steps for opening the utterance gam002 in Praat from Emu. Click gam002 in the 
Utterances pane once to select it, then Praat from the Open with... pull-down menu. 
Praat must already be running first for this to work. 
 
Fig. 2.8. The utterance gam002 opened in Praat and segmented and labelled at the Word tier. 
 
Fig. 2.9. The corresponding display in Emu (obtained by double clicking gam002- see Fig. 2.7) 
after labelling the data with Praat in the manner of Fig. 2.8. The other labelling tiers have been 
removed from the display with Display → SignalViewLevels and then by de-selecting 
Phoneme, Phonetic, Target. 
 
Fig. 2.10. Opening files in Praat. Open the utterance msajc023.wav with Read → Read 
from File in the left pane, then select to TextGrid from the Annotate pull-down menu 
to bring up the pane shown top right and enter Word as a segment tier. After clicking the OK 
button in the top right pane, the TextGrid object will appear in the Praat objects window as 
shown below right. Select both the sound file and this TextGrid object together to derive the 
initially unlabelled waveform and spectrogram in Fig. 2.11. 
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Fig. 2.11. The audio file msajc023.wav segmented and labelled into words. Save the 
TextGrid to the same directory where msajc023.wav is located with File → Write 
TextGrid to text file. 
 
Fig. 2.12. The labConvert window for inter-converting between Emu and Praat label files. 
Click on Praat 2 Emu to bring up this window, and enter the full path and filename for 
msajc023.TextGrid under Input File as shown above. Then choose a directory into 
which the output of the conversion is to be written. Make sure you check the box 
templatefile as shown in order to create an Emu template during the conversion. Begin the 
conversion with Start. 
 
Fig. 2.13 The files in the first directory after converting the Praat TextGrid. At this point, you 
should rename the template file p2epreparedtpl.tpl to something else e.g., jec.tpl. 
 
Fig. 2.14. The Emu Database Tool showing the new database whose template should be 
edited with Edit Template. 
 
Fig. 2.15. The Tracks (above) and Variables (below) panes of the template file for the 
database jec. Specify the extension as wav and the path as x/first, where x is the 
directory in which  msajc023.wav is stored. For the Variables pane, specify the primary 
extension as wav: the utterances of the database will then be defined to be all wav files that are 
found under Path of the Tracks pane. 
 
Fig. 2.16. The Emu Database Tool showing the database jec. The utterances are accessible 
after editing the template file in the manner described in Fig. 2.15 and then selecting Load 
Database. Double clicking on the utterance name opens the utterance in Emu as shown on the 
right. 
 
Fig. 2.17. The information to be entered in the Levels pane. 
 
Fig. 2.18. The information to be entered in the Labfiles pane. 
 
Fig. 2.19. The information to be entered in the Tracks pane. 
 
Fig. 2.20. The information to be entered in the Variables pane. 
 
Fig. 2.21. The Emu configuration editor showing the paths for the template files. 
 
Fig. 2.22 The Emu Database Tool showing the myfirst database and associated 
utterances. 
 
Fig. 2.23 The utterance gam007 showing a segmentation into words and a single i: segment at 
the Phoneme tier. 
 
Fig. 2.24. The labConvert window to convert the Emu annotations into a Praat TextGrid. 
Select myfirst from the … pull-down menu at the top, then gam007 from the … menu in the 
middle, and then choose Automatic to save the TextGrid to the same directory in which the 
Emu annotations are stored. Finally select Start. 
 
Fig. 2.25. The same utterance and annotations in Fig. 2.23 as a Praat TextGrid.  
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Fig. 3.1 A schematic view of the phonetic vowel quadrilateral and its relationship to the first two 
formant frequencies. 
 
Fig. 3.2. Spectrogram and superimposed second formant frequency of a production by a male 
speaker of the German word drüben with phonetic segments and boundaries shown. From 
Harrington (2009). 
 
Fig. 3.3. The Emu Database Tool after downloading the database second.zip. Enter 
gam* and confirm with the ENTER key to select all utterances beginning with gam (the male 
speaker) then select Send to tkassp from the Utterance List… menu to bring up the 
tkassp window in Fig. 3.4. 
 
Fig. 3.4. Upon selecting Send to tkassp (Fig. 3.3) a window (shown in the middle of this 
figure) appears asking whether samples should be selected as the input track. Selecting OK 
causes the sampled speech data (audio files) of the utterances to appear in the pane on the left. 
Check the forest box as shown to calculate formants and choose the forest pane (at the 
top of the display) to see the default parameters. Leaving the default output as auto (top right) 
causes the formants to be stored in the same directory as the audio files from which the formants 
have been calculated. The calculation of formants is done with the default settings (shown on the 
right) which include a window size of 25 ms and a window shift of 5 ms. The formant files are 
created with an extension .fms. When you are ready to calculate the formants, select Perform 
Analysis. 
 
Fig. 3.5. The additions to the Tracks (above) and View (below) panes that are needed for 
displaying the formants. Select Add New Track then enter fm under Track, fms for the 
extension and copy the path from the audio file (the path next to wav). In the View pane, check 
the fm box which will have the effect of overlaying formants on the spectrograms. Finally, save 
the template file. 
 
Fig. 3.6. The utterance gam002 with overlaid formants and spectrogram parameters readjusted 
as shown in the Figure. The cursor is positioned close to an evident tracking error in F2, F3, and 
F4. The pen buttons on the left can be used for manual correction of the formants (Fig. 3.7). 
 
