
The Phonetic Analysis of Speech Corpora

Jonathan Harrington
Institute of Phonetics and Speech Processing
Ludwig-Maximilians University of Munich
Germany

email: jmh@phonetik.uni-muenchen.de

Wiley-Blackwell

 2

Contents
Relationship between International and Machine Readable Phonetic Alphabet (Australian
English)
Relationship between International and Machine Readable Phonetic Alphabet (German)
Downloadable speech databases used in this book
Preface
Notes of downloading software

Chapter 1 Using speech corpora in phonetics research
1.0 The place of corpora in the phonetic analysis of speech
1.1 Existing speech corpora for phonetic analysis
1.2 Designing your own corpus
1.2.1 Speakers
1.2.2 Materials
1.2.3 Some further issues in experimental design
1.2.4 Speaking style
1.2.5 Recording setup
1.2.6 Annotation
1.2.7 Some conventions for naming files
1.3 Summary and structure of the book

Chapter 2 Some tools for building and querying labelling speech databases
2.0 Overview
2.1 Getting started with existing speech databases
2.2 Interface between Praat and Emu
2.3 Interface to R
2.4 Creating a new speech database: from Praat to Emu to R
2.5 A first look at the template file
2.6 Summary
2.7 Questions

Chapter 3 Applying routines for speech signal processing
3.0 Introduction
3.1 Calculating, displaying, and correcting formants
3.2 Reading the formants into R
3.3 Summary
3.4 Questions
3.5 Answers

Chapter 4 Querying annotation structures
4.1 The Emu Query Tool, segment tiers and event tiers
4.2 Extending the range of queries: annotations from the same tier
4.3 Inter-tier links and queries
4.4 Entering structured annotations with Emu
4.5 Conversion of a structured annotation to a Praat TextGrid
4.6 Graphical user interface to the Emu query language
4.7 Re-querying segment lists
4.8 Building annotation structures semi-automatically with Emu-Tcl
4.9 Branching paths
4.10 Summary
4.11 Questions
4.12 Answers

 3

Chapter 5 An introduction to speech data analysis in R: a study of an EMA database
5.1 EMA recordings and the ema5 database
5.2 Handling segment lists and vectors in Emu-R
5.3 An analysis of voice onset time
5.4 Inter-gestural coordination and ensemble plots
5.4.1 Extracting trackdata objects
5.4.2 Movement plots from single segments
5.4.3 Ensemble plots
5.5 Intragestural analysis
5.5.1 Manipulation of trackdata objects
5.5.2 Differencing and velocity
5.5.3 Critically damped movement, magnitude, and peak velocity
5.6 Summary
5.7 Questions
5.8 Answers

Chapter 6 Analysis of formants and formant transitions
6.1 Vowel ellipses in the F2 x F1 plane
6.2 Outliers
6.3 Vowel targets
6.4 Vowel normalisation
6.5 Euclidean distances
6.5.1 Vowel space expansion
6.5.2 Relative distance between vowel categories
6.6 Vowel undershoot and formant smoothing
6.7 F2 locus, place of articulation and variability
6.8 Questions
6.9 Answers

Chapter 7 Electropalatography
7.1 Palatography and electropalatography
7.2 An overview of electropalatography in Emu-R
7.3 EPG data reduced objects
7.3.1 Contact profiles
7.3.2 Contact distribution indices
7.4 Analysis of EPG data
7.4.1 Consonant overlap
7.4.2 VC coarticulation in German dorsal fricatives
7.5 Summary
7.6 Questions
7.7 Answers

Chapter 8 Spectral analysis.
8.1 Background to spectral analysis
8.1.1 The sinusoid
8.1.2 Fourier analysis and Fourier synthesis
8.1.3 Amplitude spectrum
8.1.4 Sampling frequency
8.1.5 dB-Spectrum
8.1.6 Hamming and Hann(ing) windows
8.1.7 Time and frequency resolution

 4

8.1.8 Preemphasis
8.1.9 Handling spectral data in Emu-R
8.2 Spectral average, sum, ratio, difference, slope
8.3 Spectral moments
8.4 The discrete cosine transformation
8.4.1 Calculating DCT-coefficients in EMU-R
8.4.2 DCT-coefficients of a spectrum
8.4.3 DCT-coefficients and trajectory shape
8.4.4 Mel- and Bark-scaled DCT (cepstral) coefficients
8.5 Questions
8.6 Answers

Chapter 9 Classification
9.1 Probability and Bayes theorem
9.2 Classification: continuous data
9.2.1 The binomial and normal distributions
9.3 Calculating conditional probabilities
9.4 Calculating posterior probabilities
9.5 Two-parameters: the bivariate normal distribution and ellipses
9.6 Classification in two dimensions
9.7 Classifications in higher dimensional spaces
9.8 Classifications in time
9.8.1 Parameterising dynamic spectral information
9.9 Support vector machines
9.10 Summary
9.11 Questions
9.12 Answers

References

 5

Relationship between Machine Readable (MRPA) and International Phonetic Alphabet (IPA)
for Australian English.

MRPA IPA Example
Tense vowels
i: i: heed
u: ʉ: who'd
o: ɔ: hoard
a: ɐ: hard
@: ɜ: heard

Lax vowels
I ɪ hid
U ʊ hood
E ɛ head
O ɔ hod
V ɐ bud
A æ had

Diphthongs
I@ ɪә here
E@ eә there
U@ ʉә tour
ei æɪ hay
ai ɐɪ high
au æʉ how
oi ɔɪ boy
ou ɔʉ hoe

Schwa
@ ә the

Consonants
p p pie
b b buy
t t tie
d d die
k k cut
g g go
tS ʧ church
dZ ʤ judge
H h (Aspiration/stop release)

m m my
n n no
N ŋ sing

f f fan
v v van

 6

T θ think
D ð the
s s see
z z zoo
S ʃ shoe
Z ʒ beige
h h he
r ɻ road
w w we
l l long
j j yes

 7

Relationship between Machine Readable (MRPA) and International Phonetic Alphabet (IPA)
for German. The MRPA for German is in accordance with SAMPA (Wells, 1997), the speech
assessment methods phonetic alphabet.

MRPA IPA Example

Tense vowels and diphthongs
2: ø: Söhne
2:6 øɐ stört
a: a: Strafe, Lahm
a:6 a:ɐ Haar
e: e: geht
E: ɛ: Mädchen
E:6 ɛ:ɐ fährt
e:6 e:ɐ werden
i: i: Liebe
i:6 i:ɐ Bier
o: o: Sohn
o:6 o:ɐ vor
u: u: tun
u:6 u:ɐ Uhr
y: y: kühl
y:6 y:ɐ natürlich
aI aɪ mein
aU aʊ Haus
OY ɔY Beute

Lax vowels and diphthongs

U ʊ Mund
9 œ zwölf
a a nass
a6 aɐ Mark
E ɛ Mensch
E6 ɛɐ Lärm
I ɪ finden
I6 ɪɐ wirklich
O ɔ kommt
O6 ɔɐ dort
U6 ʊɐ durch
Y Y Glück
Y6 Yɐ würde
6 ɐ Vater
Consonants

p p Panne
b b Baum
t t Tanne
d d Daumen
k k kahl

 8

g g Gaumen
pf pf Pfeffer
ts ʦ Zahn
tS ʧ Cello
dZ ʤ Job
Q ʔ (Glottal stop)
h h (Aspiration)

m m Miene
n n nehmen
N ŋ lang

f f friedlich
v v weg
s s lassen
z z lesen
S ʃ schauen
Z ʒ Genie
C ç riechen
x x Buch, lachen
h h hoch

r r, ʁ Regen
l l lang
j j jemand

 9

Downloadable speech databases used in this book

Database
name

Description Language/di
alect

n S Signal
files

Annotations Source

aetobi A fragment of
the AE-TOBI
database: Read
and
spontaneous
speech.

American
English

17 various Audio Word, tonal,
break.

Beckman et al
(2005); Pitrelli
et al (1994);
Silverman et
al (1992)

ae Read
sentences

Australian
English

7 1M Audio,
spectra,
formants

Prosodic,
phonetic,
tonal.

Millar et al
(1997); Millar
et al (1994)

andosl Read
sentences

Australian
English

200 2M Audio,
formants

Same as ae Millar et al
(1997); Millar
et al (1994)

ema5
(ema)

Read
sentences

Standard
German

20 1F Audio,
EMA

Word,
phonetic,
tongue-tip,
tongue-body

Bombien et al
(2007)

epgassim Isolated words Australian
English

60 1F Audio,
EPG

Word,
phonetic

Stephenson &
Harrington
(2002);
Stephenson
(2003)

epgcoutts Read speech Australian
English

2 1F Audio,
EPG

Word. Passage from
Hewlett &
Shockey
(1992)

epgdorsal Isolated words German 45 1M Audio,
EPG,
formants

Word,
phonetic.

Ambrazaitis &
John (2004)

epgpolish Read
sentences

Polish 40 1M Audio,
EPG

Word,
phonetic

Guzik &
Harrington
(2007)

first 5 utterances from gerplosives
gerplosives Isolated words

in carrier
sentence

German 72 1M Audio,
spectra

Phonetic Unpublished

gt Continous
speech

German 9 various Audio, f0 Word,
Break, Tone

Utterances
from various
sources

isolated Isolated word
production

Australian
English

218 1M Audio,
formants.
b-widths

Phonetic As ae above

 10

kielread Read
sentences

German 200 1M, 1F Audio,
formants

Phonetic Simpson
(1998),
Simpson et al
(1997).

mora Read Japanese 1 1F Audio Phonetic Unpublished
second Two speakers from gerplosives
stops Isolated words

in carrier
sentence

German 470 3M,4F Audio,
formants

Phonetic unpublished

timetable Timetable
enquiries

German 5 1M Audio Phonetic As
kielread

 11

Preface
 In undergraduate courses that include phonetics, students typically acquire skills both in
ear-training and an understanding of the acoustic, physiological, and perceptual characteristics of
speech sounds. But there is usually less opportunity to test this knowledge on sizeable quantities
of speech data partly because putting together any database that is sufficient in extent to be able
to address non-trivial questions in phonetics is very time-consuming. In the last ten years, this
issue has been offset somewhat by the rapid growth of national and international speech corpora
which has been driven principally by the needs of speech technology. But there is still usually a
big gap between the knowledge acquired in phonetics from classes on the one hand and applying
this knowledge to available speech corpora with the aim of solving different kinds of theoretical
problems on the other. The difficulty stems not just from getting the right data out of the corpus
but also in deciding what kinds of graphical and quantitative techniques are available and
appropriate for the problem that is to be solved. So one of the main reasons for writing this book
is a pedagogical one: it is to bridge this gap between recently acquired knowledge of
experimental phonetics on the one hand and practice with quantitative data analysis on the other.
The need to bridge this gap is sometimes most acutely felt when embarking for the first time on a
larger-scale project, honours or masters thesis in which students collect and analyse their own
speech data. But in writing this book, I also have a research audience in mind. In recent years, it
has become apparent that quantitative techniques have played an increasingly important role in
various branches of linguistics, in particular in laboratory phonology and sociophonetics that
sometimes depend on sizeable quantities of speech data labelled at various levels (see e.g., Bod
et al, 2003 for a similar view).
 This book is something of a departure from most other textbooks on phonetics in at least
two ways. Firstly, and as the preceding paragraphs have suggested, I will assume a basic grasp of
auditory and acoustic phonetics: that is, I will assume that the reader is familiar with basic
terminology in the speech sciences, knows about the international phonetic alphabet, can
transcribe speech at broad and narrow levels of detail and has a working knowledge of basic
acoustic principles such as the source-filter theory of speech production. All of this has been
covered many times in various excellent phonetics texts and the material in e.g., Clark et al.
(2005), Johnson (2004), and Ladefoged (1962) provide a firm grounding for such issues that are
dealt with in this book. The second way in which this book is somewhat different from others is
that it is more of a workbook than a textbook. This is partly again for pedagogical reasons: It is
all very well being told (or reading) certain supposed facts about the nature of speech but until
you get your hands on real data and test them, they tend to mean very little (and may even be
untrue!). So it is for this reason that I have tried to convey something of the sense of data
exploration using existing speech corpora, supported where appropriate by exercises. From this
point of view, this book is similar in approach to Baayen (in press) and Johnson (2008) who also
take a workbook approach based on data exploration and whose analyses are, like those of this
book, based on the R computing and programming environment. But this book is also quite
different from Baayen (in press) and Johnson (2008) whose main concerns are with statistics
whereas mine is with techniques. So our approaches are complementary especially since they all
take place in the same programming environment: thus the reader can apply the statistical
analyses that are discussed by these authors to many of the data analyses, both acoustic and
physiological, that are presented at various stages in this book.
 I am also in agreement with Baayen and Johnson about why R is such a good
environment for carrying out data exploration of speech: firstly, it is free, secondly it provides
excellent graphical facilities, thirdly it has almost every kind of statistical test that a speech
researcher is likely to need, all the more so since R is open-source and is used in many other
disciplines beyond speech such as economics, medicine, and various other branches of science.
Beyond this, R is flexible in allowing the user to write and adapt scripts to whatever kind of

 12

analysis is needed, it is very well adapted to manipulating combinations of numerical and
symbolic data (and is therefore ideal for a field such as phonetics which is concerned with
relating signals to symbols).

Another reason for situating the present book in the R programming environment is
because those who have worked on, and contributed to, the Emu speech database project have
developed a library of R routines that are customised for various kinds of speech analysis. This
development has been ongoing for about 20 years now1 since the time in the late 1980s when
Gordon Watson suggested to me during my post-doctoral time at the Centre for Speech
Technology Research, Edinburgh University that the S programming environment, a forerunner
of R, might be just what we were looking for in querying and analysing speech data and indeed,
one or two of the functions that he wrote then, such as the routine for plotting ellipses are still
used today.
 I would like to thank a number of people who have made writing this book possible.
Firstly, there are all of those who have contributed to the development of the Emu speech
database system in the last 20 years. Foremost Steve Cassidy who was responsible for the query
language and the object-oriented implementation that underlies much of the Emu code in the R
library, Andrew McVeigh who first implemented a hierarchical system that was also used by
Janet Fletcher in a timing analysis of a speech corpus (Fletcher & McVeigh, 1991); Catherine
Watson who wrote many of the routines for spectral analysis in the 1990s; Michel Scheffers and
Lasse Bombien who were together responsible for the adaptation of the xassp speech signal
processing system2 to Emu and to Tina John who has in recent years contributed extensively to
the various graphical-user-interfaces, to the development of the Emu database tool and Emu-to-
Praat conversion routines. Secondly, a number of people have provided feedback on using Emu,
the Emu-R system, or on earlier drafts of this book as well as data for some of the corpora, and
these include most of the above and also Stefan Baumann, Mary Beckman, Bruce Birch, Felicity
Cox, Karen Croot, Christoph Draxler, Yuuki Era, Martine Grice, Christian Gruttauer, Phil Hoole,
Marion Jaeger, Klaus Jänsch, Felicitas Kleber, Claudia Kuzla, Friedrich Leisch, Janine
Lilienthal, Katalin Mády, Stefania Marin, Jeanette McGregor, Christine Mooshammer, Doris
Mücke, Sallyanne Palethorpe, Marianne Pouplier, Tamara Rathcke, Uwe Reichel, Ulrich
Reubold, Michel Scheffers, Elliot Saltzman, Florian Schiel, Lisa Stephenson, Marija Tabain,
Hans Tillmann, Nils Ülzmann and Briony Williams. I am also especially grateful to the
numerous students both at the IPS, Munich and at the IPdS Kiel for many useful comments in
teaching Emu-R over the last seven years. I would also like to thank Danielle Descoteaux and
Julia Kirk of Wiley-Blackwell for their encouragement and assistance in seeing the production of
this book completed, the very many helpful comments from four anonymous Reviewers on an
earlier version of this book Sallyanne Palethorpe for her detailed comments in completing the
final stages of this book and to Tina John both for contributing material for the on-line
appendices and with producing many of the figures in the earlier Chapters.

1 For example in reverse chronological order: Bombien et al (2006), Harrington et al (2003), Cassidy (2002),
Cassidy & Harrington (2001), Cassidy (1999), Cassidy & Bird (2000), Cassidy et al. (2000), Cassidy & Harrington
(1996), Harrington et al (1993), McVeigh & Harrington (1992).
2 http://www.ipds.uni-kiel.de/forschung/xassp.de.html

 13

Notes of downloading software
Both R and Emu run on Linux, Mac OS-X, and Windows platforms. In order to run the various
commands in this book, the reader needs to download and install software as follows.

I. Emu

1. Download the latest release of the Emu Speech Database System from the download
section at http://emu.sourceforge.net

2. Install the Emu speech database system by executing the downloaded file and following
the on-screen instructions.

II. R
3. Download the R programming language from http://www.cran.r-project.org
4. Install the R programming language by executing the downloaded file and following the

on-screen instructions.
III. Emu-R

5. Start up R
6. Enter install.packages("emu") after the > prompt.
7. Follow the on-screen instructions.
8. If the following message appears: "Enter nothing and press return to exit this

configuration loop." then you will need to enter the path where Emu's library (lib) is
located and enter this after the R prompt.

• On Windows, this path is likely to be C:\Program Files\EmuXX\lib where XX
is the current version number of Emu, if you installed Emu at C:\Program Files.
Enter this path with forward slashes i.e. C:/Program Files/EmuXX/lib

• On Linux the path may be /usr/local/lib or /home/USERNAME/Emu/lib
• On Mac OS X the path may be /Library/Tcl

IV. Getting started with Emu
9. Start the Emu speech database tool.

• Windows: choose Emu Speech Database System -> Emu from the Start
Menu.

• Linux: choose Emu Speech Database System from the applications menu or
type Emu in the terminal window.

• Mac OS X: start Emu in the Applications folder.
V. Additional software

10. Praat
• Download Praat from www.praat.org
• To install Praat follow the instruction at the download page.

11. Wavesurfer which is included in the Emu setup and installed in these locations:.
• Windows: EmuXX/bin.
• Linux: /usr/local/bin; /home/'username'/Emu/bin
• Mac OS X: Applications/Emu.app/Contents/bin

VI. Problems
12. See FAQ at http://emu.sourceforge.net

 14

Chapter 1 Using speech corpora in phonetics research

1.0 The place of corpora in the phonetic analysis of speech
 One of the main concerns in phonetic analysis is to find out how speech sounds are
transmitted between a speaker and a listener in human speech communication. A speech corpus
is a collection of one or more digitized utterances usually containing acoustic data and often
marked for annotations. The task in this book is to discuss some of the ways that a corpus can be
analysed to test hypotheses about how speech sounds are communicated. But why is a speech
corpus needed for this at all? Why not instead listen to speech, transcribe it, and use the
transcription as the main basis for an investigation into the nature of spoken language
communication? There is no doubt as Ladefoged (1995) has explained in his discussion of
instrumentation in field work that being able to hear and re-produce the sounds of a language is a
crucial first step in almost any kind of phonetic analysis. Indeed many hypotheses about the way
that sounds are used in speech communication stem in the first instance from just this kind of
careful listening to speech. However, an auditory transcription is at best an essential initial
hypothesis but never an objective measure.
 The lack of objectivity is readily apparent in comparing the transcriptions of the same
speech material across a number of trained transcribers: even when the task is to carry out a
fairly broad transcription and with the aid of a speech waveform and spectrogram, there will still
be inconsistencies from one transcriber to the next; and all these issues will be considerably
aggravated if phonetic detail is to be included in narrower transcriptions or if, as in much
fieldwork, auditory phonetic analyses are made of a language with which transcribers are not
very familiar. A speech signal on the other hand is a record that does not change: it is, then, the
data against which theories can be tested. Another difficulty with building a theory of speech
communication on an auditory symbolic transcription of speech is that there are so many ways in
which a speech signal is at odds with a segmentation into symbols: there are often no clear
boundaries in a speech signal corresponding to the divisions between a string of symbols, and
least of all where a lay-person might expect to find them, between words.
 But apart from these issues, a transcription of speech can never get to the heart of how
the vocal organs, acoustic signal, and hearing apparatus are used to transmit simultaneously
many different kinds of information between a speaker and hearer. Consider that the production
of /t/ in an utterance tells the listener so much more than "here is a /t/ sound". If the spectrum of
the /t/ also has a concentration of energy at a low frequency, then this could be a cue that the
following vowel is rounded. At the same time, the alveolar release might provide the listener
with information about whether /t/ begins or ends either a syllable or a word or a more major
prosodic phrase and whether the syllable is stressed or not. The /t/ might also convey
sociophonetic information about the speaker's dialect and quite possibly age group and
socioeconomic status (Docherty, 2007; Docherty & Foulkes, 2005). The combination of /t/ and
the following vowel could tell the listener whether the word is prosodically accented and also
even say something about the speaker's emotional state.
 Understanding how these separate strands of information are interwoven in the details of
speech production and the acoustic signal can be accomplished neither just by transcribing
speech, but nor by analyses of recordings of individual utterances. The problem with analyses of
individual utterances is that they risk being idiosyncratic: this is not only because of all of the
different ways that speech can vary according to context, but also because the anatomical and
speaking style differences between speakers all leave their mark on the acoustic signal: therefore,
an analysis of a handful of speech sounds in one or two utterances may give a distorted
presentation of the general principles according to which speech communication takes place.
 The issues raised above and the need for speech corpora in phonetic analysis in general
can be considered from the point of view of other more recent theoretical developments: that the
relationship between phonemes and speech is stochastic. This is an important argument that has
been made by Janet Pierrehumbert in a number of papers in recent years (e.g., 2002, 2003a,

 15

2003b, 2006). On the one hand there are almost certainly different levels of abstraction, or, in
terms of the episodic/exemplar models of speech perception and production developed by
Pierrehumbert and others (Bybee, 2001; Goldinger, 1998; 2000; Johnson, 1997), generalisations
that allow native speakers of a language to recognize that tip and pit are composed of the same
three sounds but in the opposite order. Now it is also undeniable that different languages, and
certainly different varieties of the same language, often make broadly similar sets of phonemic
contrasts: thus in many languages, differences of meaning are established as a result of contrasts
between voiced and voiceless stops, or between oral stops and nasal stops at the same place of
articulation, or between rounded and unrounded vowels of the same height, and so on. But what
has never been demonstrated is that two languages that make similar sets of contrast do so
phonetically in exactly the same way. These differences might be subtle, but they are
nevertheless present which means that such differences must have been learned by the speakers
of the language or community.
 But how do such differences arise? One way in which they are unlikely to be brought
about is because languages or their varieties choose their sound systems from a finite set of
universal features. At least so far, no-one has been able to demonstrate that the number of
possible permutations that could be derived even from the most comprehensive of articulatory or
auditory feature systems could account for the myriad of ways that the sounds of dialects and
languages do in fact differ. It seems instead that, although the sounds of languages undeniably
confirm to consistent patterns (as demonstrated in the ground-breaking study of vowel dispersion
by Liljencrants & Lindblom, 1972), there is also an arbitrary, stochastic component to the way in
which the association between abstractions like phonemes and features evolves and is learned by
children (Beckman et al, 2007; Edwards & Beckman, 2008; Munson et al, 2005).
 Recently, this stochastic association between speech on the one hand and phonemes on
the other has been demonstrated computationally using so-called agents equipped with simplified
vocal tracts and hearing systems who imitate each other over a large number of computational
cycles (Wedel, 2006, 2007). The general conclusion from these studies is that while stable
phonemic systems emerge from these initially random imitations, there are a potentially infinite
number of different ways in which phonemic stability can be achieved (and then shifted in sound
change - see also Boersma & Hamann, 2008). A very important idea to emerge from these
studies is that the phonemic stability of a language does not require a priori a selection to be
made from a pre-defined universal feature system, but might emerge instead as a result of
speakers and listeners copying each other imperfectly (Oudeyer, 2002, 2004).
 If we accept the argument that the association between phonemes and the speech signal is
not derived deterministically by making a selection from a universal feature system, but is
instead arrived at stochastically by learning generalisations across produced and perceived
speech data, then it necessarily follows that analyzing corpora of speech must be one of the
important ways in which we can understand how different levels of abstraction such as
phonemes and other prosodic units are communicated in speech.
 Irrespective of these theoretical issues, speech corpora have become increasingly
important in the last 20-30 years as the primary material on which to train and test human-
machine communication systems. Some of the same corpora that have been used for
technological applications have also formed part of basic speech research (see 1.1 for a summary
of these). One of the major benefits of these corpora is that they foster a much needed
interdisciplinary approach to speech analysis, as researchers from different disciplinary
backgrounds apply and exchange a wide range of techniques for analyzing the data.
 Corpora that are suitable for phonetic analysis may become available with the increasing
need for speech technology systems to be trained on various kinds of fine phonetic detail
(Carlson & Hawkins, 2007). It is also likely that corpora will be increasingly useful for the study
of sound change as more archived speech data becomes available with the passage of time
allowing sound change to be analysed either longitudinally in individuals (Harrington, 2006;
Labov & Auger, 1998) or within a community using so-called real-time studies (for example, by

 16

comparing the speech characteristics of subjects from a particular age group recorded today with
those of a comparable age group and community recorded several years' ago - see Sankoff, 2005;
Trudgill, 1988). Nevertheless, most types of phonetic analysis still require collecting small
corpora that are dedicated to resolving a particular research question and associated hypotheses
and some of the issues in designing such corpora are discussed in 1.2.
 Finally, before covering some of these design criteria, it should be pointed out that
speech corpora are by no means necessary for every kind of phonetic investigation and indeed
many of the most important scientific breakthroughs in phonetics in the last fifty years have
taken place without analyses of large speech corpora. For example, speech corpora are usually
not needed for various kinds of articulatory-to-acoustic modeling nor for many kinds of studies
in speech perception in which the aim is to work out, often using speech synthesis techniques,
the sets of cues that are functional i.e. relevant for phonemic contrasts.

1.1 Existing speech corpora for phonetic analysis
 The need to provide an increasing amount of training and testing materials has been one
of the main driving forces in creating speech and language corpora in recent years. Various sites
for their distribution have been established and some of the more major ones include: the
Linguistic data consortium (Reed et al, 2008)3 , which is a distribution site for speech and
language resources and is located at the University of Pennsylvania; ELRA4, the European
language resources association, established in 1995 and which validates, manages, and
distributes speech corpora and whose operational body is ELDA5 (evaluations and language
resources distribution agency). There are also a number of other repositories for speech and
language corpora including the Bavarian Archive for Speech Signals6 at the University of
Munich, various corpora at the Center for Spoken Language Understanding at the University of
Oregon7, the TalkBank consortium at Carnegie Mellon University8 and the DOBES archive of
endangered languages at the Max-Planck Institute in Nijmegen9.
 Most of the corpora from these organizations serve primarily the needs for speech and
language technology, but there are a few large-scale corpora that have also been used to address
issues in phonetic analysis, including the Switchboard and TIMIT corpora of American English.
The Switchboard corpus (Godfrey et al, 1992) includes over 600 telephone conversations from
750 adult American English speakers of a wide range of ages and varieties from both genders
and was recently analysed by Bell et al (2003) in a study investigation the relationship between
predictability and the phonetic reduction of function words. The TIMIT database (Garofolo et al,
1993; Lamel et al, 1986) has been one of the most studied corpora for assessing the performance
of speech recognition systems in the last 20-30 years. It includes 630 talkers and 2342 different
read speech sentences, comprising over five hours of speech and has been included in various
phonetic studies on topics such as variation between speakers (Byrd, 1992), the acoustic
characteristics of stops (Byrd, 1993), the relationship between gender and dialect (Byrd, 1994),
word and segment duration (Keating et al, 1994), vowel and consonant reduction (Manuel et al,
1992), and vowel normalization (Weenink, 2001). One of the most extensive corpora of a
European language other than English is the Dutch CGN corpus10 (Oostdijk, 2000; Pols, 2001).
This is the largest corpus of contemporary Dutch spoken by adults in Flanders and the
Netherlands and includes around 800 hours of speech. In the last few years, it has been used to
study the sociophonetic variation in diphthongs (Jacobi et al, 2007). For German, The Kiel

3 http://www.ldc.upenn.edu/
4 http://www.elra.info/
5 http://www.elda.org/
6 http://www.phonetik.uni-muenchen.de/Bas/BasHomeeng.html
7 http://www.cslu.ogi.edu/corpora/corpCurrent.html
8 http://talkbank.org/
9 http://www.mpi.nl/DOBES
10 http://lands.let.kun.nl/cgn/ehome.htm

 17

Corpus of Speech11 includes several hours of speech annotated at various levels (Simpson 1998;
Simpson et al, 1997) and has been instrumental in studying different kinds of connected speech
processes (Kohler, 2001; Simpson, 2001; Wesener, 2001).
 One of the most successful corpora for studying the relationship between discourse
structure, prosody, and intonation has been the HCRC map task corpus12 (Anderson et al, 1991)
containing 18 hours of annotated spontaneous speech recorded from 128 two-person
conversations according to a task-specific experimental design (see below for further details).
The Australian National Database of Spoken Language13 (Millar et al, 1994, 1997) also contains
a similar range of map task data for Australian English. These corpora have been used to
examine the relationship between speech clarity and the predictability of information (Bard et al,
2000) and also to investigate the way that boundaries between dialogue acts interact with
intonation and suprasegmental cues (Stirling et al, 2001). More recently, two corpora have been
developed intended mostly for phonetic and basic speech research: these are the Buckeye
corpus14 consisting of 40 hours of spontaneous American English speech annotated at word and
phonetic levels (Pitt et al, 2005) that has recently been used to model /t, d/ deletion (Raymond et
al, 2006). Another is the Nationwide Speech Project (Clopper & Pisoni, 2006) which is
especially useful for studying differences in American varieties. It contains 60 speakers from six
regional varieties of American English and parts of it are available from the Linguistic Data
Consortium.
 Databases of speech physiology are much less common than those of speech acoustics
largely because they have not evolved in the context of training and testing speech technology
systems (which is the main source of funding for speech corpus work). Some exceptions are the
ACCOR speech database (Marchal & Hardcastle, 1993; Marchal et al, 1993) developed in the
1990s to investigate coarticulatory phenomena in a number of European languages and which
includes laryngographic, airflow, and electropalatographic data (the database is available from
ELRA). Another is the University of Wisconsin X-Ray microbeam speech production database
(Westbury, 1994) which includes acoustic and movement data from 26 female and 22 male
speakers of a Midwest dialect of American English aged between 18 and 37 of age. Thirdly, the
MOCHA-TIMIT15 database (Wrench & Hardcastle, 2000) is made up of synchronized
movement data from the supralaryngeal articulators, electropalatographic data, and a
laryngographic signal of part of the TIMIT database produced by subjects of different English
varieties. These databases have been incorporated into phonetic studies in various ways: for
example, the Wisconsin database was used by Simpson (2002) to investigate the differences
between male and female speech and the MOCHA-TIMIT database formed part of a study by
Kello & Plaut (2003) to explore feedforward learning association between articulation and
acoustics in a cognitive speech production model.
 Finally, there are many opportunities to obtain quantities of speech data from archived
broadcasts (e.g., in Germany from the Institut für Deutsche Sprache in Mannheim; in the U.K.
from the BBC). These are often acoustically of high quality. However, it is unlikely they will
have been annotated, unless they have been incorporated into an existing corpus design, as was
the case in the development of the Machine Readable Corpus of Spoken English (MARSEC)
created by Roach et al (1993) based on recordings from the BBC.

1.2 Designing your own corpus
 Unfortunately, most kinds of phonetic analysis still require building a speech corpus that
is designed to address a specific research question. In fact, existing large-scale corpora of the
kind sketched above are very rarely used in basic phonetic research, partly because, no matter

11 http://www.ipds.uni-kiel.de/forschung/kielcorpus.en.html
12 http://www.hcrc.ed.ac.uk/maptask/
13 http://andosl.anu.edu.au/andosl/
14 http://vic.psy.ohio-state.edu/
15 http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html

 18

how extensive they are, a researcher inevitably finds that one or more aspects of the speech
corpus in terms of speakers, types of materials, speaking styles, are insufficiently covered for the
research question to be completed. Another problem is that an existing corpus may not have been
annotated in the way that is needed. A further difficulty is that the same set of speakers might be
required for a follow-up speech perception experiment after an acoustic corpus has been
analysed, and inevitably access to the subjects of the original recordings is out of the question,
especially if the corpus had been created a long time ago.
 Assuming that you have to put together your own speech corpus, then various issues in
design need to be considered, not only to make sure that the corpus is adequate for answering the
specific research questions that are required of it, but also that it is re-usable possibly by other
researchers at a later date. It is important to give careful thought to designing the speech corpus,
because collecting and especially annotating almost any corpus is usually very time-consuming.
Some non-exhaustive issues, based to a certain extent on Schiel & Draxler (2004) are outlined
below. The brief review does not cover recording acoustic and articulatory data from endangered
languages which brings an additional set of difficulties as far as access to subjects and designing
materials are concerned (see in particular Ladefoged, 1995, 2003).

1.2.1 Speakers
 Choosing the speakers is obviously one of the most important issues in building a speech
corpus. Some primary factors to take into account include the distribution of speakers by gender,
age, first language, and variety (dialect); it is also important to document any known speech or
hearing pathologies. For sociophonetic investigations, or studies specifically concerned with
speaker characteristics, a further refinement according to many other factors such as educational
background, profession, socioeconomic group (to the extent that this is not covered by variety)
are also likely to be important (see also Beck, 2005 for a detailed discussed of the parameters of
a speaker's vocal profile based to a large extent on Laver, 1980, 1991). All of the above-
mentioned primary factors are known to exert quite a considerable influence on the speech signal
and therefore have to be controlled for in any experiment comparing two of more speaking
groups. Thus it would be inadvisable in comparing, say, speakers of two different varieties to
have a predominance of male speakers in one group, and female speakers in another, or one
group with mostly young and the other with mostly older speakers. Whatever speakers are
chosen, it is, as Schiel & Draxler (2004) comment, of great importance that as many details of
the speakers are documented as possible (see also Millar, 1991), should the need arise to check
subsequently whether the speech data might have been influenced by a particular speaker
specific attribute.
 The next most important criterion is the number of speakers. Following Gibbon et al.
(1997), speech corpora of between 1-5 speakers are typical in the context of speech synthesis
development, while more than 50 speakers are needed for adequately training and testing
systems for the automatic recognition of speech. For most experiments in experimental phonetics
of the kind reported in this book, a speaker sample size within this range, and between 10 and 20
is usual. In almost all cases, experiments involving invasive techniques such as electromagnetic
articulometry and electropalatography discussed in Chapters 5 and 7 of this book rarely have
more than five speakers because of the time taken to record and analyse the speech data and the
difficulty in finding subjects.

1.2.2 Materials
 An equally important consideration in designing any corpus is the choice of materials.
Four of the main parameters according to which materials are chosen discussed in Schiel &
Draxler (2004) are vocabulary, phonological distribution, domain, and task.
 Vocabulary in a speech technology application such as automatic speech recognition
derives from the intended use of the corpus: so a system for recognizing digits must obviously
include the digits as part of the training material. In many phonetics experiments, a choice has to

 19

be made between real words of the language and non-words. In either case, it will be necessary
to control for a number of phonological criteria, some of which are outlined below (see also
Rastle et al, 2002 and the associated website16 for a procedure for selecting non-words according
to numerous phonological and lexical criteria). Since both lexical frequency and neighborhood
density have been shown to influence speech production (Luce & Pisoni, 1998; Wright, 2004),
then it could be important to control for these factors as well, possibly by retrieving these
statistics from a corpus such as Celex (Baayen et al, 1995). Lexical frequency, as its name
suggests, is the estimated frequency with which a word occurs in a language: at the very least,
confounds between words of very high frequency, such as between function words which tend to
be heavily reduced even in read speech, and less frequently occurring content words should be
avoided. Words of high neighborhood density can be defined as those for which many other
words exist by substituting a single phoneme (e.g., man and van are neighbors according to this
criterion). Neighborhood density is less commonly controlled for in phonetics experiments
although as recent studies have shown (Munson & Solomon, 2004; Wright, 2004), it too can
influence the phonetic characteristics of speech sounds.
 The words that an experimenter wishes to investigate in a speech production experiment
should not be presented to the subject in a list (which induces a so-called list prosody in which
the subject chunks the lists into phrases, often with a falling melody and phrase-final lengthening
on the last word, but a level or rising melody on all the others) but are often displayed on a
screen individually or incorporated into a so-called carrier phrase. Both of these conditions will
go some way towards neutralizing the effects of sentence-level prosody i.e., towards ensuring
that the intonation, phrasing, rhythm and accentual pattern are the same from one target word to
the next. Sometimes filler words need to be included in the list, in order to draw the subject's
attention away from the design of the experiment. This is important because if any parts of the
stimuli become predictable, then a subject might well reduce them phonetically, given the
relationship between redundancy and predictability (Fowler & Housum, 1987; Hunnicutt, 1985;
Lieberman, 1963).
 For some speech technology applications, the materials are specified in terms of their
phonological distribution. For almost all studies in experimental phonetics, the phonological
composition of the target words, in terms of factors such as their lexical-stress pattern, number of
syllables, syllable composition, and segmental context is essential, because these all exert an
infuence on the utterance. In investigations of prosody, materials are sometimes constructed in
order to elicit certain kinds of phrasing, accentual patterns, or even intonational melodies. In
Silverman & Pierrehumbert (1990), two subjects produced a variety of phrases like Ma Le Mann,
Ma Lemm and Mamalie Lemonick with a prosodically accented initial syllable and identical
intonation melody: they used these materials in order to investigate whether the timing of the
pitch-accent was dependent on factors such as the number of syllables in the phrase and the
presence or absence of word-boundaries. In various experiments by Keating and Colleagues (e.g.
Keating et al, 2003), French, Korean, and Taiwanese subjects produced sentences that had been
constructed to control for different degrees of boundary strength. Thus their French materials
included sentences in which /na/ occurred at the beginning of phrases at different positions in the
prosodic hierarchy, such as initially in the accentual phrase (Tonton, Tata, Nadia et Paul
arriveront demain) and syllable-initially (Tonton et Anabelle...). In Harrington et al (2000),
materials were designed to elicit the contrast between accented and deaccented words. For
example, the name Beaber was accented in the introductory statement This is Hector Beaber, but
deaccented in the question Do you want Anna Beaber or Clara Beaber (in which the nuclear
accents falls on the preceding first name). Creating corpora such as these can be immensely
difficult, however, because there will always be some subjects who do not produce them as the
experimenter wishes (for example by not fully deaccenting the target words in the last example)
or if they do, they might introduce unwanted variations in other prosodic variables. The general

16 http://www.maccs.mq.edu.au/~nwdb

 20

point is that subjects usually need to have some training in the production of materials in order to
produce them with the degree of consistency required by the experimenter. However, this leads
to the additional concern that the productions might not really be representative of prosody
produced in spontaneous speech by the wider population.
 These are some of the reasons why the production of prosody is sometimes studied using
map task corpora (Anderson et al, 1991) of the kind referred to earlier, in which a particular
prosodic pattern is not prescribed, but instead emerges more naturally out of a dialogue or
situational context. The map task is an example of a corpus that falls into the category defined by
Schiel & Draxler (2004) of being restricted by domain. In the map task, two dialogue partners
are given slightly different versions of the same map and one has to explain to the other how to
navigate a route between two or more points along the map. An interesting variation on this is
due to Peters (2006) in which the dialogue partners discuss the contents of two slightly different
video recordings of a popular soap opera that both subjects happen to be interested in: the
interest factor has the potential additional advantage that the speakers will be distracted by the
content of the task, and thereby produce speech in a more natural way. In either case, a fair
degree of prosodic variation and spontaneous speech are guaranteed. At the same time, the
speakers' choice of prosodic patterns and lexical items tends to be reasonably constrained,
allowing comparisons between different speakers on this task to be made in a meaningful way.
 In some types of corpora, a speaker will be instructed to solve a particular task. The
instructions might be fairly general as in the map task or the video scenario described above or
they might be more specific such as describing a picture or answering a set of questions. An
example of a task-specific recording is in Shafer et al (2000) who used a cooperative game task
in which subjects disambiguated in their productions ambiguous sentences such as move the
square with the triangle (meaning either: move a house-like shape consisting of a square with a
triangle on top of it; or, move a square piece with a separate triangular piece). Such a task allows
experimenters to restrict the dialogue to a small number of words, it distracts speakers from the
task at hand (since speakers have to concentrate on how to move pieces rather than on what they
are saying) while at the same time eliciting precisely the different kinds of prosodic parsings
required by the experimenter in the same sequence of words.