Fig. 3.7.  Manual correction (below) of the F2-formant tracking error (inside the ellipse). The 
spectrogram is from the same utterance as in Fig. 3.6 but with the frequency range set to 0 - 1500 
Hz. Selecting the pen color corresponding to that of F2 has the effect of showing the F2 values 
on the track as points. In order to change the F2 values manually, hold down the left mouse 
button without letting go and sweep across the spectrogram, either from left to right or right to 
left slowly in order to reposition the point(s). When you are done, release the mouse and select 
the same pen color again. You will then be prompted to save the data. Choosing yes causes the 
formant file to be overwritten. Choosing no will still have the effect of redrawing the track 
according to your manual correction, but when you close the window, you will be asked again to 
save the data. If you choose no again, then the formant changes will not be saved. 
 
Fig. 3.8 A flow diagram showing the relationship between signals, annotations, and the output, 
ellipses. Entries followed by () are functions in the Emu-R library. Remember to enter 
library(emu) at the R prompt to make use of any of these functions. 
 
Fig. 3.9. A display of the first four formants in R (left) and the corresponding formant display in 
Emu (right) for an [i:] vowel from the same gam006 utterance. The vertical line in the display 
on the left marks the temporal midpoint of the vowel at 562.5 ms and can be marked with 
abline(v=562.5), once the formant data have been plotted. 
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Fig. 3.10. 95% confidence ellipses for five vowels from isolated words produced by a male 
speaker of Standard German. 
 
Fig. 3.11 Vowels for the female speaker agr in the F2 × F1 plane (values extracted at the 
temporal midpoint of the vowel), after (left) and before (right) correction of an outlier (at F2 = 0 
Hz) for [u:]. 
 
Fig. 3.12. The tkassp window for calculating intensity data for the aetobi database. Select 
the … button in the top right corner then choose manual and from that the directory into which 
you want to store the intensity data. Make a note of the directory (path) because it will need to be 
included in the template file to tell Emu where these intensity data are located on your system. 
 
Fig. 3.13. The required modifications to the aetobi template file in order to display intensity 
data in Emu in the Tracks (top) and View (below) panes. The path entered in the Tracks 
pane is the one to which you wrote the intensity data in Fig. 3.12. 
 
Fig. 3.14. The utterance bananas showing a spectrogram and intensity contour. 
 
Fig. 3.15. The same utterance as in Fig. 3.14 showing only the Word tier and intensity contour. 
 
Fig. 3.16. The defaults of the rmsana pane set to a window shift and size of 2 ms and 10 ms 
respectively and with an output extension rms2. These data will be saved to the same directory 
as the one selected in Fig. 3.13. 
 
Fig. 3.17. The utterance bananas showing intensity contours calculated with a window size 
and shift of 25 ms and 5 ms (above) and 10 ms and 2 ms (below) respectively. 
 
Fig. 3.18. A spectrogram and synchronized zero-crossing rate for the bananas utterance 
showing word segmentations. 
 
Fig. 3.19. The argument utterance from the aetobi database showing a spectrogram with 
overlaid formants and a synchronized f0-contour. 
 
Fig. 3.20. The procedure for calculating signal files, in this case fundamental frequency data 
from a segment list. This tkassp window is accessed from Signal Processing → 
Speech Signal Analysis after starting Emu. Import the segment list using the Input … 
button in the top left and choose Select Segment/Event, then select path/seg.txt 
where path is the directory where seg.txt is stored, then OK to samples. This should bring 
up the list of segments shown in the left part of the figure. Choose Use f0ana, inspect the 
f0ana pane if you wish, and finally click on Perform Analysis. If the input was the plain 
text file seg.txt, then the output will be seg-f0.txt containing the fundamental frequency 
data in the same directory (by default) as seg.txt. 
 
Fig. 3.21. The Track (above) and View (below) panes of the aetobi database edited to 
include the new intensity parameter.  
 
Fig. 4.1. The Emu Query Tool  accessed from Database Operations followed by 
Query Database (above) and the segment list (below) that results from the query.  
 
Fig 4.2  The Legal Labels pane of the Graphical Template Editor showing how 
the annotations at the Phonetic tier are grouped into different classes (features).    
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Fig. 4.3. A fragment of the utterance thorsten from the downloadable gt database showing 
signal (above) and hierarchy (below) views. The signal view has been set to display only the f0 
contour (Display → Tracks → F0) and in the range 100-300 Hz by the use of  the slider 
buttons to the left of the f0 pane. The hierarchy window is accessible from the signal window 
using either the Show Hierarchy button or Display → Detach hierarchy to 
display both windows simultaneously.  
 
Fig. 4.4 The association between I, Word, and Tone tiers for the same utterance as in Fig. 4.3. 
This display was produced with Display → Hierarchy Levels and then by deselecting 
the other tiers. 
 
Fig. 4.5. An example of an annotation of the word person showing many-to-many relationships 
between both Phonetic and Phoneme, and between Phoneme and Syllable tiers. In 
addition, the tiers are in a hierarchical relationship in which Syllable immediately dominates 
Phoneme which immediately dominates Phonetic. 
 
Fig. 4.6 The path for the gt database (far left) showing the inter-tier relationships.  (S) and (E) 
denote segment and event tiers respectively, all other tiers are timeless.  A downward arrow 
denotes a non-linear, one-to-many relationship. The figure also shows the information in the 
Levels (top left), Labels (top right), and Labfiles (below) panes of the template file for 
encoding this path. 
 
Fig. 4.7. The hierarchy window of the utterance dort in the gt database before (above) and 
after (below) annotation. 
 
Fig. 4.8. The annotations for dort showing the annotation numbers (grey) coded in the 
corresponding hlb file. The annotation numbers can be displayed with Display ➝ Toggle 
Segment numbers (from the main Emu menu). For simplicity, the Break tier has been 
removed from the display (Display ➝ Hierarchy levels).  
 
Fig. 4.9. The Praat TextGrid for the utterance dort corresponding to the structured annotation 
in Emu. This TextGrid was created with the labConvert window shown above the Praat 
display (accessible from Arrange Tools → Convert Labels → Emu2Praat) by 
entering the template file (gt) and input file (dort) and specifying an output directory. 
 
Fig. 4.10. A fragment of the utterance K67MR095 from the kielread corpus showing 
apparent segment deletion in the words und, schreiben, and lernen. 
 
Fig. 4.11. The graphical user interface to the Emu query language. Assuming you have loaded 
the utterances of the gt database click on graphical query in the query tool window 
(Fig 4.1) to open the spreadsheet shown above (initially you will only see the pane on the left). A 
query of all H% (intonational phrases) labels that dominate more than 5 words is entered at tier I, 
with the label H% and with num > 5 Word. A tick mark is placed next to  Word to make a 
segment list of annotations at this tier; also click on Word itself to get the # sign which means 
that a segment list should be made of words only in this position (rather across this and the next 
word). Enter End i at the Word tier to search for intermediate-phrase-final words. At the Tone 
tier, enter L*+H to search for these annotations. Then click the >> arrow at the top of the 
spreadsheet beneath Position to enter the search criteria in an analogous manner for the 
following segment, i.e., L- at tier i  and 0 at the Break tier. Finally select the Query button 
when you are ready and the system will calculate the search instruction (shown next to 
Querystring). 
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Fig. 4.12 The utterance anna1 from the aetobi database  including the f0-contour as 
calculated in the exercises of chapter 3. 
 
Fig. 4.13 The modified aetobi template file. Word is made a parent of Tone (left) and 
path/aetobi.txt is the file containing the Tcl code that is entered in the Variables pane 
(right) under AutoBuild. Also make sure that  Word and Tone are selected in 
HierarchyViewLevels of the template file's view pane. 
 
Fig. 4.14. The output of the LinkFromTimes function showing links between annotations at 
the Word and Tone tiers. This display was obtained by clicking on Build Hierarchy. 
 
Fig. 4.15. The Emu AutoBuild tool that is accessible from Database Operations → 
AutoBuildExtern and which will automatically load any Tcl (AutoBuild) script that is 
specified in the template file. Follow through the instructions to apply the script to all utterances 
in the database. 
 
Fig. 4.16. The path for representing parent-child tiers in aetobi. 
 
Fig. 4.17. The modified Levels pane of the aetobi template file to encode the path 
relationships in Fig. 4.16. The simplest way to do this is in text mode by clicking on txt (inside 
the ellipse) which will bring up the plain text file of the template. Then replace the existing 
level statements with those shown on the right of this figure. Once this is done, click 
anywhere inside the GTemplate Editor and answer yes to the prompt: Do you want 
to update GTed? to create the corresponding tiers shown here in the Levels pane. 
Finally, save the template file in the usual way. (There is no need to save the plain text file).  
 
Fig. 4.18. The result of running tobi2hier.txt on the utterance anyway. If the 
Intonational and Intermediate tiers are not visible when you open this utterance, then 
select them from Display → Hierarchy levels. 
 
Fig. 4.19. The structural relationships between Word, Morpheme, Phoneme and, in a separate 
plane, between Word, Syllable and Phoneme for German kindisch (childish). 
 
Fig. 4.20. The two paths for the hierarchical structures in Fig. 4.19 which can be summarized by 
the inter-tier relationships on the right. Since only Phoneme is a segment tier and all other tiers 
are timeless, then, where → denotes dominates, Word → Morpheme → Phoneme and Word 
→ Syllable → Phoneme. 
 
Fig. 4.21. The path relationships for the ae database. All tiers are timeless except Phonetic 
and Tone.  
 
Fig. 4.22. Structural representations for the utterance msajc010 in the ae database for the tiers 
from two separate paths that can be selected from Display → Hierarchy Levels. 
 
Fig. 4.23 The utterance schoen from the gt database with an L- phrase tone marked at a point 
of time in the second syllable of zusammen.  
 
Fig. 4.24. Prosodic structure for [kita] in Japanese. ω, F, σ, µ are respectively prosodic word, 
foot, syllable, and mora. From Harrington, Fletcher & Beckman (2000). 
 
Fig. 4.25. The coding in Emu of the annotations in Fig. 4.24. 
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Fig. 4.26. The tree in Fig. 4.24 as an equivalent three-dimensional annotation structure (left) and 
the derivation from this of the corresponding Emu path structure (right). The path structure gives 
expression to the fact that the tier relationships Word-Foot-Syll-Phon, Word-Syll-
Phon and Word-Syll-Mora-Phon are in three separate planes. 
 
Fig. 5.1 The tongue tip (TT), tongue mid (TM), and tongue-back (TB) sensors glued with dental 
cement to the surface of the tongue. 
 
Fig. 5.2. The Carstens Medizinelektronik EMA 'cube' used for recording speech movement data. 
 
Fig. 5.3. The sagittal, coronal, and transverse body planes. From 
http://training.seer.cancer.gov/module_anatomy/unit1_3_terminology2_planes.html  
 
Fig. 5.4 The position of the sensors in the sagittal plane for the upper lip (UL), lower lip (LL), 
jaw (J), tongue tip (TT), tongue mid (TM), and tongue back (TB). The reference sensors are not 
shown. 
 
Fig. 5.5. A section from the first utterance of the downloadable ema5 database showing acoustic 
phonetic (Segment), tongue tip (TT), and tongue body (TB) labeling tiers, a spectrogram, 
vertical tongue-tip movement, and  vertical tongue body movement.  Also shown are  mid-
sagittal (bottom left) and transverse (bottom right) views of the positions of the upper lip (UL), 
lower lip (LL), jaw (J), tongue tip (TT), tongue mid (TM) and tongue body (TB) at the time of 
the left vertical cursor (offset time of tongue body raising i.e., at the time of the highest point of 
the tongue body for /k/). 
 