1.2.3 Some further issues in experimental design
 Experimental design in the context of phonetics is to do with making choices about the
speakers, materials, number of repetitions and other issues that form part of the experiment in
such a way that the validity of a hypothesis can be quantified and tested statistically. The
summary below touches only very briefly on some of the matters to be considered at the stage of
laying out the experimental design, and the reader is referred to Robson (1994), Shearer (1995),
and Trochim (2007) for many further useful details. What is presented here is also mostly about
some of the design criteria that are relevant for the kind of experiment leading to a statistical test
such as analysis of variance (ANOVA). It is quite common for ANOVAs to be applied to
experimental speech data, but this is obviously far from the only kind of statistical test that
phoneticians need to apply, so some of the issues discussed will not necessarily be relevant for
some types of phonetic investigation.
 In a certain kind of experiment that is common in experimental psychology and
experimental phonetics, a researcher will often want to establish whether a dependent variable is
affected by one or more independent variables. The dependent variable is what is measured and
for the kind of speech research discussed in this book, the dependent variable might be any one
of duration, a formant frequency at a particular time point, the vertical or horizontal position of
the tongue at a displacement maximum and so on. These are all examples of continuous
dependent variables because, like age or temperature, they can take on an infinite number of
possible values within a certain range. Sometimes the dependent variable might be categorical,
as in eliciting responses from subjects in speech perception experiments in which the response is
a specific category (e.g, a listener labels a stimulus as either /ba/ or /pa/). Categorical variables

 21

are common in sociophonetic research in which counts are made of data (e.g. a count of the
number of times that a speaker produces /t/ with or without glottalisation).
 The independent variable, or factor, is what you believe has an influence on the dependent
variable. One type of independent variable that is common in experimental phonetics comes
about when a comparison is made between two or more groups of speakers such as between
male and female speakers. This type of independent variable is sometimes (for obvious reasons)
called a between-speaker factor which in this example might be given a name like Gender.
Some further useful terminology is to do with the number of levels of the factor. For this
example, Gender has two levels, male and female. The same speakers could of course also
be coded for other between-speaker factors. For example, the same speakers might be coded for
a factor Variety with three levels: Standard English, Estuary English and
Cockney. Gender and Variety in this example are nominal because the levels are not rank
ordered in any way. If the ordering matters then the factor is ordinal (for example Age could be
an ordinal factor if you wanted to assess the effects on increasing age of the speakers).
 Each speaker that is analysed can be assigned just one level of each between-speaker
factor: so each speaker will be coded as either male or female, and as either Standard
English, or Estuary English or Cockney. This example would also sometimes be
called a 2 x 3 design, because there are two factors with two (Gender) and three (Variety)
levels. An example of a 2 x 3 x 2 design would have three factors with the corresponding number
of levels: e.g., the subjects are coded not only for Gender and Variety as before, but also for
Age with two levels, young and old. Some statistical tests require that the design should be
approximately balanced: specifically, a given between-subjects factor should have equal
numbers of subjects distributed across its levels. For the previous example with two factors,
Gender and Variety, a balanced design would be one that had 12 speakers, 6 males and 6
females, and 2 male and 2 female speakers per variety. Another consideration is that the more
between-subjects factors that you include, then evidently the greater the number of speakers
from which recordings have to be made. Experiments in phonetics are often restricted to no more
than two or three between-speaker factors, not just because of considerations of the size of the
subject pool, but also because the statistical analysis in terms of interactions becomes
increasingly unwieldy for a larger number of factors.
 Now suppose you wish to assess whether these subjects show differences of vowel
duration in words with a final /t/ like white compared with words with a final /d/ like wide. In
this case, the design might include a factor Voice and it has two levels: [-voice] (words
like white) and [+voice] (words like wide). One of the things that makes this type of factor
very different from the between-speaker factors considered earlier is that subjects produce (i.e.,
are measured on) all of the factor's levels: that is, the subjects will produce words that are both
[-voice] and [+voice]. Voice in this example would sometimes be called a within-
subject or within-speaker factor and because subjects are measured on all of the levels of
Voice, it is also said to be repeated. This is also the reason why if you wanted to use an
ANOVA to work out whether [+voice] and [-voice] words differed in vowel duration,
and also whether such a differences manifested itself in the various speaker groups, you would
have to use a repeated measures ANOVA. Of course, if one group of subjects produced the [-
voice] words and another group the [+voice] words, then Voice would not be a repeated
factor and so a conventional ANOVA could be applied. However, in experimental phonetics this
would not be a sensible approach, not just because you would need many more speakers, but also
because the difference between [-voice] and [+voice] words in the dependent variable
(vowel duration) would then be confounded with speaker differences. So this is why repeated or
within-speaker factors are very common in experimental phonetics. Of course in the same way
that there can be more than one between-speaker factor, there can also be two or more within-
speaker factors. For example, if the [-voice] and [+voice] words were each produced at a
slow and a fast rate, then Rate would also be a within-speaker factor with two levels (slow and
fast). Rate, like Voice, is a within-speaker factor because the same subjects have been

 22

measured once at a slow, and once at a fast rate.
 The need to use a repeated measures ANOVA comes about, then, because the subject is
measured on all the levels of a factor and (somewhat confusingly) it has nothing whatsoever to
do with repeating the same level of a factor in speech production, which in experimental
phonetics is rather common. For example, the subjects might be asked to repeat (in some
randomized design) white at a slow rate five times. This repetition is done to counteract the
inherent variation in speech production. One of the very few uncontroversial facts of speech
production is that no subject can produce the same utterance twice even under identical
recording conditions in exactly the same way. So since a single production of a target word could
just happen to be a statistical aberration, researchers in experimental phonetics usually have
subjects produce exactly the same materials many times over: this is especially so in
physiological studies, in which this type of inherent token-to-token variation is usually so much
greater in articulatory than in acoustic data. However, it is important to remember that repetitions
of the same level of a factor (the multiple values from each subject's slow production of white)
cannot be entered into many standard statistical tests such as a repeated measures ANOVA and
so they typically need to be averaged (see Max & Onghena, 1999 for some helpful details on
this). So even if, as in the earlier example, a subject repeats white and wide each several times at
both slow and fast rates, only 4 values per subject can be entered into the repeated measures
ANOVA (i.e., the four mean values for each subject of: white at a slow rate, white at a fast rate,
wide at a slow rate, wide at a fast rate). Consequently, the number of repetitions of identical
materials should be kept sufficiently low because otherwise a lot of time will be spent recording
and annotating a corpus without really increasing the likelihood of a significant result (on the
assumption that the values that are entered into a repeated measures ANOVA averaged across 10
repetitions of the same materials may not differ a great deal from the averages calculated from
100 repetitions produced by the same subject). The number of repetitions and indeed total
number of items in the materials should in any case be kept within reasonable limits because
otherwise subjects are likely to become bored and, especially in the case of physiological
experiments, fatigued, and these types of paralinguistic effects may well in turn influence their
speech production.
 The need to average across repetitions of the same materials for certain kinds of statistical
test described in Max & Onghena (1999) seems justifiably bizarre to many experimental
phoneticians, especially in speech physiology research in which the variation, even in repeating
the same materials, may be so large that an average or median becomes fairly meaningless.
Fortunately, there have recently been considerable advances in the statistics of mixed-effects
modeling (see the special edition by Forster & Masson, 2008 on emerging data analysis and
various papers within that; see also Baayen, in press), which provides an alternative to the
classical use of a repeated measures ANOVA. One of the many advantages of this technique is
that there is no need to average across repetitions (Quené & van den Bergh, 2008). Another is
that it provides a solution to the so-called language-as-fixed-effect problem (Clark, 1973). The
full details of this matter need not detain us here: the general concern raised in Clark's (1973)
influential paper is that in order to be sure that the statistical results generalize not only beyond
the subjects of your experiment but also beyond the language materials (i.e., are not just specific
to white, wide, and the other items of the word list), two separate (repeated-measures) ANOVAs
need to be carried out, one so-called by-subjects and the other by-items (see Johnson, 2008 for a
detailed exposition using speech data in R). The output of these two tests can then be combined
using a formula to compute the joint F-ratio (and therefore the significance) from both of them.
By contrast, there is no need in mixed-effects modeling to carry out and to combine two separate
statistical tests in this way: instead, the subjects and the words can be entered as so-called
random factors into the same calculation.
 Since much of the cutting-edge mixed effects-modeling research in statistics has been
carried out in R in the last ten years, there are corresponding R functions to carrying out mixed-
effects modeling that can be directly applied to speech data, without the need to go through the

 23

often very tiresome complications of exporting the data, sometimes involving rearranging rows
and columns for analysis using the more traditional commercial statistical packages.

1.2.4 Speaking style
 A wide body of research in the last 50 years has shown that speaking style influences
speech production characteristics: in particular, the extent of coarticulatory overlap, vowel
centralization, consonant lenition and deletion are all likely to increase in progressing from
citation-form speech, in which words are produced in isolation or in a carrier phrase, to read
speech and to fully spontaneous speech (Moon & Lindblom, 1994). In some experiments,
speakers are asked to produce speech at different rates so that the effect of increasing or
decreasing tempo on consonants and vowels can be studied. However, in the same way that it
can be difficult to get subjects to produce controlled prosodic materials consistently (see 1.2.2),
the task of making subjects vary speaking rate is not without its difficulties. Some speakers may
not vary their rate a great deal in changing from 'slow' to 'fast' and one person's slow speech may
be similar to another subject's fast rate. Subjects may also vary other prosodic attributes in
switching from a slow to a fast rate. In reading a target word within a carrier phrase, subjects
may well vary the rate of the carrier phrase but not the focused target word that is the primary
concern of the investigation: this might happen if the subject (not unjustifiably) believes the
target word to be communicatively the most important part of the phrase, as a result of which it
is produced slowly and carefully at all rates of speech.
 The effect of emotion on prosody is a very much under-researched area that also has
important technological applications in speech synthesis development. However, eliciting
different kinds of emotion, such as a happy or sad speaking style is problematic. It is especially
difficult, if not impossible, to elicit different emotional responses to the same read material, and,
as Campbell (2002) notes, subjects often become self-conscious and suppress their emotions in
an experimental task. An alternative then might be to construct passages that describe scenes
associated with different emotional content, but then even if the subject achieves a reasonable
degree of variation in emotion, any influence of emotion on the speech signal is likely to be
confounded with the potentially far greater variation induced by factors such as the change in
focus and prosodic accent, the effects of phrase-final lengthening, and the use of different
vocabulary. (There is also the independent difficulty of quantifying how the extent of happiness
and sadness with which the materials were produced). Another possibility is to have a trained
actor produce the same materials in different emotional speaking styles (e.g., Pereira, 2000), but
whether this type of forced variation by an actor really carries over to emotional variation in
everyday communication can only be assumed but not easily verified (however see e.g.,
Campbell, 2002, 2004 and Douglas-Cowie et al, 2003 for some recent progress in approaches to
creating corpora for 'emotion' and expressive speech).

1.2.5 Recording setup17
 Many experiments in phonetics are carried out in a sound-treated recording studio in
which the effects of background noise can be largely eliminated and with the speaker seated at a
controlled distance from a high quality microphone. Since with the possible exception of some
fricatives, most of the phonetic content of the speech signal is contained below 8 kHz and taking
into account the Nyquist theorem (see also Chapter 8) that only frequencies below half the
sampling frequency can be faithfully reproduced digitally, the sampling frequency is typically at
least 16 kHz in recording speech data. The signal should be recorded in an uncompressed or
PCM (pulse code modulation) format and the amplitude of the signal is typically quantized in 16

17 Two websites that provide helpful recording guidelines are those at Talkbank and at the Phonetics Laboratory,
University of Pennsylvania:
http://www.talkbank.org/da/record.html
http://www.talkbank.org/da/audiodig.html
http://www.ling.upenn.edu/phonetics/FieldRecordingAdvice.html

 24

bits: this means that the amplitude of each sampled data value occurs at one of a number of 216
discrete steps which is usually considered adequate for representing speech digitally. With the
introduction of the audio CD standard, a sampling frequency of 44.1 kHz and its divider 22.05
kHz are also common. An important consideration in any recording of speech is to set the input
level correctly: if it is too high, a distortion known as clipping can result while if it is too low,
then the amplitude resolution will also be too low. For some types of investigations of
communicative interaction between two or more speakers, it is possible to make use of a stereo
microphone as a result of which data from the separate channels are interleaved or multiplexed
(in which the samples from e.g., the left and right channels are contained in alternating
sequence). However, Schiel & Draxler (2004) recommend instead using separate microphones
since interleaved signals may be more difficult to process in some signal processing systems - for
example, at the time of writing, the speech signal processing routines in Emu cannot be applied
to stereo signals.
 There are a number of file formats for storing digitized speech data including a raw
format which has no header and contains only the digitized signal; NIST SPHERE defined by the
National Institute for Standards and Technology, USA consisting of a readable header in plain
text (7 bit US ASCII) followed by the signal data in binary form; and most commonly the
WAVE file format which is a subset of Microsoft's RIFF specification for the storage of
multimedia files.
 If you make recordings beyond the recording studio, and in particular if this is done
without technical assistance, then, apart from the sampling frequency and bit-rate, factors such as
background noise and the distance of the speaker from the microphone need to be very carefully
monitored. Background noise may be especially challenging: if you are recording in what seems
to be a quiet room, it is nevertheless important to check that there is no other hum or interference
from other electrical equipment such as an air-conditioning unit. Although present-day personal
and notebook computers are equipped with built-in hardware for playing and recording high
quality audio signals, Draxler (2008) recommends using an external device such as a USB
headset for recording speech data. The recording should only be made onto a laptop in battery
mode, because the AC power source can sometimes introduce noise into the signal18.
 One of the difficulties with recording in the field is that you usually need separate pieces of
software for recording the speech data and for displaying any prompts and recording materials to
the speaker. Recently, Draxler & Jänsch (2004) have provided a solution to this problem by
developing a freely available, platform-independent software system for handling multi-channel
audio recordings known as SpeechRecorder19. It can record from any number of audio channels
and has two screens that are seen separately by the subject and by the experimenter. The first of
these includes instructions when to speak as well as the script to be recorded. It is also possible
to present auditory or visual stimuli instead of text. The screen for the experimenter provides
information about the recording level, details of the utterance to be recorded and which utterance
number is being recorded. One of the major advantages of this system is not only that it can be
run from almost any PC, but also that the recording sessions can be done with this software over
the internet. In fact, SpeechRecorder has recently been used just for this purpose (Draxler &
Jänsch, 2007) in the collection of data from teenagers in a very large number of schools from all
around Germany. It would have been very costly to have to travel to the schools, so being able to
record and monitor the data over the internet was an appropriate solution in this case. This type
of internet solution would be even more useful, if speech data were needed across a much wider
geographical area.
 The above is a description of procedures for recording acoustic speech signals (see also
for Draxler, 2008 for further details) but it can to a certain extent be extended to the collection
physiological speech data. There is articulatory equipment for recording aerodynamic, laryngeal,
and supralaryngeal activity and some information from lip movement could even be obtained

18 Florian Schiel, personal communication.
19 See http://www.phonetik.uni-muenchen.de/Bas/software/speechrecorder/ to download SpeechRecorder

 25

with video recordings synchronized with the acoustic signal. However, video information is
rarely precise enough for most forms of phonetic analyses. Collecting articulatory data is
inherently complicated because most of the vocal organs are hidden and so the techniques are
often invasive (see various Chapters in Hardcastle & Hewlett, 1999 and Harrington & Tabain,
2004 for a discussion of some of these articulatory techniques). A physiological technique such
as electromagnetic articulometry described in Chapter 5 also requires careful calibration; and
physiological instrumentation tends to be expensive, restricted to laboratory use, and generally
not easily useable without technical assistance. The variation within and between subjects in
physiological data can be considerable, often requiring an analysis and statistical evaluation
subject by subject. The synchronization of the articulatory data with the acoustic signal is not
always a trivial matter and analyzing articulatory data can be very time-consuming, especially if
data are recorded from several articulators. For all these reasons, there are far fewer experiments
in phonetics using articulatory than acoustic techniques. At the same time, physiological
techniques can provide insights into speech production control and timing which cannot be
accurately inferred from acoustic techniques alone.

1.2.6 Annotation
 The annotation of a speech corpus refers to the creation of symbolic information that is
related to the signals of the corpus in some way. It is always necessary for annotations to be
time-aligned with the speech signals: for example, there might be an orthographic transcript of
the recording and then the words might be further tagged for syntactic category, or sentences for
dialogue acts, with these annotations being assigned any markers to relate them to the speech
signal in time. In the phonetic analysis of speech, the corpus usually has to be segmented and
labeled which means that symbols are linked to the physical time scale of one or more signals.
As described more fully in Chapter 4, a symbol may be either a segment that has a certain
duration or else an event that is defined by a single point in time. The segmentation and labeling
is often done manually by an expert transcriber with the aid of a spectrogram. Once part of the
database has been manually annotated, then it can sometimes be used as training material for the
automatic annotation of the remainder. The Institute of Phonetics and Speech Processing of the
University of Munich makes extensive use of the Munich automatic segmentation system
(MAUS) developed by Schiel (1999, 2004) for this purpose. MAUS typically requires a
segmentation of the utterance in words based on which statistically weighted hypothesis of sub-
word segments can be calculated and then verified against the speech signal. Exactly this
procedure was used to provide an initial phonetic segmentation of the acoustic signal for the
corpus of movement data discussed in Chapter 5.
 Manual segmentation tends to be more accurate than automatic segmentation and it has
the advantage that segmentation boundaries can be perceptually validated by expert transcribers
(Gibbon et al, 1997): certainly, it is always necessary to check the annotations and segment
boundaries established by an automatic procedure, before any phonetic analysis can take place.
However, an automatic procedure has the advantage over manual procedures not only of
complete acoustic consistency but especially that annotation is accomplished much more
quickly.
 One of the reasons why manual annotation is complicated is because of the continuous
nature of speech: it is very difficult to make use of external acoustic evidence to place a segment
boundary between the consonants and vowel in a word like wheel because the movement
between them is not discrete but continuous. Another major source of difficulty in annotating
continuous or spontaneous speech is that there will be frequent mismatches between the phonetic
content of the signal and the citation-form pronunciation. Thus run past might be produced with
assimilation and deletion as [ɹʌmpɑ:s], actually as [aʃli] and so on (Laver, 1994). One of the
difficulties for a transcriber is in deciding upon the extent to which reduction has taken place and
whether segments overlap completely or partially. Another is in aligning the reduced forms with
citation-form dictionary entries which is sometimes done in order to measure subsequently the

 26

extent to which segmental reduction has taken place in different contexts (see Harrington et al,
1993 and Appendix B of the website related to this book for an example of a matching algorithm
to link reduced and citation forms and Johnson, 2004b for a technique which, like Harrington et
al 1993, is based on dynamic programming for aligning the two types of transcription).
 The inherent difficulty in segmentation can be offset to a certain extent by following
some basic procedures in carrying out this task. One fairly obvious one is that it is best not to
segment and label any more of the corpus than is necessary for addressing the hypotheses that
are to be solved in analyzing the data phonetically, given the amount of time that manual
segmentation and labeling takes. A related point (which is discussed in further detail in Chapter
4) is that the database needs to be annotated in such a way that the speech data that is required
for the analysis can be queried or extracted without too much difficulty. One way to think about
manual annotation in phonetic analysis is that it acts as a form of scaffolding (which may not
form part of the final analysis) allowing a user to access the data of interest. But just like
scaffolding, the annotation needs to be firmly grounded which means that segment boundaries
should be placed at relatively unambiguous acoustic landmarks if at all possible. For example, if
you are interested in the rate of transition between semi-vowels and vowels in words like wheel,
then it is probably not a good idea to have transcribers try to find the boundary at the juncture
between the consonants and vowel for the reasons stated earlier that it is very difficult to do so,
based on any objective criteria (leading to the additional problem that the consistency between
separate transcribers might not be very high). Instead, the words might be placed in a carrier
phrase so that the word onset and offset can be manually marked: the interval between the word
boundaries could then be analysed algorithmically based on objective acoustic factors such as the
maximum rate of formant change.
 For all the reasons discussed so far, there should never really be any need for a complete,
exhaustive segmentation and labeling of entire utterances into phonetic segments: it is too time-
consuming, unreliable, and is probably in any case not necessary for most types of phonetic
analyses. If this type of exhaustive segmentation really is needed, as perhaps in measuring the
variation in the duration of vowels and consonants in certain kinds of studies of speech rhythm
(e.g., Grabe & Lowe, 2002), then you might consider using an automatic method of the kind
mentioned earlier. Even if the boundaries have not all been accurately placed using the automatic
procedure, it is still generally quicker to edit them subsequently rather than placing boundaries
using manual labeling from scratch. As far as manual labeling is concerned, it is once again
important to adhere to guidelines especially if the task is carried out by multiple transcribers.
There are few existing manuals that provide any detailed information about how to segment and
label to a level of detail greater than a broad, phonemic segmentation (but see Keating et al, 1994
for some helpful criteria in providing narrow levels of segmentation and labeling in English
spontaneous speech; and al also Barry & Fourcin, 1992 for further details on different levels of
labeling between the acoustic waveform and a broad phonemic transcription). For prosodic
annotation, extensive guidelines have been developed for American and other varieties of
English as well as for many other languages using the tones and break indices labeling system:
see e.g, Beckman et al, (2005) and other references in Jun (2005).
 Labeling physiological data brings a whole new set of issues beyond those that are
encountered in acoustic analysis because of the very different nature of the signal. As discussed
in Chapter 5, data from electromagnetic articulometry can often be annotated automatically for
peaks and troughs in the movement and velocity signals, although these landmarks are certainly
not always reliably present, especially in more spontaneous styles of speaking.
Electropalatographic data could be annotated at EPG landmarks such as points of maximum
tongue-palate contact, but this is especially time-consuming given that the transcriber has to
monitor several contacts of several palatograms at once. A better solution might be to carry out a
coarse acoustic phonetic segmentation manually or automatically that includes the region where
the point of interest in the EPG signal is likely to be, and then to find landmarks like the

 27

maximum or minimum points of contact automatically (as described in Chapter 7), using the
acoustic boundaries as reference points.
 Once the data has been annotated, then it is important to carry out some form of
validation, at least of a small, but representative part of the database. As Schiel & Draxler (2004)
have noted, there is no standard way of doing this, but they recommend using an automatic
procedure for calculating the extent to which segment boundaries overlap (they also point out
that the boundary times and annotations should be validated separately although the two are not
independent, given that if a segment is missing in one transcriber's data, then the times of the
segment boundaries will be distorted). For phoneme-size boundaries, they report that phoneme
boundaries from separate transcribers are aligned within 20 ms of each other in 95% of read
speech and 85% of spontaneous speech. Reliability for prosodic annotations is somewhat lower
(see e.g. Jun et al, 2000; Pitrelli et al, 1994; Syrdal & McGory, 2000; Yoon et al, 2004 for
studies of the consistency of labeling according to the tones and break indices system).
Examples of assessing phoneme labeling consistency and transcriber accuracy are given in Pitt et
al (2005), Shriberg & Lof (1991), and Wesenick & Kipp (1996).

1.2.7 Some conventions for naming files
 There are various points to consider as far as file naming in the development of a speech
corpus is concerned. Each separate utterance of a speech corpus usually has its own base-name
with different extensions being used for the different kinds of signal and annotation information
(this is discussed in further detail Chapter 2). A content-based coding is often used in which
attributes such as the language, the varieties, the speaker, and the speaking style are coded in the
base-name (so EngRPabcF.wav might be used for English, RP, speaker abc who used a fast
speaking style for example). The purpose of content-based file naming is that it provides one of
the mechanisms for extracting the corresponding information from the corpus. On the other
hand, there is a limit to the amount of information that can be coded in this way, and the
alternative is to store it as part of the annotations at different annotation tiers (Chapter 4) rather
than in the base-name itself. A related problem with content-based file names discussed in
Schiel & Draxler (2004) is that there may be platform- or medium dependent length restrictions
on file names (such as in ISO 9960 CDs).
 The extension .wav is typically used for the audio data (speech pressure waveform) but
other than this there are no conventions across systems for what the extensions denote although
some extensions are likely to be specific to different systems (e.g, .TextGrid is for
annotation data in Praat; .hlb for storing hierarchical label files in Emu).
 Schiel & Draxler (2004) recommend storing the signal and annotation data separately,
principally because the annotations are much more likely to be changed that the signal data. For
the same reason, it is sometimes advantageous to store separately the original acoustic or
articulatory sampled speech data files obtained during the recording from other signal files
(containing information such as formants of spectral information) that are subsequently derived
from these.

1.3 Summary and structure of the book
 The discussion in this Chapter has covered a few of the main issues that need to be
considered in designing a speech corpus. The rest of this book is about how speech corpora can
be used in experimental phonetics. The material in Chapters 2-4 provides the link between the
general criteria reviewed in this Chapter and the techniques for phonetic analysis of Chapters 5-
9.
 As far as Chapters 2-4 are concerned, the assumption is that you may have some
digitized speech data that might have been labeled and the principal objective is to get it into a
form for subsequent analysis. The main topics that are covered here include some routines in
digital signal processing for producing derived signals such as fundamental frequency and
formant frequency data (Chapter 3) and structuring annotations in such a way that they can be

 28

queried, allowing the annotations and signal data to be read into R (Chapter 4). These tasks in
Chapters 3 and 4 are carried out using the Emu system: the main aim of Chapter 2 is to show
how Emu is connected both with R and with Praat (Boersma & Weenink, 2005) and Wavesurfer
(Sjölander, 2002). Emu is used in Chapters 2-4 because it includes both an extensive range of
signal processing facilities and a query language that allows quite complex searches to be made
of multi-tiered annotated data. There are certainly other systems that can query complex
annotation types of which the NITE-XML20 system (Carletta et al, 2005) is a very good example
(it too makes use of a template file for defining a database's attributes in a way similar to Emu).
Other tools that are especially useful for annotating either multimedia data or dialogues are
ELAN21 (EUDICO Linguistic Annotator) developed at the Max Planck Institute for
Psycholinguistics in Nijmegen, and Transcriber22 based on the annotation graph toolkit (Bird &
Liberman, 2001; see also Barras, 2001)23. However, although querying complex annotation
structures and representing long dialogues and multimedia data can no doubt be more easily
accomplished in some of these systems than they can in Emu, none of these at the time of writing
includes routines for signal processing, the possibility of handling EMA and EPG data, as well as
the transparent interface to R that is needed for accomplishing the various tasks in the later part
of this book.
 Chapters 5-9 are concerned with analysing phonetic data in the R programming
environment: two of these (Chapters 5 and 7) are concerned with physiological techniques, the
rest make use of acoustic data. The analysis in Chapter 5 of movement data is simultaneously
intended as an introduction to the R programming language. The reason for using R is partly that
it is free and platform-independent, but also because of the ease with which signal data can be
analysed in relation to symbolic data which is often just what is needed is analyzing speech
phonetically. Another is that, as a recent article by Vance (2009) in the New York Times made
clear24, R is now one of the main data mining tools used in very many different fields. The same
article quotes a scientist from Google who comments that 'R is really important to the point that
it’s hard to overvalue it'. As Vance (2009) correctly notes, one of the reasons why R has become
so popular is because statisticians, engineers and scientists without computer programming skills
find it relatively easy to use. Because of this, and because so many scientists from different
disciplinary backgrounds contribute their own libraries to the R website, the number of functions
and techniques in R for data analysis and mining continues to grow. As a result, most of the
quantitative, graphical, and statistical functions that are needed for speech analysis are likely to
be found in one or more of the libraries available at the R website. In addition, and as already
mentioned in the preface and earlier part of this Chapter, there are now books specifically
concerned with the statistical analysis of speech and language data in R (Baayen, in press;
Johnson, 2008) and much of the cutting-edge development in statistics is now being done in the
R programming environment.

20 http://sourceforge.net/projects/nite/
21 http://www.lat-mpi.eu/tools/elan/
22 http://trans.sourceforge.net/en/presentation.php
23 Plans are currently in progress to build an interface between ELAN and Emu annotations. There was an interface
between Transcriber and Emu in earlier versions of both systems (Barras, 2001; Cassidy & Harrington, 2001). Since
at the time of writing, Transcriber is being redeveloped, the possibility of interfacing the two will need to be
reconsidered.
24 My thanks to Andrea Sims and Mary Beckman for pointing this out to me. The same article in the NYT also
makes a reference to Emu.

 29

Chapter 2. Some tools for building and querying annotated speech
databases25

2.0. Overview
 As discussed in the previous Chapter, the main aim of this book is to present some
techniques for analysing labelled speech data in order to solve problems that typically arise in
experimental phonetics and laboratory phonology. This will require a labelled database, the
facility to read speech data into R, and a rudimentary knowledge of the R programming
language. These are the main subjects of this and the next three Chapters.

Fig. 2.1 about here

The relationship between these three stages is summarised in Fig. 2.1. The first stage involves
creating a speech database which is defined in this book to consist of one or more utterances
that are each associated with signal files and annotation files. The signal files can include
digitised acoustic data and sometimes articulatory data of various different activities of the vocal
organs as they change in time. Signal files often include derived signal files that are obtained
when additional processing is applied to the originally recorded data – for example to obtain
formant and fundamental frequency values from a digitised acoustic waveform. Annotation files
are obtained by automatic or manual labelling, as described in the preceding chapter.
 Once the signal and annotation files have been created, the next step (middle section of
Fig. 2.1) involves querying the database in order to obtain the information that is required for
carrying out the analysis. This book will make use of the Emu query language (Emu-QL) for this
purpose which can be used to extract speech data from structured annotations. The output of the
Emu-QL includes two kinds of objects: a segment list that consists of annotations and their
associated time stamps and trackdata that is made up of sections of signal files that are
associated in time with the segment list. For example, a segment list might include all the /i:/
vowels from their acoustic onset to their acoustic offset and trackdata the formant frequency data
between the same time points for each such segment.
 A segment list and trackdata are the structures that are read into R for analysing speech
data. Thus R is not used for recording speech data, nor for annotating it, nor for most major
forms of signal processing. But since R does have a particularly flexible and simple way of
handling numerical quantities in relation to annotations, then R can be used for the kinds of
graphical and statistical manipulations of speech data that are often needed in studies of
experimental phonetics.

Fig. 2.2 about here

2.1 Getting started with existing speech databases
 When you start up Emu for the first time, you should see a display like the one in Fig.
2.2. The left and right panels of this display show the databases that are available to the system
and their respective utterances. In order to proceed to the next step, you will need an internet
connection. Then, open the Database Installer window in Fig. 2.3 by clicking on
Arrange tools and then Database Installer within that menu. The display contains
a number of databases that can be installed, unzipped and configured in Emu. Before
downloading any of these, you must specify a directory (New Database Storage) into
which the database will be downloaded. When you click on the database to be used in this

25 Much of the material in this Chapter is based on Bombien et al. (2006), Cassidy & Harrington (2001), and
Harrington et al. (2003).

 30

Chapter, first.zip, the separate stages download, unzip, adapt, configure should
light up one after the other and finish with the message: Successful (Fig. 2.3). Once this is
done, go back to the Emu Database Tool (Fig. 2.2) and click anywhere inside the
Databases pane: the database first should now be available as shown in Fig. 2.4. Click on
first, then choose Load Database in order to see the names of the utterances that belong
to this database, exactly as in the manner of Fig. 2.4.

Figs. 2.3 and 2.4

Now double click on gam001 in Fig. 2.4 in order to open the utterance and produce a display
like the one shown in Fig. 2.5.
 The display consists of two signals, a waveform and a wideband spectrogram in the 0-
8000 Hz range. For this mini-database, the aim was to produce a number of target words in a
carrier sentence ich muss ____ sagen (Lit. I must ____ say) and the one shown in Fig. 2.4 is of
guten (good, dative plural) in such a carrier phrase produced by a male speaker of the Standard
North German variety. The display also shows annotations arranged in four separate labelling
tiers. These include guten in the Word tier marking the start and end times of this word and three
annotations in the Phonetic tier that mark the extent of velar closure (g), the release/frication
stage of the velar stop (H), and the acoustic onset and offset of the vowel (u:). The annotations
at the Phoneme tier are essentially the same except that the sequence of the stop closure and
release are collapsed into a single segment. Finally, the label T at the Target tier marks the
acoustic vowel target which is usually close to the vowel's temporal midpoint in monophthongs
and which can be thought of as the time at which the vowel is least influenced by the
neighbouring context (see Harrington & Cassidy, 1999, p. 59-60 for a further discussion on
targets).

Fig. 2.5 about here

 In Emu, there are two different kind of labelling tiers: segment tiers and event tiers. In
segment tiers, every annotation has a duration and is defined by a start and end time. Word,
Phoneme, Phonetic are segment tiers in this database. By contrast, the annotations of an
event tier, of which Target is an example in Fig. 2.5, mark only single events in time: so the T
in this utterance marks a position in time, but has no duration.
 In Fig. 2.6, the same information is displayed but after zooming in to the segment marks
of Fig. 2.5 and after adjusting the parameters, brightness, contrast and frequency range in order
to produce a sharper spectrogram. In addition, the spectrogram has been resized relative to the
waveform.

Fig. 2.6 about here

2.2 Interface between Praat and Emu
 The task now is to annotate part of an utterance from this small database. The annotation
could be done in Emu but it will instead be done with Praat both for the purposes of
demonstrating the relationship between the different software systems, and because this is the
software system for speech labelling and analysis that many readers are most likely to be familiar
with.
 Begin by starting up Praat, then bring the Emu Database Tool to the foreground and
select with a single mouse-click the utterance gam002 as shown in Fig. 2.7. Then select Open
with… followed by Praat from the pull-out menu as described in Fig. 2.7 (N.B. Praat must be
running first for this to work). The result of this should be the same utterance showing the
labelling tiers in Praat (Fig. 2.8).

 31

Fig. 2.7 about here

The task now is to segment and label this utterance at the Word tier so that you end up with a
display similar to the one in Fig. 2.8. The word to be labelled in this case is Duden (in the same
carrier phrase as before). One way to do this is to move the mouse into the waveform or
spectrogram window at the beginning of the closure of Duden; then click the circle at the top of
the Word tier; finally, move the mouse to the end of this word on the waveform/spectrogram and
click the circle at the top of the Word tier again. This should have created two vertical blue lines,
one at the onset and one at the offset of this word. Now type in Duden beween these lines. The
result after zooming in should be as in Fig. 2.8. The final step involves saving the annotations
which should be done with Write Emulabels from the File menu at the top of the display
shown in Fig. 2.8.

Fig. 2.8 about here

 If you now go back to the Emu Database Tool (Fig. 2.7) and double click on the
same utterance, it will be opened in Emu: the annotation that has just been entered at the Word
tier in Praat should also be visible in Emu as in Fig. 2.9.

Fig. 2.9 about here

2.3 Interface to R
 We now consider the right side of Fig. 2.1 and specifically reading the annotations into R
in the form of a segment list. First it will be necessary to cover a few background details about R.
A more thorough treatment of R is given in Chapter 5. The reader is also encouraged to work
through 'An Introduction to R' from the webpage that is available after entering
help.start() after the prompt. A very useful overview of R functions can be downloaded
as a four-page reference card from the Rpad home page - see Short (2005).

2.3.1 A few preliminary remarks about R
 When R is started, you begin a session. Initially, there will be a console consisting of a
prompt after which commands can be entered:

> 23
[1] 23

The above shows what is typed in and what is returned that will be represented in this
book by these fonts respectively. The [1] denotes the first element of what is returned and it can
be ignored (and will no longer be included in the examples in this book).
 Anything following # is ignored by R: thus text following # is one way of including
comments. Here are some examples of a few arithmetic operations that can be typed after the
prompt with a following comment that explains each of them (from now on, the > prompt sign
will not be included):

10 + 2 # Addition
2 * 3 + 12 # Multiplication and addition
54/3 # Division
pi # π
2 * pi * 4 # Circumference of a circle, radius 4
4^2 # 42

pi * 4^2 # Area of a circle, radius 4

 32

During a session, a user can create a variety of different objects each with their own name using
either the <- or = operators:

newdata = 20

stores the value or element 20 in the object newdata so that the result of entering newdata
on its own is:

newdata
20

newdata <- 20 can be entered instead of newdata = 20 with the same effect. In R, the
contents of an object are overwritten with another assign statement. Thus:

newdata = 50

causes newdata to contain the element 50 (and not 20).

Objects can be numerically manipulated using the operators given above:

moredata = 80
moredata/newdata
4

As well as being case-sensitive, R distinguishes between numeric and character objects, with
the latter being created with " " quotes. Thus a character object moredata containing the
single element phonetics is created as follows:

moredata = "phonetics"
moredata
"phonetics"

It is very important from the outset to be clear about the difference between a name with and
without quotes. Without quotes, x refers to an object and its contents will be listed (if it exists);
with quote marks "x" just means the character x. For example:

x = 20 Create a numeric object x containing 20
y = x Copy the numeric object x to the numeric object y
y y therefore also contains 20
20
y = "x" Make an object y consisting of the character "x"
y y contains the character "x"
"x"

 Throughout this book use will be made of the extensive graphical capabilities in R.
Whenever a function for plotting something is used, then a graphics window is usually
automatically created. For example:

plot(1:10)

 33

brings up a graphics window and plots integer values from 1 to 10. There are various ways of
getting a new graphics window: for example, win.graph() on Windows, quartz() on a
Macintosh, and X11() on Linux/Unix.
 A function carries out one or more operations on objects and it can take zero or more
arguments that are delimited by parentheses. The functions ls() or objects() when
entered with no arguments can be used to show what objects are stored in the current workspace.
The function class() with a single argument says something about the type of object:

newdata = 20
class(newdata)
"numeric"

newdata = "phonetics"
class(newdata)
"character"

Successive arguments to a function have to be separated by a comma. The function rm(), which
can take an indefinite number of arguments, removes as many objects as there are arguments,
for example:

rm(moredata) Removes the object moredata
rm(moredata, newdata) Removes the objects moredata and newdata

Notice that entering the name of the function on its own without following parentheses or
arguments prints out the function's code:

sort.list
function (x, partial = NULL, na.last = TRUE, decreasing = FALSE,
 method = c("shell", "quick", "radix"))
{
 method = match.arg(method)
 if (!is.atomic(x))

… and so on.

 To get out of trouble in R (e.g., you enter something and nothing seems to be happening),
use control-C or press the ESC key and you will be returned to the prompt.
 In order to quit from an R session, enter q(). This will be followed by a question: Save
Workspace Image? Answering yes means that all the objects in the workspace are stored in
a file .Rdata that can be used in subsequent sessions (and all the commands used to create
them are stored in a file .Rhistory) – otherwise all created objects will be removed. So if you
answered yes to the previous question, then when you start up R again, the objects will still be
there (enter ls() to check this).

The directory to which these R-Data and history of commands is saved is given by
getwd() with no arguments.

One of the best ways of storing your objects in R is to make a file containing the objects
using the save() function. The resulting file can then also be copied and accessed in R on
other platforms (so this is a good way of exchanging R data with another user). For example,
suppose you want to save your objects to the filename myobjects in the directory c:/path.
The following command will do this:

save(list=ls(), file="c:/path/myobjects")

 34

Assuming you have entered the last command, quit from R with the q() function and answer no
to the prompt Save workspace image, then start up R again. You can access the objects
that you have just saved with:

attach("c:/path/myobjects")

In order to inspect which objects are stored in myobjects, find out where this file is positioned
in the so-called R search path:

search()
[1] ".GlobalEnv" "file:/Volumes/Data_1/d/myobjects"
[3] "tools:RGUI" "package:stats"
[5] "package:graphics" "package:grDevices"

Since in the above example myobjects is the second in the path, then you can list the objects
that it contains with ls(pos=2).
 The previous command shows that many objects and functions in R are pre-stored in a set
of packages. These packages are available in three different ways. Firstly, entering search()
shows the packages that are available in your current session. Secondly, there will be packages
available on your computer but not necessarily accessible in your current session. To find out
which these are enter:

library()

or

.packages(all.available = TRUE)

You can make a package from this second category available in your current session by passing
the name of the package as an argument to library(): thus library(emu) and
library(MASS) make these packages accessible to your current session (assuming that they
are included when you enter the above commands). Thirdly, a very large number of packages is
included R archive network (http://cran.r-project.org/) and, assuming an internet
connection, these can be installed directly with the install.packages() function. Thus,
assuming that e.g. the package AlgDesign is not yet stored on your computer then26:

install.packages("AlgDesign")
library(AlgDesign)

stores the package on your computer and makes it available as part of your current session.