Fig. 5.6 The annotation structure for the ema5 database in which word-initial /k/ at the 
Segment tier is linked to a sequence of raise lower annotations at both the TT and TB 
tiers, and in which raise at the TT tier is linked to raise at the TB tier, and lower at the TT 
tier to lower at the TB tier. 
 
Fig. 5.7 Relationship between various key functions in Emu-R and their output. 
 
Fig. 5.8. Boxplots showing the median (thick horizontal line), interquartile range (extent of the 
rectangle) and range (the extent of the whiskers) for VOT in /kl/ (left) and /kn/ (right).  
 
Fig. 5.9. Positions of the tongue body (dashed) and tongue tip (solid) between the onset of 
tongue-dorsum raising and the offset of tongue tip lowering in a  /kl/ token. 
 
Fig. 5.10. Vertical position of the tongue tip in /kn/ and /kl/ clusters synchronized at the point of 
maximum tongue body raising in /k/ (t = 0 ms) and extending between the tongue tip raising and 
lowering movements for /n/ (solid) or /l/ (dashed). 
 
Fig. 5.11. Tongue body (solid) and tongue tip (dashed) trajectories averaged separately for /kn/ 
(black) and /kl/ (gray) after synchronization at t = 0 ms, the time of maximum tongue-body 
raising for /k/. 
 
Fig. 5.12 A sinusoid (open circles) and the rate of change of the sinusoid (diamonds) obtained by 
central differencing. The dashed vertical lines are the times at which the rate of change is zero. 
The dotted vertical line is the time at which the rate of change is maximum. 
 
Fig. 5.13. Tongue-body position (left) and velocity (right) as a function of time over an interval 
of tongue body raising and lowering in the /k/ of /kn/ (solid) and of /kl/ (dashed, gray) clusters. 
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Fig. 5.14. The same data as in the right panel of Fig. 5.13, but additionally synchronized at the 
time of the peak-velocity maximum in the tongue-back raising gesture of individual segments 
(left) and averaged after synchronization by category (right). 
 
Fig. 5.15. The position (left) and velocity (right) of a mass in a critically damped mass-spring 
system with parameters in equation (3)  x(0) = 1, ω = 0.05, v(0) = 0, xtarg = 0. 
 
Fig. 5.16. Tongue-body raising and lowering in producing /k/. a: magnitude of the raising 
gesture. b: Duration of the raising gesture. c: Time to peak velocity in the raising gesture. d: 
magnitude of the lowering gesture. e: Duration of the lowering gesture. f: Time to peak velocity 
in the lowering gesture. 
 
Fig. 5.17. Position (row 1) and velocity (row 2) as a function of time in varying the parameters xo 
and ω of equation (2). In column 1, xo was varied in 20 equal steps between 0.75 and 1.5 with 
constant ω = 0.05. In column 2, ω was varied in 20 equal steps between 0.025 and 0.075 while 
keeping xo constant at 1. The peak velocity is marked by a point on each velocity trajectory. 
 
Fig. 5.18. Data from the raising gesture of /kl/ and /kn/. Left: boxplot of the duration between the 
movement onset and the time to peak velocity. Right: the magnitude of the raising gesture as a 
function of its peak velocity. 
 
Fig. 5.19. Jaw position as a function of the first formant frequency at the time of the lowest jaw 
position in two diphthongs showing the corresponding word label at the points. 
 
Fig. 5.20. Vertical (left) and horizontal (right) position of the tongue mid sensor over the interval 
of the acoustic closure of [p] synchronized at the time of the lip-aperture minimum in Kneipe 
(black) and Kneipier (dashed, gray). 
 
Fig. 5.21. Boxplot of F2 in [aɪ] and [aʊ] at the time of the lowest position of the jaw in these 
diphthongs. 
 
Fig. 5.22. 95% confidence ellipses for two diphthongs in the plane of the horizontal position of 
the tongue-mid sensor and lip-aperture with both parameters extracted at the time of the lowest 
vertical jaw position in the diphthongs. Lower values on the x-axis correspond to positions nearer 
to the lips. The lip-aperture is defined as the difference in position between the upper and lower 
lip sensors. 
 
Fig. 5.23. Jaw height trajectories over the interval between the maximum point of tongue tip 
raising in /n/ and the minimum jaw aperture in /p/ for Kneipe (solid) and Kneipier (gray, dashed). 
 
Fig. 5.24. Tangential velocity of jaw movement between the time of maximum tongue tip raising 
in /n/ and the lip-aperture minimum in /p/ averaged separately in Kneipe (solid) and Kneipier 
(dashed, gray). 
 
Fig. 6.1: 95% ellipse contours for F1 × F2 data extracted from the temporal midpoint of four 
German lax vowels produced by one speaker. 
 
Fig. 6.2. Left. The [ɪ] ellipse from Fig. 6.1 with the left-context labels superimposed on the data 
points. Right: the same data partitioned into two clusters using kmeans-clustering. 
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Fig. 6.3. An illustration of the steps in kmeans clustering for 10 points in two dimensions. X1 and 
Y1 in the left panel are the initial guesses of the means of the two classes. x and y in the middle 
panel are the same points classified based on whichever Euclidean distance to X1 and Y1 is least. 
In the middle panel, X2 and Y2 are the means (centroids) of the points classified as x and y. In the 
right panel, x and y are derived by re-classifying the points based on the shortest Euclidean 
distance to X2 and Y2. The means of these two classes in the right panel are X3 and Y3. 
 
Fig. 6.4: F2 trajectories for [ʔɪ] (gray) and for [fɪ] and [vɪ] together (black, dashed) synchronised 
at the temporal onset. 
 
Fig. 6.5: 95% confidence intervals ellipses for [ɪ] vowels of speaker  67 at segment onset in the 
F1 × F2 plane before (left) and after (right) removing the outlier at F2 = 0 Hz. 
 
Fig. 6.6: Spectrogram (0 - 3000 Hz) from the utterance K67MR096 showing an [ɪ] vowel with 
superimposed F1-F3 tracks; the miscalculated F2 values are redrawn on the right. The redrawn 
values can be saved – which has the effect of overwriting the signal file data containing the 
formant track for that utterance permanently. See Chapter 3 for further details. 
 
Fig. 6.7. Left: F1 and F2 of [a] for a male speaker of standard German synchronised at time t = 0, 
the time of the F1 maximum. Right: F1 and F2 from segment onset to offset for an [a]. The 
vertical line marks the time within the middle 50% of the vowel at which F1 reaches a 
maximum. 
 
Fig. 6.8: The revised labfiles pane in the template file of the kielread database to include 
a new Target tier.  
 
Fig. 6.9: German lax monophthongs produced by a male (left) and a female (right) speaker in the 
F2 × F1 plane. Data extracted at the temporal midpoint of the vowel.  
 
Fig. 6.10: Mean F2 × F1 values for the male (solid) and female (dashed) data from Fig. 6.9. 
 
Fig. 6.11: Lobanov-normalised F1 and F2 of the data in Fig. 6.9. The axes are numbers of 
standard deviations from the mean. 
 
Fig. 6.12: Relationship between the Hertz and Bark scales. The vertical lines mark interval 
widths of 1 Bark. 
 
Fig. 6.13. A 3-4-5 triangle. The length of the solid line is the Euclidean distance between the 
points (0, 0) and (3, 4). The dotted lines show the horizontal and vertical distances that are used 
for the Euclidean distance calculation. 
 
Fig. 6.14: Lax monophthongs in German for the female speaker  in the F2 × F1 plane for data 
extracted at the vowels' temporal midpoint. X is the centroid defined as the mean position of the 
same speaker's mean across all tokens of the four vowel categories. 
 
Fig. 6.15: Boxplots of Euclidean distances to the centroid (Hz) for speaker 67 (male) and speaker 
68 (female) for four lax vowel categories in German. 
 
Fig. 6.16: Histograms of the  log. Euclidean distance ratios obtained from measuring the relative 
distance of [ɛ] tokens to the centroids of [ɪ] and [a] in the F1 × F2 space separately for a female 
(left) and a male (right) speaker. 
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Fig. 6.17: An F2 trajectory (right) and its linearly time normalised equivalent using 101 data 
points between t = ± 1. 
 
Fig. 6.18: A raw F2 trajectory (gray) and a fitted parabola. 
 
Fig. 6.19: F2 of [ɛ] for the male (black) and female (gray) speakers synchronised at the temporal 
midpoint (left), linearly time normalised (centre), and linearly time normalised and averaged 
(right). 
 
Fig. 6.20: Boxplots of the c2 coefficient of a parabola fitted to F2 of [ɛ] for the male (left) and 
female (right) speaker. 
 
Fig. 6.21: A raw F2 formant trajectory of a back vowel  [ɔ] (solid, gray) produced by a male 
speaker of Standard German and two smoothed contours of the raw signal based on fitting a 
parabola following van Bergem (1993) (dashed) and the first five coefficients of the discrete 
cosine transformation (dotted). 
 
Fig. 6.22: Hypothetical F2-trajectories of [bɛb] (solid) and [bob] (dashed) when there is no V-
on-C coarticulation (left) and when V-on-C coarticulation is maximal (right). First row: the 
trajectories as a function of time. Second row: A plot of the F2 values in the plane of the vowel 
target × vowel onset for the data in the first row. The dotted line bottom left is the line F2Target = 
F2Onset that can be used to estimate the locus frequency. From Harrington (2009). 
 
Fig. 6.23: F2 trajectories in isolated /dVd/ syllables produced by a male speaker of Australian 
English for a number of different vowel categories synchronised at the vowel onset (left) and at 
the vowel offset (right). 
 
Fig. 6.24. Locus equations (solid lines) for /dVd/ words produced by a male speaker of 
Australian English for F2-onset (left) and F2-offset (right) as a function of F2-target. The dotted 
line is y = x and is used to estimate the locus frequency at the point of intersection with the locus 
equation. 
 
Fig. 6.25: The female speaker's [ɛ] vowels in the plane of F3–F2 Bark and  –F1 Bark. 
 
Fig. 6.26: German lax monophthongs produced by a male (left) and a female (right) speaker in 
the plane of F3–F2 Bark and  –F1 Bark. Data extracted at the temporal midpoint of the vowel. 
 
Fig. 6.27: 95% confidence ellipses in the plane of F2 × F1 at the temporal midpoint of [a, ɔ] and 
at the time at which F1 reaches a maximum in  [aʊ] for a male speaker of Standard German.   
 
Fig. 6.28: F2 transitions for a male speaker of Standard German following [d] (solid) and [d] 
(dashed, gray). 
 
Fig. 7.1: The palate of the EPG3 system in a plaster cast impression of the subject's upper teeth 
and roof of the mouth (left) and fixed in the mouth (right). Pictures from the Speech Science 
Research centre, Queen Margaret University College, Edinburgh, 
http://www.qmuc.ac.uk/ssrc/DownSyndrome/EPG.htm. Bottom left is a figure of the 
palatographic array as it appears in R showing 6 contacts in the second row. The relationship to 
phonetic zones and to the row (R1-R8) and column (C1-C8) numbers are also shown. 
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Fig. 7.2. Palatogram in the /n/ of Grangate in the utterance of the same name from the 
epgassim database. The palatogram is at the time point shown by the vertical line in the 
waveform. 
 
Fig. 7.3: Schematic outline of the relationship between electropalatographic objects and 
functions in R. 
 
Fig. 7.4: Palatograms of said Coutts showing the times (ms) at which they occurred. 
 