R comes with an extensive set of help pages that can be illustrated in various ways. Try
help(pnorm) or ?pnorm, example(density), apropos("spline"),
help.search("norm"). As already mentioned, the function help.start() on its own
provides an HTML version of R's online documentation.

2.3.2 Reading Emu segment lists into R
 Start up R and then enter library(emu) after the R prompt. The function for making a
segment list is emu.query() and it takes three arguments that are:

• the name of the database from which the segments are to be extracted.

26 On some systems: install.packages("AlgDesign", "path", "http://cran.r-
project.org") where path is the name of the directory for storing the package.

 35

• the utterances in the database over which the search is to be made.
• the pattern to be searched in terms of a labelling tier and segments.

The two labelled segments guten from gam001 and Duden from gam002 can be extracted with
this function as follows:

emu.query("first", "*", "Word = guten | Duden")
Read 2 records
segment list from database: first
query was: Word = guten | Duden
 labels start end utts
1 guten 371.64 776.06 gam001
2 Duden 412.05 807.65 gam002

The meaning of the command is: search through all utterances of the database first for the
annotations guten or Duden at the Word tier. The next command does the same, but additionally
saves the output to an object, w:

w = emu.query("first", "*", "Word = guten | Duden")

If you enter w on its own, then the same information about the segments shown above is
displayed after the prompt.
 As discussed more fully in Chapter 5, a number of functions can be applied to segment
lists, and one of the simplest is dur()for finding the duration of each segment, thus:

dur(w)
404.42 395.60

shows that the duration of guten and Duden are 404 ms and 396 ms respectively.

2.4 Creating a new speech database: from Praat to Emu to R
 You may already have labelled data in Praat that you would like to convert into Emu in
order to read it into R. This section explains how to do this and will also provide some
information about the way that Emu controls the attributes of each database in the form of a
'blueprint' known as a template file. It will be assumed for the purposes of this section that you
have some familiarity with how to segment and label speech data using Praat.

Fig. 2.10 about here

 Begin by finding the directory to which you downloaded the database first.zip and
the file msajc023.wav. If you downloaded first.zip to the directory x, then you will find
this file in x/first/msajc023.wav. It should be pointed out that this audio file has nothing
to do with the database first that was labelled in the preceding section: it has simply been put
into that directory as a convenient way to access an audio file for analysing in further detail the
relationship between Praat and Emu.
 Start up Praat and load the file msajc023.wav and create a TextGrid file with a
segment tier called Word in the manner of Fig. 2.10.

Fig. 2.11 about here

Now segment and label this file into its words as shown in Fig. 2.11 and save the TextGrid to the
same directory in which the audio file is located.

 36

 The task will be to convert this TextGrid file into a format that can be read by Emu (and
therefore also by R). To do this, start up Emu and choose Convert Labels from the
Arrange Tools pull down menu. Then select Praat 2 Emu from the labConvert
(graphical label convertor) window and convert the TextGrid in the manner shown
and described in Fig. 2.12.

Fig. 2.12 about here

If you saved the TextGrid file to the same directory first that contains the audio file
msajc023.wav, then the directory will now contain the files shown in Fig. 2.13. The file
msajc023.Word is a plain text file that contains the same information as
msajc023.TextGrid but in a format27 that can be read by Emu. The extension is always the
same as the name of the annotation tier: so the extension is .Word in this case because the
annotation tier in Praat was called Word (see Fig. 2.10). If there had been several annotation
tiers in Praat, then the conversion in Fig. 2.12 would have produced as many files as there are
annotation tiers, each with separate extensions and with the same base-name (msajc023). The
file p2epreparedtpl.tpl (Praat-to-Emu prepared template) is the (plain text) Emu
template file that is the output of the conversion and which defines the attributes of the database.
 An important change now needs to be made to the template file before the database is
accessible to Emu and this together with some other attributes of the template are discussed in
the next section.

2.5 A first look at the template file
 If you carried out the conversion of the Praat TextGrid in the same directory where the
audio file msajc023.wav is located, i.e. in the first directory that was downloaded as part
of the initial analysis in this Chapter, then a template file called p2epreparedtpl should be
available when you open the Emu Database Tool. However, it is a good idea to re-name the
template file to something else so that there is no conflict with any other data, should you carry
out another conversion from Praat TextGrids at some later stage. When you rename
p2epreparedtpl.tpl in the directory listing in Fig. 2.13 to something else, be sure to keep
the extension .tpl. I have renamed the template file28 jec.tpl so that opening the Emu
Database Tool shows the database with the corresponding name, as in Fig. 2.14.

Fig. 2.13 about here

 Fig. 2.14 about here

At this stage, Emu will not be able to find any utterances for the jec database because it does
not know where the audio file is located. This, as well as other information, needs to be entered
in the template file for this database which is accessible with Edit Template from the
Template Operations… menu (Fig. 2.14). This command activates the Graphical
Template Editor which allows various attributes of the database to be incorporated via the
following sub-menus:

Levels: The annotation tiers (in this case Word).
Labels: Annotation tiers that are parallel to the main annotation tiers (discussed
 in further detail in Chapter 4).

27 In fact, for historical reasons it is in the format used by ESPS/Waves.
28 After the first author, John Clark of Clark et al (2007) who produced this utterance as part of the Australian
National Speech Database in 1990.

 37

Labfiles: Information about the type of annotation tier (segment or event)
 and its extension.
Legal Labels: Optionally defined features for annotations of a given tier.
Tracks: The signal files for the database, their extension and location.
Variables: Further information including the extension over which to search
 when identifying utterances.
View: The signals and annotation tiers that are viewed upon opening an
 utterance.

The two sub-menus that are important for the present are Tracks and Variables. These need
to be changed in the manner shown in Fig. 2.15.

Fig. 2.15 about here

Changing the Tracks pane (Fig. 2.15) has the effect of saying firstly what the extension is of
the audio files (wav for this database) and secondly where the audio files are located. Setting
the primary extension to wav in the Variables pane is the means by which the base-names
are listed under Utterances in the Emu Database Tool. (More specifically, since for this
example the primary extension is set to wav and since files of extension wav are found in
x/first according to the Tracks pane, then any files with that extension and in that directory
show up as base-names i.e. utterance-names in the Emu Database Tool).
 The effect of changing the template in this way is to make the utterance available to Emu
as shown in Fig. 2.16: when this utterance is opened, then the audio signal as well as the labels
that were marked in Praat will be displayed.

Fig. 2.16 about here

Finally, the database and utterance should now be also accessible from R following the
procedure in 2.3.2. The following commands in R can be used to obtain the word durations29:

words = emu.query("jec", "*", "Word!=x")
words
labels start end utts
1 * 0.00 97.85 msajc023
2 I'll 97.85 350.94 msajc023
3 hedge 350.94 628.72 msajc023
4 my 628.72 818.02 msajc023
5 bets 818.02 1213.09 msajc023
6 and 1213.09 1285.11 msajc023
7 take 1285.11 1564.95 msajc023
8 no 1564.95 1750.14 msajc023
9 risks 1750.14 2330.39 msajc023
10 * 2330.39 2428.25 msajc023

dur(words)
97.85 253.09 277.78 189.30 395.07 72.02 279.84 185.19 580.25 97.86

2.6 Summary
 This introductory Chapter has covered some details of file structure in a database, the
organisation of annotations, an Emu template file, the interface between Praat, Emu, and R, and
some of the different Emu tools for accessing and annotating data. A summary of the salient
points within these main headings is as follows.

29 Remember to enter library(emu) first.

 38

File structure
 Emu makes a sharp distinction between a database, the utterances of which a database is
composed, and the data that is associated with each utterance, as follows:

• Each database has a name and a corresponding template file which has the same name
followed by the extension .tpl. Thus, if there is a database called simple, then there
will also be a template file with the name simple.tpl. If Emu finds the template file
simple.tpl, then the database name simple will appear under databases in the Emu
Database Tool (Figs 2.2, 2.4, 2.14).

• Each utterance has a name or base-name that precedes any prefix. Thus the base-name of
a.wav, a.fms, a.epg, a.hlb, a.lab, a.TextGrid is in each case a and the files
with various extensions are different forms of data for the same utterance. The base-
names of the utterances appear in the right of the display of Figs. 2.2, 2.4, 2.14 after a
database is loaded and there is always one base-name per utterance.

• The different variants of an utterance (i.e., the different extensions of a base-name) can
be divided into signal and annotation files. A signal file is any digitised representation of
the speech. The types of signal file typically include an audio file (often with extension
.wav), and signal files derived from the audio file. An annotation file includes one or
more annotations with time-markers linked to the signal files.

Organisation of annotations

• There is a basic distinction between segment tiers (each annotations has a certain
duration) and event or point tiers (each annotation marks a single point in time but is
without duration).

• Annotations are organised into separate tiers.
• In Emu, there is one annotation file (see above) per segment or point tier. Thus if an

utterance is labelled in such a way that words, phonemes, and tones are each associated
with their separate times, then in Emu there will be three annotation files each with their
own extension for that utterance. In Praat all of this information is organised into a single
TextGrid.

Template file
 An Emu template file defines the attributes of the database. A template file includes
various kinds of information such as the annotation tiers and how they are related to each other,
the types of signal file in the database, where all of the different signal and annotation files of a
database are physically located, and the way that an utterance is to be displayed when it is
opened in Emu.

Praat-Emu interface
 The Praat-Emu interface concerns only annotations, not signals. The time-based
annotations discussed in this Chapter are inter-convertible so that the same utterance and its
annotation(s) can be viewed and edited usually with no loss of information in Praat and Emu.

Emu-R interface
 R is a programming language and environment and the Emu-R library is a collection of
functions for analysing speech data that is accessible within R using the command
library(emu). Emu annotations are read into R using the Emu query-language (Emu-QL) in
the form of segment lists. Praat TextGrids can also be read into R as segment lists via the Praat-
Emu interface defined above.

Emu tools discussed in this Chapter

 39

 Various Emu tools associated with different tasks have been made use of in this Chapter.
These and a number of other tools are accessible from the Emu Database Tool which is also
the central tool in Emu for listing the databases and for opening utterances. The other tools that
were discussed include:

• The Database Installer for installing via an internet link existing annotated
databases for use in this book (accessible from Arrange Tools).

• The graphical template editor for inspecting and editing the template file of a
database (and accessible from Template Operations).

• the graphical label convertor for inter-converting between Praat TextGrids
and Emu annotations (accessible from Arrange Tools).

2.7 Questions
 This question is designed to extend familiarity with annotating speech data in Emu and
with Emu template-files. It also provides an introduction to the Emu configuration
editor which is responsible for making template files on your system available to Emu. The
exercise involves annotating one of the utterances of the first database with the two different
annotation tiers, Word and Phoneme, as shown in Fig. 2.17. Since the annotation tiers are
different, and since the existing annotations of the first database should not be overwritten, a
new template file will be needed for this task.

(a) Begin by creating a directory on your system for storing the new annotations which will be
referred to as "your path" in the question below.

(b) Start up the Emu Database Tool and choose New template from the Template
Operations… menu.

(c) Enter the new annotation tiers in the manner shown in Fig. 2.17. Use the Add New Level
button to provide the fields for entering the Phoneme tier. Enter the path of the directory you
created in (a) for the so-called hlb or hierarchical label files. (This is an annotation file that
encodes information about the relationship between tiers and is discussed more fully in Chapter
4).

Fig. 2.17 about here

(d) Select the Labfiles pane and enter the information about the annotation tiers (Fig. 2.18).
To do this, check the labfile box, specify both Word and Phoneme as segment tiers, enter
your chosen path for storing annotations from (a), and specify an extension for each tier. Note
that the choice of extension names is arbitrary: in Fig. 2.18, these have been entered as w and
phon which means that files of the form basename.w and basename.phon will be created
containing the annotations from the Word and Phoneme tiers respectively.

Fig.2.18 about here

 (e) Select the Tracks pane (Fig. 2.19) and enter the path where the sampled speech data (audio
files) are stored. In my case, I downloaded the database first.zip to
/Volumes/Data/d/speech so the audio files, gam001.wav – gam009.wav are in
/Volumes/Data/d/speech/first/signals which is also the path entered in the
Tracks pane in Fig. 2.19. The location of these files in your case depends on the directory to
which you downloaded first.zip. If you downloaded it to the directory x, then enter
x/first/signals under Path in Fig. 2.19. The extension also needs to be specified as wav
because this is the extension of the speech audio files.

 40

Fig. 2.19 about here

 (f) Select the Variables pane (Fig. 2.20) and choose wav as the primary extension. This will
have the effect that any files with .wav in the path specified in Fig. 2.20 will show up as
utterances when you open this database.

Fig. 2.20 about here

 (g) Save the template file (see the top left corner of Figs. 2.17-2.20) with a name of your choice,
e.g. myfirst.tpl and be sure to include the extension .tpl if this is not supplied
automatically. For the purposes of the rest of this question, I will refer to the path of the directory
to which you have stored the template as pathtemplate.

(h) The location of the template now needs to be entered into Emu. To do this, make sure Emu is
running and then open the configuration editor from inside the file menu of the Emu Database
Tool which will bring up the display in Fig. 2.21. This display should already include at least
one path which is the location of the template file for the database first.zip that was
downloaded at the beginning of this chapter. Select Add Path then enter the path in (g) where
you stored myfirst.tpl (which I have indicated as temppath in Fig. 2.21).

Fig. 2.21 about here

(i) If you have entered the above information correctly, then when you next click in the
databases pane of the Emu Database Tool, your database/template file should appear as
in Fig. 2.22. If it does not, then this can be for various reasons: the path for the template file was
not entered correctly (h); the paths for the signal files have not been entered correctly (c-e);
.tpl was not included as an extension in the template file; the primary extension (f) has not
been specified.

Fig. 2.22 about here

 Assuming however that all is well, double-click on gam007 to bring up the display
(initially without labels) in Fig. 2.23 whose spectrogram image was also manually sharpened as
described earlier in Fig. 2.6.

Fig. 2.23 about here

(j) There is a way of segmenting and labelling in Emu which is quite similar to Praat and this
will be the form that is explained here. Position the mouse either in the waveform or in the
spectrogram window at the beginning of the first word ich and click with the left mouse button.
This will bring up two vertical blue bars in the Word and Phoneme tiers. Move the mouse to
the blue vertical bar at the Word tier and click on it. This will cause the blue bar at the Word tier
to turn black and the one at the Phoneme tier to disappear. Now move the mouse back inside
the waveform or spectrogram window to the offset of ich and click once to bring up two blue
vertical bars again. Move the mouse to the blue bar you have just created at the Word tier and
click on it. The result should be two black vertical bars at the onset and offset of ich and there
should also be a grey rectangle between them into which you can type text: click on this grey
rectangle, enter ich followed by carriage return. Proceed in the same way until you have
completed the segmentation and labelling, as shown in Fig. 2.23. Then save your annotations
with File → Save.

 41

(j) Verify that, having saved the data, there are annotation files in the directory that you specified
in (a). If you chose the extensions shown in Fig. 2.18, then there should be three annotation files
in that directory: gam007.w, gam007.phon, and gam007.hlb containing the annotations at
the Word tier, annotations at the Phoneme tier, and a code relating the two respectively.

(k) The task now is to convert these annotations into a Praat TextGrid. To do this, start up the
Emu Database Tool then select Arrange Tools → Convert Labels followed by
Emu 2 Praat in the labConvert window (Fig. 2.24).

Fig. 2.24 about here

 (l) Verify that gam007.TextGrid has been created in the directory given in (a) and then
open the TextGrid and the audio file in Praat as in Fig. 2.25.

Fig. 2.25 about here

 42

Chapter 3 Applying routines for speech signal processing

3.0 Introduction
 The task in this Chapter will be to provide a brief introduction to the signal processing
capabilities in Emu with a particular emphasis on the formant analysis of vowels. As is well-
known, the main reason why listeners hear phonetic differences between two vowels is because
they have different positions in a two-dimensional space of vowel height and vowel backness.
These phonetic dimensions are loosely correlated respectively with the extent of mouth opening
and the location of the maximum point of narrowing or constriction location in the vocal tract.
Acoustically, these differences are (negatively) correlated with the first two resonances or
formants of the vocal tract: thus, increases in phonetic height are associated with a decreasing
first formant frequency (F1) and increasing vowel backness with a decreasing F2. All of these
relationships can be summarized in the two-dimensional phonetic backness x height space shown
in Fig. 3.1.

Fig. 3.1 about here

The aim in this Chapter is to produce plots for vowels in the F1 x F2 plane of this kind and
thereby verify that when plotting the acoustic vowel space in this way, the vowel quadrilateral
space emerges. In the acoustic analysis to be presented in this Chapter, there will be several
points, rather than just a single point per vowel as in Fig. 3.1 and so each vowel category will be
characterized by a two-dimensional distribution. Another aim will be to determine whether the
scatter in this vowel space causes any overlap between the categories. In the final part of this
Chapter (3.4) a male and female speaker will be compared on the same data in order to begin to
assess some of the ways that vowel formants are influenced by gender differences (an issue that
is explored in more detail in Chapter 6); and the procedures for applying signal processing to
calculating formants that will be needed in the body of the Chapter will be extended to other
parameters including fundamental frequency, intensity, and zero-crossing rate.
 Before embarking on the formant analysis, some comments need to be made about the
point in time at which the formant values are to be extracted. Vowels have, of course, a certain
duration, but judgments of vowel quality from acoustic data are often made from values at a
single time point that is at, or near, the vowel's acoustic midpoint. This is done largely because,
as various studies have shown, the contextual influence from neighbouring sounds tends to be
least at the vowel midpoint. The vowel midpoint is also temporally close to what is sometimes
known as the acoustic vowel target which is the time at which the vocal tract is most 'given over'
to vowel production: thus F1 reaches a target in the form of an inverted parabola near the
midpoint in non-high vowels, both because the vocal tract is often maximally open at this point,
and because the increase in vocal tract opening is associated with a rise in F1 (Fig. 3.2). In high
vowels, F2 also reaches a maximum (in [i]) or minimum (in [u]) near the temporal midpoint
which is brought about by the narrowing at the palatal zone for [i] and at labial-velar regions of
articulation for [u]. Fig. 3.2 shows an example of how F2 reaches a maximum in the front
rounded vowel [y:] in the region of the vowel's temporal midpoint30.

Fig. 3.2 about here

3.1 Calculating, displaying, and correcting formants
 Start up Emu and download the database second.zip exactly in the manner described in
Fig. 2.3 of the preceding Chapter and then load the database as described in Fig 2.4. This
database is a larger version of the one downloaded in Chapter 2 and contains utterances from a

30 However, the acoustic vowel target need not necessarily occur at the midpoint, as the example from Australian
English in the exercises to Chapter 6 shows.

 43

female speaker (agr) and a male speaker (gam). The materials are the same as for the first
database and include trochaic words of the form /CVC(ә)n/ such as baten, Duden, geben and so
on. It is the formants of the vowels that are the subject of the analysis here. The main initial task
will be to analyse those of the male speaker whose utterances can be accessed by entering gam*
as a pattern in the Emu Database Tool, as shown in Fig. 3.3.

Fig. 3.3 about here

 Opening any of these utterances produces a waveform, spectrogram and annotation tiers at
various levels, exactly as described in the previous Chapter. The task is now to calculate the
formant frequencies for the speaker gam and this is done by entering the corresponding pattern
in the Emu Database Tool to select those utterances for this speaker and then passing them
to the tkassp routines in the manner shown in Fig. 3.3. The resulting tkassp window (a
Tcl/Tk interface to acoustic speech signal processing) shown in Fig. 3.4 includes a number of
signal processing routines written by Michel Scheffers of the Institute of Phonetics and Speech
Processing, University of Kiel. Selecting samples as the input track causes the utterances to be
loaded. The formants for these utterances can then be calculated following the procedure
described in Fig. 3.4.

Fig. 3.4 about here

 The result of applying signal processing in tkassp is as many derived files as input files
to which the routines were applied. So in this case, there will be one derived file containing the
formant frequencies for utterance gam001, another for gam002 and so on. Moreover, these
derived files are by default stored in the same directory that contain the input sampled speech
data files and they have an extension that can be set by the user, but which is also supplied by
default. As Fig. 3.4 shows, formants are calculated with the default extension .fms and so the
output of calculating the formants for these utterances will be files gam001.fms,
gam002.fms… corresponding to, and in the same directory as, the audio files gam001.wav,
gam002.wav…
 Fig. 3.4 also shows that there are other parameters that can be set in calculating formants.
Two of the most important are the window shift and the window size or window length. The
first of these is straightforward: it specifies how many sets of formant frequency values or
speech frames are calculated per unit of time. The default in tkassp is for formant frequencies
to be calculated every 5 ms. The second is the duration of sampled speech data that the
algorithm sees in calculating a single set of formant values. In this case, the default is 25 ms
which means that the algorithm sees 25 ms of the speech signal in calculating F1-F4. The
window is then shifted by 5 ms, and a quadruplet of formants is calculated based on the next 25
ms of signals that the algorithm sees. This process is repeated every 5 ms until the end of the
utterance.
 The times at which the windows actually occur are a function of both the window shift
and the window length. More specifically, the start time of the first window is (tS - tL)/2, where tS
and tL are the window shift and size respectively. Thus for a window shift of 5 ms and a window
size of 25 ms, the left edge of the first window is (5 - 25) / 2 = -10 ms and its right edge is 15 ms
(an advancement of 25 ms from its left edge)31. The next window has these times plus 5 ms, i.e.
it extends from -5 ms to 20 ms, and so on. The derived values are then positioned at the centre of
each window. So since the first window extends in this example from -10 ms to 15 ms, then the

31 All of the signal's values preceding its start time are presumed to be zero: thus the first window is 'buffered' with
zeros between its left edge at t = -10 ms and the actual start time of the signal at t = 0 ms (see Chapter 8 for some
details of zero padding).

 44

time at which the first quadruplet of formants occurs is (-10 + 15)/2 = 2.5 ms. The next
quadruplet of formants is 5 ms on from this at 7.5 ms (which is also (-5 + 20)/2), etc.
 Although formant tracking in Emu usually works very well from the default settings, one
of the parameters that you do sometimes need to change is the nominal F1 frequency. This is set
to 500 Hz because this is the estimated first formant frequency from a lossless straight-sided tube
of length 17.5 cm that serves well as a model for a schwa vowel for an adult male speaker. The
length 17.5 cm is based on the presumed total vocal tract length and so since female speakers
have shorter vocal tracts, their corresponding model for schwa has F1 at a somewhat higher
value. Therefore, when calculating formants from female speakers, the formant tracking
algorithm generally gives much better results if nominal F1 is set to 600 Hz or possibly even
higher.
 There are still other parameters that for most purposes you do not need to change32. Two
of these, the prediction order and the pre-emphasis factor are to do with the algorithm for
calculating the formants, linear predictive coding (LPC33). The first is set both in relation to the
number of formant frequencies to be calculated and to the sampling frequency; the second is to
do with factoring in 'lumped' vocal tract losses in a so-called all-pole model. Another parameter
that can be set is the window function. In general, and as described in further detail in Chapter 8
on spectra, there are good reasons for attenuating (reducing in amplitude) the signal
progressively towards the edges of the window in applying many kinds of signal processing
(such as the one needed for formant calculation) and most of the windows available such as the
Blackman, Hanning, Hamming and Cosine in tkassp have this effect. The alternative is not to
change the amplitude of the sampled speech data prior to calculating formants which can be done
by specifying the window to be rectangular.

Fig. 3.5 about here

 In order to display the formants, it is necessary to edit the template file (Figs. 2.14 and
2.15) so that Emu knows where to find them for this database. The relevant panes that need to be
edited are shown in Fig. 3.5. The same path is entered for the formants as for the audio files if
the default setting (auto) was used for saving the formants (Fig. 3.4). The track (name) should
be set to fm because this tells Emu that these are formant data which are handled slightly
differently from other tracks (with the exception of formants and fundamental frequency, the
track name is arbitrary). The track extension should be fms if the defaults were used in
calculating the formants (see Fig.3.3) and finally the box fm is checked in the View pane which
is an instruction to overlay the formants on the spectrogram when an utterance is opened.

32 Some further points on the relationship between accuracy of formant estimation, prediction order, and nominal F1
frequency (Michel Scheffers pers. comm.) are as follows. Following Markel & Gray (1976), the prediction order for
accurate estimation of formants should be approximately equal to the sampling frequency in kHz based on an adult
male vocal tract of length 17.5 cm (taking the speed of sound to be 35000 cm/s). In tkassp, the default prediction
order is the smallest even number greater than p in:

(1) p = fs / (2F1nom)

where fs is the sampling frequency and F1nom the nominal F1 frequency in kHz. Thus, for a sampling frequency of
20 kHz and nominal F1 of 0.5 kHz, p = 20 and so the prediction order is 22, this being the smallest even number
greater than p. (The extra two coefficients are intended for modeling the additional resonance often found in
nasalized vowels and/or for compensating for the fact that the vocal tract is not a lossless tube). (1) shows that
increasing the nominal F1 frequency causes the prediction order to be decreased, as a result of which the lossless
model of the vocal tract is represented by fewer cylinders and therefore fewer formants in the same frequency range
(which is appropriate for shorter vocal tracts). Should two formants still be individually unresolved after adjusting
F1nom, then the prediction order could be increased in the forest pane, either by entering the prediction order
itself, or by selecting 1 from incr/decr: this second action would cause the default prediction order for a
sampling frequency of 20 kHz to be increased by 2 from 22 to 24.
33 LPC is not covered in this book - see Harrington & Cassidy (1999) Chapter 8 for a fairly non-technical treatment.

 45

 When you open the Emu Database Tool tool, reload the second database and then
open the utterance gam002. The result should now be a waveform and spectrogram display with
overlaid formants (Fig. 3.6).

Fig. 3.6 about here

As Fig. 3.6 shows, there is evidently a formant tracking error close to 0.65 seconds which can be
manually corrected in Emu following the procedure shown in Fig. 3.7. When the manual
correction is saved as described in Fig. 3.7, then the formant file of the corresponding utterance
is automatically updated (the original formant file is saved to the same base-name with extension
fms.bak).

Fig. 3.7 about here

3.2. Reading the formants into R
 The task now is to read the calculated formants and annotations into R in order to
produce the F1 × F1 displays for the separate vowel categories. The procedure for doing so is
sketched in Fig. 3.8, the top half of which also represents a more general procedure for getting
signals and annotations from Emu into R.

Fig. 3.8 about here

 As Fig. 3.8 shows, signals (in this case formant data) are read into R in the form of what
is called trackdata but always from an existing segment list: as a result, the trackdata consists of
signals (formants) between the start and end times of each segment in the segment list. A
function, dcut() is then used to extract formant values at the segment's midpoint and these
data are combined with annotations to produce the required ellipse plots. The procedure for
creating a segment list involves using the emu.query() function which has already been
touched upon in the preceding Chapter. In the following, a segment list (vowels.s) is made of
five of speaker gam's monophthong categories, and then the formant data (vowels.fm) are
extracted from the database relative to these monophthongs' start and end times (remember to
enter library(emu) after starting R):

vowels.s = emu.query("second", "gam*",
"Phonetic=i:|e:|a:|o:|u:")
vowels.fm = emu.track(vowels.s, "fm")

The summary() function can be used to provide a bit more information on both of these
objects:

summary(vowels.s)
segment list from database: second
query was: Phonetic=i:|e:|a:|o:|u:
 with 45 segments

Segment distribution:

a: e: i: o: u:
 9 9 9 9 9

summary(vowels.fm)
Emu track data from 45 segments

Data is 4 dimensional from track fm
Mean data length is 29.82222 samples

 46

From this information, it can be seen that the segment list consists of 9 of each of the
monophthongs while the trackdata object is said to be four-dimensional (because there are four
formants), extracted from the track fm, and with just under 30 data frames on average per
segment. This last piece of information requires some further qualification. As already shown,
there are 45 segments in the segment list and their average duration is:

mean(dur(vowels.s))
149.2712

i.e., just under 150 ms. Recall that the window shift in calculating formants was 5 ms. For this
reason, a segment can be expected to have on average 149/5 i.e. a fraction under 30 sets of
formant quadruplets (speech frames) spaced at intervals of 5 ms between the segment's start and
end times.
 It is important at this stage to be clear how the segment list and trackdata relate back to
the database from which they were derived. Consider for example the fourth segment in the
segment list. The information about its label, start time, end time, and utterance from which it is
was taken is given by:

vowels.s[4,]

segment list from database: second
query was: Phonetic=i:|e:|a:|o:|u:
 labels start end utts
4 i: 508.578 612.95 gam006

A plot34 of the extracted formant data between these times (Fig. 3.9, left panel) is given by:

plot(vowels.fm[4,])

or equivalently with plot(vowels.fm[4,], type="l") to produce a line plot. These
are the same formant values that appear in Emu between 508 ms and 613 ms in the utterance
gam006, as the panel in the right of Fig. 3.9 shows.

Fig. 3.9 about here

 Another important point about the relationship between a segment list and trackdata is
that the speech frames are always extracted between or within the boundary times of segments in
a segment list. Therefore the first speech frame in the 4th segment above must be fractionally
after the start time of this segment at 508 ms and the last speech frame must be fractionally
before its end time at 613 ms. This is confirmed by using the start() and end() functions to
find the times of the first and last data frames for this segment:

start(vowels.fm[4,])
512.5
end(vowels.fm[4,])
612.5

34 For the sake of simplicity, I have reduced the command for plotting the formants to the minimum. The various
options for refining the plot are discussed in Chapter 5. The plot command actually used here was
plot(vowels.fm[4,], bty="n", ylab="Frequency (Hz)", xlab="Time (ms)", col=F,
pch=1:4)

 47

Thus the times of the first (leftmost) quadruplet of formants in Fig. 3.9 is 512.5 ms and of the
last quadruplet 612.5 ms. These times are also found in tracktimes(vowels.fm[4,])
which returns the times of all the data frames of the 4th segment:

tracktimes(vowels.fm[4,])
512.5 517.5 522.5 527.5 532.5 537.5 542.5 547.5 552.5 557.5 562.5 567.5 572.5
577.5 582.5 587.5 592.5 597.5 602.5 607.5 612.5

The above once again shows that the times are at intervals of 5 ms. Further confirmation that the
start and end times of the trackdata are just inside those of the segment list from which it is
derived is given by subtracting the two:

start(vowels.fm) - start(vowels.s)
end(vowels.s) - end(vowels.fm)

The reader will see upon entering the above instructions in R that all of these subtracted times
from all 45 segments are positive (thus showing that the start and end times of the trackdata are
within those of the segment list from which it was derived).
 As discussed at the beginning of this Chapter, the task is to plot the ellipses at the
temporal midpoint of the vowels and to do this, the dcut() function is needed to extract these
values from the trackdata (Fig. 3.8). This is done as follows:

mid = dcut(vowels.fm, 0.5, prop=T)

The object mid is a matrix of 45 rows and 4 columns containing F1-F4 values at the segments'
temporal midpoints. Here are F1-F4 at the temporal midpoint in the first eight segments (i.e., the
formants at the midpoints of the segments in vowels.s[1:8,]):

mid[1:8,]
 T1 T2 T3 T4
542.5 260 889 2088 2904
597.5 234 539 2098 2945
532.5 287 732 2123 2931
562.5 291 1994 2827 3173
512.5 282 1961 2690 2973
532.5 291 765 2065 2838
562.5 595 1153 2246 3262
592.5 326 705 2441 2842

It looks as if there are five columns of formant data, but in fact the one on the far left is not a
column in the sense that R understands it but a dimension name containing the times at which
these formant values occur. In order to be clear about this, the fourth row (highlighted above)
shows four formant values, F1 = 291 Hz, F2= 1994 Hz, F3 = 2827 Hz, and F4 = 3173 Hz that
occur at time 562.5 ms. These are exactly the same values that occur just after 560 ms identified
earlier in the utterance gam006 and marked at the vertical line in the left panel of Fig. 3.9.

Fig. 3.10 about here

 A plot of all these formant data at the vowel midpoint could now be given by
plot(mid[,1:2]) or equivalently plot(mid[,1], mid[,2]), where the integers after
the comma index the first and second column respectively. However, in order to differentiate the
points by vowel category, a vector of their labels is needed and, as the flow diagram in Fig. 3.8
shows, the vector can be obtained from the segment list using the label() function. Here the
segment labels are stored as a vector vowels.lab:

 48

vowels.lab = label(vowels.s)

The command plot(mid[,1:2], pch=vowels.lab) now differentiates the points by
category label. However, these data are not the right way round as far as the more familiar vowel
quadrilateral is concerned. In order to rotate the plot such that the vowels are arranged in relation
to the vowel quadrilateral (i.e., as in Fig 3.1), a plot of -F2 vs. -F1 on the x- and y-axes needs to
be made. This could be done as follows:

plot(-mid[,2:1], pch=vowels.lab)

The same can be achieved more simply with the eplot() function for ellipse drawing in the
Emu-R library by including the argument form=T. The additional argument centroid=T of
eplot() plots a symbol per category at the centre (whose coordinates are the mean of
formants) of the ellipse (Fig. 3.10):

eplot(mid[,1:2], vowels.lab, centroid=T, form=T)

Fig. 3.10 about here

The ellipses include at least 95% of the data points by default and so are sometimes called 95%
confidence ellipses - these issues are discussed more fully in relation to probability theory in the
last Chapter of this book.You can also plot the points with dopoints=T and take away the
ellipses with doellipse=F, thus:

eplot(mid[,1:2], vowels.lab, dopoints=T, doellipse=F, form=T)

gives the same display (albeit colour-coded by default) as plot(-mid[,2:1],
pch=vowels.lab) given earlier.

3.3 Summary
 The main points that were covered in this Chapter and that are extended in the exercises
below are as follows.

Signal processing

• Signal processing in Emu is applied with the tkassp toolkit. If signal processing is
applied to the file x.wav, then the output is x.ext where ext is an extension that can
be set by the user and which by default depends on the type of signal processing that is
applied. The files derived from tkassp are by default stored in the same directory as
those to which the signal processing was applied.

• Signal processing is applied by calculating a single speech frame at a single point in time
for a given window size. The window size is the duration of the speech signal seen at any
one time by the signal processing routine in calculating the speech frame. A speech frame
is often a single value (such as an intensity value or a fundamental frequency value) or a
set of values (such as the first four formants). The window shift defines how often this
calculation is made. If the window shift is set to 5 ms, then one speech frame is derived
every 5 ms.

• One of the parameters in calculating formants that often needs to be changed from its
default is Nominal F1 which is set to 500 Hz on the assumption that the speaker has a
vocal tract length of 17.5 cm. For female speakers, this should be set to around 600 Hz.

Displaying signal processing in Emu

 49

• In order to display the output of tkassp in Emu, the template file needs to be edited to
tell Emu where the derived signal files are located (and whether they should be displayed
when Emu utterances from the database are opened).

• In Emu, formants, fundamental frequency and some other signals can be manually
corrected.

Interface to R

• Speech signal data that is the output of tkassp is read into R as a trackdata object. A
trackdata object can only ever be created relative to a segment list. For this reason, a
trackdata object contains signal data within the start and end times of each segment in the
segment list.

• Various functions can be applied to trackdata objects including plot() for plotting
trackdata from individual segments and dcut() for extracting signal data at a specific
time point.

• Ellipses can be plotted for two parameters at a single point of time with the eplot()
function. An option is available within eplot() for plotting data from the first two
formants in such a way that the vowel categories are arranged in relation to the height
and backness dimensions of the vowel quadrilateral.

3.4 Questions

1. The task in this question is to obtain ellipse plots as in the left panel of Fig. 3.11 for the female
speaker agr from the second database analysed in this Chapter. Both the male speaker gam
and the female speaker agr are speakers of the same North German variety.
(a) Follow the procedure exactly as outlined in Figs. 3.3 and 3.4 (except substitute agr for gam
in Fig. 3.3) and calculate formants for the female speaker agr with a default nominal F1 of 600
Hz.

(b) Start up R and, after entering library(emu), enter commands analogous to those given
for the male speaker to produce the ellipses for the female speaker agr as shown in the right
panel of Fig. 3.11. Create the following objects as you proceed with this task:

vowelsF.s Segment list of speaker agr's vowels
vowelsF.l Vector of labels
vowelsF.fm Trackdata object of formants
vowelsF.fm5 Matrix of formants at the temporal midpoint of the vowel

(See the answers at the end of the exercises if you have difficulty with this).
Fig. 3.11 about here
 (c) You will notice from your display in R and from the right panel of Fig. 3.11 that there is
evidently a formant tracking error for one of the [u:] tokens that has F2 at 0 Hz. The task is to
use R to find this token and then Emu to correct it in the manner described earlier. Assuming you
have created the objects in (b), then the outliner can be found in R using an object known as a
logical vector (covered in detail in Chapter 5) that is True for any u: vowel that has F2 less
than 100 Hz:
temp = vowelsF.fm5[,2] < 100 & vowelsF.l == "u:"

The following verifies that there is only one such vowel:
sum(temp)
[1]

This instruction identifies the outlier:

 50

vowelsF.s[temp,]
segment list from database: second
query was: Phonetic=i:|e:|a:|o:|u:
 labels start end utts
33 u: 560.483 744.803 agr052

The above shows that the formant-tracking error occurred in agr052 between times 560 ms and
745 ms (so since the data plotted in the ellipses were extracted at the temporal midpoint, then the
value of F2 = 0 Hz must have occurred close to (560+745)/2 = 652 ms). Find these data in the
corresponding utterance in Emu (shown below) and correct F2 manually to an appropriate value.

(d) Having corrected F2 for this utterance in Emu, produce the ellipses again for the female
speaker. Your display should now look like the one in the left panel of Fig. 3.11.

(e) According to Fant (1966), the differences between males and females in the ratio of the
mouth to pharynx cavity length causes greater formant differences in some vowels than in others.
In particular, back rounded vowels are predicted to show much less male-female variation than
most other vowels. To what extent is this consistent with a comparison of the male (gam) and
female (agr) formant data?

(f) The function trackinfo() with the name of the database gives information about the
signals that are available in a database that can be read into R. For example:
trackinfo("second") returns "samples" and "fm". Where is this information stored in
the template file?

(g) You could make another trackdata object of formants for just the first three segments in the
segment list you created in (a) as follows:

newdata = emu.track(vowelsF.s[1:3,], "fm")

Given the information in (f), how would you make a trackdata object, audiowav, of the audio
waveform of the first three segments? How would you use this trackdata object to plot the
waveform of the third segment?

(h) As was shown in Chapter 2, a segment list of the word guten from the Word tier in the
utterance gam001 can be read into R as follows:

guten = emu.query("first", "gam001", "Word=guten")

How can you use the information in (f) to show that this:

emu.track(guten, "fm")

must fail?

2. The following question extends the use of signal processing to two parameters, intensity (dB-
RMS) and zero-crossing-rate (ZCR). The first of these gives an indication of the overall energy
in the signal and is therefore very low at stop closures, high at the release of stops and higher for
most vowels than for fricatives. The second, which is less familiar in phonetics research, is a
calculation of how often the audio waveform crosses the x-axis per unit of time. In general, there
is a relationship between ZCR and the frequency range at which most of the energy is
concentrated in the signal. For example, since [s] has most of its energy concentrated in a high

 51

frequency range, ZCR is usually high (the audio waveform for [s] crosses the x-axis frequently).
But since on the other hand most sonorants have their energy concentrated below 3000 Hz, the
audio waveform crosses the x-axis much less frequently and ZCR is comparably lower.
Therefore, ZCR can give some indication about the division of an audio speech signal into
fricative and sonorant-like sounds.

Fig. 3.12 about here

(a) Download the aetobi database. Calculate using rmsana (Fig. 3.12) the intensity signals
for all the utterances in this database using the defaults. Rather than using the default setting for
storing the RMS data, choose a new directory (and create one if need be) for storing the intensity
signals. Then follow the description shown in Fig. 3.12.