Fig. 7.5: Waveform over the same time interval as the palatograms in Fig. 7.4. The vertical 
dotted lines mark the interval that is selected in Fig. 7.6. 
 
Fig. 7.6: Palatograms over the interval marked by the vertical lines in Fig. 7.5. 
 
Fig. 7.7: Palatograms for 10 [s] (left) and 10 [ʃ] (right) Polish fricatives extracted at the temporal 
midpoint from homorganic [s#s] and [ʃ#ʃ] sequences produced by an adult male speaker of 
Polish. (The electrode in column 8 row 5 malfunctioned and was off throughout all productions). 
 
Fig. 7.8: Gray-scale images of the data in Fig. 7.7 for [s] (left) and [ʃ] (right). The darkness of a 
cell is proportional to the number of times that the cell was contacted. 
 
Fig. 7.9: Sum of the contacts in rows 1-3 (dashed) and in and rows 6-8 (solid) showing some 
phonetic landmarks synchronised with an acoustic waveform in said Coutts produced by an adult 
female speaker of Australian English.  
 
Fig. 7.10: A histogram of the distribution of the minimum groove width shown separately for 
palatograms of Polish [s,ʃ]. The minimum groove width is obtained by finding whichever row 
over rows 1-5, columns 3-6 has the fewest number of inactive electrodes and then summing the 
inactive electrodes.. 
 
Fig. 7.11: Palatograms for the first 12 frames between the acoustic onset and offset of a Polish 
[s]. On the right is the number of inactive electrodes for each palatogram in rows 1-7. The count 
of inactive electrodes for the palatogram 1290 ms is highlighted. 
 
Fig. 7.12: Minimum groove width (number of off electrodes in the midline of the palate) 
between the acoustic onset and offset of a Polish [s]. 
 
Fig. 7.13: Minimum groove width between the acoustic onset and offset of Polish [s] (black) and 
[ʃ] (gray) averaged after linear time normalisation. 
 
Fig. 7.14: Palatograms with corresponding values on the anteriority index shown above. 
 
Fig. 7.15: Palatograms with corresponding values on the centrality index shown above. 
 
Fig. 7.16: Palatograms with corresponding centre of gravity values shown above. 
 
Fig. 7.17: Synchronised waveform (top) anteriority index (middle panel, solid), dorsopalatal 
index (middle panel, dashed), centre of gravity (lower panel) for just relax. The palatograms are 
those that are closest to the time points marked by the vertical dotted lines in the segments [ʤ] 
and [t] of just, and in [l], [k], [s] of relax. 
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Fig. 7.18: Grayscale images for 10 tokens each of the Polish fricatives [s,ʃ,ɕ]. 
 
Fig. 7.19: Anteriority (AI), dorsopalatal (DI), centrality (CI), and centre of gravity (COG) 
indices for 10 tokens each of the Polish fricatives [s,ʃ,ɕ] (solid, dashed, gray) synchronised at 
their temporal midpoints. 
 
Fig. 7.20: Palatograms from the acoustic onset to the acoustic offset of /nk/ (left) in the 
blend duncourt and /sk/ (right) in the blend bescan  produced by an adult female 
speaker of Australian English. 
 
Fig. 7.21: Anteriority (black) and dorsopalatal (gray) indices for 17 /nK/ (left) and 15 /sK/ (right) 
sequences (K= /k,g/) produced by an adult female speaker of Australian English. 
 
Fig. 7.22: Grayscale EPG images for the /nK/ (left) and the /sK/ (right) for the data in  Fig. 7.21 
extracted 50 ms after the acoustic onset of the cluster. 
 
Fig. 7.23: Acoustic waveform (top) of /ak/ produced by an adult male speaker of standard 
German and the palatograms over the same time interval. 
 
Fig. 7.24: COG (left) and PCOG (right) extracted  at the acoustic vowel offset and plotted as a 
function of F2 for data pooled across /x/ and /k/. The vowel labels are shown at the data points. 
 
Fig. 7.25: COG calculated 30 ms on either side of the acoustic V1C boundary for /k/ (left) and /x/ 
(right) shown separately as a function of time by V1 category. 
 
Fig. 7.26: COG for /k/ (left) and /x/ (right) at the V1C boundary. 
 
Fig. 7.27: COG over the extent of the /k/ closure (left) and /x/ frication (right) shown by vowel 
category and synchronised at the consonants' acoustic temporal midpoints. 
 
Fig. 8.1:  Digital sinusoids and the corresponding circles from which they were derived. The 
numbers correspond to the position of the point either on the circle or along the corresponding 
sinusoid at time point n. Top left: a 16-point digital cosine wave. Top right: as top left, but in 
which the amplitude is reduced. Middle row, left: a three-cycle 16-point cosine wave. Middle 
row, right: a 16-point digital sine wave. Bottom left: the same as middle row left except with 24 
digital points. Bottom right: A 13-cycle, 16-point cosine wave that necessarily aliases onto a 3-
cycle cosine wave. 
 
Fig. 8.2: An 8-point sinusoid with frequency k = 0 cycles. 
 
Fig. 8.3: The digital sinusoids into which a sequence of 8 random numbers was decomposed with 
a  DFT. 
 
Fig. 8.4: An amplitude spectrum of an 8-point signal up to the critical Nyquist frequency. These 
spectral values are sometimes referred to as the unreflected part of the spectrum. 
 
Fig. 8.5: Waveforms of sinusoids (left column) and their corresponding amplitude spectra (right 
column). Row 1: a 20-cycle sinusoid. Row 2: a 20.5 cycle sinusoid. Row 3: As row 2 but after 
the application of a Hanning window. 
 