(b) When the intensity data is calculated (select Perform Analysis in Fig. 3.12), then the
corresponding files should be written to whichever directory you entered into the tkassp
window. Verify that this is so.

Fig. 3.13 about here

(c) The task now is to modify the template file to get Emu to see these intensity data following
exactly the procedure established earlier in this Chapter (Fig. 3.5). More specifically, you will
need to enter the information shown in Fig. 3.13 in the Track and View panes of the aetobi
template file.

(d) Verify that when you open any utterance of the aetobi database in Emu, the intensity
signal is visible together with the spectrogram as in Fig. 3.14. Why is the waveform not
displayed? (Hint: look at the View pane of the template file in Fig. 3.13).
Fig. 3.14 about here

(e) Change the display to show only the Word tier and intensity contour as shown in Fig. 3.15.
This is done with: Display → SignalView Levels → Word and Display →
Tracks… → rms

Fig. 3.15 about here

(f) The calculation of intensity has so far made use of the defaults with a window size and shift
of 25 ms and 5 ms respectively. Change the defaults by setting the window shift to 2 ms and the
window size to 10 ms (Fig. 3.16). The output extension should be changed to something other
than the default e.g. to rms2 as in Fig. 3.16, so that you do not overwrite the intensity data you
calculated in (b). Save the data to the same directory in which you stored the intensity files in the
calculation in (b) and then recalculate the intensity data.

Fig. 3.16 about here

(g) Edit the template file so that these new intensity data with the shorter time window and shift
are accessible to Emu and so that when you open any utterance in Emu you display only the two
intensity contours as in Fig. 3.17. (The required template modifications are in the answers).

Fig. 3.17 about here

(h) Explain why the intensity contour analysed with the shorter time window in Fig. 3.17 seems
to be influenced to a greater extent by short-term fluctuations in the speech signal.

 52

3. Using zcrana in tkassp, calculate the zero-crossing-rate (ZCR) for the aetobi database.
Edit the template file in order to display the ZCR-data for the utterance bananas as shown in
Fig. 3.18. What classes of speech sound in this utterance have the highest ZCR values (e.g.
above 1.5 kHz) and why?

Fig. 3.18 about here

4. Calculate the fundamental frequency (use the f0ana pane in tkassp) and formant
frequencies for the aetobi database in order to produce a display like the one shown in Fig.
3.19 for the argument utterance (male speaker) beginning at 3.2 seconds (NB: in modifying
the Tracks pane of the template file, you must enter F0 (capital F) under Tracks for
fundamental frequency data and, as already discussed, fm for formant data, so that Emu knows
to treat these displays somewhat differently from other signals).

Fig. 3.19 about here

5. In order to obtain trackdata for a database, the procedure has so far been to use tkassp to
calculate signals for the entire, or part of the, database and then to edit the template file so that
Emu knows where to locate the new signal files. However, it is also possible to obtain trackdata
for a segment list without having to derive new signals for the entire database and make changes
to the template file. This can be especially useful if the database is very large but you only need
trackdata for a handful of segments; and it also saves a step in not having to change the template
file. This procedure is illustrated below in obtaining fundamental frequency data for speaker
gam's [i:] vowels from the second database. Begin by making a segment list in R of these
vowels:

seg.i = emu.query("second", "gam*", "Phonetic = i:")

Now write out the segment list as a plain text file seg.txt to a directory of your choice using
the write.emusegs() function. NB: use only forward slashes in R and put the name of the
directory in "" inverted commas (e.g., on Windows "c:/documents/mydata/seg.txt").

write.emusegs(seg.i, "your chosen directory/seg.txt")

The plain text segment list created by the above command should look like this:

database:second
query:Phonetic = i:
type:segment

i: 508.578 612.95 gam006
i: 472.543 551.3 gam007
i: 473.542 548.1 gam016
i: 495.738 644.682 gam022
i: 471.887 599.255 gam026
i: 477.685 589.961 gam035
i: 516.33 618.266 gam038
i: 459.79 544.46 gam055
i: 485.844 599.902 gam072

Start up Emu and then access tkassp from Signal Processing → Speech signal
analysis. Then follow the instructions shown in Fig. 3.20 to calculate f0 data. The result of
running tkassp in the manner shown in Fig. 3.20 is to create another text file in the same
directory as the segment list to which you applied tkassp and with the name seg.f0-txt.

 53

This can be read into R with read.trackdata() and stored as the trackdata object
seg.f0:

seg.f0 = read.trackdata("your chosen directory/seg-f0.txt")

Verify with the summary() function that these are trackdata from nine segments and plot the
f0 data from the 3rd segment. Which utterance are these data from?

Fig. 3.20 about here

3.5 Answers
1 (b)
Segment list
vowelsF.s = emu.query("second", "agr*", "Phonetic=i: | e: | a:
| o: | u:")

Vector of labels
vowelsF.l = label(vowelsF.s)

Trackdata of formants
vowelsF.fm = emu.track(vowelsF.s, "fm")

Formants at the temporal midpoint of the vowel
vowelsF.fm5 = dcut(vowelsF.fm, 0.5, prop=T)

Ellipse plots in the formant plane
eplot(vowelsF.fm5[,1:2], vowelsF.l, form=T, dopoints=T, xlab="F2
(Hz)", ylab="F1 (Hz)")

1 (d)
You will need to read the formant data into R again (since a change has been made to the
formants in Emu (but not the segment list if you are still in the same R session), i.e.
repeat last 3 commands from 1(b).

1(e)
A comparison of Figs. 3.10 (male speaker gam) and 3.11 (female speaker agr) shows that there
is indeed comparatively little difference between the male and female speaker in the positions of
the high back vowels [o:, u:] whereas F2 for [i:, e:] and F1 for [a:] have considerably higher
values for the female speaker. Incidentally, the mean category values for the female on e.g. F2
can be obtained from:

tapply(vowelsF.fm5[,2], vowelsF.l, mean)

1(f) You get the same information with trackinfo() as is given under Track in the
Tracks pane of the corresponding template file.

1(g)
audiowav = emu.track(vowelsF.s[1:3,], "samples")
plot(audiowav[3,], type="l")

1(h)
trackinfo("first")

 54

shows that the track name fm is not listed, i.e., there is no formant data available for this
database, as looking at the Tracks pane of this database's template file will confirm.

2(d)
The waveform is not displayed because the samples box is not checked in the View pane of
the template file.

2(g)
The Tracks and Variables panes of the template file need to be edited as shown in Fig.
3.21.

Fig. 3.21 about here

2(h)
The longer the window, the greater the probability that variation over a small time interval is
smoothed out.

3.
ZCR is above 1.5 kHz at points in the signal where there is acoustic frication caused by a
turbulent airstream. Notice that this does not mean that ZCR is high in phonological fricatives
and low in phonological vowels in this utterance. This is because this utterance was produced
with a high degree of frication verging on laughter (for pragmatic effect i.e., to convey
surprise/astonishment at the interlocutor's naivety) resulting in e.g., fricative energy around 2
kHz and a comparatively high ZCR in the second vowel of bananas. ZCR is also high in the
release of [t] of aren't and in the release/aspiration of the [p] and in the final [s] of poisonous.
Notice how ZCR is lower in the medial /z/ than the final /s/ of poisonous. This does not
necessarily come about because of phonetic voicing differences between these segments (in fact,
the signal is more or less aperiodic for /z/ as shown by an absence of vertical striations on the
spectrogram) but probably instead because this production of /z/ does not have as much energy
in the same high frequency range as does final /s/ (see Chapter 8 for a further example of this).

5.
summary(seg.f0)

should confirm that there are 9 segments. The fundamental frequency for the third segment is
plotted with:

plot(seg.f0[3,])

The information about the utterance is given in the corresponding segment list:
seg.i[3,]
segment list from database: second
query was: Phonetic = i:
 labels start end utts
3 i: 473.542 548.1 gam016

i.e., the f0 data plotted in R are from utterance gam016.

 55

Chapter 4 Querying annotation structures
 The purpose of this Chapter is to provide an overview both of the different kinds of
annotation structures that are possible in Emu and of some of the main types of queries for
extracting annotations from them. This will take in a discussion of how annotations from
different tiers can be linked, their relationship to a Praat TextGrid, and the way that they can be
entered and semi-automated in Emu. This Chapter will begin with a brief review of the simplest
kinds of queries that have been used in the preceding Chapters to make segment lists.

4.1 The Emu Query Tool, segment tiers and event tiers
 As already discussed, whenever annotations are queried in Emu the output is a segment
list containing the annotations, their start and end times and the utterances from which they were
taken. One of the ways of making segment lists is with the emu.query() function in the R
programming language. For example, this function was used in the preceding Chapter to make a
segment list from all utterances beginning with gam (i.e., for the male speaker) in the second
database of five types of vowels annotated at the Phonetic tier:

emu.query("second", "gam*", "Phonetic = i: | e: | a: | o: | u:")

The other equivalent way to make a segment list is with the Emu Query Tool which is
accessed with Database Operations followed by Query Database from the Emu DB
window as shown in Fig. 4.1. One you have entered the information in Fig. 4.1, save the segment
list to the file name seg.txt and in a directory of your choice. You will then be able to read
this segment list into R with the read.emusegs() function as follows:

read.emusegs("path/seg.txt")

where path is the name of the directory to which you saved seg.txt. This will give exactly
the same output as you get from the emu.query() function above (and therefore illustrates the
equivalence of these two methods).

Fig. 4.1 about here

 In Chapter 2, a distinction was made between a segment tier whose annotations have
durations and an event or point tier in which an annotation is marked by a single point in time.
The commands for querying annotations from either of these tiers is the same but what is
returned in the first case is a segment list and in the second a variation on a segment list called
an event list in which the end times are zero. An example of both from the author utterance
of the aetobi database is as follows:

state.s = emu.query("aetobi", "author", "Word = state")
state.s
segment list from database: aetobi
query was: Word = state
 labels start end utts
1 state 2389.44 2689.34 author

bitonal = emu.query("aetobi", "author", "Tone = L+H*")
bitonal
event list from database: aetobi
query was: Tone = L+H*
 labels start end utts
1 L+H* 472.51 0 author
2 L+H* 1157.08 0 author

 56

Since the first of these is from a segment tier, the annotation has a start and end time and
therefore a duration:

dur(state.s)
299.9

On the other hand, the two annotations found in the second query have no duration (and their end
times are defined to be zero) because they are from an event tier:

dur(bitonal)
0 0

4.2 Extending the range of queries: annotations from the same tier
 As shown by various examples so far, the most basic query is of the form T = x where
T is an annotation tier and x an annotation at that tier. The following extensions can be made to
this basic query command for querying annotations from the same tier. In all cases, as before, the
output is either a segment list or an event list.

The | (or) operator and classes (features)
An example of this has already been given: Phonetic = i: | e: | a: | o: | u:
makes a segment list of all these vowels. A very useful way of simplifying this type of
instruction is to define annotations in terms of classes (or features). In Emu, classes can be set up
in the Legal Labels pane of the template file. For example, a number of annotations have
been grouped for the second database at the Phonetic tier into the classes shown in Fig. 4.2.
Consequently, a query for finding all rounded vowels can be more conveniently written as
follows:

emu.query("second", "gam*", "Phonetic=round")

Fig. 4.2 about here

The != operator
T != a means all annotations except x. So one way to get at all annotations in tier T in the
database is to put the right hand side equal to an annotation that does not occur at that tier. For
example, since abc is not an annotation that occurs at the Phonetic tier in the second
database, then Phonetic != abc returns all annotations from that tier. In the following
example, this instruction is carried out for speaker gam in R and then the label() and
table() functions are used to tabulate all the corresponding annotations:

seg.all = emu.query("second", "gam*", "Phonetic != abc")
table(label(seg.all))
H a: au b d e: g i: o: oe oy u:
72 9 9 24 24 9 24 9 9 9 9 9

The & operator
Apart from its use for queries between linearly linked tiers discussed in 4.3, this operator is
mostly useful for defining annotations at the intersection of features. For example, the following
feature combinations can be extracted from the second database as follows:

rounded high vowels
Phonetic = round & Phonetic = high

unrounded high vowels

 57

Phonetic != round & Phonetic = high

mid vowels
Phonetic != high & Phonetic != low

mid rounded vowels
Phonetic != high & Phonetic != low & Phonetic = round

Such definitions are then equivalent to those found in some distinctive feature notations in
phonology and linguistic phonetics. Thus the last instruction defines vowels that are [-high, -low,
+round] and they can be read into R using emu.query() in the same manner as before:

midround = emu.query("second", "*", "Phonetic != high & Phonetic !=
low & Phonetic = round")
table(label(midround))
o: oe oy
18 18 18

The -> operator
Any two queries at the same tier can be joined together with the -> operator which finds either a
sequence of annotations, or an annotation in the context of another annotation. There are three
cases to consider:

1. Make a segment list of a b (the segment list has a start time of a and end time of b)
 [T = a -> T = b]

2. Make a segment list of a if a precedes b
 [#T = a -> T = b]

3. Make a segment list of b if b follows a
 [T = a -> # T = b]

For example:

(i) A segment list of any word followed by of in the aetobi database:

emu.query("aetobi", "*", "[Word != x -> Word = of]")
labels start end utts
1 kind->of 2867.88 3106.87 amazing
2 lot->of 5315.62 5600.12 amazing
3 author->of 296.65 894.27 author

(ii) A segment list of all words preceding of:

emu.query("aetobi", "*", "[#Word != x -> Word = of]")
segment list from database: aetobi
query was: [#Word != x -> Word = of]
 labels start end utts
1 kind 2867.88 3016.44 amazing
2 lot 5315.62 5505.39 amazing
3 author 296.65 737.80 author

(iii) As above, but here the segment list is of the second word of:

emu.query("aetobi", "*", "[Word != x -> #Word = of]")
segment list from database: aetobi

 58

query was: [Word != x -> #Word = of]
 labels start end utts
1 of 3016.44 3106.87 amazing
2 of 5505.39 5600.12 amazing
3 of 737.80 894.27 author

4.3 Inter-tier links and queries
 An inter-tier query is, as its name suggests, any query that spans two or more annotation
tiers. For the aetobi database, an example of an inter-tier query is: 'find pitch-accented words'.
This is an inter-tier query because all annotations at the Word tier have to be found, but only if
they are linked to annotations at the Tone tier. For this to be possible, some of the annotations
between tiers must already have been linked (since otherwise Emu cannot know which words are
associated with a pitch-accent). So the first issue to be considered is the different kinds of links
that can be made between annotations of different tiers.

Fig. 4.3 about here

 An initial distinction needs to be made between two tiers that are linearly and non-
linearly linked. The first of these is straightforward: when two tiers are linearly linked, then one
tier describes or enriches another. For example, a tier Category might be included as a
separate tier from Word for marking words' grammatical category membership (thus each word
might be marked as one of adjective, noun, verb etc.); or information about whether or not a
syllable is stressed might be included on a separate Stress tier. In both cases, the tiers are
linearly linked because for every annotation at Word or Syllable tiers, there are exactly
corresponding annotations at the Category or Stress tiers. Moreover, the linearly linked
annotations have the same times. In the downloadable database gt which contains utterances
labeled more or less according to the conventions of the German Tones and Break Indices
system GToBI (Grice et al, 2005), the tiers Word and Break are linearly linked. The Break
tier contains annotations for so-called break-indices which define the phonetic juncture at word
boundaries. Each word is associated with a break on a scale from 0 to 5, with lower numbers
corresponding to less juncture. So if there is a full-pause between two words, then the word
before the pause on the Break tier is marked with a high value e.g., 4 or 5. On the other hand,
the first word in did you when produced as the assimilated form [dɪdʒә] would be 0 to denote the
substantial overlap at the word boundary. Whereas Break and Word are linearly linked, all of
the other tiers in the gt database stand in a non-linear relationship to each other. In Fig. 4.3, the
relationship between Tone and Word (and therefore also between Tone and Break) must be
non-linear, because there is evidently not one pitch-accent per word (not one annotation at the
Tone tier for every annotation at the Word tier).
 Fig.4.3 also shows the organisation of the utterance into a prosodic hierarchy. In an
annotation of this kind, an utterance (tier Utt) is made up of one or more intonation phrases (tier
I). An intonation phrase is made up of at least one intermediate phrase (tier i) and an
intermediate phrase is made up of one or more words. (Intonation and intermediate phrases are
collectively referred to as prosodic phrases). The criteria for marking these groupings depend to
a certain extent on phonetic juncture. Thus, there is a greater juncture between word pairs that
are in different phrases (morgen/fährt, Thorsten/ja, and Studio/bei in Fig. 4.3) than those within
a prosodic phrase. Moreover, the break between adjacent words in different intonation phrases
(Studio/bei) is greater than between adjacent words in different intermediate phrases.
 The non-linear association extends beyond those tiers that are in a parent-child
relationship35. Thus since I is a parent of i and since the relationship between i and Word is
non-linear, then the grandparent-child relationship between I and Word is also necessarily non-

35 A tier T is a parent of tier U if it is immediately above it in the annotation structure: so Utt is a parent of I which
is a parent of i which is a parent of Word which is a parent of Tone.

 59

linear. This becomes completely clear in skipping the i tier and displaying the links between I
and Word that fall out from these relationships, as in Fig. 4.4.

Fig. 4.4 about here

 There are two further parameters that need to be mentioned and both only apply to non-
linear relationships between tiers. The first is whether a non-linear association is one-to-many or
many-to-many. All of the relationships between tiers in Fig. 4.3 are one-to-many because an
annotation at a parent tier maps onto one or more annotations at a child tier, but not the other
way round: thus an intermediate phrase can be made up of one or more words, but a word cannot
map onto more than one intermediate phrase. In a many-to-many relationship by contrast, an
annotation at the parent tier can map onto one or more annotations at the child tier, and vice-
versa. Two examples of this type of many-to-many association are shown in Fig. 4.5. Firstly, the
final syllable was produced with a final syllabic nasal [n̩] (that is with no discernible weak vowel
in the final syllable) but in order to express the idea that this word could (in a more careful
speech production) be produced with a weak vowel as [әn], the word is annotated as such at the
Phoneme tier and both segments are linked to the single n annotation at the child tier. Since
two annotations from a parent tier can map onto a child tier and vice-versa, the inter-tier
relationship is many-to-many. Secondly, to express the idea inherent in some prosodic models
that the medial /s/ in (non-rhotic varieties of) person is ambisyllabic (e.g., Kahn, 1976;
Gussenhoven, 1986), the single s annotation is linked to both S and W (strong and weak)
annotations at the Syllable tier. Evidently, Syllable and Phoneme also stand in a many-
to-many relationship to each other because a syllable can be made up of more than one phoneme,
but a phoneme can also map onto two syllables.
 The final parameter that needs to be mentioned is whether the non-linear association
between two tiers is hierarchical or autosegmental (see also Bird & Liberman, 2001 and
Taylor, 2001 for a similar distinction in query languages). Two tiers are defined in Emu to be in
a hierarchical relationship when the annotations of a parent tier are composed of those from the
child tier (or seen from the bottom upwards, when the annotations of the child tier can be parsed
into those of the parent tier). For example, syllables stand in a hierarchical relationship to
phonemes in Fig. 4.5, because syllables are made up of a sequence of phonemes (phonemes are
parsed into syllables). In the autosegmental-metrical model of intonation (Pierrehumbert 1980;
Beckman & Pierrehumbert 1986; Ladd 1996), words are made up of a sequence of syllables, and
for this reason, the tiers stand in a hierarchical relationship to each other. Where → means
'stands in a hierarchical relationship to' then for the GToBI annotation in Fig 4.3, Utt → I → i
→ Word. On the other hand, the meaning of autosegmental is 'belongs to' or 'is associated with'.
In Fig. 4.3, Word and Tone stand in an autosegmental relationship to each other. Their
relationship is not hierarchical because a word is evidently not made up of a sequence of pitch-
accents (the units at the Tone tier) in the same way that it is always composed of a sequence of
syllables or a sequence of phonemes.
 In Emu, the difference between a hierarchical or autosegmental relationship depends on
whether the time stamps from the different tiers can be predicted from each other. In an
autosegmental relationship they cannot. For example, given a pitch-accent it is not possible to
say anything about the start and end times of the word with which it is associated nor vice-versa
(beyond the vague statement that a pitch-accent is likely to be annotated at a point on the f0-
contour somewhere near the word's rhythmically strongest vowel). On the other hand, given that
a word is composed of a sequence of syllables, then the start and end times of a word are
necessarily predictable from those of the first and last syllable. Similarly, given the hierarchical
relationship Utt → I → i → Word in Fig.4.3, then the duration of the first H% at tier I in this
figure extends from the onset of the first word to the offset of the last word that it dominates, i.e.,
between the start time of jeden and the end time of Thorsten; similarly, the duration of the first
H- at level i extends from the beginning to the end of jeden morgen that it dominates, and so on.

 60

Fig. 4.5 about here

 Specifying a relationship as hierarchical and many-to-many allows hierarchies to overlap
with each other in time at their edges. For example, since the Syllable and Phoneme tiers
are hierarchically related to each in Fig. 4.5, then the duration of the first syllable (S) of person
extends across the segments that it dominates, i.e., from the onset of p to the offset of s; but
since the second syllable (W) also extends across the segments it dominates, then its duration is
from the onset of the same s to the end of word: that is, the two syllables overlap in time across
the durational extent of the medial s. For analogous reasons, since @ (schwa) and n at the
Phoneme tier both map onto the same n annotation at the Phonetic tier, and since Phoneme
and Phonetic stand in a hierarchical relationship to each other, then these annotations are both
defined to have the same start times and they both have the same end times: thus since both @
and n inherit their times from the same annotation at the Phonetic tier, they are defined to be
temporally overlapping.
 When two tiers, T and U, are non-linearly (therefore either autosegmentally or
hierarchically) linked, then their annotations can be queried with [T = a ^ U = b] where
a and b are annotations at those tiers: such a query finds all a annotations at tier T that are
linked to b annotations at tier U. Some examples with respect to the thorsten utterance of the
gt database (Fig. 4.3) are given below. As discussed earlier, these search instructions can be
entered either in the Emu Query Tool in the manner shown in Fig 4.1, or by using
emu.query() function in R. For example, the search instruction

 [Tone=L* ^ Word=morgen | Studio]

can be embedded as argument to the emu.query() function as shown in the following
examples.

(i) All L* tones at the Tone tier linked to either morgen or Studio at the Word tier.
emu.query("gt","thorsten","[Tone=L* ^ Word=morgen | Studio]")
labels start end utts
1 L* 325.625 0 thorsten
2 L* 2649.770 0 thorsten

(ii) As (i), but return the corresponding words
[Tone = L* ^ #Word = morgen | Studio]
labels start end utts
1 morgen 250.366 608.032 thorsten
2 Studio 2438.090 2962.670 thorsten

 The != operator discussed in 4.1 can be used to find all annotations. For example, the
following search instruction finds all pitch-accented words i.e., any annotation at the Word tier
that is linked to any annotation at the Tone tier:

[Word != x ^ Tone != x]
1 morgen 250.366 608.032 thorsten
2 Thorsten 1573.730 2086.380 thorsten
3 Studio 2438.090 2962.670 thorsten
4 Chaos 3165.340 3493.200 thorsten
5 Stunden 3982.010 4274.110 thorsten

Queries can be made across intervening tiers as long as all the tiers are linked. Thus since tiers i
and Tone are linked via Word, a query such as 'find any intermediate phrase containing an L*'
(any annotation at tier i that is linked to L* at the Tone tier) is defined for this database:

 61

[i != x ^ Tone = L*]
labels start end utts
1 H- 47.689 608.032 thorsten
2 L- 2086.380 2962.670 thorsten

Two intermediate phrases are returned, which are the two that are associated with L* via the
Word tier (see Fig. 4.3). Notice that, although the query is made with respect to an event which
has no duration (L*), since the intermediate phrases inherit their durations from the Word tier,
they have a duration equal to the words that they dominate.
 It is possible to nest non-linear queries inside other non-linear queries. For example, the
following query finds the words that occur in an H- intermediate phrase and in an L%
intonational phrase (any annotation at the Word tier linked both to H- at the i tier and to L% at
the I tier):

[[Word != x ^ i = H-] ^ I = L%]
1 bei 2962.67 3165.34 thorsten
2 Chaos 3165.34 3493.20 thorsten
3 Kaja 3493.20 3815.10 thorsten
4 vier 3815.10 3982.01 thorsten
5 Stunden 3982.01 4274.11 thorsten
6 lang 4274.11 4691.39 thorsten

The following does the same but under the additional condition that the words should be pitch-
accented, (linked to an annotation at the Tone tier):

[[[Word !=x ^ Tone !=x] ^ i = H-] ^ I = L%]

or equivalently:

[[[Tone !=x ^ # Word!=x] ^ i = H-] ^ I = L%]
1 Chaos 3165.34 3493.20 thorsten
2 Stunden 3982.01 4274.11 thorsten

4.4 Entering structured annotations with Emu
 A helpful first step in entering annotations such as the one shown in Fig 4.3 is to
summarise the inter-tier relationships for a database in a path as in Fig. 4.6. In this Figure, (S)
and (E) denote segment and event tiers which, for convenience, can be collectively referred to
as time tiers. All other tiers (Utt, I, i, Break) are (initially) timeless i.e., they inherit their
times from another tier. An arrow between two tiers means that they stand in a non-linear
relationship to each other, either one-to-many (a single downward arrow) or many-to-many (a
double arrow). Any adjacent two tiers not connected by an arrow stand in a linear relationship to
each other (Word, Break). When a single or double arrow extends between any two time tiers
(Word, Tone) then the relationship is autosegmental; otherwise if either one (i, Word) or both
(Utt, I and I, i) of the tiers is timeless, then the relationship is hierarchical. A timeless tier
inherits its times from the child tier that it dominates. Thus, times percolate up the tree: i inherits
its times from Word, I from i, and Utt from I. In linear relationships, a timeless tier inherits
its times from the tier with which it is linearly associated (Break inherits its times from Word).

Fig. 4.6 about here

 The tiers that stand in a non-linear relationship to each other are entered into Emu in the
Levels pane of the template file (Fig. 4.6) in which the child:parent relationship is specified as
one-to-many or many-to-many. A tier that is linearly linked to another tier is declared in the

 62

Labels pane. The distinction between hierarchical and autosegmental depends on whether a
tier is marked as timeless in the Labfiles pane. Unless a tier is defined as a segment or event
tier (Fig. 4.6), it is timeless. Thus Utt → I → i → Word defines a hierarchical relationship in
this template file for two reasons: firstly, because of the child:parent relationships that are
declared in the Levels pane, and secondly because Word is the only one of these tiers declared
to be linked to times in the Labfiles pane. As described earlier, Utt, I and i inherit their
times from Word both because they dominate it, and because Word is associated with times.
Moreover, because these tiers do not have their own independent times, they do not appear in the
utterance's signal view window: thus when you open any utterance in the gt database, you will
only see Word/Break and Tone in the signal view window and you have to switch to the
hierarchy view window to see the other tiers (Fig. 4.3).

Fig. 4.7 about here

 There is one utterance in the gt database, dort, for which the non-linear links have not
been set and these can be incorporated following the details below. Begin by opening the
hierarchy window of this utterance in the manner described in Fig. 4.3. Once you have the
hierarchy window in the top panel of Fig. 4.7, select Simple Tree so that the annotations do
not overlap. The utterance dann treffen wir uns dort am Haupteingang (lit: then meet we us there
at the main-entrance, i.e. then we'll meet each other there, at the main entrance) was produced
as one intonational phrase and two intermediate phrases and with accented words dann, dort, and
Haupteingang. The corresponding pitch-accents have already been entered at the Tone tier: the
task, then, is to link the annotations to end up with the display shown in the lower pane of Fig.
4.7. Move the mouse over the leftmost H* which causes the annotation to turn blue. Then hold
down the left button and without letting go, drag the mouse to the word to which this pitch-
accent belongs, treffen. Once treffen is highlighted (it will also change colour to blue), then
release the mouse button. This should set the link. It is quite a good idea to practice deleting the
link, in case you make a mistake. To do this, select Delete, and move the mouse over the line
you have just drawn and it will then turn red. Clicking the mouse once, deletes the link. You can
in fact delete not just lines but annotations in this way. When you finish deleting, select Edit
before continuing, otherwise you will delete material such as links and annotations
(unfortunately, there is currently no undo button - so if you accidentally delete material, close the
annotation window without saving).
 In order to set the links between the i and Word tiers, move the mouse anywhere to the
same height in the window as the i tier and click twice (twice because two intermediate phrases
have to be entered). This will cause two asterisks to appear. Proceed in the same way as
described earlier for setting the non-linear links between the asterisks and the words as shown inf
Fig. 4.7: thus, move the mouse to the first word dann until it changes to blue, then hold the
mouse button down and sweep to the first asterisk until it also changes to blue. Set all of the
links between these tiers in the same way. You should end up with two asterisks at the i tier, the
first of which is linked to the first five words, the second to last two. To enter text, click on the
asterisk to get a cursor and enter the annotations. Set the labels and links at the Utt and I tier in
the same matter as described above. Finally, enter the annotations of the Break tier (these could
also be entered in the signal window because any tier that is linearly linked to a time tier - in this
case to Word - also appears in the signal window)36 and then save the file.

36 If for any reason you are not able to reproduce the final display shown in Fig 4.7, then copy
dort.tonesanswer dort.wordsanswer and dort.hlbanswer in path/gt/labels, where path is
the name of the directory to which you downloaded the gt database, and rename the files to dort.tones,
dort.words, dort.hlb respectively, over-writing any existing files if need be.

 63

Fig. 4.8 about here

The result of saving annotations is that one file per time tier and one so-called

hierarchical label file will be created or updated. Since for this database, there are two time
tiers, Tone and Word, then the annotations at the Tone tier and the annotations at the Word tier
are stored in their own separate (plain text) files. The location of these files is given in the
Labfiles pane of the template file (lower pane, Fig. 4.6). The other annotations from timeless
tiers are stored in the hierarchical label file which always has the extension hlb and which is
stored in the path given in the Levels pane of the template file. As you will see if you open any
(plain text) hlb file, the information is a code that is equivalent to the kinds of structures shown
in Fig. 4.8. (The actual numbers might differ depending on the order in which the annotations
were created). For example, some of the lines from dort.hlb might look like this:

0
1 7
2
3
4 8
5
6 9
7
8
9
10 5 6 9
11 0 1 2 3 4 7 8

The number on the left denotes a parent of any of those on the right. So 1 7 in the second line
means that annotation 1 is a parent (or grand-parent or great-great grand-parent etc.) of
annotation 7 while annotation 11 of the last line stands in an analogous relationship to the
adjacent annotations 0, 1, 2, 3, 4, 7, 8. The relationship between these numeric and
actual annotations can be deduced from the other information in the same hlb file or
alternatively by opening a hierarchy window and showing both types of annotations as in Fig.
4.8. This figure shows that 11 corresponds to the first H- at tier i while the other numbers to the
right include the annotations at the Word tier of which it is a parent as well as those of the Tone
tier of which it is a grand-parent.

4.5 Conversion of a structured annotation to a Praat TextGrid
 Although tiers whose times are predictable are structurally and implicitly coded in Emu,
it is nevertheless possible to convert most Emu annotations into a Praat TextGrid in which times
are explicitly represented for every annotation and for every tier. For example, the equivalent
TextGrid representation for the utterance that has just been annotated is shown in Fig. 4.9: in this
TextGrid, the annotations of the tiers that were declared to stand in a hierarchical relationship to
each other in Emu have identical times at boundaries, as Fig. 4.9 shows. But not every Emu
annotation structure can have a corresponding representation as a Praat TextGrid. In particular, it
is possible to have annotations in Emu that are completely timeless even after annotations have
percolated up through the tree, in the manner described earlier. An example of this occurs in the
downloadable kielread corpus in Fig. 4.10 in which the Kanonic tier (used for citation-
form, dictionary pronunciations) stands in a hierarchical relationship to the segment tier
Phonetic from which it therefore inherits its times. However, since some annotations at the
Kanonic tier are not linked to the Phonetic tier, then the times cannot be passed up the tree
to them and so they remain timeless.

 64

 This purpose of these unlinked annotations is to express segment deletion. Thus the
citation-form, isolated word production of und (and) has a final /t/, but in the read speech form
that actually occurred in this utterance, the /t/ appears to have been deleted, as both the
spectrogram Fig. 4.10 and listening to the utterance suggest. This mismatch between the citation-
form representation and what was actually spoken is given expression by representing this final
/t/ at the Kanonic tier as being unassociated with any time. The advantage of this
representation is that the user can subsequently compare analogous contexts that differ according
to whether or not segment deletion has taken place. For example, although based on a similar
spectrographic/auditory impression the final /t/ in past six may appear to have been deleted
(thereby rendering the first word apparently homophonous with pass), a more rigorous follow-up
analysis may well show that there were, after all, fine phonetic cues that distinguished the long
[s] across the word boundary in past six from its occurrence in pass six. But in order to carry out
such an analysis, it would be necessary to find in the corpus examples of [s] that do and do not
precede a deleted /t/ and this will only be possible if the deletion is explicitly encoded at this
more abstract level of representation, as has been done for the /t/ of und, the /ә/ of schreiben (to
write) and the final /әn/ of lernen (to learn) in this utterance in the kielread corpus. Now
since annotations in Praat must be explicitly associated with times, then these kinds of timeless
segments that are used to express the possibility of segment deletion will not appear in the Praat
TextGrid, when the conversion is carried out in the manner shown earlier in Fig. 4.9 (and a
warning message is given to this effect).

Fig. 4.9 about here
Fig. 4.10 about here

4.6 Graphical user interface to the Emu query language
 The types of queries that have been discussed so far can be combined for more complex
queries of structured annotations. A full review of the query syntax is beyond the scope of this
Chapter but is summarized in Cassidy & Harrington (2001) and set out in further detail in
appendix A on the website associated with this book. An example is given here of a complex
query that makes use of the additional functionality for searching by position and number: 'find
all L*+H pitch-accented words that are in intermediate-phrase-final position and in H%
intonational phrases of at least 5 words and such that the target words precede another word with
a break index of 0 in an L- intermediate phrase'. Such a query should find the word Thorsten in
the gt database (Fig. 4.3) because Thorsten:

• is the last word in an intermediate phrase
• is associated with an L*+H pitch-accent
• occurs in an H% intonational phrase of at least five words
• precedes another word (ja) whose break index is 0 and which occurs in an L-

intermediate phrase

The graphical user interface to the Emu query language, which was written by Tina John, can be
of great assistance in calculating complex queries such as these. This GUI (Fig. 4.11) is opened
by clicking on the graphical query button in the Query Tool window: for the gt
database, this action brings up a form of spreadsheet with the tiers arranged from top to bottom
according to the database's template file. It is a comparatively straightforward matter to enter the
search criteria into this window in the manner shown in Fig. 4.11. The search instruction is
automatically copied into the Query Tool window after clicking the Query button. You
could also copy the calculated search instruction and then enter it as the third argument of the
emu.query() function in R thus:

 65

emu.query("gt", "*", "[[[#Word !=x & End (i,Word) = 1 ^ I =
H% & Num (I,Word) >= 5] ^ Tone = L*+H] -> [Word !=x & Break
= 0 ^ i = L-]]")
labels start end utts
1 Thorsten 1573.73 2086.38 thorsten

Fig. 4.11 about here

4.7 Re-querying segment lists
 The emu.requery() function in the Emu-R library allows existing segment lists to
be queried for position or non-linearly. This is useful if, say, you have made a segment list of
words and subsequently want to find out the type of intermediate phrase in which they occurred,
or the annotations that followed them, or the pitch-accents with which they were associated. The
emu.requery() function can be used for this purpose and it takes the following three
mandatory arguments:

• a segment list
• the tier of the segments in the segment list
• the tier of the desired segment list

and the following two optional arguments:

• the position (as an integer) relative to the input segment list
• a specification for whether a new segment list or just its labels should be returned

For example, suppose you have made a segment list of all words in the utterance thorsten:

w = emu.query("gt", "thorsten", "Word != x")

and you now want to know the break index of these segments. This could then be calculated
with:

emu.requery(w, "Word", "Break")

In this case, the first argument is w because this is the segment list that has just been made; the
second argument is "Word" because this is the tier from which w was derived; and the third
argument is "Break" because this is the tier that is to be re-queried. The additional fourth
argument justlabels=T or equivalently j = T returns only the corresponding annotations
rather than the entire segment list:

emu.requery(w, "Word", "Break", j=T)
"1" "3" "1" "1" "1" "3" "0" "1" "1" "3" "1" "1" "1" "1" "1" "4"

Thus the second annotation "3" in the vector of annotations highlighted above is the break
index of the second segment. Exactly the same syntax can be used to re-query segment lists for
annotations of non-linearly linked tiers. So emu.requery(w, "Word", "i") and
emu.requery(w, "Word", "I") make segment lists of the intermediate and intonational
phrases that dominate the words in the segment list w. Similarly, you could find which words are
associated with a pitch-accent (i.e., the prosodically accented words) as follows:

emu.requery(w, "Word", "Tone", j=T)
"no-segment" "L*" "no-segment" ...

 66

The first two words in w are unaccented and accented respectively because, as the above
annotations show, no-segment is returned for the first (i.e. it is not associated with any
annotation at the Tone level) whereas the second is associated with an L*.
 If you want to find the preceding or following segments relative to a segment then use the
seq argument. Thus:

emu.requery(w, "Word", "Word", seq=-1)

finds the annotations at the same tier that precede the segment list (analogously, seq=2 would
be for findings annotations positioned two slots to the right, and so on). The first three segments
that are returned from the above command look like this:

Read 16 records
segment list from database: gt
query was: requery
 labels start end utts
1 no-segment 0.000 0.000 thorsten
2 jeden 47.689 250.366 thorsten
3 morgen 250.366 608.032 thorsten

The reason why the first segment has a no-segment entry is because there can be no segment
that precedes the first word of the utterance.
 If you want to re-query for both a different tier and a different position, then two queries
are needed. Firstly, a segment list is made of the preceding word and secondly these preceding
words are queried for pitch-accents:

prec.word = emu.requery(w, "Word", "Word", seq=-1)
prec.tone = emu.requery(prec.word, "Word", "Tone", j=T)

4.8 Building annotation structures semi-automatically with Emu-Tcl
 Putting together annotation structures such as the one discussed so far can be useful for
subsequently searching the database, but the data entry can be cumbersome, especially for a
large and multi-tiered database. For this reason, there is the facility in Emu to automate various
stages of tree-building via an interface to the Tcl/Tk programming language and there are some
existing programs in the Emu-Tcl library for doing so. Since an introduction to the Tcl/Tk
language is beyond the scope of this book, some examples will be given here of using very
simple programs for building annotation structures automatically. Some further examples of
using existing Emu-Tcl scripts are given in Appendix B of the website associated with this book.
 For the present example, the task will be to link annotations between the Tone and Word
tiers in the aetobi database in order to be able to make similar kinds of queries that were
applied to the gt database above. The annotations in aetobi are arranged in three time tiers,
Word, Tone, and Break that have the same interpretation as they did for the gt database
considered earlier. Since in contrast to the gt database, none of aetobi's annotations are
linked, then inter-tier queries are not possible. The first task will be to use an Emu-Tcl function
LinkFromTimes to link the Word and Tone tiers based on their times in order to allow
queries such as: 'find all pitch-accented words'.

Fig. 4.12 about here

 The Emu-Tcl function LinkFromTimes, causes annotations at two tiers T and U to be
linked whenever the time(s) of the annotations at tier U are within those of tier T. Therefore,
LinkFromTimes should link the H*, L*, and H* pitch-accents to Anna, married, and Lenny
respectively in Fig. 4.12 because the times of the pitch-accents all fall within the times of these

 67

word boundaries. It is not clear what this function will do to the annotations L-H% and L-L%: in
annotating these utterances, which was done in the early 1990s as part of the American English
ToBI database, the task was to align all phrase and boundary tones like these with the right word
boundary (so the right boundary of Anna and L-H% should have the same time) but it would
have needed very fine mouse control indeed to make the boundaries coincide precisely. So it is
more than likely that these boundary times are either fractionally before or after the word
boundary and for this reason it is difficult to predict whether they will be linked with the phrase-
final or phrase-initial word.
 Three steps are needed to run LinkFromTimes function and these are:

• write an Emu-Tcl script than includes this function
• load the script into the template file
• modify the template file if need be

For the first of these, the syntax is:

LinkFromTimes $utt Word Tone

where $utt is a variable defining the current utterance. This command needs to be saved in a
plain text file that includes a package statement to provide access to LinkFromTimes in the
Emu-Tcl library. You also have to include two functions that each begin with the line proc. The
first of these, AutoBuildInit, is used to initialise any data sets and variables that are
needed by the second, AutoBuild, that does the work of building the annotation structure for
the current utterance. Your plain text file should therefore include just these three commands:

package require emu::autobuild
proc AutoBuildInit {template} {}
proc AutoBuild {template utt} {LinkFromTimes $utt Word Tone}

Save this plain text file as aetobi.txt somewhere on your system. Now edit the template file
of the aetobi database in the usual way in order to make two changes: firstly, Word must be
made a parent of Tone because Emu will only link annotations between two tiers non-linearly if
one tier is declared to be a parent of the other; and secondly you will have to tell Emu where to
find the plain text file, aetobi.txt, that you have just created, (Fig. 4.13).

Fig. 4.13 about here

Then save the template file, reload the database and open any utterance. There will now be a new
button Build Hierarchy which is used to run your Tcl-script over the annotations of the
utterance that you have just opened. Switch to the hierarchy view, then select Build
Hierarchy and finally Redraw to see the result which should be linked annotations between
the Word and Tone tiers (Fig. 4.14). The same figure also shows that the L-H% phrase-
boundary tone has been linked with the second word (so the labeler evidently positioned this
annotation fractionally beyond the offset of the first word Anna).

Fig. 4.14 about here

 You could now save the utterance and then work through the entire database one
utterance at a time in order to link the annotations in this way, but even for a handful of
utterances this becomes tedious. Your Tcl script can instead be run over the entire database with
Database Operations → AutoBuildExtern which will bring up the Emu
AutoBuild Tool with your Tcl-script ready to be run (Fig. 4.15). If you follow through the

 68

instructions in this window, the script will be applied to all of the utterances and the
corresponding hlb files saved to the directory specified in the Emu template file. If you open
any utterance, you should find that the annotations at the Word and Tone tiers are linked.

Fig. 4.15 about here

Once the tiers are linked, then a query to find e.g. all L* accented words is possible:

emu.query("aetobi", "*", "[Word != x ^ Tone = L*]")

Read 13 records
segment list from database: aetobi
query was: [Word!=x ^ Tone=L*]
 labels start end utts
1 married 529.945 897.625 anna1
2 can 1063.330 1380.750 argument
3 can 3441.810 3723.970 argument
4 Atlanta 8483.270 9214.580 atlanta
5 audience 1070.865 1473.785 audience1
6 bananas 10.000 655.665 bananas
7 poisonous 880.825 1786.855 bananas
8 ma'am 1012.895 1276.395 beef
9 don't 2201.715 2603.025 beef
10 eat 2603.025 2867.945 beef
11 beef 2867.945 3441.255 beef
12 and 3510.095 3622.955 blond-baby1
13 pink 3785.905 4032.715 blond-baby1

 In Cassidy, Welby, McGory and Beckman (2000), a more complicated Tcl-program was
written for converting the flat annotations of the aetobi database into a hierarchical form
similar to that of the gt database considered earlier, in which intonational phrases dominate
intermediate phrases which dominate words and in which words are associated with pitch-
accents. In addition, and as for the gt database, the boundary and phrase tones are marked at
the intonational and intermediate tiers and the script ensures only pitch-accents from the Tone
tier are associated with words. The script for carrying out these operations is tobi2hier.txt
and it is located in the top level folder of the aetobi database when it is downloaded.

Fig. 4.16 about here

 As described above, the parent-child tier relationships need to be defined and the script
has to be loaded into the template file. For the first of these, the template file has to be changed
to encode the path in Fig. 4.16. This path has to be entered as always in the Levels pane of the
template file and the simplest way to do this, when there are already existing tiers, is in text
mode, as shown in Fig. 4.17. Having edited the tiers in the manner of Fig. 4.17, you must also
load the new Emu-Tcl program (in the Variables pane of the template file, as already
described in the right panel of Fig. 4.13). If you downloaded the aetobi database to the
directory path, then the file that you need to load is path/aetobi/tobi2hier.txt.
While you are editing the template, you should also select the new tiers Intonational and
Intermediate to be displayed in the View pane of the template file.

Fig. 4.17 about here

 Now call up the program for running this script over the entire database as in Fig. 4.15
which should now load the new Emu-Tcl script tobi2hier.txt. After you have run this
script, then the hierarchy for each utterance should be built and visible, in the manner of Fig.

 69

4.18. You will now be able to query the database for all the linked tiers. For example, the words
associated with H* in L- intermediate and H% intonational phrases is given by:

emu.query("aetobi", "*", "[[[Word != x ^ Tone = H*] ^
Intermediate = L-] ^ Intonational = H%]")
1 Anna 9.995 529.945 anna1
2 yes 10.000 2119.570 atlanta
3 uh 2642.280 3112.730 atlanta
4 like 3112.730 3360.330 atlanta
5 here's 10.000 206.830 beef

Fig. 4.18 about here

4.9 Branching paths
 In all of the tier relationships considered in the various corpora so far, the tiers have been
stacked up on top of each other in a single vertical path – which means that a tier has at most one
parent and at most one child. However, there are some kinds of annotation structure that cannot
be represented in this way. Consider as an example of this the relationship between various tiers
below the level of the word in German. It seems reasonable to suggest that words, morphemes,
and phonemes stand in a hierarchical relationship to each other because a word is composed of
one or more morphemes, which is composed of one or more phonemes: thus kindisch (childish)
unequivocally consists of a sequence of two morphemes kind and -isch which each map onto
their constituent phonemes. Analogously, words, syllables, and phonemes also stand in
hierarchical relationship to each other. Now there is a well-known phonological process
(sometimes called final devoicing) by which obstruents in German are voiceless in prosodically-
final position (e.g., Wiese, 1996): thus although the final consonant in Rad (wheel) may have
underlying voicing by analogy to e.g., the genitive form, Rades which surfaces (is actually
produced) with a voiced /d/, the final consonant of Rad is phonetically voiceless i.e., produced as
/ra:t/ and possibly homophonous with Rat (advice). Therefore, since kindisch is produced with a
voiced medial obstruent, i.e., /kɪndɪʃ/, then the /d/ cannot be in a prosodically final position,
because if it were, then kindisch should be produced with a medial voiceless consonant as
/kɪntɪʃ/ as a consequence of final devoicing. In summary it seems, then, that there are two quite
different ways of parsing the same phoneme string into words: either as morphemes kind+isch or
as syllables kin.disch. But what is the structural relationship between morphemes and syllables in
this case? It cannot be hierarchical in the sense of the term used in this Chapter, because a
morpheme is evidently not made up of one or more syllables (the first morpheme Kind is made
up of the first syllable but only a fragment of the second) while a syllable is also evidently not
made up of one or more morphemes (the second syllable consists of the second morpheme
preceded by only a fragment of the first). It seems instead that because phonemes can be parsed
into words in two different ways, then there must be two different hierarchical relationships
between Phoneme and Word organised into two separate paths: via Morpheme along one
path, but via Syllable along another (Fig. 4.19).

Fig. 4.19 about here

This three-dimensional representation in Fig. 4.19 can be translated quite straightforwardly
using the notation for defining parent-child relationships between tiers discussed earlier, in
which there are now two paths for this structure from Word to Morpheme to Phoneme and
from Word to Syllable to Phoneme as shown in Fig. 4.20.The equivalent parent-child
statements that would need to be made in the Levels pane of an Emu template file are as
follows:

Word

 70

Morpheme Word
Phoneme Morpheme
Syllable Word
Phoneme Syllable

Fig. 4.20 about here

 This type of dual path structure also occurs in the downloadable ae database of read
sentences of Australian English in which an Abercrombian stress-foot has been fused with the
type of ToBI prosodic hierarchy discussed earlier. A stress-foot according to Abercrombie
(1967) is a sequence of a stressed syllable followed by any number of unstressed syllables and it
can occur across word-boundaries. For example, a parsing into stress-feet for the utterance
msajc010 of the ae database might be:

It is | fu | tile to | offer | any | further re|sistance |
w w s s w s w s w s w w s w

where s and w are strong and weak syllables respectively and the vertical bar denotes a stress-
foot boundary. Evidently words and feet cannot be in a hierarchical relationship for the same
reason discussed earlier with respect to morphemes and syllables: a foot is not made up of a
whole number of words (e.g., resistance) but a word is also not composed of a whole number of
feet (e.g., further re- is one stress-foot). In the ae database, the Abercrombian foot is
incorporated into the ToBI prosodic hierarchy by allowing an intonational phrase to be made up
of one or more feet (thus a foot is allowed to cross not only word-boundaries but also
intermediate boundaries, as in futile to in msajc010). The paths for the ae database (which
also include another branching path from Syllable to Tone that has nothing to do with the
incorporation of the foot discussed here) is shown in Fig. 4.21 (open the Labels pane of the ae
template file to see how the child-parent relationships have been defined for these paths).

Fig. 4.21 about here

 If you were to draw the structural relationships for an utterance from this database in the
manner of Fig. 4.19, then you would end up with a three-dimensional structure with a parsing
from Intonational to Foot to Syllable on one plane, and from Intonational to
Intermediate to Word/Accent/Text to Syllable on another. These three-dimensional
diagrams cannot be displayed in Emu: on the other hand, it is possible to view the relationships
between tiers on the same path, as in Fig. 4.22 (Notice that if you select two tiers like
Intermediate and Foot that are not on the same path, then the annotations in the resulting
display will, by definition, not be linked).

Fig. 4.22 about here

 Inter-tier queries can be carried out in the usual way for the kinds of structures discussed
in this section, but only as long as the tiers are on the same path. So in the kindisch example
discussed earlier, queries are possible between any pairs of tiers except between Morpheme and
Syllable. Similarly, all combinations of inter-tier queries are possible in the ae database
except those between Foot and Intermediate or between Foot and
Word/Accent/Text. Thus the following are meaningful and result each in a segment list:

Intonational-final feet
emu.query("ae", "msajc010", "[Foot=F & End(Intonational,
Foot)=1]")

 71

Intonational-final content words
emu.query("ae", "msajc010", "[Word=C & End(Intonational,
Word)=1]")

but the following produces no output because Intermediate and Foot are on separate paths:

Intermediate-final feet
emu.query("ae", "msajc010", "[Foot=F & End(Intermediate,
Foot)=1]")

Error in emu.query("ae", "msajc010", "[Foot=F & End(Intermediate, Foot)=1]")
: Can't find the query results in emu.query:

4.10 Summary
Tier types: segment, event, timeless
 In Emu, there is a distinction between time tiers and timeless tiers. The former includes
segment tiers in which annotations have a certain duration and event tiers in which annotations
are marked by a single point in time. Timeless tiers inherit their times from time tiers depending
on how the tiers are linked.

Linear links
 When two tiers are linearly linked, then their annotations stand in a one-to-one
relationship to each other: that is for every annotation at one tier there is another annotation in
the tier to which it is linearly linked with the same time stamp. A tier inherits the times from the
tier with which it is linearly linked.

Non-linear links
 Two tiers are non-linearly linked if an annotation at one tier can map onto one or more
annotations at another tier.
 If both of the non-linearly linked tiers are also time tiers, then they stand in an
autosegmental relationship to each other, otherwise the relationship is hierarchical. In an
autosegmental relationship, the times of the tiers are by definition not predictable from each
other. In a hierarchical relationship, the times of the parent tier are predictable and inherited from
the child tier, where the parent tier is defined as the tier which is ordered immediately above a
child tier.
 If a single annotation in a parent tier can map onto one or more annotations at the child
tier but not vice-versa, the relationship between non-linearly linked tiers is additionally one-to-
many; otherwise it is defined to be many-to-many. Hierarchical many-to-many links can be used
to allow trees to overlap in time at their edges.

Specifying tier relationships in the template file
 A tier which is linearly linked to another is entered in the Labels pane of the template
file. When two non-linearly linked tiers are entered in the Levels pane by specifying that one
is the parent of the other, then they are non-linearly linked. The Levels pane is also used for
specifying whether the relationship is one-to-many or many-to-many. The distinction between
autosegmental and hierarchical emerges from the information included in the Labfiles pane:
if both tiers are specified as time tiers (segment or event) the association is autosegmental,
otherwise it is hierarchical.

Single and multiple paths
 Any set of tiers linked together in a parent-child relationship forms a path. For most
purposes, the annotation structures of a database can be defined in terms of a single path in
which a parent tier maps onto only one child tier and vice-versa. Sometimes, and in particular if

 72

there is a need to encode intersecting hierarchies, the annotation structures of a database may be
defined as two or more paths (a parent tier can be linked to more than one child tier and vice-
versa).

Data entry in Emu
 Annotations of time tiers must be entered in the signal view window. Tiers linearly linked
to time tiers can be entered in either the signal view or hierarchy windows. The annotations of all
other tiers as well as the links between them are entered in the hierarchy window. Use Display
→ SignalView Levels and Display → Hierarchy Levels to choose the tiers
that you wish to see (or specify this information in the Variables pane of the template file).
Annotations and annotation structures can also be semi-automated with the interface to Tcl.
These scripts, some of which are prestored in the Emu-Tcl library, are loaded into the
Variables pane of the template file. They are applied to single utterances with the Build
Hierarchy button or to all utterances with the Emu AutoBuild Tool.

File output and conversion to a Praat TextGrid
 The result of saving the Emu annotations is one plain text annotation file per time tier.
The extensions of each time tier are specified in the Labfiles pane of the template file. The
information about annotations in timeless tiers as well as the linear and non-linear links between
annotations is coded in the plain text hlb file (again with the utterance's basename) whose path
is specified in the template's Levels pane. Annotations stored in these files can be converted to
an equivalent Praat TextGrid using Arrange Tools → Convert Labels →
Emu2Praat. All annotations can be converted, even those in timeless tiers, as long as they have
inherited times from a time tier. Annotations that remain timeless are not converted.

Queries
 Emu annotation structures can be queried with the Emu query language either directly
using the Emu Query Tool or in R with the emu.query() function. The basic properties of
the Emu query language are as follows:

1. T = a finds all a annotations from tier T. The same syntax is used to find annotations
grouped by feature in the Legal Labels pane of the template file.

2. T != a finds all annotations except a. T = a | b finds a or b annotations at tier T.
3. Basic queries, either at the same tier or between linearly linked tiers, can be joined by &

to denote both and -> to denote a sequence. T = a & U = w finds a annotations at
tier T linearly linked with w annotations at tier U. T = a -> T = b finds the sequence
of annotations a b at tier T.

4. The # sign preceding a basic query causes annotations to be returned from that basic
query only. Thus T = a -> #T = b finds b annotations preceded by a annotations at
tier T.

5. ^ is used for queries between non-linearly linked tiers. [T = a ^ U = w] finds a
annotations at tier T non-linearly linked (autosegmentally or hierarchically) to w
annotations at tier U.

6. Num(T, U)=n finds annotations at tier T that are non-linearly linked to a sequence of n
annotations at tier U. (In place of = use >, <, !=, >=, <= for more than, less than, not
equal to, greater than or equal to, less than or equal to).

7. Start(T, U)=1 finds annotations at tier U that occur in initial position with respect to
the non-linearly linked tier T. End(T, U) = 1 and Medial(T, U) = 1 do the
same but for final and medial position. Start(T, U) = 0 finds non-initial
annotations at tier U.

8. Complex queries can be calculated with the aid of the graphical user interface.

 73

9. An existing segment list can be re-queried in R either for position or with respect to
another tier using the emu.requery() function.

4.11 Questions

1. This question is concerned with the second database.
1.1 By inspecting the Levels, Labels, and Labfiles panes of the template file, draw the
relationship between the tiers of this database in a path analogous to that in Fig. 4.6.

1.2 How are the following pairs of tiers related: autosegmentally, hierarchically, linearly, or
unrelated?

Word and Phoneme
Word and Phonetic
Word and Target
Word and Type
Type and Phoneme
Type and Phonetic
Type and Target
Phoneme and Phonetic
Phoneme and Target
Phonetic and Target

1.3 Using the emu.query() function in R, make segment lists for utterances beginning with
agr* (i.e., for the female speaker) in the following cases (/x/ refers to a segment at the
Phoneme tier, [x] to a segment at the Phonetic tier, /x y/ to a sequence of segments at the
Phoneme tier). If need be, make use of the graphical-user-interface to the Emu query language.
Store the result as segment lists s1, s2...s12. Question 1.3.1 is given as an example.

1.3.1. [u:]
Example answer: s1 = emu.query("second", "agr*", "Phonetic=u:")

1.3.2 The words Duden or Gaben. (Store the results in the segment list s2).

1.3.3 The annotations at the Type tier for Duden or Gaben words.

1.3.4. [u:] and [oe]

1.3.5. /g u:/

1.3.6. /i:/ following /g/ or /b/

1.3.7. [H] in Gaben

1.3.8. [a:] in Gaben words of Type L

1.3.9. T at the Target level associated with any of /u:/, /i:/, or /y:/

1.3.10 Word-initial phonemes

1.3.11 [H] in words of at least two phonemes

 74

1.3.12 [H] when the word-initial phoneme is /d/

1.4 Use the emu.requery() function to make segment lists or annotations relative to those
made in 1.3 in the following cases:

1.4.1 A segment list of the words corresponding to s4
Example answer: emu.requery(s4, "Phonetic", "Word")

1.4.2 A segment list of the phonemes preceding the segments in s6

1.4.3 The annotations at the Type level in s9

1.4.4 The annotations of the segments following s12

1.4.5 A segment list of the phonetic segments corresponding to s2

2. This question is concerned with the downloadable ae database.

2.1 Fig. 4.21 is a summary of the paths for the ae database. Sketch the separate paths for the ae
database in the manner shown on the left of Fig. 4.20. Why is there an ambiguity about the times
inherited by the Syllable tier (and hence also about all tiers above Syllable)?

2.2 Make segment or event lists from the ae database in the following cases. /x/ refers to
annotations at the Phoneme tier, [x] to annotations at the Phonetic tier, orthographic
annotations are at the Text tier. A strong (weak) syllable is coded as S (W) at the Syllable
tier, and a prosodically accented (unaccented) word as S (W) at the Accent tier.

2.2.1. Annotations of his (from the Text tier).

2.2.2. /p/ or /t/ or /k/

2.2.3. All words following his

2.2.4. The sequence /ei k/

2.2.5. All content words (annotations at the Text tier associated with C from the Word tier).

2.2.6. The orthography of prosodically accented words in sequences of W S at the Accent tier.

2.2.7. A sequence at the Text tier of the followed by any word e.g., sequences of the person or
the situation etc.

2.2.8. The phoneme /ei/ in strong syllables

2.2.9. Weak syllables containing an /ei/ phoneme

2.2.10. Word-initial /m/ or /n/

2.2.11. Weak syllables in intonational-phrase final words.

2.2.12. Trisyllabic words (annotations from the Text tier of three syllables).

 75

2.2.13. /w/ phonemes in monosyllabic words.

2.2.14. Word-final syllables in trisyllabic content words.

2.2.15. Foot-initial syllables.

2.2.16. L+H* annotations at the Tone tier in foot-initial syllables in feet of more than two
syllables.

3. This question is concerned with the downloadable gt database that has been discussed in this
Chapter.

3.1. In some models of intonation (e.g. Grice et al, 2000) phrase tones (annotations at the
intermediate tier) are both hierarchical groupings of words but also have their own independent
times, as in Fig. 4.23. What simple modification do you need to make to the template file so that
phrase tones (the annotations at Tier i) can be marked as an event in time as in Fig. 4.23? Verify
that you can annotate and save the utterance schoen in the manner shown in Fig. 4.23 after you
have edited and saved the template file.

Fig. 4.23 about here

3.2 If annotations at the intermediate tier are queried with the template file modified according to
3.1, then such annotations are no longer segments but events as follows for the schoen
utterance:

emu.query("gt", "schoen", "i !=x")
Read 1 records
event list from database: gt
query was: i !=x
 labels start end utts
1 L- 1126.626 0 schoen

Why is the result now an event and not a segment list as before?

3.3 If you nevertheless also wanted to get the duration of this L- intermediate phrase in terms of
the words it dominates as before, how could you do this in R? (Hint: use emu.requery()).

4. Figure 4.24 shows the prosodic hierarchy for the Japanese word [kit:a] (cut, past participle)
from Harrington, Fletcher, & Beckman (2000) in which the relationship between word, foot,
syllable, mora, and phoneme tiers is hierarchical. (The long [t:] consonant is expressed in this
structure by stating that [t] is ambisyllabic and dominated by a final mora of the first syllable).
The downloadable database mora contains the audio file of this word produced by a female
speaker of Japanese with a segmentation into [kita] at the lowest segment tier, Phon.

Fig. 4.24 about here

4.1 Draw the path structure for converting this representation in Fig 4.24 into a form that can be
used in a template file. Use Word, Foot, Syll, Mora, Phon for the five different tiers.

4.2 Modify the existing template file from the downloadable database mora to incorporate these
additional tiers and annotate this word according to relationships given in Fig. 4.24.

 76

4.3 Verify when you have completed your annotations that you can display the relationships
between annotations shown in Fig. 4.25 corresponding to those in Fig. 4.24.

Fig. 4.25 about here

4.4 Make five separate segments lists of the segments at the five tiers Word, Foot, Syll,
Mora, Phon.

4.5. Verify the following by applying emu.requery()to the segment lists in 4.4:

4.5.1 ωat the Word tier consists of [kita] at the Phon tier.
4.5.2 F at the Foot tier consists of [kit] at the Phon tier.
4.5.3 F at the Foot tier consists of the first two morae at the Mora tier.
4.5.4 The second syllable at the Syll tier consists only of the last mora at the Mora tier.
4.5.5 When you requery the annotations at the Phon tier for morae, the first segment [k] is not
dominated by any mora.
4.5.6 When you requery the [t] for syllables, then this segment is dominated by both syllables.

4.12 Answers

1.1

Editor: Please insert Fig. 4.flowchart about here with no figure legend

1.2.
Word and Phoneme h
Word and Phonetic h
Word and Target a
Word and Type l
Type and Phoneme h
Type and Phonetic h
Type and Target a
Phoneme and Phonetic h
Phoneme and Target a
Phonetic and Target a

1.3.2
s2 = emu.query("second", "agr*", "Word = Duden | Gaben")

 1.3.3
s3 = emu.query("second", "agr*", "Type !=x & Word = Duden |
Gaben ")
OR
s3 = emu.requery(s2, "Word","Type")

 1.3.4
s4 = emu.query("second", "agr*", "Phonetic=u: | oe")

 1.3.5
s5 = emu.query("second", "agr*", "[Phoneme = g -> Phoneme =
u:]")

 77

 1.3.6
s6 = emu.query("second", "agr*", "[Phoneme = g | b -> #Phoneme =
i:]")

 1.3.7
s7 = emu.query("second", "agr*", "[Phonetic = H ^ Word =
Gaben]")

 1.3.8
s8 = emu.query("second", "agr*", "[Phonetic = a: ^ Word = Gaben
& Type=L]")

 1.3.9
s9 = emu.query("second", "agr*", "[Target = T ^ Phoneme = u:
| i: | y:]")

 1.3.10
s10 = emu.query("second", "agr*", "Start(Word, Phoneme)=1")
OR
s10 = emu.query("second", "agr*", "Phoneme !=g4d6j7 & Start (
Word,Phoneme) = 1")

 1.3.11
s11 = emu.query("second", "agr*", "[Phonetic = H ^ Num(Word,
Phoneme) >= 2]")

 1.3.12
s12 = emu.query("second", "agr*", "[Phonetic = H ^ Phoneme =d &
Start(Word, Phoneme)=1]")

1.4.2
emu.requery(s6, "Phoneme", "Phoneme", seq=-1)

1.4.3
emu.requery(s9, "Target", "Type", j = T)

1.4.4
emu.requery(s12, "Phonetic", "Phonetic", seq=1, j=T)

1.4.5
emu.requery(s2, "Word", "Phonetic")

2.1
There are four separate paths as follows:

Editor: Please insert Fig. 4.flowchart2 about here with no figure legend

The ambiguity in the times inherited by the Syllable tier comes about because Syllable is
on the one hand a (grand)parent of Phonetic but also a parent of Tone. So do Syllable
and all the tiers above it inherit segment times from Phonetic or event times from Tone? In
Emu, this ambiguity is resolved by stating one of the child-parent relationships before the other
in the template file. So because the child-parent relationship

 78

Phoneme Syllable

is stated before

Tone Syllable

in the Levels pane of the template file, then Syllable inherits its times from Phoneme (and
therefore from Phonetic). If the Tone-Syllable relationship had preceded the others, then
Syllable would have inherited event times from Tone.
 The resolution of this ambiguity is (indirectly) expressed in Fig. 4.21 by drawing the
Syllable-Phoneme-Phonetic tiers as the vertical path and having Syllable-Tone as
a branching path from this main path (so whenever there is an ambiguity in time inheritance,
then times are inherited along the vertical path).

2.2.1
Text = his

2.2.2
Phoneme = p | t | k

2.2.3
[Text = his -> # Text!=x]

2.2.4
[Phoneme = ei -> Phoneme = k]

2.2.5
Text!=x & Word = C

2.2.6
[Accent = W -> # Text!=x & Accent = S]

2.2.7
[Text = the -> Text!=x]

2.2.8
[Phoneme = ei ^ Syllable = S]

2.2.9
[Syllable = W ^ Phoneme = ei]

2.2.10
Phoneme = m | n & Start(Text, Phoneme)=1
OR
Phoneme = m | n & Start(Word, Phoneme)=1

2.2.11
[Syllable = W ^ End(Intonational, Text)=1]

2.2.12
[Text !=x & Num(Text, Syllable)=3]
OR
Num(Text, Syllable)=3

 79

2.2.13
[Phoneme = w ^ Num(Text, Syllable)=1]

2.2.14
[[Syllable!=x & End(Text, Syllable)=1 ^ Num(Text, Syllable)=3]
^ Word=C]

2.2.15
[Syllable !=x & Start(Foot, Syllable)=1]

2.2.16
[[Tone = L+H* ^ Start(Foot, Syllable)=1] ^ Num(Foot, Syllable)
> 2]

3.1 Tier i needs to be declared an event tier in the Labfiles pane of the template file.

3.2 Because Tier i no longer inherits its times hierarchically from the Word tier.

3.3
ptone = emu.query("gt", "schoen", "i !=x")
emu.requery(ptone, "i", "Word")

4.1
This is a three-dimensional structure with Foot on a separate plane from Word-Syll and
Mora on a separate plane from Syll-Phon as shown in the left panel of Fig. 4.26. The
translation into the path structure is shown on the right in which Word inherits its times from
Phon via Syll (as a result of which the duration of ω extends over all segments [kita] that it
dominates).

Fig. 4.26 about here

4.2 The parent-child relationships between the tiers need to be coded in the Emu template file as
follows:

Level Parent
Word
Syll Word
Phon Syll many-to-many
Foot Word
Syll Foot
Mora Syll
Phon Mora

The Syll-Phon parent child relationship needs to be many-to-many because /t/ at tier Phon is
ambisyllabic. All other tier relationships are one-to-many. The Word-Syll relationship needs to
be positioned before Word-Foot in the template file so that Word inherits its times along the
Word-Syll-Phon path (see the note in the answer to question 2.1 for further details). The tiers
will be arranged in appropriate order if you select the tiers from the main path (i.e., Word,
Syll, Phon) in the View pane of the template file. Alternatively, verify in text mode (see Fig.
4.17 on how to do this) that the following has been included:

set HierarchyViewLevels Word Foot Syll Mora Phon

 80

4.3
When you annotate the utterance in the different planes, then choose from Display →
Hierarchy levels to display the tiers in the separate planes as in Fig. 4.26. If all fails, then
the completed annotation is accessible from the template file moraanswer.tpl .

4.4
(You will need to choose "moraanswer" as the first argument to emu.query() if you did
not complete 4.1-4.3 above).

pword = emu.query("mora", "*", "Word!=x")
foot = emu.query("mora", "*", "Foot!=x")
syll = emu.query("mora", "*", "Syll!=x")
m = emu.query("mora", "*", "Mora!=x")
phon = emu.query("mora", "*", "Phon!=x")

4.5.1.
emu.requery(pword, "Word", "Phon")
k->i->t->a 634.952 1165.162 kitta

4.5.2
emu.requery(foot, "Foot", "Phon")
k->i->t 634.952 1019.549 kitta

4.5.3
emu.requery(foot, "Foot", "Mora")
m->m 763.892 1019.549 kitta

4.5.4
emu.requery(syll[2,], "Syll", "Mora")
m 1019.549 1165.162 kitta
or
emu.requery(m[3,], "Mora", "Syll")
s 831.696 1165.162 kitta

4.5.5
emu.requery(phon, "Phon", "Mora", j=T)
"no-segment" "m" "m" "m"

4.5.6
emu.requery(phon[3,], "Phon", "Syll", j=T)
"s->s"

 81

Chapter 5 An introduction to speech data analysis in R: a study of an EMA database

 In the third Chapter, a relationship was established in R using some of the principal
functions of the Emu-R library between segment lists, trackdata objects and their values
extracted at the temporal midpoint in the formant analysis of vowels. The task in this Chapter is
to deepen the understanding of the relationship between these objects, but in this case using a
small database of some movement data obtained with the electromagnetic midsagittal
articulograph manufactured by Carstens Medizinelektronik. These data were collected by Lasse
Bombien and Phil Hoole of the IPS, Munich (Hoole et al, in press) and their aim was to explore
the differences in synchronization of the /k/ with the following /l/ or /n/ in German /kl/ (in e.g.,
Claudia) and /kn/ (e.g., Kneipe) word-onset clusters. More specifically, one of the hypotheses
that Bombien and Hoole wanted to test was whether the interval between the tongue-dorsum
closure for the /k/ and the tongue tip closure for the following alveolar was greater in /kn/ than in
/kl/. A fragment of 20 utterances, 10 containing /kn/ and 10 containing /kl/ clusters of their much
larger database was made available by them for illustrating some techniques in speech analysis
using R in this Chapter.
 After a brief overview of the articulatory technique and some details of how the data
were collected (5.1), the annotations of movement signals from the tongue tip and tongue
dorsum will be discussed in relation to segment lists and trackdata objects than can be derived
from them (5.2). The focus of section 5.3 is an acoustic analysis of voice-onset-time in these
clusters which will be used to introduce some simple forms of analysis in R using segment
duration. In section 5.4, some techniques for making ensemble plots are introduced to shed some
light on intergestural coordination, i.e., on the co-ordination between the tongue-body and
following tongue-tip raising. In section 5.5, the main aim is to explore some intragestural
parameters and in particular the differences between /kn/ and /kl/ in the characteristics of the
tongue-dorsum raising gesture in forming the /k/ closure. This section will also include a brief
overview of how these temporal and articulatory landmarks are related to some of the main
parameters that are presumed to determine the shape of movement trajectories in time in the
model of articulatory phonology (Browman & Goldstein, 1990a, b, c) and task-dynamic
modeling (Saltzman & Munhall, 1989).

5.1 EMA recordings and the ema5 database
 In electromagnetic articulometry (EMA), sensors are attached with a dental cement or
dental adhesive to the midline of the articulators, and most commonly to the jaw, lips, and
various points on the tongue (Fig. 5.1).

Fig. 5.1 about here

As discussed in further detail in Hoole & Nguyen (1999), when an alternating magnetic field is
generated by a transmitter coil, it induces a signal in the receiver coil contained in the sensor that
is approximately inversely proportional to the cube of the distance between the transmitter and
the receiver and it is this which allows the position of the sensor to be specified. In the so-called
5D-system that has been developed at the IPS Munich (Hoole et al, 2003; Hoole & Zierdt, 2006;
Zierdt, 2007) and which was used for the collection of the present data, the position of the sensor
is obtained in a three-dimensional Cartesian space that can be related to the sensor’s position in
the coronal, sagittal, and transverse planes (Fig. 5.3). Typically, the data are rotated relative to
the occlusal plane which is the line extending from the upper incisors to the second molars at the
back and which is parallel to the transverse plane (Fig. 5.3). (The rotation is done so that the
positions of the articulators can be compared across different speakers relative to the same
reference points). The occlusal plane can be determined by having the subject bite onto a bite-
plate with sensors attached to it. In recording the data, the subject sits inside a so-called EMA
cube (Fig. 5.2) so there is no need for a helmet as in earlier EMA systems. In the system that was

 82

used here, corrections for head movements were carried out in a set of processing steps sample
by sample.

Fig. 5.2 about here
Fig. 5.3 about here

 Up-down differences in the vertical dimension of the sagittal plane correspond most
closely to stricture differences in consonants and to phonetic height differences in vowels. So,
once the rotation has been done, then there should be noticeable differences in the position of the
jaw sensor in moving from a bilabial closure to the open vowel in [pa]. Front-back, differences
in the horizontal dimension of the sagittal plane are related to movement of the articulators in the
direction from the lips to the uvula. In this plane, the tongue-mid and tongue-back sensors should
register a clear difference in producing a transition from a phonetically front to a back
articulation in the production of [ju]. Finally, the lateral differences (horizontal dimension of the
coronal plane) should register movements between right and left, as in moving the jaw or the
tongue from side to side to side37.
 For the data in the downloadable EMA database, movement data were recorded from
sensors fixed to three points on the tongue (Fig. 5.1), as well as to the lower lip, upper lip, and
jaw (Fig. 5.4). The sensors were all fixed in the mid-sagittal plane. The tongue tip (TT) sensor
was attached approximately 1 cm behind the tip of the tongue; the tongue back or tongue body
(TB) sensor was positioned as far back as the subject could tolerate; the tongue mid (TM) sensor
was equidistant between the two with the tongue protruded. The jaw sensor was positioned in
front of the lower incisors on the tissue just below the teeth. The upper lip (UL) and lower lip
(LL) sensors were positioned on the skin just above and below the lips respectively (so as not to
damage the lips' skin). In addition, there were four reference sensors which were used to correct
for head movements: one each on the left and right mastoid process, one high up on the bridge of
the nose, and one in front of the upper incisors on the tissue just above the teeth.

Fig. 5.4 about here

 The articulatory data were sampled at a frequency of 200 Hz in a raw file format. All
signals were band-pass filtered with a FIR filter (Kaiser window design, 60 dB at 40-50 Hz for
the tongue tip, at 20-30 Hz for all other articulators, at 5-15 Hz for the reference sensors).
Horizontal, vertical, and tangential velocities were calculated and smoothed with a further
Kaiser-window filter (60 dB at 20-30Hz). All these steps were done in Matlab and the output
was stored in self-documented Matlab files. The data was then converted using a script written
by Lasse Bombien into an Emu compatible SSFF format.38

 The database that will be analysed in this Chapter, ema5, consists of 20 utterances
produced by a single female speaker of Standard German. The 20 utterances are made up of five
repetitions of four sentences that contain a target word in a prosodically phrase-medial, accented
position containing either a /kl/ or /kn/ cluster in onset position. The four words for which, then,
there are five repetitions each (thus 10 /kl/ and 10 /kn/ clusters in total) are Klausur
(examination), Claudia (a person's name), Kneipe (a bar) and Kneipier (bar attendant). Claudia
and Kneipe have primary lexical stress on the first syllable, the other two on the final syllable.
When any utterance of this database is opened, the changing positions of the moving jaw, lips,
and three points of the tongue are shown in relation to each other in the sagittal and transverse
planes (Fig. 5.5). In addition, the template file has been set up so that the two movement signals,
the vertical movement of the tongue tip and tongue-body, are displayed. These are the two
signals that will be analysed in this Chapter.

37 See http://www.phonetik.uni-muenchen.de/~hoole/5d_examples.html for some examples.
38 The script is mat2ssff.m and is available in the top directory of the downloadable ema5 database.

 83

Fig. 5.5 about here

 As is evident in opening any utterance of ema5, the database has been annotated at three
tiers: Segment, TT, and TB. The Segment tier contains acoustic phonetic annotations that
were derived semi-automatically with the MAUS automatic segmentation system (Schiel, 2004)
using a combination of orthographic text and Hidden-Markov-models trained on phonetic-sized
units. The segmentations have been manually changed to sub-segment the /k/ of the target words
into an acoustic closure and following release/frication stage.
 In producing a /kl/ or /kn/ cluster, the tongue-body attains a maximum height in forming
the velar closure for the /k/. This time at which this maximum occurs is the right boundary of
raise at the TB tier (or, equivalently, at the left boundary of the following lower annotation).
The left boundary of raise marks the greatest point of tongue dorsum lowering in the
preceding vowel. In producing the following /l/ or /n/, the tongue tip reaches a maximum height
in forming the alveolar constriction. The time of this maximum point of tongue-tip raising is the
right boundary of raise at the TT tier (left boundary of lower). The left boundary of raise
marks the greatest point of tongue tip lowering in the preceding vowel (Fig. 5.5).

Fig. 5.6 about here

The annotations for this database are organised into a double path annotation structure in which
Segment is a parent of both the TT and the TB tiers, and in which TT is a parent of TB (Fig.
5.6). The annotations raise and lower at the TT tier are linked to raise and lower
respectively at the TB tier and both of these annotations are linked to the word-initial /k/ of the
target words at the Segment tier. The purpose of structuring the annotations in this way is to
facilitate queries from the database. Thus, it is possible with this type of annotation structure to
make a segment list of word-initial acoustic /k/ closures and then to obtain a segment list of the
associated sequence of raise lower annotations at either the TT or TB tier. In addition, if a
segment list is made of raise at the TT tier, then this can be re-queried not only to obtain a
segment list of the following lower annotations but also, since TT and TB are linked, of the
raise annotation at the TB tier. Some examples of segment lists that will be used in this
Chapter are given in the next section.

5.2 Handling segment lists and vectors in Emu-R

Fig. 5.7 about here

 In almost all cases, whether analyzing formants in Chapter 3 or movement data in this
Chapter, or indeed electropalatographic and spectral data in the later parts of this book, the
association between signals and annotations that is needed for addressing hypotheses almost
always follows the structure which was first presented in Fig. 3.8 of Chapter 3 and which is
further elaborated in Fig. 5.7. The first step involves making one or more segment lists using the
emu.query() or emu.requery() functions. Then emu.track() is used to retrieve
trackdata i.e., signal data from the database with respect to the start and end times of any
segment list that has been made. The purpose of start() , end() , and dur() is to obtain
basic durational properties from either the segment list or trackdata object. The functions
label() and utt() are used to retrieve from segment lists the annotations and utterance
identifiers respectively of the segments. Finally, dcut() is used to slice out values from a
trackdata object either over an interval, or at a specific point in time (as was done in analyzing
vowel formants at the temporal midpoint in Chapter 3). These functions are at the core of all
subsequent operations for analyzing and plotting data in R.
 In this section, the task will be to obtain most of the necessary segment lists that will be
needed for the comparison of /kn/ and /kl/ clusters and then to discuss some of the ways that

 84

segment lists and vectors can be manipulated in R: these types of manipulations will be needed
for the acoustic VOT analysis in the next section and are fundamental to most preliminary
analyses of speech data in Emu-R.

 Using the techniques discussed in Chapter 4, the following segment lists can be obtained
from the ema5 database:

Segment list of word-initial /k/
k.s = emu.query("ema5", "*", "Segment=k & Start(Word,
Segment)=1")

Segment list of the following h (containing acoustic VOT information)
h.s = emu.requery(k.s, "Segment", "Segment", seq=1)

Segment list of the sequence of raise lower at the TT tier
tip.s = emu.requery(k.s, "Segment", "TT")

Segment list of the sequence raise lower at the TB tier
body.s = emu.requery(k.s, "Segment", "TB")

In addition, two character vectors of annotations will be obtained using the label() function,
the first containing either n or l (in order to identify the cluster as /kn/ or /kl/) and the second of
the word annotations. Finally, a numeric vector is obtained with the dur() function of the
duration of the h segments, i.e., of voice onset time.