Fig. 8.6:  Left: A 512-point waveform of a German [ɛ] produced by a male speaker. The dashed 
vertical lines mark out 4 pitch periods. Right: A spectrum of this 512-point signal. The vertical 
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dashed lines mark the expected frequency location of f0, the 2nd, 3rd, and 4th harmonics based on 
the closest points in the digital spectrum. The thin vertical lines show the expected f0 and 
harmonics at multiples of 151 Hz which is the fundamental frequency estimated from the 
waveform. 
 
Fig. 8.7: A spectrum of the first 64 points of the waveform in Fig. 8.7 (left) and of the first 64 
points and padded out with 192 zeros (right). 
 
Fig. 8.8: Left:  A spectrum of an [i] calculated without (black) and with (gray) first differencing. 
Right: the difference between the two spectra shown on the left. 
 
Fig. 8.9: 256-point spectra calculated at 5 ms intervals between the acoustic onset of a closure 
and the onset of periodicity of a /d/ in /daʊ/.  The midpoint time of the window over which the 
DFT was calculated is shown above each spectrum. The release of the stop is at 378 ms (and can 
be related to the rise in the energy of the spectrum at 377.5 ms above 3 kHz). The horizontal 
dashed line is at 0 dB. 
 
Fig. 8.10: Spectra (left) and ensemble-averaged spectra (right) of [s] (gray) and [z] (black). 
 
Fig. 8.11: Distribution of [s] and  [z] on: summed energy in the 0-500 Hz region (left), the ratio 
of energy in this region to that in the total spectrum (middle) and the ratio of energy in this 
region to the summed energy in the 6000 -7000 Hz range (right).  
 
Fig. 8.12: Left: Ensemble-averaged difference spectra for [b] and [d] calculated from spectra 
taken 20 ms and 10 ms after the stop release. Right: the distributions of [b] and [d] on the change 
in summed energy before and after the burst in the 4000 – 7000 Hz range. 
 
Fig. 8.13:  Left: A spectrum of  a [d] 10 ms after the stop  release showing the line of best fit 
(dotted) based on least squares regression. Right: Ensemble-averaged spectra for [b] and [d] 
calculated 10 ms after the stop release. 
 
Fig. 8.14: Left: Distribution of [b] and [d] on the slope of the spectrum in the 500-4000 Hz range  
calculated  10 ms after the stop release. Right: 95% ellipse plots on this parameter (x-axis) and 
the summed energy in the 4-7 kHz (y-axis) range also calculated 10 ms after stop release. 
 
Fig. 8.15:  Left: The spectral slope in the 500-4000 Hz range plotted as a function of time from 
closure onset to the burst offset/vowel onset for a [d] token. Right: The spectral slope over the 
same temporal extent averaged separately across all [b] and [d] tokens, after synchronisation at 
the burst onset (t = 0 ms). 
 
Fig. 8.16: Hypothetical data of the count of the number of cars crossing a bridge in a 12 hour 
period. 
 
Fig. 8.17: First spectral moment as a function of time for [s] (gray) and [z] (black). The tracks 
are synchronised at t = 0 ms, the segment midpoint. 
 
Fig. 8.18:  Spectra calculated at the temporal midpoint of post-vocalic voiceless dorsal fricatives 
in German shown separately as a function of the preceding vowel context (the vowel context is 
shown above each spectral plot). 
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Fig. 8.19: 95% confidence ellipses for [ç] (gray) and [x] (black) in the plane of the first two 
spectral moments. The data were calculated at the fricatives’ temporal midpoints. The labels of 
the vowels preceding the fricatives are marked at the fricatives’ data points.  
 
Fig. 8.20: The first four half-cycle cosine waves that are the result of applying a DCT to the raw 
signal shown in Fig. 8.21. 
 
Fig. 8.21: The raw signal (gray) and a superimposed DCT-smoothed signal (black showing data 
points) obtained by summing k0, k1, k2, k3. 
 
Fig. 8.22: Left: a spectrum of an [ɛ] vowel. Middle the output of a DCT-transformation of this 
signal (a cepstrum). Right: a DCT-smoothed signal (cepstrally smoothed spectrum) 
superimposed on the original spectrum in the left panel and obtained by summing the first 31 
half-cycle cosine waves.  
 
Fig. 8.23: Left: a DCT-smoothed Hz spectrum of [ɛ]. Right: A DCT-smoothed, Bark-scaled 
spectrum of the same vowel. Both spectra were obtained by summing the first six coefficients, 
up to k5. For the spectrum on the right, the frequency axis was converted to Bark with linear 
interpolation before applying the DCT.  
 
Fig. 8.24:  95% confidence ellipses for German lax vowels produced  by a female speaker 
extracted at the temporal midpoint.  Top left: k1 × k2 derived from Hz-spectra. Top right: k1 × k2 
derived from Bark-spectra. Bottom left: k1 × k2 derived from mel-spectra. 
 
Fig. 8.25: The difference in energy between two frequency bands calculated in  the burst  of back 
and front allophones of /k/. 
 
Fig. 8.26: Left: Averaged spectra of [z] preceding front unrounded (f) and back rounded (b) 
vowels. Right: boxplot of the first spectral moment of the same data calculated in the 2000-7700 
Hz range. 
 
Fig. 8.27: Left: averaged, time-normalized plots of F2 as a function of time for Australian 
English (black) and Standard German (gray) vowels. Right: boxplots of the 3rd spectral moment 
calculated across the vowel trajectories from their acoustic onset to their acoustic offset. 
 
Fig. 8.28: Boxplot of third moment calculated across F2 trajectories of one female speaker 
separately for two diphthongs and a monophthong. 
 
Fig. 8.29: Left: averaged spectra of the bursts of [b, d, g] in isolated words produced by an adult 
male German speaker. The bursts were calculated with a 256 point DFT (sampling frequency 
16000 Hz) centered 10 ms after the stop release. Right: The square root of the second spectral 
moment for these data calculated in the 0-4000 Hz range. 
 