Vector consisting of n or l (the segments are two positions to the right of word-initial /k/)
son.lab = emu.requery(k.s, "Segment", "Segment", seq=2, j=T)

Word annotations
word.lab = emu.requery(k.s, "Segment", "Word", j=T)

Acoustic VOT
h.dur = dur(h.s)

 It is useful at this point to note that segment lists on the one hand and vectors on the other
are of different types and need to be handled slightly differently. As far as R is concerned, a
segment list is a type of object known as a data frame. As far as the analysis of speech data in
this book is concerned, the more important point is that segment lists share many properties
with matrices: that is, many operations that can be applied to matrices can also be applied to
segment lists. For example, nrow() and ncol() can be used to find out how many rows and
columns there are in a matrix. Thus, the matrix bridge in the Emu-R library has 13 rows and 3
columns and this information can be established with nrow(bridge), ncol(bridge), and
dim(bridge): the last of these returns both the number of rows and columns (and therefore
13 3 in this case). The same functions can be applied to segment lists. Thus dim(h.s) returns
20 4 because, as will be evident by entering h.s on its own, there are 20 segments and 4
columns containing information about each segment's annotation, start time, end time, and
utterance from which it was extracted. As mentioned in Chapter 3, an even more useful function
that can be applied to segment lists is summary():

summary(k.s)
segment list from database: ema5
query was: Segment=k & Start(Word, Segment)=1
 with 20 segments

 85

Segment distribution:

 k
20

which apart from listing the number segments and their annotations (all k in this case), also gives
information about the database from which they were derived and the query that was used to
derive them.
 In contrast to segment lists and matrices, vectors have no dimensions i.e., no rows or
columns and this is why dim(word.lab), nrow(son.lab), or ncol(word.lab) all
return NULL. Moreover, these three vectors can be divided into two types: character vectors
like word.lab and son.lab whose elements all contain characters in "" quotes or numeric
vectors to which various arithmetic, statistical, and mathematical operations can be applied and
whose elements are not in quotes. You can use various functions beginning with is. as well as
the class() function to test the type/class of an object thus:

Is k.s a segment list?
is.seglist(k.s)
TRUE

What type of object is h.s?
class(h.s)
Both a segment list and a data frame
"emusegs" "data.frame"

Is son.lab a vector?
is.vector(son.lab)
TRUE

Is h.dur of mode character?
is.character(h.dur)
FALSE

Is h.dur of mode numeric?
is.numeric(h.dur)
TRUE

Is word.lab both of mode character and a vector (i.e., a character vector)?
is.character(word.lab) & is.vector(word.lab)
TRUE
 A very important idea in all of the analyses of speech data with Emu-R in this book is
that objects used for solving the same problem usually need to be parallel to each other. This
means that if you extract n segments from a database, then the nth row of a segment list, matrix
and, as will be shown later, of a trackdata object, and the nth element of a vector all provide
information about the same segment. Data for the nth segment can be extracted or indexed
using integers inside a square bracket notation, thus:

The 15th segment in the segment list
h.s[15,]

The corresponding duration of this segment (h.dur is a vector)
h.dur[15]

 86

The corresponding word label (word.lab is a vector)
word.lab[15]

The reason for the comma in the case of a matrix or segment list is because the entries before
and after the comma index rows and columns respectively (so since a vector has no rows or
columns, there is no comma). More specifically, h.s[15,] means all columns of row 15 which
is why h.s[15,] returns four elements (because h.s has four columns). If you just wanted to
pick out row 15 of column 2, then this would be h.s[15,2] (and only one element is
returned). Analogously, entering nothing before the comma indexes all rows and so h.s[,2]
returns 20 elements i.e., all elements of column 2 (i.e., the segments' start, or left boundary,
times). Since 1:10 in R returns the integers 1 through 10, then the command to obtain the first
10 rows of h.s is given by h.s[1:10,] while the same notation is used for the first 10
elements of a vector, but again without the comma, thus word.lab[1:10], h.dur[1:10]
etc. If you want to pull out non-sequential segment numbers, then first make a vector of these
numbers with c(), the concatenate function, thus:

Make a numeric vector of three elements
n = c(2, 5, 12)
Rows 2, 5, 12 of h.s
h.s[n,]
or in a single line
h.s[c(2,5,12),]
The corresponding word labels
word.lab[n]

A negative number inside the square bracket notation denotes all except. So h.s[-2,] means
all rows of h.s except the 2nd row, h.s[-(1:10),] all rows except the first ten,
word.lab[-c(2, 5, 12)] all elements of word.lab except the 2nd, 5th, and 12th and so
on.
 When analyses of speech fail in R (i.e., an error message is returned), then it is often
because the various objects that are used for solving a particular problem may have become out
of step with each other so that the condition of being parallel is no longer met. There is no test
for whether objects are parallel to each other as far as I know, but when an analysis fails, it is a
good idea to check that all the segment lists have the same number of rows and that there is the
same number of elements in the vectors that have been derived from them. This can be done with
the logical operator == which amounts to asking a question about equality, thus:

Is the number of rows in k.s the same as the number of rows in h.s?
nrow(k.s) == nrow(h.s)
TRUE

Is the number of rows in k.s the same as the number of elements in word.lab?
nrow(k.s) == length(word.lab)
TRUE

Do word.lab and h.dur have the same number of elements?
length(word.lab) == length(h.dur)
TRUE

5.3 An analysis of voice onset time
 There are very many in-built functions in R for applying descriptive statistics whose
function names usually speak for themselves e.g., mean(), median(), max(), min(),

 87

range() and they can be applied to numeric vectors. It is therefore a straightforward matter to
apply any of these functions to durations extracted from a segment list. Thus mean(h.dur)
gives the mean VOT duration calculated across all segments, max(dur(k.s)) gives the
maximum /k/-closure duration, range(dur(k.s)) the range (minimum and maximum value)
of closure durations etc. However, a way has to be found of calculating these kinds of quantities
separately for the /kn/ and /kl/ categories. It might also be interesting to do the same for the four
different word types. You can remind yourself which these are by applying the table()
function to the character vector containing them:

table(word.lab)
Claudia Klausur Kneipe Kneipier
 5 5 5 5

The same function can be used for cross-tabulations when more than one argument is included,
for example:

table(son.lab,word.lab)
son.lab Claudia Klausur Kneipe Kneipier
 l 5 5 0 0
 n 0 0 5 5

One way to get the mean VOT separately for /kn/ or /kl/ or separately for the four different kinds
of words is with a for-loop. A better way is with another type of object in R called logical
vectors. A logical vector consists entirely of True (T) and False (F) elements that are returned in
response to applying a comparison operator. One of these, ==, has already been encountered
above in asking whether the number of rows in two segment lists were the same. The other
comparison operators are as follows:

!= Is not equal to
< Is less than
> Is greater than
<= Is less than or equal to
>= Is greater than or equal to

As already described, making use of a comparison operator implies asking a question. So typing
h.dur > 45 is to ask: which segment has a duration greater than 45 ms? The output is a
logical vector, with one True or False per segment thus:

h.dur > 45
TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

The first two elements that are returned are True and False because the first two segments do
and do not have durations greater than 45 ms respectively, as shown by the following:

h.dur[1:2]
63.973 43.907

Since the objects for comparing /kn/ with /kl/ are all parallel to each other in the sense discussed
earlier, then the position number of the T and F elements can be used to find the corresponding
segments or other labels for which VOT is, or is not, greater than 45 ms. For example, since
there is, among others, a T element in the 1st, 4th, 6th and 7th positions, then these words must
have segments with VOTs greater than 45 ms:

 88

word.lab[c(1, 4, 6, 7)]
"Kneipe" "Kneipier" "Kneipe" "Kneipier"

and it is equally easy to find in which utterances these words occur by indexing the
corresponding segment lists (and inspecting the fourth column):

k.s[c(1, 4, 6, 7),]
segment list from database: ema5
query was: Segment=k & Start(Word, Segment)=1
 labels start end utts
1 k 1161.944 1206.447 dfgspp_mo1_prosody_0020
4 k 1145.785 1188.875 dfgspp_mo1_prosody_0063
6 k 1320.000 1354.054 dfgspp_mo1_prosody_0140
7 k 1306.292 1337.196 dfgspp_mo1_prosody_0160

The corresponding rows or elements can be more easily retrieved by putting the logical vector
within square brackets. Thus:

Logical vector when h.dur is greater than 45 ms
temp = h.dur > 45
The corresponding durations
h.dur[temp]

The corresponding word-labels
word.lab[temp]
"Kneipe" "Kneipier" "Kneipe" "Kneipier" "Claudia" "Kneipier" "Kneipe"
"Kneipier" "Claudia" "Kneipe" "Claudia" "Klausur" "Kneipe" "Kneipier"

An important point to remember is that when you combine a logical vector with a matrix or
segment list, then it has to be followed by a comma, if you want to pull out the corresponding
rows. Thus h.s[temp,] identifies the rows in h.s for which VOT is greater than 45 ms. A
logical vector could be used in a similar way to extract columns. For example, h.s[,c(F, T,
F, T)] extracts columns 2 and 4 (the start time and utterance identifier). Also, changing temp
to !temp gets at the rows or elements for which the duration is not greater than (less than or
equal to) 45 ms, i.e., those rows/elements for which the logical vector is False: e.g.,
h.dur[!temp], word.lab[!temp], k.s[!temp,]. Finally, three useful functions when
applied to logical vectors are sum(), any(), all() which find out respectively how many,
whether there are any, or whether all elements of a logical vector are True. For example:
lvec = c(T, F, F)
sum(lvec)
1

any(lvec)
TRUE

all(lvec)
FALSE

The same can be applied to False elements by preceding the logical vector with an
exclamation mark. Thus any(!lvec) returns True because there is at least one F element in
lvec. With regard to the earlier example, these functions could be used to work out how many
segments have VOT greater than 45 ms (sum(h.dur > 45)) whether any segments have a
duration greater than 45 ms (any(h.dur > 45)) and whether all segments have a duration
greater than 45 ms (all(h.dur > 45)).

 89

 There is now easily sufficient computational machinery in place to find out something
about the distributional VOT differences between /kn/ and /kl/. The first step might be to make a
logical vector to identify which elements correspond to /kn/: this could then be applied to h.dur
to get the corresponding VOT values. Since there are only two label categories, then the F
elements of the logical vector could be used to find the VOT values for /kl/, thus:

Logical vector which is True for the n elements in son.lab
temp = son.lab == "n"

Mean VOT (ms) for /kn/
mean(h.dur[temp])
74.971

Mean VOT (ms) for /kl/
mean(h.dur[!temp])
44.9015

The above analysis shows that the mean VOT is about 30 ms greater in /kn/ than in /kl/. What if
you wanted to work out the mean duration of the preceding velar closure? This can be done by
applying the logical vector to the durations of the segment list k.s. In this case, you have to
remember to include the comma because k.s is a segment list requiring rows to be identified:

Mean duration (ms) of /k/ closure in /kn/
mean(dur(k.s[temp,]))
38.0994

Mean duration (ms) of /k/ closure in /kl/
mean(dur(k.s[!temp,]))
53.7411

In fact this result is not without interest because it shows that the closure duration of /kn/ is
somewhat less than that of /kl/. Thus the difference between /kn/ and /kl/, at least as far as
voicing onset is concerned seems to be one of timing.
 What if you now wanted to compare the ratio of closure duration to VOT? Consider first
the two main ways in which arithmetic operations can be applied to vectors:

Make a vector of three elements
x = c(10, 0, 5)

Subtract 4 from each element
x - 4

Make another vector of three elements
y = c(8, 2, 11)

Subtract the two vectors element by element
x - y

In this first case, the effect of x - 4 is to subtract 4 from every element of x. In the second
case, the subtraction between x and y is done element by element. These are the two main ways
of doing arithmetic in R and in the second case it is important to check that the vectors are of the
same length (length(x) == length(y)) because if they are not, a warning message is
given and the values of the shorter vector are recycled in a way that is usually not at all helpful

 90

for the problem that is to be solved. Logical vectors can be applied in the same two ways. In the
earlier example of h.dur > 45, each element of h.dur was compared with 45. But two
vectors can also be compared element by element if they are of the same length. In x > y
(assuming you have entered x and y as above), the first element of x is compared with the first
element of y to see if it is greater, then the same is done for the second element, then for the
third. The output is therefore T F F because x is greater than y only in its first element.
 The ratio of the closure duration to VOT can now be worked out by dividing one vector
by the other, thus:

h.dur/dur(k.s)
1.4374986 0.9140436 0.6911628 ...

The first value returned is 1.4 because the VOT of the first segment, given by h.dur[1] (63.9
ms) is about 1.4 times the size of its preceding closure duration given by dur(k.s[1,]) (44.5
ms): more generally what is returned by the above command is h.dur[n]/dur(k.s[n,])
where n is the nth segment. You could also work out the proportion of VOT taken up by the total
closure duration plus VOT duration. This is:

h.dur/(h.dur + dur(k.s))
0.5897434 0.4775459 0.4086909...

So for the second segment, VOT takes up about 48% of the duration between the onset of the
closure and the onset of periodicity.
 In order to compare /kn/ with /kl/ on any of these measures, a logical vector needs to be
applied as before. Thus to compare /kn/ with /kl/ on this proportional measure, apply either the
logical vector to each object or to the result of the proportional calculation. Here are the two
possibilities:

Logical vector to identify /kn/
temp = son.lab== "n"

Mean proportional VOT duration for /kn/. Either:
mean(h.dur[temp]/(h.dur[temp] + dur(k.s[temp,])))
0.6639655

Equivalently:
mean((h.dur/(h.dur + dur(k.s)))[temp])
0.6639655

The second of these is perhaps easier to follow if the proportional calculation on each segment is
initially stored in its own vector:

prop = h.dur/(h.dur + dur(k.s))

Proportional VOT for /kn/
mean(prop[temp])
0.6639655

#Proportional VOT for /kl/
mean(prop[!temp])
0.4525008

So the proportion of VOT taken up by the interval between the closure onset and onset of
periodicity is some 20% less for /kl/ compared with /kn/.

 91

 What if you wanted to compare the four separate words with each other on any of these
measures? Recall that the annotations for these words are stored in word.lab:

table(word.lab)
Claudia Klausur Kneipe Kneipier
 5 5 5 5

One possibility would be to proceed as above and to make a logical vector that was True for
each of the categories. However, a much simpler way is to use tapply(x, lab, fun),
which applies a function (the third argument) to the elements of a vector (the first argument)
separately per category (the second argument). Thus the mean VOT separately for /kn/ and /kl/ is
also given by:

tapply(h.dur, son.lab, mean)
l n
44.9015 74.9710

The third argument is any function that can be sensibly applied to the numeric vector (first
argument). So you could calculate the standard deviation separately for the closure durations of
/kn/ and /kl/ as follows:

tapply(dur(k.s), son.lab, sd)
l n
5.721609 8.557875

Thus the mean VOT duration (ms) for each separate word category is:

tapply(h.dur, word.lab, mean)
Claudia Klausur Kneipe Kneipier
 49.5272 40.2758 66.9952 82.9468

So the generalization that the mean VOT of /kn/ is greater than that of /kl/ seems to hold across
the separate word categories. Similarly, tapply() can be used to work out separately per
category the mean proportion of the interval between the onset of the closure and the periodic
onset of the sonorant taken up by aspiration/frication:

prop = h.dur/(h.dur + dur(k.s))
tapply(prop, word.lab, mean)
Claudia Klausur Kneipe Kneipier
0.4807916 0.4242100 0.6610947 0.6668363

 The results showing differences between the categories on means need to be followed up
with analyses of the distribution of the tokens about each category. One of the most useful
displays for this purpose, of which extensive use will be made in the rest of this book, is a
boxplot which can be used per category to produce a display of the median, the interquartile
range, and the range. The median is the 50% quantile and the pth quantile (0 ≤ p ≤ 100) is in the
index position 1+p*(n-1)/100 after the data has been sorted in rank order. For example, here
are 11 values randomly sampled between -50 and 50:

g = sample(-50:50, 11)
-46 41 23 4 -33 46 -30 18 -19 -38 -32

They can be rank-order sorted with the sort() function:
g.s = sort(g)

 92

g.s
-46 -38 -33 -32 -30 -19 4 18 23 41 46

The median is the 6th element from the left in this rank-order sorted data, because 6 is what is
returned by 1+50*(11-1)/10: thus the median of these random numbers is g.s[6] which is
-19. The same is returned by median(g) or quantile(g, .5). The interquartile range is
the difference between the 75% and 25% quantiles, i.e., quantile(g, .75) -
quantile(g, .25) or equivalently IQR(g). In the corresponding boxplot, the median
appears as the thick horizontal line and the upper (75%) and lower (25%) quartiles as the upper
and lower limits of the rectangle. A boxplot for the present VOT data can be produced with (Fig.
5.8):

boxplot(h.dur ~ son.lab, ylab = "VOT (ms)")

The operation ~ means 'given that' and often forms part of a formula that is used in very many
statistical tests in R. The boxplot shows fairly conclusively that VOT is greater in /kn/ than in
/kl/ clusters.

Fig. 5.8 about here

5.4 Inter-gestural coordination and ensemble plots
 The task in this section is to produce synchronized plots of tongue-dorsum and tongue-tip
movement in order to ascertain whether these are differently coordinated for /kn/ and /kl/. The
discussion will begin with some general remarks about trackdata objects (5.4.1), then overlaid
plots from these two movement signals will be derived (5.4.2); finally, so-called ensemble plots
will be discussed in which the same movement data from several segments are overlaid and
averaged separately for the two categories. All of the movement data are in millimetres and the
values are relative to the origin [0, 0, 0] which is a point on the occlusal plane just in front of the
teeth.

5.4.1 Extracting trackdata objects
 As shown in the flow diagram in Fig. 5.7, signal or trackdata is extracted from a database
relative to the start and end times of a segment list using the emu.track() function. The first
argument to emu.track() is the segment list itself and the second argument is any track that
has been declared to be available in the template file. You can check which tracks are available,
either by inspecting the Tracks pane of the template file, or with trackinfo() in R using
the name of the database as an argument:

trackinfo("ema5")

"samples" "tm_posy" "tm_posz" "ll_posz" "tb_posz" "jw_posy"
 "jw_posz" "tt_posz" "ul_posz"

The movement data is accessed from any track name containing posz for vertical movement
(i.e., height changes) or posy for anterior-posterior movement (i.e., for front-back changes to
mark e.g., the extent of tongue-front/backing between the palatal and uvular regions). The initial
ll, tb, tm, jw, tt, and ul are codes for lower-lip, tongue body, tongue-mid, jaw, tongue
tip, and upper lip respectively. Here the concern will be almost exclusively with the analysis of
tt_posz and tb_posz (vertical tongue tip and tongue body movement in the coronal plane).
Thus, assuming you have created the segment list tip.s as set out in 5.2, trackdata of the
vertical tongue-tip movement over the durational extent of the raise lower annotations at
the TT tier is obtained as follows:

 93

tip.tt = emu.track(tip.s, "tt_posz")

tip.tt is a trackdata object as can be verified with is.trackdata(tip.tt) or
class(tip.tt).
 Trackdata objects are lists but because of an implementation using object-oriented
programming in Emu-R, they behave like matrices and therefore just like segment lists as far as
both indexing and the application of logical vectors are concerned. Therefore, the same
operations for identifying one or more segment numbers can also be used to identify their
corresponding signal data in the trackdata objects. For example, since tip.s[10,] denotes the
10th segment, then tip.tt[10,] contains the tongue tip movement data for the 10th segment.
Similarly, tip.s[c(10, 15, 18),] are segment numbers 10, 15, 18 in the segment list
and tip.tt[c(10, 15, 18),] access the tongue tip movement data for the same
segments. Logical vectors can be used in the same way. So in the previous section, the /kn/
segments in the segment list could be identified with a logical vector:

Logical vector: True for /kn/, False for /kl/
temp = son.lab == "n"
/k/ closures in /kn/
k.s[temp,]
A segment list of raise lower associated with /kn/
tip.s[temp,]

The corresponding tongue tip movement data for the above segments is analogously given by
tip.tt[temp,].
 As already foreshadowed in Chapter 3, emu.track() retrieves signal data within the
start and end time of the segment list. For this reason, the duration measured from a trackdata
object is always fractionally less than the durations obtained from the corresponding segment
list. In both cases, the duration can be obtained with dur() (Fig. 5.7). Here this function is used
to confirm that the trackdata durations are less than the segment durations for all 20 segments.
More specifically, the following command asks: are there any segments for which the trackdata
duration is greater than or equal to the duration from a segment list?

any(dur(tip.tt) >= dur(tip.s))
FALSE

5.4.2 Movement plots from single segments
 Each segment in a trackdata object is made up of a certain number of frames of data or
speech frames39 that occur at equal intervals of time depending on the rate at which they were
sampled or the frame rate. For example, if formants are calculated at intervals of 5 ms and if a
segment is 64 ms in duration, then that segment should have at least 12 speech frames of formant
frequencies between its start time and end time at intervals of 5 ms. The function frames()
and tracktimes() applied to a trackdata object retrieve the speech frames and the times at
which they occur, as already shown in Chapter 3. The generic plot() function when applied to
any single segment of trackdata plots the frames as a function of time. For example, the speech
frames of the 5th segment, corresponding to tip.s[5,], are given by:

frames(tip.tt[5,])
T1
1405 -12.673020

39 The term speech frame will be used henceforth for these data to distinguish them from a type of object in R
known as a data frame.

 94

1410 -12.631612
1415 -12.499837
1420 -12.224785
.... etc.

and the times at which these occur by:

tracktimes(tip.tt[5,])
1405 1410 1415 1420 1425 1430...etc.

These data could be inspected in Emu by looking at the corresponding segment in the segment
list:

tip.s[5,]
5 raise->lower 1404.208 1623.48 dfgspp_mo1_prosody_0132

i.e., the speech frames occur between times 1404 ms and 1623 ms in the utterance
dfgspp_mo1_prosody_0132.
 The data returned by frames() looks as if it has two columns, but there is only one, as
ncol(frames(tip.tt[5,])) shows: the numbers on the left are row names and they are
the track times returned by tracktimes(tip.tt[5,]). When tracktimes() is applied
to tip.tt in this way, it can be seen that the frames occur at 5 ms intervals and so the frame
rate is 1000/5 = 200 Hz.
 The commands start(tip.tt[5,]) and end(tip.tt[5,]) return the times of
the first and last speech frame of the 5th segment. A plot of the speech frames as a function of the
times at which they occur is given by plot(tip.tt[5,]). You can additionally set a
number of plotting parameters (see help(par) for which ones). In this example, both lines and
points are plotted (type="b") and labels are supplied for the axes:

plot(tip.tt[5,], type="b", ylab ="Tongue tip vertical position
(mm)", xlab="Time (ms)")

 In order to investigate tongue-body and tongue-tip synchronization, the movement data
from both tracks need to be plotted in a single display. One way to do this is to retrieve the
tongue-body data for the same segment list and then to use the cbind() (column bind)
function to make a new trackdata object consisting of the tongue tip and tongue body movement
data. This is done in the following two instructions, firstly by obtaining the tongue-body data
from the same segment list from which the tongue-tip data has already been obtained, and then,
in the second instruction, column-binding the two trackdata objects40. The third instruction plots
these data:

tip.tb = emu.track(tip.s, "tb_posz")
both = cbind(tip.tt, tip.tb)
plot(both[5,], type="l")

If you are familiar with R, then you will recognize cbind()as the function for concatenating
vectors by column, thus:

a = c(0, 4, 5)
b = c(10, 20, 2)

40 Both trackdata objects must be derived from the same segment list for cbind() to be used in
this way.

 95

w = cbind(a, b)
w
a b
0 10
4 20
5 2

As already mentioned, trackdata objects are not matrices but lists. Nevertheless, many of the
functions for matrices can be applied to them. Thus the functions intended for matrices,
dim(w), nrow(w), ncol(w) also work on trackdata objects. For example, dim(both)
returns 20 2 and has the meaning, not that there are 20 rows and 2 columns (as it would if
applied to a matrix), but firstly that there are 20 segments' worth of data (also given by
nrow(both)) and secondly that there are two tracks (also given by ncol(both)). Moreover
a new trackdata object consisting of just the second track (tongue body data) could now be made
with new = both[,2] ; or a new trackdata object of the first 10 segments and first track only
with both[1:10,1], etc.
 In the previous example, the movement data from both tongue tracks extended over the
interval raise lower annotated at the tongue tip (TT) tier. If you wanted to superimpose the
tongue-body movement extracted over a corresponding interval from the tongue body (TB) tier,
then the data needs to be extracted from this segment list made earlier at the TB tier:

body.s = emu.requery(k.s, "Segment", "TB")
body.tb = emu.track(body.s, "tb_posz")

It is not possible to apply cbind() to join together tip.tt[5,] and body.tb[5,] in the
manner used before because cbind() presupposes that the segments in the trackdata objects
are of the same duration, and this will only be so if they have been extracted from the same
segment list. The plots must therefore be made separately for the tongue-tip and tongue-body
data and superimposed using par(new=T), after setting the ranges for the x- and y-axes to be
the same:

Find the y-range for the vertical axis in mm
ylim = range(frames(tip.tt[5,]), frames(body.tb[5,]))

Find the x-range for times in ms
xlim = range(tracktimes(tip.tt[5,]), tracktimes(body.tb[5,]))
plot(tip.tt[5,], xlim=xlim, ylim=ylim, xlab="", ylab="",
type="l")
par(new=T)
plot(body.tb[5,], xlim=xlim, ylim=ylim, xlab="Time (ms)",
ylab="Vertical tongue position", type="l", lty=2)

The first of these commands for finding the y-range concatenates the speech frames from the
tongue-tip and tongue-body into a single vector and then finds the range. The second command
does the same but after concatenating the times at which the frames occur. The plot()
function is then called twice with the same x- and y-ranges. In the first plot command, xlab
and ylab are set to "" which means print nothing on the axis labels. The command
par(new=T) means that the next plot will be drawn on top of the first one. Finally, the
argument lty=2 is used to create the dotted line in the second plot. The result is the plot of
synchronized tongue-tip and tongue-body data, extending from the onset of tongue-body raising
for the /k/ closure to the offset of tongue-tip lowering for the /l/, as shown in Fig. 5.9.

Fig. 5.9 about here

 96

5.4.3 Ensemble plots
 A visual comparison between /kn/ and /kl/ on the relative timing of tongue body and
tongue tip movement can best be made not by looking at single segments but at multiple
segments from each category in what are sometimes called ensemble plots. The function for
creating these is dplot() in the Emu-R library. This function has trackdata as an obligatory
argument; two other important optional arguments are a parallel set of annotations and the
temporal alignment point. Assuming you have created the trackdata objects in the preceding
section, then dplot(tip.tt) plots the tongue tip data from multiple segments superimposed
on each other and time-aligned by default at their onset (t = 0 ms). The command
dplot(tip.tt, son.lab), which includes a parallel vector of labels, further differentiates
the plotted tracks according to segment type. The argument offset can be used for the
alignment point. This is by default 0 and without modifying other default values it can be set to a
proportional value which varies between 0 and 1, denoting that the trackdata are to be
synchronized at their onsets and offsets respectively. Thus dplot(tip.tt, son.lab,
offset=0.5) synchronises the tracks at their temporal midpoint which is then defined to have
a time of 0 ms. You can also synchronise each segment according to a millisecond time by
including the argument prop = F (proportional time is False). Therefore,
dplot(tip.tt, son.lab, prop=F, offset=end(tip.tt)-20) synchronises the
tongue tip movement data at a time point 20 ms before the segment offset. The way in which the
synchronization point is evaluated per segment is as follows. For the first segment, the times of
the frames are tracktimes(tip.tt[1,]) which are reset to:

tracktimes(tip.tt[1,]) - (end(tip.tt[1,]) - 20)

-150 -145 -140 -135 -130 -125 -120 -115 -110 -105 -100 -95 -90 -85 -80 -
75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
5 10 15 20

As a result, the synchronization point at t = 0 ms is four frames earlier than the offset (which is
also apparent if you enter e.g. dplot(tip.tt[1,], offset=end(tip.tt[1,])-20,
prop=F, type="b").

 In order to compare /kl/ and /kn/ on the relative timing of tongue-body and tongue-tip
movement, an ensemble plot could be made of the tongue tip data but synchronized at the time at
which the tongue-body displacement for the /k/ is a maximum. Recall that in labeling the
movement trajectories, the tongue-body trajectory was segmented into a sequence of raise and
lower annotations such that the time of maximum tongue-body raising was at the boundary
between them. It is not possible to use the segment list body.s to obtain these times of
maximum tongue-dorsum raising for /k/, because this segment list extends over both raise
and lower without marking the boundary between. Instead therefore, a new segment list needs
to be made just of the raise annotations at the TB tier and then the offset times extracted from
these with end(). Since there is only one raise annotation per segment, the segment list
could be made with:

tbraise.s = emu.query("ema5", "*", "TB=raise")

But a safer way is to query the raise annotation at the TB tier subject to it also being in word-
initial position. This is because all of the other segment lists (and trackdata objects derived from
these) have been obtained in this way and so there is then absolutely no doubt that the desired
segment list of raise annotations is parallel to all of these:

 97

tbraise.s = emu.query("ema5", "*", "[TB=raise ^ Start(Word,
Segment)=1]")

Fig. 5.10 about here

An ensemble plot41 of the tongue-tip movement synchronized at the point of maximum tongue-
dorsum raising (Fig. 5.10, left panel) can be produced with:

 dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s))

The same function can be used to produce ensemble-averaged plots in which all of the speech
frames at equal time points are averaged separately per annotation category. It should be
remembered that the data in an ensemble-averaged plot are less representative of the mean for
points progressively further away in time from the synchronization point (because fewer data
points tend to be averaged at points further away in time from t = 0 ms). The ensemble averaged
plot is produced in exactly the same way as the Fig. 5.10 but by adding the argument
average=T (Fig. 5.10 right panel).

Fig. 5.11 about here

In order to produce ensemble plots of both tongue tip and tongue body data together in the
manner of Fig. 5.9, the same method can be used of overlaying one (ensemble) plot on the other
as shown in Fig. 5.11. For the x-axis range, specify the desired duration as a vector consisting of
two elements, a negative and a positive value on either side of the synchronization point. The y-
range is determined, as before, across both sets of data. Fig. 5.11 was produced as follows:

Set the x- and y-ranges
xlim = c(-100, 100); ylim = range(frames(tip.tt),
frames(body.tb))

Tongue-tip data coded for /n/ or /l/ with no surrounding box, black and slategray colors,
double line thickness, dashed, and no legend
dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), average=T,
xlim=xlim, ylim=ylim, ylab="Position (mm)", xlab="Time (ms)",
bty="n", col=c(1, "slategray"), lwd=2, lty=2, legend=F)

Put appropriate legends at the top left and top right of the display
legend("topleft", c("body", "tip"), lty=c(1,2), lwd=2)
legend("topright", paste("k", unique(son.lab), sep=""),
col=c(1,"slategray"), lty=1, lwd=2)
par(new=T)

The tongue body data

41 For the sake of brevity, I will not always include the various options (see help(par)) that can be included in
the plotting function and that were needed for camera ready b/w images in this book. Thus Fig. 5.10 was actually
produced as follows:
par(mfrow=c(1,2)); lwd=lty=c(1,2); col=c(1, "slategray")
xlab = "Time (ms)"; ylab="Vertical tongue tip position (mm)"
dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), bty="n", ylab=ylab,
xlab=xlab, col=col, lwd=lwd, lty=lty)
dplot(tip.tt, son.lab, prop=F, offset=end(tbraise.s), average=T, bty="n",
xlab=xlab, col=col, lwd=lwd, lty=lty, legend=F)

 98

dplot(body.tb, son.lab, prop=F, offset=end(tbraise.s),
average=T, xlim=xlim, ylim=ylim, legend=F, col=c(1,
"slategray"), lwd=2, bty="n")

5.5 Intragestural analysis
 The task for the rest of this Chapter will be to compare /kn/ with /kl/ on the movement
and velocity of tongue-dorsum raising in /k/. To do so requires a bit more discussion both of the
numerical and logical manipulation of trackdata objects as well as the way in which functions
can be applied to them. This is covered in 5.5.1. Then in 5.5.2 some of these operations from
5.5.1 are applied to movement data in order derive their velocity as a function of time42. Finally,
in 5.5.3, the various movement and velocity parameters are interpreted in terms of the output of a
critically damped system that forms parts of the model of articulatory phonology (Browman &
Goldstein, 1990a, b, c) in order to try to specify more precisely the ways in which these clusters
may or may not differ in tongue-body raising. It is emphasized here that although the analyses
are conducted from the perspective of movement data, the types of procedures are just as
relevant for many of the subsequent investigations of formants, electropalatography, and spectra
in the remaining Chapters of the book.

5.5.1 Manipulation of trackdata objects
Arithmetic
 Earlier in this Chapter two methods for carrying out simple arithmetic were presented.
The first involved applying an arithmetic operation to a single element to a vector and in the
second the operation was applied to two vectors of the same length. Here are the two methods
again.

Make a vector of 4 values
x = c(-5, 8.5, 12, 3)

Subtract 4 from each value
x - 4
-9.0 4.5 8.0 -1.0

Make another vector of the same length
y = c(9, -1, 12.3, 5)

Multiply the vectors element by element
x * y
-45.0 -8.5 147.6 15.0

Trackdata objects can be handled more or less in an analogous way. Consider the operation
tip.tt - 20. In this case, 20 is subtracted from every speech frame. Therefore if you save
the results:

new = tip.tt - 20

and then compare new and tip.tt, you will find that they are the same except that in new the
y-axis scale has been shifted down by 20 (because 20 has been subtracted from every speech
frame). This is evident if you compare new and tip.tt on any segment e.g.

42 The velocity signals are also available in the same directory to which the ema5 database was downloaded
although they have not been incorporated into the template file. They could be used to find peaks and troughs in the
movement signals, as described in section 5.5.2.

 99

par(mfrow=c(1,2))
plot(new[10,])
plot(tip.tt[10,])

If you enter tip.tt[10,] on its own you will see that it consists of three components (which
is why it is a list): index, ftime, and data. The last of these contains the speech frames:
therefore those of the 10th segment are accessible with either tip.tt[10,]$data or (more
conveniently) with frames(tip.tt[10,]). Thus, because of the way that trackdata objects
have been structured in R, the arithmetic just carried out affects only the speech frames (only
the values in $data). Consider as another example the trackdata object vowlax.fdat
containing the first four formant frequencies of a number of vowels produced by two speakers.
The fact that this object contains 4 tracks in contrast to tip.tt which contains just one is
evident if you use ncol(vowlax.fdat)to ask how many columns there are or
dim(vowlax.fdat) to find out the number of segments and columns. If you wanted to add
100 Hz to all four formants, then this is vowlax.fdat + 100. The following two commands
can be used to make a new trackdata object, newform, in which 150 Hz is added only to F1:

newf1 = vowlax.fdat[,1]+150
newform = cbind(newf1, vowlax.fdat[,2:4])

Can arithmetic operations be applied to trackdata objects in a similar way? The answer is yes,
but only if the two trackdata objects are from the same segment list. So tip.tt +
tip.tt, which is the same as tip.tt * 2 causes the speech frames to be added to
themselves. Analogously, d = vowlax.fdat[,2]/vowlax.fdat[,1] creates another
trackdata object, d, whose frames contain F2 divided by F1 only. As before, it is only the speech
frames that are subject to these operations. Suppose then you wanted to subtract out the jaw
height from the tongue-tip height in order to estimate the extent of tongue tip movement
independently of the jaw. The trackdata object tip.tt for tongue movement was derived from
the segment list tip.s. Therefore, the vertical movement of the jaw must be first be derived
from the same segment list:

jaw = emu.track(tip.s, "jw_posz")

The difference between the two is then:

tipminusjaw = tip.tt - jaw

The derived trackdata object can now be plotted in all the ways described earlier, thus:

par(mfrow=c(1,3))
Tongue-tip movement (for the 15th segment)
plot(tip.tt[15,])
Jaw movement for the same segment
plot(jaw[15,])
Tongue-tip movement with jaw height subtracted out for the same segment
plot(tipminusjaw[15,])

The fact that it is the speech frames to which this operation is applied is evident from asking the
following question: are all speech frames of the 15th segment in tipminusjaw equal to the
difference between the tongue-tip and jaw speech frames?

 100

all(frames(tipminusjaw[15,]) == frames(tip.tt[15,]) -
frames(jaw[15,]))
TRUE

 The types of arithmetic functions that show this parallelism between vectors on the one
hand and trackdata on the other is given in help(Ops) (under Arith). So you will see from
help(Ops) that the functions listed under Arith include ^ for raising. This means that there
must be parallelism between vectors and trackdata objects for this operation as well:

x = c(-5, 8.5, 12, 3)
Square the elements in x
x^2

Square all speech frames of the tongue tip trackdata object
tipsquared = tip.tt^2

Comparison operators
 There is also to a certain extent a similar parallelism between vectors and trackdata
objects in using comparison operators. Recall from the analysis of acoustic VOT in 5.3 that
logical vectors return True of False. Thus:

x = c(-5, 8.5, 12, 3)
x < 9
TRUE TRUE FALSE TRUE

When logical vectors are applied to trackdata objects, then they operate on speech frames. For
example, vowlax.fdat[10,1] > 600 returns a logical vector for any F1 speech frames in
the 10th segment greater than 600 Hz: exactly the same result is produced by entering
frames(vowlax.fdat[10,1]) > 600. Similarly, the command sum(tip.tt[4,]
>= 0) returns the number of frames in the 4th segment that are greater than zero. To find out
how many frames are greater than zero in the entire trackdata object, use the sum() function
without any subscripting, i.e., sum(tip.tt > 0); the same quantity expressed as a
proportion of the total number of frames is sum(tip.tt > 0) / length(tip.tt > 0)
or sum(tip.tt > 0)/length(frames(tip.tt)).
 The analogy to vectors also holds when two trackdata objects are compared with each
other. For example for vectors:

Vectors
x = c(-5, 8.5, 12, 3)
y = c(10, 0, 13, 2)
x > y
FALSE TRUE FALSE TRUE

For trackdata objects, the following instruction:

temp = tip.tt > tip.tb

compares every frame of tongue tip data with every frame of tongue body data that occurs at the
same time and returns True if the first is greater than the second. Therefore,
sum(temp)/length(temp) can be subsequently used to find the proportion of frames (as a
fraction of the total) for which the tongue tip position is greater (higher) than the position of the
back of the tongue.

 101

 All logical vectors show this kind of parallelism between vectors and trackdata objects
and they are listed under Compare in help(Ops). However, there is one important sense in
which this parallelism does not work. In the previous example with vectors, x[x > 9] returns
those elements in x for which x is greater than 9. Although (as shown above) tip.tt > 0 is
meaningful, tip.tt[tip.tt > 0] is not. This is because tip.tt indexes segments
whereas tip.tt > 0 indexes speech frames. So if you wanted to extract the speech frames
for which the tongue-tip has a value greater than zero, this would be
frames(tip.tt)[tip.tt > 0]. You can get the times at which these occur with
tracktimes(tip.tt)[tip.tt > 0]. To get the utterances in which they occur is a little
more involved, because the utterance identifiers are not contained in the trackdata object. For
this reason, the utterance labels of the corresponding segment list have to be expanded to the
same length as the number of speech frames. This can be done with expand_labels() in
the Emu-R library whose arguments are the index list of the trackdata object and the utterances
from the according segment list:

uexpand = expand_labels(tip.tt$index, utt(tip.s))

A table listing per utterance the number of speech frames for which the position of the tongue tip
is greater than 0 mm could then be obtained with table(uexpand[tip.tt > 0]).

Math and summary functions
 There are many math functions in R that can be applied to vectors including those that
are listed under Math and Math2 in help(Ops). The same ones can be applied directly to
trackdata objects and once again they operate on speech frames. So round(x, 1) rounds the
elements in a numeric vector x to one decimal place and round(tip.tt, 1) does the same
to all speech frames in the trackdata object tip.tt. Since log10(x) returns the common
logarithm of a vector x, then plot(log10(vowlax.fdat[10,1:2])) plots the common
logarithm of F1 and F2 as a function of time for the 10th segment of the corresponding trackdata
object. There are also a couple of so-called summary functions including max(), min(),
range() for finding the maximum, minimum, and range that can be applied in the same way to
a vector or trackdata object. Therefore max(tip.tt[10,]) returns the speech frame with the
highest tongue-tip position for the 10th segment and range(tip.tt[son.lab == "n",])
returns the range of tongue tip positions across all /kn/ segments (assuming you created
son.lab earlier).
 Finally, if a function is not listed under help(Ops), then it does not show a parallelism
with vectors and must therefore be applied to speech frames directly. So while mean(x) and
sd(x) return the mean and standard deviation respectively of the numeric elements in a vector
x, since neither mean() nor sd() are functions listed under help(Ops), then this syntax this
does not carry over to trackdata objects. Thus mean(frames(tip.tt[1,])) and not
mean(tip.tt[1,]) returns the mean of the frames of the first segment; and
sd(frames(tip.tt[1:10,])) and not sd(tip.tt[1:10,]) returns the standard
deviation across all the frames of the first 10 segments and so on.

Applying a function segment by segment to trackdata objects
 With the exception of mean(), max() and min() all of the functions in the preceding
sections for carrying out arithmetic and math operations have two things in common when they
are applied to trackdata objects:

1. The resulting trackdata object has the same number of frames as the trackdata object to
which the function was applied.

2. The result is unaffected by the fact that trackdata contains values from multiple segments.

 102

Thus according to the first point above, the number of speech frames in e.g., tip.tt - 20 or
tip.tt^2 is the same as in tip.tt; or the number of frames in
log(vowlax.fdat[,2]/vowlax.fdat[,1]) is the same as in vowlax.fdat.
According to the second point, the result is the same whether the operation is applied to all
segments in one go or one segment at a time: the segment divisions are therefore transparent
as far as the operation is concerned. So the result of applying the cosine function to three
segments:

res = cos(tip.tt[1:3,])

is exactly the same as if you were to apply the cosine function separately to each segment:

res1 = cos(tip.tt[1,])
res2 = cos(tip.tt[2,])
res3 = cos(tip.tt[3,])
resall = rbind(res1, res2, res3)

The equivalence between the two is verified with:

all(res == resall)
TRUE

Now clearly there are a number of operations in which the division of data into segments does
matter. For example, if you want to find the mean tongue tip position separately for each
segment, then evidently mean(frames(tip.tt)) will not work because this will find the
mean across all 20 segments i.e., the mean value calculated across all speech frames in the
trackdata object tip.tt. It would instead be necessary to obtain the mean separately for each
segment:

m1 = mean(frames(tip.tt[1,]))
m2 = mean(frames(tip.tt[2,]))
...
m20 = mean(frames(tip.tt[20,]))

Even for 20 segments, entering these commands separately becomes tiresome but in
programming this problem can be more manageably solved using iteration in which the same
function, mean() in this case, is applied repeatedly to each segment. As the words of the
penultimate sentence suggest ('obtain the mean separately for each segment') one way to do this
is with a for-loop applied to the speech frames per segment, thus:

vec = NULL
for(j in 1:nrow(tip.tt)){
m = mean(frames(tip.tt[j,]))
vec = c(vec, m)
}
vec
-3.818434 -4.357997 -4.845907...

A much easier way, however, is to use trapply() in the Emu-R library that applies a
function (in fact using just such a for-loop) separately to the trackdata for each segment. The
single line command will accomplish this and produce the same result:

trapply(tip.tt, mean, simplify=T)

 103

-3.818434 -4.357997 -4.845907...

So to be clear: the first value returned above is the mean of the speech frames of the first
segment, i.e., it is mean(frames(tip.tt[1,])) or the value shown by the horizontal line
in:

plot(tip.tt[1,], type="b")
abline(h= mean(frames(tip.tt[1,])))

The second value, -4.357997, has the same relationship to the tongue tip movement for the
second segment and so on.
 The first argument to trapply() is, then, a trackdata object and the second argument is
a function like mean(). What kinds of functions can occur as the second argument? The answer
is any function, as long as it can be sensibly applied to a segment's speech frames. So the
reason why mean() is valid is because it produces a sensible result when applied to the speech
frames for the first segment:

mean(frames(tip.tt[1,]))
-3.818434

Similarly range() can be used in the trapply() function because it too gives meaningful
results when applied to a segment's speech frames, returning the minimum and maximum:

range(frames(tip.tt[1,]))
-10.124228 1.601175

Moreover, you could write your own function and pass it as the second argument to
trapply() as long as your function gives a meaningful output when applied to any segment's
speech frames. For example, supposing you wanted to find out the average values of just the first
three speech frames for each segment. The mean of the first three frames in the data of, say, the
10th segment is:

fr = frames(tip.tt[10,])
mean(fr[1:3])
-14.22139

Here is a function to obtain the same result:

mfun <- function(frdat, k=3)
{
 # frdat are speech frames, k the number of frames to be averaged (default is 3)
 mean(frdat[1:k])
}

mfun(frames(tip.tt[10,]))
-14.22139

Can mfun() be applied to a segment's speech frames? Evidently it can, as the preceding
command has just shown. Consequently, the function can be used as the second argument to
trapply() to calculate the mean of the first three elements for each segment separately:

res = trapply(tip.tt, mfun, simplify=T)
res[10]
-14.22139

 104

 The purpose of the third argument, simplify=T, is to simplify the result as a vector or
a matrix (otherwise for reasons explained below the output is a list). This third argument can,
and should be, used if you are sure that the function will return the same number of numeric
elements per segment. It was therefore appropriate to use simplify=T in all of the above
examples, because in each case the number of values returned is the same for each segment: both
mean() and mfun() always return one numeric value per segment and range() always
returns two values per segment. Whenever one value is returned per segment, then
simplify=T causes the output to be converted to a vector, otherwise, as when using
range(), the output is a matrix.
 Using simplify=T would not be appropriate if the function returns neither a vector nor
a matrix. Consider for example ar() for calculating autocorrelation coefficients. This function
produces meaningful output when applied to speech frames for any segment:

auto = ar(frames(tip.tt[9,]))
auto
Call:
ar(x = frames(tip.tt[9,]))

Coefficients:
 1
0.9306

Order selected 1 sigma^2 estimated as 3.583

Therefore, ar() could be applied iteratively to each segment using trapply(). But as both
the above output and class(auto) show, the output is neither a vector nor a matrix.
Consequently, simplify=T should not be included as the third argument. When
simplify=T is not included (equivalent to simplify = F), the output for each segment is
collected as a list and the data corresponding to any segment number is accessible using the
double bracket notation, thus:

a = trapply(tip.tt, ar)
summary(a[[9]])

Length Class Mode
order 1 -none- numeric
ar 1 -none- numeric
var.pred 1 -none- numeric
x.mean 1 -none- numeric
aic 17 -none- numeric
n.used 1 -none- numeric
order.max 1 -none- numeric
partialacf 16 -none- numeric
resid 40 -none- numeric
method 1 -none- character
series 1 -none- character
frequency 1 -none- numeric
call 2 -none- call
asy.var.coef 1 -none- numeric

5.5.2 Differencing and velocity
 Another perhaps more common case in which simplify=T is not appropriate is if the
function does not return the same number of elements per segment. This is going to happen in,
for example, differencing speech frames because the number of frames per segment is not the
same for each segment (because segments are not of the same duration). Differencing is often
a useful operation in many kinds of speech research and when speech movement data is

 105

differenced, the result is a signal containing an estimate for any point in time of the articulator's
velocity. In differencing a signal, element at time n-1 in a digital signal is subtracted from
element at time n. The relationship can be written as a equation relating the differenced signal
y[n] to the signal x[n] to which differencing in applied:

(1) y[n] = x[n] - x[n-1]

(1) can be carried out in R straightforwardly using the diff() function:

x = c(10, 0, -2 , 4, 12, 5)
y = diff(x)
y
-10 -2 6 8 -7

(1) is an example of first order (backward) differencing and the output always has one value less
than the number of elements in the signal to which differencing is applied. The estimation of
velocity from movement data is however often more reliably obtained from three-point central
differencing. The equation for this is:

(2) y[n] = ½ (x[n] - x[n-2])

(2) could be translated into R as 0.5 * diff(x, 2). The same result can be obtained by
convolving the input signal with the coefficients of a finite impulse response (FIR) filter. The
coefficients are the weights on the signal delays: thus c(0.5, 0, -0.5) in this case because
0.5 is the coefficient of x[n], 0 is the coefficient on x[n-1] (i.e., there is no x[n-1]) and -0.5 is
the coefficient on x[n-2]. So in R the three-point central differencing equation in (2) can be
implemented using the filter() function as:

y = filter(x, c(0.5, 0, -0.5))
y
NA -6.0 2.0 7.0 0.5 NA

In three-point central differencing, two values are lost, one at the beginning and the other at the
end43: this is why the output has an initial and final NA (not applicable). The other values are
synchronized with those of the original signal: thus the second value y[2] is an estimate of the
velocity at time point 2, y[3] at time point 3 and so on. This is another advantage of three-point
central differencing: in contrast to first order differencing, no further synchronization of the
differenced and the original signal is necessary.
 Consider now the effect of differencing on a cosine wave which can be produced with
cr() in the Emu-R library. In Fig. 5.12, a single cycle sinusoid (a phase shifted cosine wave)
consisting of 48 points was produced and plotted and follows:

coswav = cr(N=48, p=pi/2, values=T, plotf=F)
times = 0:47

43 This is because three point central differencing is the average of the forward and backward difference. For
example, suppose there is a signal x = c(1, 3, 4). At time point 2, the forward difference is x[2] - x[1]
and the backward difference is x[3] - x[2]. The average of these is 0.5 * (x[2] - x[1] + x[3] -
x[2]) or 0.5 * (x[3]-x[1]) or 1.5. At time point 1, the three point central difference would therefore be
0.5 * (x[2] - x[0]). But this gives numeric(0) or NA because x[0] is undefined (there is no sample
value preceding x[1]). At time point three, the output of 0.5 * (x[4]-x[2]) is NA for the same reason that
x[4] is undefined (the signal is of length 3). Consequently, filter(x, c(0.5, 0, -0.5)) gives NA 1.5
NA.

 106

plot(times, coswav, type="b", xlab="Time (number of points)",
ylab="Displacement")

For reasons that will be clear in a moment, vertical lines are marked at both the trough, or
minimum, and the following peak, or maximum, which occur at times 12 and 36:

abline(v=c(12, 36), lty=2)

Then central differencing is applied to this sinusoid and the result is plotted on top:

coswav.d = filter(coswav, c(0.5, 0, -0.5))
par(new=T)
plot(times, coswav.d, axes=F, type="b", xlab="", ylab="",
pch=18)
axis(side=4); mtext("Velocity", side=4, line=2)

Fig. 5.12 about here

The values for which the first differenced signal is zero can be seen by plotting a horizontal line
with abline(h=0). Finally, abline(v=24) marks the time at which the differenced signal
has a maximum value (Fig. 5.12).
 Now it is evident from Fig. 5.12 that whenever there is a peak (maximum) or trough
(minimum) in the sinusoid, then the differenced signal is zero-valued. This is at it should be
because the sinusoid is stationary at these times, i.e., the rate at which the sinusoid changes at
these times is zero. In addition, the time at which the differenced signal has a peak is when the
sinusoid has the greatest range of change (which is when the amplitude interval between two
points of the sinusoid is greatest).
 One of the remarkable discoveries in speech research in the last 20-30 years, which is
brought out so well by EMA analyses, is that the movement of the supralaryngeal articulators -
the jaw, lips, different points on the tongue - as a function of time often bears quite a close
resemblance to the sinusoidal movement shown on the left in Fig. 5.12. For example, there is a
quasi-sinusoidal shape to the movement of the tongue body over the interval of the tongue-body
raising and lowering for the /k/ in the 5th segment in Fig. 5.13. These data can be plotted with
plot(body.tb[5,]), assuming that the tongue body trackdata has been derived from the
corresponding segment list:

body.s = emu.query("ema5", "*", "[TB=raise -> TB = lower]")
body.tb = emu.track(body.s, "tb_posz")
plot(body.tb[5,])

The velocity of the tongue body can be derived using the same central differencing procedure
described above. In the procedure below, the filter() function is put inside another function
cendiff() which removes the first and last NA. The arguments to this function are the speech
frames and the coefficients set by default to those for central differencing:

cendiff <- function(spframes, coeffs=c(0.5, 0, -.5))
{
times = tracktimes(spframes)
result = filter(spframes, coeffs)
temp = is.na(result)
result = cbind(result[!temp])
rownames(result) <- times[!temp]
result

 107

}

The function can be applied to speech frames as this example shows:

cendiff(frames(body.tb[5,]))
[,1]
1400 0.2107015
1405 0.3403330
1410 0.4507700
1415 0.5315820
1420 0.5738020

The same function can therefore also be used inside trapply() for deriving the velocity from
multiple segments. For all the reasons discussed in the preceding section, simplify=T must
not be included because the number of differenced values is not the same from one segment to
the next, given that the durations of segments vary. However, if the function outputs values as a
function of time - as is necessarily the case in differencing a time signal - then the argument
returntrack=T can be included which will cause the output to be built as a trackdata object,
if possible. The advantage of doing this is that all of the functionality for manipulating trackdata
objects becomes available for these differenced data. The command is:

body.tbd = trapply(body.tb, cendiff, returntrack=T)

A plot of tongue body velocity as a function of time is then given by plot(body.tbd[5,]).
Ensemble plots (Fig. 5.13) for the movement and velocity data separately per category,
synchronized at the beginning of the raising movement for all segments can be produced with:

par(mfrow=c(1,2))
dplot(body.tb, son.lab)
dplot(body.tbd, son.lab)

Fig. 5.13 about here

The scale of the velocity data is mm/T where T is the duration between speech frames. Since in
this case T is 5 ms, the scale is mm/5 ms44.
 As the right panel of Fig. 5.13 shows, there are maxima and minima in the velocity data
corresponding to the times at which the rate of change of tongue-body raising and lowering are
greatest. The same figure also shows that the velocity is around zero close to 75 ms: this is the
time around which the tongue-body raising for the /k/ closure is at a maximum in many
segments.
 The left panel of Fig. 5.13 suggests that the peak velocity of the raising movement might
be greater for /kn/ than for /kl/. In order to bring out such differences between the clusters more
clearly, it would be helpful to align the trajectories at the time of the peak velocity itself. This in
turn means that these times have to be found which will require writing a function to do so. For
the data in question, the speech frames of any segment number n are given by
frames(body.tb[n,]) and the times at which they occur by
tracktimes(body.tb[n,]). The required function needs to find the time at which the
speech frames for any segment attain a maximum. This can be done by using the

44 If you want to convert this to cm/s, then divide by 5 to get to ms, multiply by 1000 to get to
seconds, and divide by 10 to get to cm: the combined effect of these operations is that the
trackdata object has to be multiplied by 20 which can be done with body.tbd = body.tbd
* 20.

 108

which.max() function to find the speech frame number at which the maximum occurs and
then applying it to the times of the speech frames. For example, for the fifth segment:

num = which.max(frames(body.tbd[5,]))
times = tracktimes(body.tbd[5,])
times[num]
1420

These lines can now be packed into a function that can be applied to speech frames. The function
has been written so that it defaults to finding the time of the maximum if maxtime is True; if
not, it finds the time of the minimum:

peakfun <- function(fr, maxtime=T)
{
if(maxtime) num = which.max(fr)
else num = which.min(fr)
tracktimes(fr)[num]
}

Now verify that you get the same result as before:

peakfun(frames(body.tbd[5,]))
1420

The time of the peak-velocity minimum is incidentally:

peakfun(frames(body.tbd[5,]), F)
1525

Since this function can evidently be applied to speech frames, then it can also be used inside
trapply() to get the peak-velocity maximum for each segment. In this case, simplify=T
can be set because there should only be one peak-velocity time per segment:

pkraisetimes = trapply(body.tbd, peakfun, simplify=T)

If you wanted to get the times of the peak-velocity minima for each segment corresponding to
the peak velocity of tongue body lowering, then just append the argument F after the function
name in trapply(), thus:

pklowertimes = trapply(body.tbd, peakfun, F, simplify=T)

The movement or velocity trackdata objects can now be displayed in an ensemble plot
synchronized at the peak-velocity maximum (Fig. 5.14):

par(mfrow=c(1,2))
dplot(body.tbd, son.lab, offset=pkraisetimes, prop=F)
dplot(body.tbd, son.lab, offset=pkraisetimes, prop=F, average=T)

Fig. 5.14 about here

These data are quite interesting because they show that the peak-velocity of the tongue-body
movement is not the same in /kn/ and /kl/ clusters and noticeably greater in /kn/, a finding that
could never be established from a spectrogram or an acoustic analysis alone.

 109

5.5.3 Critically damped movement, magnitude, and peak velocity
 The purpose in this final section is to explore in some further detail the origin of the
evidently faster movement in closing the /k/ in /kn/ than in /kl/. To do so, a bit more needs to be
said about the way in which movements are modeled in articulatory phonology (e.g., Browman
& Goldstein, 1990a, 1990b, 1990c, 1992; Saltzman & Munhall, 1989). In the preceding section,
it was noted that the movement of an articulator such as the tongue tip or jaw often follows a
quasi-sinusoidal pattern as a function of time. In articulatory phonology, this type of pattern is
presumed to come about because articulatory dynamics are controlled by the same kind of
dynamics that control the movement of a mass in a mass-spring system (e.g., Byrd et al, 2000).
 In such a system, imagine that there is a mass attached to the end of a spring. You pull
down on the mass and let it go and then measure its position as a function of time as it
approaches rest position. The way that the mass approaches the rest, or equilibrium, position
depends on a number of parameters some of which are factored out by making the simplification
firstly that the mass is of unit size and secondly that the mass-spring system is what is called
critically damped. In a critically damped system, the spring does not overshoot its rest position
or oscillate before coming to rest but approaches it exponentially and in the shortest amount of
time possible. This system’s equation of motion is defined as follows (Saltzman & Munhall,
1989; Byrd et al, 2000):

(2)

where x, ẋ, and ẍ are the position, velocity, and acceleration of the mass, ω is the spring's
natural frequency (and equal to the square root of the spring's stiffness), and xtarg is the position
of the spring at rest position. The system defined by (2) is dynamically autonomous in that there
are no explicit time-dependent, but only state-dependent, forces. For this critically damped mass-
spring system, the position of the mass as a function of time can be computed using the solution
equation in (3) in which time is explicitly represented and in which the starting velocity is
assumed to be zero45:

(3)

where A = x(0) - xtarg and B = v(0) + Aω. In this equation, ω and xtarg have the definition as
before, and x(t) and v(t) are the position and velocity of the mass at time t (t ≥ 0). Equation (3)
can be converted into an equivalent function in R as follows in which x(0), xtarg, v(0), ω, t are
represented in the function by xo, xtarg, vo, w, and n respectively:

critdamp <- function(xo=1, xtarg=0, vo=0, w=0.05, n=0:99)
{
A = xo - xtarg
B = vo + w * A
(A + B * n) * exp(-w * n)
}

The defaults are set in such a way that the starting position of the mass is 1, the initial velocity is
zero, and such that the mass approaches but does not attain, the rest (target) position of zero
over an interval between 0 and 99 time points. The position of the mass (articulator) as a
function of time46 for the defaults is shown in the left panel of Fig. 5.15. The figure was

45 My thanks to Elliot Saltzman for assistance in relating (2) to (3).
46 The units are not important for this example but in fact, if the sampling frequency, fs is defined, then the natural
frequency is w * fs/(2 * pi) Hz (see e.g. Harrington & Cassidy, 1999, p. 160). Thus, if the default of 100

€

˙ ̇ x + 2ω ˙ x +ω2 (x − xtarg) = 0

€

x(t) = (A+ Bt)e−ωt

 110

produced with:

position = critdamp()
plot(0:99, position)

The velocity, shown in the right panel of Fig. 5.15, can be calculated from the movement as
before with central differencing:

plot(0:99, filter(position, c(0.5, 0, -0.5))

Fig. 5.15 about here

In some implementations of the model of articulatory phonology (e.g., Byrd et al, 2000), there is
presumed to be a two-parameter specification of just this kind for each so-called gesture. In the
present data, raising and lowering the tongue-body in producing the /k/ closure (Fig. 5.16) are
the result of tongue-dorsum constriction-formation and constriction-release gestures that are
separately determined by their own two-parameter specifications that are input to an equation
such as (2). There then has to be a further parameter defining how these two gestures are timed
or phased relative to each other. This phasing is not the concern of the analysis presented here -
but see e.g., Beckman et al (1992), Harrington et al (1995), Fowler & Saltzman (1993) and more
recently Nam (2007) for further details.
 Although varying the parameters xo and ω can result in a potentially infinite number of
gestural shapes, they all confirm to the following four generalizations (Beckman et al, 1992;
Byrd et al, 2000):

i. The magnitude of a gesture is affected by xo: the greater xo, the greater the magnitude.
In Fig. 5.15, the magnitude is 1 because this is the absolute difference between the
highest and lowest positions. In tongue-body raising for producing the /k/ closure, the
magnitude is the extent of movement from the tongue-body minimum in the preceding
vowel to the maximum in closing the /k/ (a in Fig. 5.16).

ii. The peak-velocity of a gesture is influenced by both xo and by ω.
iii. The time at which the peak-velocity occurs relative to the onset of the gesture (c or f in

Fig. 5.15) is influenced only by ω, the articulatory stiffness.
iv. The gesture duration (b or e in Fig. 5.15) is the time taken between the tongue-body

minimum and following maximum in closing the /k/: this is not explicitly specified in the
model but arises intrinsically as a consequence of specifying xo and ω.

Both ii. and iii. can be derived from algebraic manipulation of (1) and demonstrated graphically.
As far as the algebra is concerned, it can be shown that the time at which the peak velocity
occurs, tpkvel, is the reciprocal of the natural frequency:

(4) tpkvel = 1/ω

Therefore, the higher the value of ω (i.e., the stiffer the spring/articulator), the smaller 1/ω and
the earlier the time of the peak velocity. Also, since (4) makes no reference to xo, then changing
xo can have no influence on tpkvel. Secondly, the peak velocity (ii), pkvel, is given by:

(5) pkvel = - xoω/e

points in the critdamp() function is assumed to take up 1 second (i.e., fs = 100 Hz), then the default w =
0.05 has a frequency in Hz of 0.05 * 100/(2 * pi) i.e. just under 0.8 Hz.

 111

Fig. 5.16 about here

Consequently, an increase in either xo or in ω (or both) causes the absolute value of pkvel to
increase because in either case the right hand side of (5) increases (in absolute terms).
 An illustration of the consequences of (4) and (5) is shown in Fig. 5.17. In column 1,
critdamp() was used to increase xo in equal steps with the stiffness parameter held constant:
in this case, there is a progressive increase in both the magnitude (between 0.75 and 1.5) and in
the peak velocity, but the time of the peak velocity is unchanged at 1/ω. In column 2, xo was held
constant and ω was varied in equal steps. In this case, the magnitude is the same, the peak
velocity increases, and the time of the peak velocity relative to movement onset decreases.

Fig. 5.17 about here

 The issue to be considered now is which parameter changes can best account for the
observed faster tongue-body raising movement shown in Fig 5.14 for /kn/ compared with /kl/.
This is at first sight not self-evident, since, as shown in Fig. 5.17, the greater peak velocity could
have been brought about by a change either to xo or to ω or to both. However, based on the above
considerations the following two predictions can be made:

i. If the faster tongue-body movement in /kn/ is due to a change in stiffness and not in the
target, then the time at which the peak velocity occurs should be earlier in /kn/ than in
/kl/.

ii. If the faster tongue-body movement in /kn/ is due to a change in the target and not in the
stiffness, then the ratio of the magnitude of the movement to the peak-velocity should be
about the same for /kn/ and /kl/. The evidence for this can be seen in column 1 of Fig.
5.17 which shows a progressive increase in the peak velocity, as the magnitude
increases. It is also evident from algebraic considerations. Since by (5) pkvel = -xoω/e,
then the ratio of the magnitude to the peak velocity is -xo/(xoω/e) = -e/ω. Consequently,
if ω is the same in /kn/ and /kl/, then this ratio for both /kn/ and /kl/ is the same constant
which also means that the tokens of /kn/ and /kl/ should fall on a line with approximately
the same slope of -e/ω when they are plotted in the plane of the magnitude as a function
of the peak velocity.

In order to adjudicate between these hypotheses - whether the faster tongue movement is brought
about by a change to the target or to stiffness or quite possibly both - then the parameters for the
raising gesture shown in Fig.5.16 need to be extracted from the trackdata object. Recall that a
segment list over the interval defined by tongue body raising was made earlier:

tbraise.s = emu.query("ema5", "*", "TB=raise")

A trackdata object of tongue-body raising over this raising interval is given by:

tbraise.tb = emu.track(tbraise.s, "tb_posz")

The function dur() could now be used to retrieve the duration of the raising gesture (b in Fig.
5.16) from this trackdata object:

Raising gesture duration
raise.dur = dur(tbraise.tb)

For the raising gesture magnitude (a in Fig. 5.16), the positions at the onset and offset of the
raising gesture need to be retrieved from the trackdata object and subtracted from each other.

 112

The retrieval of values at a single time point in a trackdata object can be done with dcut() in
the Emu-R library. For example, the start time of the raising gesture for the first segment is given
by start(tbraise.tb[1,]) which is 1105 ms so the position at that time is
dcut(tbraise.tb[1,], 1105). The corresponding positions for all segments can be
extracted by passing the entire vector of start times to dcut() as the second argument, thus:

pos.onset = dcut(tbraise.tb, start(tbraise.tb))

The positions at the offset of the raising gesture can be analogously retrieved with:

pos.offset = dcut(tbraise.tb, end(tbraise.tb))

The magnitude is the absolute difference between the two:

magnitude = abs(pos.onset - pos.offset)

The function dcut() could also be used to extract the times of the peak velocity. The first three
lines repeat the commands from 5.5.2 for creating the peak velocity trackdata object. The last
time extracts the times of maximum peak velocity:

body.s = emu.query("ema5", "*", "[TB=raise -> TB = lower]")
body.tb = emu.track(body.s, "tb_posz")
body.tbd = trapply(body.tb, cendiff, returntrack=T)
pkvel = dcut(body.tbd, pkraisetimes)

Finally, the fourth parameter that is needed is the duration between the movement onset and the
time of the peak velocity. Using the objects created so far, this is:

timetopkvel = pkraisetimes - start(body.tbd)

 If the faster tongue-body movement in /kn/ is due to a change in articulatory stiffness,
then the time to the peak velocity should be earlier than for /kl/. Assuming you have created the
objects k.s and son.lab (section 5.2), then the boxplot in Fig. 5.18 can be created with:

boxplot(timetopkvel ~ son.lab)

The boxplot shows no evidence that the time to the peak velocity is earlier in /kn/, although it is
difficult to conclude very much from these results, given the small number of tokens and
somewhat skewed distribution for /kn/ (in which the median and upper quartile have nearly the
same value).
 The same figure shows /kn/ and /kl/ in the plane of the magnitude as a function of the
peak velocity. The figure was plotted with:

plot(pkvel, magnitude, pch=son.lab)

The resulting display suggests that the tokens of /kn/ and /kl/ may well fall on the same line.
Thus although there are insufficient data to be conclusive, the pattern of results in the right panel
of Fig. 5.17 is consistent with the view that the ratio of the displacement to the peak velocity is
quite similar for both /kn/ and /kl/.

Fig. 5.18 about here

 113

 These data support the view, then, that the faster tongue movement is not the result of
changes to articulatory stiffness but instead to the target: informally, this brief analysis suggests
that the raising gesture for the velar stop in /kn/ is bigger and faster than in /kl/.

5.6 Summary
 The main purpose of this Chapter has been to make use of movement data in order to
illustrate some of the principal ways that speech can be analysed in Emu-R. The salient points of
this Chapter are as follows.

Segment lists and trackdata objects
 A segment list is derived from an annotated database with emu.query() and it
includes for each segment information about its annotation, its start time, its end time, and the
utterance from which it was extracted. The functions label() and utt() operate on a
segment list to retrieve respectively the annotation and utterance name in which the segment
occurs.
 The function trackinfo() gives information about which signals are available for a
database i.e., which trackdata objects can be made. The summary() function provides an
overview of the contents either of a segment list or of a trackdata object.
 A trackdata object contains speech frames and is always derived from a segment list. For
each segment, the times of the first and last speech frame are also within the boundary times of
the segment list. Successive speech frames are stored in rows and can be retrieved with the
function frames() and their times with tracktimes().The functions start(), end(),
dur() can be applied to segment lists or trackdata objects to obtain the segments’ start times,
end times and durations. There may be several columns of speech frames if several signal files
are read into the same trackdata object (as in the case of formants for example).

Indexing and logical vectors
 Emu-R has been set up so that vectors, matrices, segment lists, and trackdata objects can
be indexed in broadly the same way. The annotation or duration of the nth segment is indexed
with x[n], where x is a vector containing the segments' annotations or durations. Data for the
nth segment from matrices, segment lists and trackdata objects is indexed with x[n,].
 Logical vectors are the output of comparison operators and can be used to index
segments in an analogous way: if temp is logical, x[temp] retrieves information about the
annotations and durations of segments from vectors; and x[temp,] retrieves segment
information from segment lists and trackdata objects.

Plotting speech data from trackdata objects
 The function plot() (in reality plot.trackdata() when applied to a trackdata
object) can be used to produce a plot of the speech frames as a function of time for any
individual segment. The function dplot() is used for ensemble plots of speech frames as a
function of time for several segments.

Numerical, mathematical and logical operations on trackdata objects
 Trackdata objects can be handled arithmetically, logically and mathematically in very
similar way to vectors for the functions listed under Arith, Compare, Ops, Math, Math2,
and Summary in help(Ops). In all cases, these operations are applied to speech frames.

Applying functions to trackdata objects
 trapply() can be used to apply a function to a trackdata object. tapply() is for
applying a function to a vector separately for each category; and apply() can be used for
applying a function separately to the rows and columns of a matrix.

 114

Extracting data from trackdata objects at particular points in time
 Speech frames are extracted from a trackdata object with dcut() either at a single point
in time or over an interval.

Analysis of movement data
 In many cases, the movement of the supralaryngeal articulators in speech production
exhibits characteristics of a damped sinusoid with a minimum and maximum displacement at
articulatory landmarks. In the task-dynamic model, the movement between these extreme points
of articulatory movement is the result of producing an articulatory gesture according to the same
sets of parameters that control a critically-damped mass spring system. The time interval
between these points of minimum and maximum displacement corresponds to the gesture's
duration. The absolute difference in position between the minimum and maximum displacement
is the gesture's magnitude. Since the movement ideally follows a sinusoidal trajectory, there is
one point at which the velocity is a maximum, known as the peak velocity. The peak velocity can
be found by finding the time at which the movement's rate of change has a peak. The time of the
maximum or minimum displacement are the same as the times at which the velocity is zero.
 In the equation of a critically damped mass-spring system that defines the gesture's
trajectory, time is not explicitly represented but is instead a consequence of specifying two
parameters: the stiffness (or the spring/the articulator) and the target (change from equilibrium
position). Changing the stiffness increases peak velocity but does not affect the magnitude.
When the target is changed, then the peak velocity and magnitude change proportionally.

/kn/ vs. /kl/ clusters
 The interval between the tongue dorsum and tongue tip closures is greater for /kn/ than
for /kl/. In addition, /kn/ was shown to have a greater acoustic voice onset time as well as a
bigger (and proportionately faster) tongue-dorsum closing gesture compared with /kl/.

5.7 Questions
1. This question is about exploring whether the data shows a relationship between the extent of
jaw lowering and the first formant frequency in the first [a] component of [aɪ] of Kneipe,
Kneipier or of [aʊ] of Claudia and Klausur. In general, a more open vocal tract can be expected
to be associated with both by F1-raising and by a lower jaw position (Lindblom & Sundberg,
1971)

1(a) Calculate the first two formants of this database (ema5) and store these in a directory of
your choice. Modify the template file in the manner described in Chapter 2 so that they are
visible to the database ema5. Since this is a female speaker, use a nominal F1 of 600 Hz.

1(b) Assuming the existence of the segment list k.s of word-initial /k/ segments as defined at
the beginning of this Chapter and repeated below:

k.s = emu.query("ema5", "*", "Segment=k & Start(Word,
Segment)=1")

how could you use emu.requery() to make a segment list, vow, containing the diphthongs
in the same words, given that these are positioned three segments to the right in relation to these
word-initial /k/ segments? One you have made vow, make a trackdata object vow.fm, for this
segment list containing the formants. (You will first need to calculate the formants in the manner
described in Chapter 3. Use a nominal F1 of 600 Hz).

1(c) Make a vector of word labels, word.l, either from k.s or from the segment list vow you
created in 1(b). A table of the words should look like this:

 115

table(word.l)
word.l
 Claudia Klausur Kneipe Kneipier
 5 5 5 5

1(d) Make a trackdata object, vow.jaw, containing vertical jaw movement data (in track
jw_posz) for the segment list you made in 1(b).

1(e) The jaw height should show a trough in these diphthongs somewhere in the first component
as the jaw lowers and the mouth opens. Use trapply() and peakfun() given below
(repeated from section 5.5.2) to find the time at which the jaw height is at its lowest point in
these diphthongs.

peakfun <- function(fr, maxtime=T)
{
if(maxtime) num = which.max(fr)
else num = which.min(fr)
tracktimes(fr)[num]
}

1(f) Verify that the times you have found in (e) are appropriate by making an ensemble plot of
vow.jaw color-coded for the diphthong type and synchronized at time of maximum jaw
lowering found in 1(e).

1(g) Using dcut() or otherwise, extract (i) the first formant frequency and (ii) the jaw height at
these times. Store the first of these as f1 and the second as jaw.

1(h) Plot F1 as a function of the jaw height minimum showing the word labels at the
corresponding points. This can be done either with:

plot(f1, jaw, type="n", xlab="F1 (Hz)", ylab="Jaw position
(mm)")
text(f1, jaw, word.l)

or with:

eplot(cbind(f1, jaw), word.l, dopoints=T, doellipse=F, xlab="F1
(Hz)", ylab="Jaw position (mm)")

where word.l is the vector of word labels you make in 1(c). To what extent would you say that
there is a relationship between F1 and jaw height?

2. This question is about lip-aperture and tongue-movement in the closure of [p] of Kneipe and
Kneipier.

2(a). Make a segment list, p.s, of the acoustic [p] closure (p at the Segment tier) of Kneipe or
Kneipier.

2(b) Make a vector of word labels pword.l, parallel to the segment list in 2(a).

2(c) Make two trackdata objects from p.s: (i) p.ll, of the vertical position of the lower lip
(track ll_posz) and (ii) p.ul, of the vertical position of the upper lip (track ul_posz).

 116

2(d) One way to approximate the lip aperture using EMA data is by subtracting the vertical
lower lip position from the vertical upper lip position. Create a new trackdata object p.ap
consisting of this difference between upper and lower lip position.

2(e) Use peakfun() from 1(e) to create a vector, p.mintime, of the time at which the lip
aperture in p.ap is a minimum.

2(f) Make an ensemble plot of the position of the lip-aperture as a function of time from p.ap
color-coded for Kneipe vs. Kneipier and synchronized at the time of minimum lip aperture.

2(g) How could you work out the mean proportional time in the acoustic closure at which the lip-
aperture minimum occurs separately for Kneipe and Kneipier? For example, if the acoustic [p]
closure extends from 10 to 20 ms and the time of the minimum lip-aperture is 12 ms, then the
proportional time is (12-10)/(20-10) = 0.2. The task is to find two mean proportional times, one
for Kneipe and the other for Kneipier.

2(h) How would you expect the vertical and horizontal position of the tongue mid (Fig. 5.4)
sensor to differ between the words in the closure of [p], given that the segment following the
closure is [ɐ] in Kneipe and [j] or [ɪ] in Kneipier? Check your predictions by producing two
ensemble plots over the interval of the acoustic [p] closure and color-coded for these words (i) of
the vertical tongue-mid position and (ii) of the horizontal tongue-mid position synchronized at
the time of the lip-aperture minimum obtained in 2(g). (NB: the horizontal movement of the
tongue mid sensor is in tm_posy; and lower values obtained from the horizontal movement of
sensors denote more forward, anterior positions towards the lips).

3. The following question is concerned with the production differences between the diphthongs
[aʊ] and [aɪ] in the first syllables respectively of Klausur/Claudia and Kneipe/Kneipier.

3(a) Make a boxplot of F2 (second formant frequency) at the time of the jaw height minimum
(see 1(e)) separately for each diphthong (i.e., there should be one boxplot for [aʊ] and one for
[aɪ]).

3(b) Why might either tongue backing or a decreased lip-aperture contribute to the tendency for
F2 to be lower in [aʊ] at the time point in 3(a)? Make ellipse plots separately for the two
diphthong categories with the horizontal position of the tongue-mid sensor on the x-axis and the
lip-aperture (as defined in 2(d)) on the y-axis and with both of these parameters extracted at the
time of the jaw height minimum identified in 3(a). To what extent might these data explain the
lower F2 in [aʊ]?

4. This question is about the relationship between jaw height and duration in the first syllable of
the words Kneipe and Kneipier.

4(a) Kneipe has primary lexical stress on the first syllable, but Kneipier on the second. It is
possible that these lexical stress differences are associated with a greater duration in the first
syllable of Kneipe than that of Kneipier. Make a segment list of these words between the time of
maximum tongue-tip raising in /n/ and the time of minimum lip-aperture in /p/. (The way to do
this is to make use of the segment list of the lower annotations for these words at the TT tier,
and then to replace its third column, i.e., the end times, with p.mintime obtained in 2(e)).
Before you make this change, use emu.requery() to obtain a parallel vector of word labels
(so that each segment can be identified as Kneipe or Kneipier).

 117

4(b) Calculate the mean duration of the interval defined by the segment list in 4(a) separately for
Kneipe and Kneipier.

4(c) If there is less time available for a phonetic segment or for a syllable to be produced, then
one possibility according to Lindblom (1963) is that the target is undershot i.e., not attained. If
this production strategy is characteristic of the shorter first syllable in Kneipier, then how would
you expect the jaw position as a function of time over this interval to differ between these two
words? Check your predictions by making an ensemble plot of the position of the jaw height
color-coded according to these two words.

4(d) Derive by central differencing from 4(c) a trackdata object vz of the velocity of jaw height
over this interval.

4(e) Use emu.track() to make a trackdata object of the horizontal position of the jaw
(jw_posy) over this interval and derive the velocity of horizontal jaw movement, vy, from this
trackdata object.

4(f) The tangential velocity in some analyses of EMA data is the rate of change of the Euclidean
distance in the plane of vertical and horizontal movement which can be defined by:

(6)

in which vz is the velocity of vertical movement (i.e., the trackdata object in (4d) for this
example) and vy the velocity of horizontal movement (the trackdata object in (4e)). Derive the
tangential velocity for these jaw movement data and make an ensemble plot of the tangential
velocity averaged and color-coded for the two word categories (i.e., one tangential velocity
trajectory as a function of time averaged across all tokens of Kneipe and another superimposed
tangential velocity trajectory averaged across all tokens of Kneipier).

5.8 Answers

1(b)
vow = emu.requery(k.s, "Segment", "Segment", seq=3)
vow.fm = emu.track(vow, "fm")

1(c)
word.l = emu.requery(vow, "Segment", "Word", j=T)

1(d)
vow.jaw = emu.track(vow, "jw_posz")

1(e)
jawmin = trapply(vow.jaw, peakfun, F, simplify=T)

1(f)
dplot(vow.jaw, label(vow), offset=jawmin, prop=F)

1(g)
f1 = dcut(vow.fm[,1], jawmin)
jaw = dcut(vow.jaw, jawmin)

1(h)

 118

Fig. 5.19 about here

Fig. 5.19 shows that the variables are related: in very general terms, lower jaw positions are
associated with higher F1 values. The (negative) correlation is, of course, far from perfect (in
fact, -0.597 and significant, as given by cor.test(f1, jaw)).