Fig. 8.30:  Left: Linearly time-normalized and then averaged F2-trajectories for German [i:] and 
[ɪ]. Right: k2 shown separately for [i:] and [ɪ] calculated by applying a discrete cosine 
transformation from the onset to the offset of the F2-trajectories.  
 
Fig. 8.31. Ensemble-averaged spectra (left) at the temporal midpoint of the vowels [ɪ, a, ʊ] 
(solid, dashed, dotted) and a plot of the same vowels in the plane of Bark-scaled k1 and k2 

calculated over the same frequency range.  
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Fig. 9.1. Histograms of the number of Heads obtained when a coin is flipped 20 times. The 
results are shown when this coin-flipping experiment is repeated 50 (left), 500 (middle), and 
5000 (right) times. 
 
Fig.9.2. Probability densities from the fitted normal distribution superimposed on the histograms 
from Fig. 9.1 and with the corresponding binomial probability densities shown as points. 
 
Fig. 9.3. A normal distribution with parameters µ = 25, σ = 5. The shaded part has an area of 
0.95 and the corresponding values at the lower and upper limits on the x-axis span the range 
within which a value falls with a probability of 0.95.  
 
Fig. 9.4. Histogram of F1 values of /ɪ/ with a fitted normal distribution. 
 
Fig. 9.5. Normal curves fitted, from left to right, to F1 values for /ɪ, ɛ, a/ in the male speaker's 
vowels from the vowlax dataset. 
 
Fig. 9.6 A scatter plot of the distribution of [æ] on F2 × F1 (left) and the corresponding two-
dimensional histogram (right). 
 
Fig. 9.7. The bivariate normal distribution derived from the scatter in Fig. 9.6. 
 
Fig. 9.8. A two standard-deviation ellipse superimposed on the F2 × F1 scatter of [æ] vowels in 
Figs. 9.6 and corresponding to a horizontal slice through the bivariate normal distribution in Fig. 
9.7. The straight lines are the major and minor axes respectively of the ellipse. The point at 
which these lines intersect is the ellipse's centroid, whose coordinates are the mean of F2 and the 
mean of F1. 
 
Fig. 9.9. The ellipse on the right is a rotation of the ellipse on the left around its centroid such 
that the ellipse's major axis is made parallel with the F2-axis after rotation. The numbers 1-4 
show the positions of four points before  (left) and after  (right) rotation. 
 
Fig. 9.10.  The top part of the figure shows the same two-standard deviation ellipse in the right 
panel of Fig. 9.9. The lower part of the figure shows a normal curve for the rotated F2 data  
superimposed on the same scale. The dotted vertical lines mark σ = ± 2 standard deviations from 
the mean of the normal curve which are in exact alignment with the intersection of the ellipse's 
major axis and circumference at two ellipse standard deviations. 
 
Fig 9.11. 95% confidence ellipses for five fricatives on the first two spectral moments extracted 
at the temporal midpoint for a male (left) and female (right) speaker of Standard German. 
 
Fig. 9.12. Classification plots on the first two spectral moments after training on the data in the 
left panel of Fig. 9.11. The left and right panels of this Figure differ only in the y-axis range over 
which the data points were calculated. 
 
Fig. 9.13. Hit-rate in classifying fricative place of articulation using an increasing number of 
dimensions derived from principal components analysis applied to summed energy values in 
Bark bands. The scores are based on testing on data from a female speaker after training on 
corresponding data from a male speaker. 
 
Fig. 9.14. (a) Spectra at 5 ms intervals of the burst of an initial /d/ between the stop’s release (t = 
0 ms) and the acoustic vowel onset (t = -20 ms). (b) the same as (a) but smoothed using 11 DCT 
coefficients. (c), as (a) but with the frequency axis proportional to the Bark-scale and smoothed 
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using 3 DCT coefficients. (d) The values of the DCT-coefficients from which the spectra in (c) 
are derived between the burst onset (t = 545 ms, corresponding to t = 0 ms in the other panels) 
and acoustic vowel onset (t = 565 ms corresponding to t = -20 ms in the other panels). k0, k1 and 
k2 are shown by circles, triangles, and crosses respectively.  
 
Fig 9.15. Left: Distribution of /ɡ/ bursts from 7 speakers on two dynamic DCT-parameters 
showing the label of the following vowel. Right: 95% confidence ellipses for /b, d/ on the same 
parameters. 
 
Fig. 9.16 Left: two classes on two dimensions and the various straight lines that could be drawn 
to separate them completely. Right: the same data separated by the widest margin of parallel 
lines that can be drawn between the classes. The solid lines are the support vectors and pass 
through extreme data points of the two classes. The dotted line is equidistant between the support 
vectors and is sometimes called the optimal hyperplane. 
 
Fig. 9.17. Left: the position of values from two classes in one-dimension. Right: the same data 
projected into a two-dimensional space and separated by a margin. 
 
Fig. 9.18. Left: A hypothetical exclusive-OR distribution of /b, d/ in which there are two data 
points per class and at opposite edges of the plane. Right: the resulting classification plot for this 
space after training these four data points using a support vector machine. 
 
Fig. 9.19. Classification plots from a support vector machine (left) and a Gaussian model (right) 
produced by training on the data in Fig. 9.15. 
 
Fig. 9.20. Left: 95% confidence ellipses for two diphthongs and a monophthong on the third 
moment (skew) calculated over F1 and F2 between acoustic vowel onset and offset.  The data are 
from 7 German speakers producing isolated words and there are approximately 60 data points 
per category. Right: a classification plot obtained by training on the same data using quadratic 
discriminant analysis. The points superimposed on the plot are of [aɪ] diphthongs from read 
speech produced by a different male and female speaker of standard German.  
 