2. (a)
p.s = emu.query("ema5", "*", "[Segment = p ^ Word=Kneipe |
Kneipier]")

2 (b)
pword.l = emu.requery(p.s, "Segment", "Word", j=T)

2(c)
p.ll = emu.track(p.s, "ll_posz")
p.ul = emu.track(p.s, "ul_posz")

2(d)
p.ap = p.ul - p.ll

2(e)
p.mintime = trapply(p.ap, peakfun, F, simplify=T)

2(f)
dplot(p.ap, pword.l, offset=p.mintime, prop=F)

2(g)
prop = (p.mintime-start(p.s))/dur(p.s)
tapply(prop, pword.l, mean)
 Kneipe Kneipier
 0.3429 0.2607

2(h)
You would expect the tongue mid position to be higher and fronter in Kneipier due to the
influence of the preceding and following palatal segments and this is supported by the evidence
in Fig. 5.20. 47

p.tmvertical = emu.track(p.s, "tm_posz")
p.tmhorz = emu.track(p.s, "tm_posy")
par(mfrow=c(1,2))
dplot(p.tmvertical, pword.l, offset=p.mintime, prop=F,
ylab="Vertical position (mm)", xlab="Time (ms)", legend=F)
dplot(p.tmhorz, pword.l, offset=p.mintime, prop=F,
ylab="Horizontal position (mm)", xlab="Time (ms)",
legend="topleft")

3(a)
f2jaw = dcut(vow.fm[,2], jawmin)
boxplot(f2jaw ~ label(vow))

Fig. 5.21 about here

47 The following additional plotting parameters were used: col=c(1, "slategray"), lwd=c(1,2),
lty=c(1,2), bty="n"

 119

3 (b)
vow.tmhor = emu.track(vow, "tm_posy")
vow.ul = emu.track(vow, "ul_posz")
vow.ll = emu.track(vow, "ll_posz")
vow.ap = vow.ul - vow.ll
tongue = dcut(vow.tmhor, jawmin)
ap = dcut(vow.ap, jawmin)
d = cbind(tongue, ap)
eplot(d, label(vow), dopoints=T, xlab="Horizontal tongue
position (mm)", ylab="Lip aperture (mm)")

Fig. 5.22 about here

Overall, there is evidence from Fig. 5.22 of a more retracted tongue position or decreased lip-
aperture at the jaw height minimum in [aʊ] which could be due to the phonetically back and
rounded second component of this diphthong. Either of these factors is likely to be associated
with the observed lower F2 in Fig. 5.21. In addition, Fig. 5.22 shows that [aʊ] seems to cluster
into two groups and these are probably tokens from the two words Claudia and Klausur. Thus,
the data show either that the lip aperture in [aʊ] is less than in [aɪ] (for the cluster of points
around 24 mm on the y-axis) or that the tongue is retracted (for the points around 27-28 mm on
the y-axis) relative to [aɪ] (but not both).

4 (a)
syll.s = emu.query("ema5", "*", "[TT = lower ^ Word = Kneipe |
Kneipier]")
word.l = emu.requery(syll.s, "TT", "Word", j=T)
syll.s[,3] = p.mintime

4(b)
tapply(dur(syll.s), word.l, mean)
Kneipe Kneipier
201.6592 161.0630

Yes: the first syllable of Kneipier, where syllable is defined as the interval between tongue-tip
raising in /n/ and the point of minimum lip-aperture in /p/, is some 40 ms less than that of
Kneipe.

4(c)
syll.jaw = emu.track(syll.s, "jw_posz")
dplot(syll.jaw, word.l, ylab="Position (mm)")

Fig. 5.23 about here

There does seem to be evidence for target undershoot of vertical jaw movement, as Fig. 5.23
suggests.
4(d)
vz = trapply(syll.jaw, cendiff, returntrack=T)

4(e)
syll.jawx = emu.track(syll.s, "jw_posy")
vy = trapply(syll.jawx, cendiff, returntrack=T)

 120

4(f)
tang = sqrt(vz^2 + vy^2)
dplot(tang, word.l, average=T, ylab="Tangential velocity (mm / 5
ms)", xlab="Time (ms)")

Fig. 5.24 about here

 121

Chapter 6. Analysis of formants and formant transitions

The aim of this Chapter is to extend some of the techniques presented in Chapter 3 for the
analysis of formant frequencies as well as some methods for analying the way that formants
change in time. The discussion is centred predominantly around vowels and the type of acoustic
information that is available for distinguishing between them. Sections 6.1 – 6.3 are for the most
part concerned with representing vowels in terms of their first two formant frequencies extracted
at the vowel targets. A technique known as kmeans clustering for assessing the influence of
context is briefly reviewed as well as some methods for locating vowel targets automatically
from vowel formant data. Outliers that can arise as a result of formant tracking errors are
discussed as well as methods for removing them.

As is well known, the formants of the same phonetic vowel vary not only because of
context, but also due to speaker differences and in 6.4 some techniques of vowel normalization
are applied to some vowel data in order to determine how far they reduce the different formant
characteristics of male and female vowels.

The final sections of this Chapter deal with vowel reduction, undershoot and
coarticulatory influences. In 6.5, some metrics for measuring the Euclidean distance are
introduced and applied to determining the expansion of the vowel space relative to its centre: this
method is especially relevant for modelling the relationship between vowel positions and vowel
hyperarticulation (see e.g., Moon & Lindblom, 1994; Wright, 2003). But Euclidean distance
measurements can also be used to assess how close one vowel space is to another and this is
found to have an application in quantifying sound change that is relevant for sociolinguistic
investigations.

Whereas all the techniques in 6.1-6.5 are static, in the sense that they rely on applying
analyses to formants extracted at a single point in time, in section 6.6 the focus is on the shape of
the entire formant movement as a function of time. In this section, the coefficients of the
parabola fitted to a formant are used both for quantifying vowel undershoot and also for
smoothing formant frequencies. Finally, the concern in section 6.7 is with the second formant
frequency transition as a cue to the place of the articulation of consonants and the way that so-
called locus equations can be used to measure the coarticulatory influence of a vowel on a
preceding or following consonant.

6.1 Vowel ellipses in the F2 x F1 plane

There is extensive evidence going back to the 19th and early part of the 20th Century that
vowel quality distinctions depend on the first two, or first three, resonances of the vocal tract
(see Ladefoged, 1967 and Traunmüller & Lacerda, 1987 for reviews). Since the first formant
frequency is negatively correlated with phonetic vowel height, and since F2 is correlated with
vowel backness, then a shape resembling the vowel quadrilateral emerges by plotting vowels in
the (decreasing) F1 × F2 plane. Essner (1947) and Joos (1948) were amongst the first to
demonstrate this relationship, and since then, many different kinds of experimental studies have
shown that this space is important for making judgements of vowel quality (see e.g., Harrington
& Cassidy, 1999, p. 60-78).

The first task will be to examine some formant data from a male speaker of Standard
German using some objects from the vowlax dataset stored in the Emu-R library48:

vowlax Segment list of four German lax vowels
vowlax.fdat Trackdata object of F1-F4
vowlax.l Vector of parallel vowel labels
vowlax.left Vector of labels of the segments preceding the vowels

48 All of these objects can be recreated from scratch: see Appendix C for further details

 122

vowlax.right Vector of labels of the segments following the vowels
vowlax.spkr Vector of speaker labels
vowlax.word Vector of word labels for the vowel

The dataset includes he vowels I, E, O, a from two speakers of Standard German, one
male (speaker 67) and one female (speaker 68) who each produced the same 100 read sentences
from the Kiel Corpus of Read Speech (the data are in the downloadable kielread database).
In the following, a logical vector is used to extract the data from the above for the male speaker:

temp = vowlax.spkr == "67" Logical vector - True for speaker 67
m.fdat = vowlax.fdat[temp,] Formant data
m.s = vowlax[temp,] Segment list
m.l = vowlax.l[temp] Vowel labels
m.left = vowlax.left[temp] Left context
m.right = vowlax.right[temp] Right context
m.word = vowlax.word[temp] Word labels

In plotting vowels in the F1 × F2 plane, a decision has to be made about the time point from
which the data are to be extracted. Usually, the extraction point should be at or near the vowel
target, which can be considered to be the point in the vowel at which the formants are least
influenced by context and/or where the formants change minimally in time (Chapter 3, Fig. 3.2).
Some issues to do with the vowel target are discussed in 6.3. For the present, the target is taken
to be at the temporal midpoint of the vowel, on the assumption that this is usually the time point
nearest to which the target occurs (Fig. 6.1):

m.fdat.5 = dcut(m.fdat, .5, prop=T)
eplot(m.fdat.5[,1:2], m.l, centroid=T, form=T, xlab="F2 (Hz)",
ylab="F1 (Hz)")

Fig. 6.1 about here

Note that in using eplot(), the number of rows of data must be the same as the number of
elements in the parallel label vector. This can be checked as follows:

nrow(m.fdat.5[,1:2]) == length(m.l)
[1] TRUE

The centroid=T argument displays the means of the distributions using the corresponding
character label; and as discussed in Chapter 3, the form=T argument rotates the space so that
the x-axis has decreasing F2 and the y-axis decreasing F1 as a result of which the vowels are
positioned analogously to the phonetic backness and height axes of the vowel quadrilateral. As
discussed in more detail in connection with probabilistic classification in Chapter 9, an ellipse is
a contour of equal probability. In the default implementation of the eplot() function, each
ellipse includes at least 95% of the data points corresponding to just under 2.45 ellipse standard
deviations.
 Those researchers who tend not to look at very much at data from continuous speech may
find the extent of overlap between vowels shown in Fig. 6.1 quite alarming because in laboratory
speech of isolated word data, the ellipses of one speaker are usually quite well separated. The
overlap arises, in part, because vowel targets in continuous speech are affected by different
contexts and prosodic factors. It might be helpful then to look at [ɪ] in further detail according to
the left context (Fig. 6.2):

 123

temp = m.l=="I"; par(mfrow=c(1,2))
eplot(m.fdat.5[temp,1:2], m.l[temp],m.left[temp], dopoints=T,
form=T, xlab="F2 (Hz)", ylab="F1 (Hz)")

There is not an immediately obvious pattern to the data in Fig. 6.2 and nor can one be reasonably
expected, given that it does not take account of some other variables, especially of the right
context. Nevertheless, when the preceding context is alveolar it does seem that [ɪ] is mostly
positioned in the top left of the display with low F1 and high F2. There are also a number of Q
labels with a high F2: these denote vowels that are preceded by a glottal stop i.e., syllable or
word-initial [ʔɪ] (vowels in a domain-initial position in German are usually glottalised).

Fig. 6.2 about here

 The technique of kmeans clustering can be applied to the data to give an indication of
whether the variability is affected by different types of context. This technique partitions the data
into k different clusters in such a way that the distance from the data points to the centroids
(means) of the derived clusters of which they are members is minimised. An example of how this
algorithm works is shown for 10 data points (those in bridge[1:10,1:2]) which are divided
into two clusters. Initially, a guess is made of two means shown by X1 and Y1 in the left panel of
Fig. 6.3. Then the straight-line (Euclidean) distance is calculated from each point to each of
these two means (i.e., two distance calculations per point) and each point is classified depending
on which of these two distances is shortest. The results of this initial classification are shown in
the central panel of the same figure: thus the four values at the bottom of the central panel are
labelled x because their distance is less to X1 than to Y1. Then the centroid (mean value on both
dimensions) is calculated separately for the points labelled x and those labelled y: these are
shown as X2 and Y2 in the middle panel. The same step as before is repeated in which two
distances are calculated from each point to X2 and Y2 and then the points are reclassified
depending on which of the two distances is the shortest. The results of this reclassification (right
panel, Fig. 6.3) show that two additional points are labelled x because these are nearer to X2 than
to Y2. The means of these new classes are X3 and Y3 and since there is no further shift in the
derived means by making the same calculations again, these are the final means and final
classifications of the points. They are also the ones that are given by
kmeans(bridge[1:10,1:2], 2).

Fig. 6.3 about here

 When kmeans clustering is applied to the [ɪ] data shown in the left panel of Fig. 6.2, the
result is a split of the data into two classes, as the right panel of the same figure shows. This
figure was produced with the following commands:

temp = m.l=="I"
k = kmeans(m.fdat.5[temp,1:2], 2)
eplot(m.fdat.5[temp,1:2], m.l[temp], k$cluster, dopoints=T,
form=T, xlab="F2 (Hz)", ylab="F1 (Hz)")

As is apparent from the right panel of Fig. 6.2, the algorithm has split the data according to
whether F2 is less, or greater, than roughly 1800 Hz. We can see whether this also partitions the
data along the lines of the left context as follows:

temp = m.l == "I"
Left context preceding [ɪ]

 124

m.left.I = m.left[temp]

Left context preceding [ɪ] in cluster 1 (the circles in Fig. 6.2, right panel).
temp = k$cluster==1
table(m.left.I[temp])
 Q b d k l m n r s t z
10 3 6 3 10 1 10 6 2 4 1

Left context preceding [ɪ] in cluster 2
table(m.left.I[!temp])
Q b f g l m n r s v
2 4 3 1 3 2 1 9 1 3

 So, as these results and the right panel of Fig. 6.2 show, cluster 1 (the circles in Fig. 6.2)
includes all of [d, t], 10/11 of [n] and 10/12 [ʔ] ("Q"). Cluster 2 tends to include more contexts
like [ʁ] ("r") and labials (there are more [b, f, m, v] in cluster 2 that for reasons to do with their
low F2-locus, are likely to have a lowering effect on F2).
 Thus the left context obviously has an effect on F2 at the formant midpoint of [ɪ]. Just
how much of an effect can be seen by plotting the entire F2 trajectory between the vowel onset
and vowel midpoint for two left contexts that fall predominantly in cluster 1 and cluster 2
respectively. Here is such a plot comparing the left contexts [ʔ] on the one hand with the
labiodentals [f, v] together (Fig. 6.4):

Logical vector that is true when the left context of [ɪ] is one of [ʔ, f, v]
temp = m.l == "I" & m.left %in% c("Q", "f", "v")

The next two lines relabel "f" and "v" to a single category "LAB"
lab = m.left[temp]
lab[lab %in% c("f", "v")] = "LAB"
dplot(m.fdat[temp,2], lab, ylab="F2 (Hz)", xlab="Duration (ms)")

Fig. 6.4 about here

Apart from two [ʔɪ] trajectories, there is a separation in F2 throughout the vowel depending on
whether the left context is [ʔ] or a labiodental fricative. But before these very clear F2
differences are attributed just to left context, the word label (and hence the right context) should
also be checked. For example, for [ʔ]:

table(vowlax.word[m.left=="Q" & m.l=="I"])
 ich Ich In Inge Iss isst ist
 4 4 2 4 2 2 6

So the words that begin with [ʔɪ] almost all have a right context which is likely to contribute to
the high F2 i.e., [ç] in [ɪç] (I) or [s] in [ɪs], [ɪst] (eat, is): that is, the high F2 in [ʔɪ] is unlikely
to be due just to left context alone.

6.2 Outliers

When a formant tracker is run over speech data in the manner described in Chapter 3,
there will inevitably be errors due to formant tracking especially for large speech corpora. Errors
are especially common at the boundaries between voiceless and voiced segments and whenever
two formants, such as F1 and F2 for back vowels are close together in frequency. If such errors
occur, then it is likely that they will show up as outliers in ellipse plots of the kind examined so

 125

far. If the outliers are far from the ellipse's centre, then they can have quite a dramatic effect on
the ellipse orientation.

Fig. 6.5 about here

Fig. 6.5 shows two outliers from the [ɪ] vowels of the male speaker for the data extracted
at the onset of the vowel:

Speaker 67's [ɪ]vowels
temp = vowlax.spkr=="67" & vowlax.l=="I"
Segment list thereof
m.seg = vowlax[temp,]
F1 and F2 at the segment onset
m.Ion = dcut(vowlax.fdat[temp,1:2], 0, prop=T)
Set x- and y-ranges to compare two plots to the same scale
xlim = c(150,500); ylim =c(0,2500); par(mfrow=c(1,2))
Ellipse plot with outliers
eplot(m.Ion, label(m.seg), dopoints=T, xlim=xlim, ylim=ylim,
xlab="F2 (Hz)", ylab="F1 (Hz)")

As the left panel of Fig. 6.5 shows, there are two outliers: one of these is where F2 = 0 Hz at the
bottom of the plot and is almost certainly due to a formant tracking error. The other outlier has a
very low F1 but it is not possible to conclude without looking at the spectrogram whether this is
a formant error or the result of a context effect. The first of these outliers can, and should, be
removed by identifying all values that have F2 less than a certain value, say 50 Hz. This can be
done with a logical vector that is also passed to eplot() to produce the plot without the outlier
on the right. The command in the first line is used to identify F2 values less than 50 Hz:

temp = m.Ion[,2] < 50
eplot(m.Ion[!temp,], label(m.seg[!temp,]),dopoints=T, xlim=xlim,
ylim=ylim, xlab="F2 (Hz)")

Because the outlier was a long way from the centre of the distribution, its removal has shrunk the
ellipse size and also changed its orientation slightly.
 It is a nuisance to have to constantly remove outliers with logical vectors, so a better
solution that the one in Fig. 6.5 is to locate its utterance identifier and redraw the formant track
by hand in the database from which these data were extracted (following the procedure in 3.1).
The utterance in which the outlier occurs as well as its time stamp can be found by combining
the logical vector with the segment list:

temp = m.Ion[,2] < 50
m.seg[temp,]
segment list from database: kielread
query was: Kanonic=a | E | I | O
 labels start end utts
194 I 911.563 964.625 K67MR096

That is, the outlier occurs somewhere between 911 ms and 964 ms in the utterance K67MR096
of the kielread database. The corresponding spectrogram shows that the outlier is very
clearly a formant tracking error that can be manually corrected as in Fig. 6.6.

Fig. 6.6 about here

 126

 Manually correcting outliers when they are obviously due to formant tracking errors as in
Fig. 6.6 is necessary. But this method should definitely be used sparingly: the more manual
intervention that is used, the greater the risk that the researcher might unwittingly bias the
experimental data.

6.3 Vowel targets

As discussed earlier, the vowel target can be considered to be the section of the vowel
that is least influenced by consonantal context and most similar to a citation-form production of
the same vowel. It is also sometimes defined as the most steady-state part of the vowel: that is,
the section of the vowel during which the formants (and hence the phonetic quality) change
minimally (see e.g., Broad & Wakita, 1977; Schouten & Pols, 1979). It is however not always
the case that the vowel target is at the temporal midpoint. For example, in most accents of
Australian English, in particular the broad variety, the targets of the long high vowels in heed
and who'd occur late in the vowel and are preceded by a long onglide (Cox & Palethorpe, 2007).
Apart from factors such as these, the vowel target could shift proportionally because of
coarticulation. For example, Harrington, Fletcher and Roberts (1995) present articulatory data
showing that in prosodically unaccented vowels (that is those produced without sentence stress),
the final consonant is timed to occur earlier in the vowel than in prosodically accented vowels
(with sentence stress). If the difference between the production of accented and unaccented
vowels has an influence on the final transition in the vowel, then the effect would be that the
vowel target occurs proportionally somewhat later in the same word when it is unaccented. For
reasons such as these, the vowel target cannot always be assumed to be at the temporal midpoint.
At the same time, some studies have found that different strategies for locating the vowel target
have not made a great deal of difference to classifying vowels from formant data (see e.g., van
Son & Pols, 1990 who compared three different methods for vowel target identification in
Dutch).
 One method that is sometimes used for vowel target identification is to find the time
point at which the F1 is at a maximum. This is based on the idea that vowels reach their
targets when the oral tract is maximally open which often coincides with an F1-maximum, at
least in non-high vowels (Lindblom & Sundberg, 1971). The time of the F1-maximum can be
obtained using the same function for finding the first maximum or minimum in the speech
frames of a single segment presented in 5.5.2. Here is the function again:

peakfun <- function(fr, maxtime=T)
{
if(maxtime) num = which.max(fr)
else num = which.min(fr)
tracktimes(fr)[num]
}

Following the procedure discussed in 5.5.2, the time at which F1 reaches a maximum in the 5th
segment of the trackdata object m.fdat is:

peakfun(frames(m.fdat[5,1]))
2117.5

Since the function can evidently be applied to speech frames, then it can be used inside the
trapply() function to find the time of the F1 maximum in all segments. However, it might
be an idea to constrain the times within which the F1-maximum is to be found, perhaps by
excluding the first and last 25% of each vowel from consideration, given that these intervals are
substantially influenced by the left and right contexts. This can be done, as discussed in 5.5.3 of
the preceding Chapter, using dcut():

 127

Create a new trackdata object between the vowels' 25% and 75% time points
m.fdat.int = dcut(m.fdat, .25, .75, prop=T)
Get the times at which the F1 maximum first occurs in this interval
m.maxf1.t = trapply(m.fdat.int[,1], peakfun, simplify=T)

The calculated target times could be checked by plotting the trackdata synchronised at these
calculated target times (Fig. 6.7, left panel):

Logical vector to identify all a vowels
temp = m.l == "a"
F1 and F2 of a synchronised at the F1-maximum time
dplot(m.fdat[temp,1:2], offset=m.maxf1.t[temp] , prop=F, ylab="F1
and F2 (Hz)", xlab="Duration (ms)")

Fig. 6.7 about here

The alignment can also be inspected segment by segment using a for-loop.

For the first five [a] segments separately…
for(j in 1:5){
plot F1 and F2 as a function of time with the vowel label as the main title
dplot(m.fdat[temp,1:2][j,], main=m.l[temp][j], offset=
m.maxf1.t[temp][j], prop=F, ylab="F1 and F2 (Hz)")
Draw a vertical line at the F1-maximum
abline(v = 0, col=2)
Left button to advance
locator(1)
}

The result of the last iteration is shown in the right panel of Fig. 6.7.

It will almost certainly be necessary to change some of these target times manually but
this should be done not in R but in Praat or Emu. To do this, the vector of times needs to be
exported so that the times are stored separately in different annotation files. The makelab()
function can be used for this. The following writes out annotation files so that they can be loaded
into Emu. You have to supply the name of the directory where you want all these annotation files
to be stored as the third argument to makelab().

path = "directory for storing annotation files"
makelab(m.maxf1.t, utt(m.s), path, labels="T")

This will create a number of files, one per utterance, in the specified directory. For example, a
file K67MR001.xlab will be created that looks like this:

signal K67MR001
nfields 1

0.8975 125 T
1.1225 125 T
1.4775 125 T
1.6825 125 T
2.1175 125 T

 128

The template file for the database kielread must now be edited in the manner described in
2.5 of Chapter 2 so that the database can find these new label files. In Fig. 6.8, this is done by
specifying a new level called Target that is (autosegmentally) associated with the Phonetic
tier:

Fig. 6.8 about here

As a result of modifying the template, the target times are visible and can be manipulated in
either Emu or Praat.

The function peakfun() which has so far been used to find the time at which the F1
maximum occurs, can also be used to find the time of the F1-minimum:

m.minf2.t = trapply(m.fdat.int[,2], peakfun, F, simplify=T)

What if you want to find the vowel target in a vowel-specific way – based on the F1 maximum
for the open and half-open vowels [a, ɛ], on the F2-maximum for the mid-high vowel [ɪ], and
on F2-minimum for the back rounded vowel [ɔ]? In order to collect up the results so that the
vector of target times is parallel to all the other objects, a logical vector could be created per
vowel category and used to fill up the vector successively by vowel category. The commands for
doing this and storing the result in the vector times are shown below:

A vector of zeros the same length as the label vector (and trackdata object)
times = rep(0, length(m.l))
Target times based on F2-max for [ɪ]
temp = m.l=="I"
times[temp] = trapply(m.fdat.int[temp,2], peakfun, simplify=T)
Target time based on F1-max for [a, ɛ]
temp = m.l %in% c("E", "a")
times[temp] = trapply(m.fdat.int[temp,1], peakfun, simplify=T)
Target time based on F2-min for [ɔ]
temp = m.l == "O"
times[temp] = trapply(m.fdat.int[temp,2], peakfun, F,
simplify=T)

6.4 Vowel normalization

Much acoustic variation comes about because speakers have different sized and shaped
vocal organs. This type of variation was demonstrated spectrographically in Peterson & Barney's
(1952) classic study of vowels produced by men, women, and children and the extensive
speaker-dependent overlap between formants was further investigated in Peterson (1961),
Ladefoged (1967) and Pols et al (1973) (see also Adank et al., 2004 for a more recent
investigation).

The differences in the distribution of the vowels for the male speaker and female speaker
can be examined once again with ellipse plots. These are shown together with the data points in
Fig. 6.9 and they were created with the following commands:

Set the ranges for the x- and y-axes to plot two panels in one row and two columns
xlim = c(800,2800); ylim = c(250, 1050); par(mfrow=c(1,2))
Logical vector for identifying the male speaker; !temp is the female speaker
temp = vowlax.spkr=="67"
eplot(vowlax.fdat.5[temp,1:2], vowlax.l[temp], dopoints=T,
form=T, xlim=xlim, ylim=ylim, xlab="F2 (Hz)", ylab="F1 (Hz)")

 129

eplot(vowlax.fdat.5[!temp,1:2], vowlax.l[!temp], dopoints=T,
form=T, xlim=xlim, ylim=ylim, xlab="F2 (Hz)", ylab="")

Fig. 6.9 about here

The differences are quite substantial, especially considering that these are speakers of the same
standard North German variety producing the same read sentences! The figure shows, in general,
how the formants of the female speaker are higher in frequency than those of the male which is
to be expected because female vocal tracts are on average shorter. But as argued in Fant (1966),
because the ratio of the mouth cavity to the pharyngeal cavity lengths is different in male and
female speakers, the changes to the vowels due to gender are non-uniform: this means that the
male-female differences are greater in some vowels than others. Fig. 6.9 shows that, whereas the
differences between the speakers in [ɪ] are not that substantial, those between [a] on F1 and F2
are quite considerable. Also the F2 differences are much more marked than those in F1 as a
comparison of the relative positions of [ɪ, ɛ] between the two speakers shows. Finally, the
differences need not be the result entirely of anatomical and physiological differences between
the speakers. Some differences may be as a result of speaking-style: indeed, for the female
speaker there is a greater separation between [ɪ, ɛ] on the one hand and [ɔ, a] on the other than
for the male speaker and this may be because there is greater vowel hyperarticulation for this
speaker – this issue will be taken up in more detail in the analysis of Euclidean distances in 6.5.

An overview of the main male-female vowel differences can be obtained by plotting a
polygon that connects the means (centroids) of each vowel category for the separate speakers on
the same axes. The first step is to get the speaker means. As discussed in 5.3, tapply()
applies a function to a vector per category. So the F1 category means for speaker 67 are:

temp = vowlax.spkr=="67"
tapply(vowlax.fdat.5[temp,1], vowlax.l[temp], mean)
 a E I O
635.9524 523.5610 367.1647 548.1875

However in order to calculate these category means for a matrix of F1 and F2 vowels,
tapply() could be used inside the apply() function. The basic syntax for applying a
function, fun(), to the columns of a matrix is apply(matrix, 2, fun, arg1,
arg2…argn) where arg1, arg2, …argn are the arguments of the function that is to be
applied. So the F1 and F2 category means for speaker 67 are:

temp = vowlax.spkr=="67"
apply(vowlax.fdat.5[temp,1:2], 2, tapply, vowlax.l[temp], mean)
 T1 T2
E 523.5610 1641.073
I 367.1647 1781.329
O 548.1875 1127.000
a 635.9524 1347.254

Fig. 6.10 about here

The desired polygon (Fig. 6.10) could be plotted first by calling eplot() with doellipse=F
(don't plot the ellipses) and then joining up these means using the polygon() function. The x-
and y-ranges need to be set in the call to eplot(), in order to superimpose the corresponding
polygon from the female speaker on the same axes:

xlim = c(1000, 2500); ylim = c(300, 900)

 130

eplot(vowlax.fdat.5[temp,1:2], vowlax.l[temp], form=T,
xlim=xlim, ylim=ylim, doellipse=F, col=F, xlab="F2 (Hz)",
ylab="F1 (Hz)")
m = apply(vowlax.fdat.5[temp,1:2], 2, tapply, vowlax.l[temp],
mean)
Negate the mean values because this is a plot in the –F2 × –F1 plane
polygon(-m[,2], -m[,1])

Then, since the logical vector, temp, is True for the male speaker and False for the female
speaker, the above instructions can be repeated with !temp for the corresponding plot for the
female speaker. The line par(new=T) is for superimposing the second plot on the same axes
and lty=2 in the call to polygon() produces dashed lines:

par(new=T)
eplot(vowlax.fdat.5[!temp,1:2], vowlax.l[!temp], form=T,
xlim=xlim, ylim=ylim, doellipse=F, col=F, xlab="", ylab="")
m = apply(vowlax.fdat.5[!temp,1:2], 2, tapply, vowlax.l[!temp],
mean)
polygon(-m[,2], -m[,1], lty=2)

Strategies for vowel normalization are designed to reduce the extent of these divergences
due to the speaker and they fall into two categories: speaker-dependent and speaker-
independent. In the first of these, normalization can only be carried out using statistical data
from the speaker beyond the vowel that is to be normalized (for this reason, speaker-dependent
strategies are also called extrinsic, because information for normalization is extrinsic to the
vowel that is to be normalized). In a speaker-independent strategy by contrast, all the
information needed for normalising a vowel is within the vowel itself, i.e., intrinsic to the
vowel.

The idea that normalization might be extrinsic can be traced back to Joos (1948) who
suggested that listeners judge the phonetic quality of a vowel in relation to a speaker's point
vowels [i, a, u]. Some evidence in favour of extrinsic normalization is provided in Ladefoged &
Broadbent (1957) who found that the listeners' perceptions of the vowel in the same test word
shifted when the formant frequencies in a preceding carrier phrase were manipulated. On the
other hand, there were also various perception experiments in the 1970s and 1980s showing that
listeners' identifications of a speaker's vowels were not substantially improved if they were
initially exposed to the same speaker's point vowels (Assmann et al, 1982; Verbrugge et al.,
1976).

Whatever the arguments from studies of speech perception for or against extrinsic
normalization (Johnson, 2005), there is evidence to show that when extrinsic normalization is
applied to acoustic vowel data, the differences due to speakers can often be quite substantially
reduced (see e.g. Disner, 1980 for an evaluation of some extrinsic vowel normalization
procedures). A very basic and effective extrinsic normalization technique is to transform the
data to z-scores by subtracting out the speaker's mean and dividing by the speaker's standard-
deviation for each parameter separately. The technique was first used by Lobanov (1971) for
vowels and so is sometimes called Lobanov-normalization. The transformation has the effect of
centering each speaker's vowel space at coordinates of zero (the mean); the axes are then the
number of standard deviations away from the speaker's mean. So for a vector of values:

vec = c(-4, -9, -4, 7, 5, -7, 0, 3, 2, -3)

their Lobanov-normalized equivalents are:

(vec - mean(vec)) / sd(vec)

 131

-0.5715006 -1.5240015 -0.5715006 1.5240015 1.1430011
-1.1430011 0.1905002 0.7620008 0.5715006 -0.3810004

A function that will carry out Lobanov-normalization when applied to a vector is as follows:

lob <- function(x)
{
transform x to z-scores (Lobanov normalization); x is a vector
(x - mean(x))/sd(x)
}

Thus lob(vec) gives the same results as above. But since there is more than one parameter
(F1, F2), the function needs to be applied to a matrix. As discussed earlier, apply(matrix,
2, fun) has the effect of applying a function, fun(), separately to the columns of a matrix.
The required modifications can be accomplished as follows:

lobnorm <- function(x)
{
transform x to z-scores (Lobanov normalization); x is a matrix
lob <- function(x)
{
(x - mean(x))/sd(x)
}
apply(x, 2, lob)
}

In lobnorm(), the function lob() is applied to each column of x. Thus, the Lobanov-
normalized F1 and F2 for the male speaker are now:

temp = vowlax.spkr == "67"
norm67 = lobnorm(vowlax.fdat.5[temp,])

and those for the female speakers can be obtained with the inverse of the logical vector, i.e.,
lobnorm(vowlax.fdat.5[!temp,]). However, as discussed in 5.2, it is always a good
idea to keep objects that belong together (segment list, trackdata, label files, matrices derived
from trackdata, normalized data derived from such data, etc.) parallel to each other as a result of
which they can all be manipulated in relation to segments. Here is one way to do this:

Set up a matrix of zeros with the same dimensions as the matrix to be Lobanov-normalized
vow.norm.lob = matrix(0, nrow(vowlax.fdat.5),
ncol(vowlax.fdat.5))
temp = vowlax.spkr == "67"
vow.norm.lob[temp,] = lobnorm(vowlax.fdat.5[temp,])
vow.norm.lob[!temp,] = lobnorm(vowlax.fdat.5[!temp,])

The same effect can be achieved with a for-loop and indeed, this is the preferred approach if
there are several speakers whose data is to be normalized (but it works just the same when there
are only two):

vow.norm.lob = matrix(0, nrow(vowlax.fdat.5),
ncol(vowlax.fdat.5))
for(j in unique(vowlax.spkr)){
temp = vowlax.spkr==j
vow.norm.lob[temp,] = lobnorm(vowlax.fdat.5[temp,])

 132

}

Since vow.norm.lob is parallel to the vector of labels vowlax.l, then eplot() can be
used in the same way as for the non-normalized data to plot ellipses (Fig. 6.11).

xlim = ylim = c(-2.5, 2.5); par(mfrow=c(1,2))
temp = vowlax.spkr=="67"
eplot(vow.norm.lob[temp,1:2], vowlax.l[temp], dopoints=T,
form=T, xlim=xlim, ylim=ylim, xlab="F2 (normalized)", ylab="F1
(normalized)")
eplot(vow.norm.lob[!temp,1:2], vowlax.l[!temp], dopoints=T,
form=T, xlim=xlim, ylim=ylim, xlab="F2 (normalized)", ylab="")

Fig. 6.11 about here

The point [0,0] in Fig. 6.11 is the mean or centroid across all the data points per speaker and the
axes are the numbers of standard deviations away from [0,0]. Compared with the raw data in Fig.
6.9, it is clear enough that there is a much closer alignment between the vowel categories of the
male and female speakers in these normalized data. For larger studies, the mean and standard
deviation should be based not just on those of a handful of lax vowels, but a much wider
selection of vowel categories.
 Another extrinsic normalization technique is due to Nearey (see e.g., Assmann et al.,
1982; Nearey, 1989). The version demonstrated here is the one in which normalization is
accomplished by subtracting a speaker-dependent constant from the logarithm of the formants.
This speaker-dependent constant is obtained by working out (a) the mean of the logarithm of F1
(across all tokens for a given speaker) and (b) the mean of the logarithm of F2 (across the same
tokens) and then averaging (a) and (b). An expression for the speaker-dependent constant in R is
therefore mean(apply(log(mat), 2, mean)), where mat is a two-columned matrix
of F1 and F2 values. So for the male speaker, the speaker-dependent constant is:

temp = vowlax.spkr == "67"
mean(apply(log(vowlax.fdat.5[temp,1:2]), 2, mean))
6.755133

This value must now be subtracted from the logarithm of the raw formant values separately for
each speaker. This can be done with a single-line function:

nearey <- function(x)
{
Function for extrinsic normalization according to Nearey
x is a two-columned matrix
log(x) - mean(apply(log(x), 2, mean))
}

Thus nearey(vowlax.fdat.5[temp,1:2]) gives the Nearey-normalized formant (F1
and F2) data for the male speaker. The same methodology as for Lobanov-normalization above
can be used to obtain Nearey-normalized data that is parallel to all the other objects – thereby
allowing ellipse and polygon plots to be drawn in the F2 x F1 plane in the manner described
earlier.
 Lobanov- and Nearey-normalization are, then, two examples of speaker-dependent
strategies that require data beyond the vowel that is to be normalized. In speaker-independent
strategies all the information for normalization is supposed to be in the vowel itself. Earlier
speaker-independent strategies made use of formant ratios (Peterson, 1961; Potter & Steinberg,

 133

1950; see also Miller, 1989) and they often copy some aspects of the auditory transformations to
acoustic data that are known to take place in the ear (Bladon et al, 1984). These types of speaker-
independent auditory transformations are based on the idea that two equivalent vowels, even if
they are produced by different speakers, result in a similar pattern of motion along the basilar
membrane, even if the actual position of the pattern varies (Potter & Steinberg, 1950; see also
Chiba & Kajiyama, 1941). Since there is a direct correspondence between basilar membrane
motion and a sound's frequency on a scale known as the Bark scale, a transformation to an
auditory scale like the Bark scale (or ERB scale: see e.g., Glasberg & Moore, 1990) is usually
the starting point for speaker-independent normalization. Independently of these normalization
issues, many researchers transform formant values from Hertz to Bark before applying any
further analysis, on the grounds that an analogous translation is presumed to be carried out in the
ear.

There is a function bark(x) in the Emu-R library to carry out such a transformation,
where x is a vector, matrix, or trackdata object of Hertz values. (The same function with the
inv=T argument converts Bark back into Hertz). The formulae for these transformations are
given in Traunmüller (1990) and they are based on analyses by Zwicker (1961).

A graph of the relationship between the two scales (up to 10 kHz) with horizontal lines
at intervals of 1 Bark superimposed on the Hz axis can be drawn as follows (Fig. 6.12):

plot(0:10000, bark(0:10000), type="l", xlab="Frequency (Hz)",
ylab="Frequency (Bark)")
abline(v=bark(1:22, inv=T), lty=2)

Fig. 6.12 about here

Fig. 6.12 shows that the interval corresponding to 1 Bark becomes progressively wider for values
higher up the Hertz scale (the Bark scale, like the Mel scale (Fant, 1968), is roughly linear up to
1 kHz and then quasi-logarithmic thereafter). Ellipse plots analogous to those in Fig. 6.11 can be
created by converting the matrix into Bark values (thus the first argument to eplot() for the
male speaker is bark(vowlax.fdat.5[temp,1:2])) or else by leaving the values in Hz
and adding the argument scaling="bark" in the eplot() function. A detailed exploration
of Bark-scaled, vowel formant data is given in Syrdal & Gopal (1986).

6.5 Euclidean distances
6.5.1 Vowel space expansion

Various studies in the last fifty years have been concerned with phonetic vowel reduction
that is with the changes in vowel quality brought about by segmental, prosodic, and situational
contexts. In Lindblom's (1990) hyper- and hypoarticulation theory, speech production varies
along a continuum from clear to less clear speech. According to this theory, speakers make as
much effort to speak clearly as is required by the listener for understanding what is being said.
Thus, the first time that a person's name is mentioned, the production is likely to be clear because
this is largely unpredictable information for the listener; but subsequent productions of the same
name in an ongoing dialogue are likely to be less clear, because the listener can more easily
predict its occurrence from context (Fowler & Housum, 1987).

A vowel that is spoken less clearly tends to be reduced which means that there is a
deviation from its position in an acoustic space relative either to a clear, or citation-form
production. The deviation is often manifested as centralisation, in which the vowel is produced
nearer to the centre of the speaker's vowel space than in clear speech. Equivalently, in clear
speech there is an expansion of the vowel space. There is articulatory evidence for this type of
vowel space expansion when vowels occur in prosodically accented words, often because these
tend to be points of information focus, that is points of the utterance that are especially

 134

important for understanding what is being said (de Jong, 1995; Harrington, Fletcher &
Beckman, 2000).

One of the ways of quantifying vowel space expansion is to measure the Euclidean or
straight line distance between a vowel and the centre of the vowel space. Wright (2003) used just
such a measure to compare so called easy and hard words on their distances to the centre of the
vowel space. Easy words are those that have high lexical frequency (i.e., occur often) and low
neighborhood density (there are few words that are phonemically similar). Since such words tend
to be easier for the listener to understand, then, applying Lindblom’s (1990) model, the vowels
should be more centralised compared with hard words which are both infrequent and high in
neighborhood density.

Fig. 6.13 about here

 In a two-dimensional space, the Euclidean distance is calculated by summing the square
of the horizontal and vertical distances between the points and taking the square root. For
example, the expressions in R for horizontal and vertical distances between the two points (0, 0)
and (3,4) in Fig. 6.12 are (0 – 3)^2 and (0 – 4)^2 respectively. Thus the Euclidean
distance between them is:

sqrt((0 - 3)^2 + (0 - 4)^2)
5

Because of the nice way that vectors work in R, the same result is given by:

a = c(0, 0)
b = c(3, 4)
sqrt(sum((a - b)^2))
5

So a function to calculate the Euclidean distance between any two points a and b is:

euclid <- function(a, b)
{
Function to calculate Euclidean distance between a and b;
a and b are vectors of the same length
sqrt(sum((a - b)^2))
}

In fact, this function works not just in a two-dimensional space, but in an n-dimensional space.
So if there are two vowels, a and b, in a three-dimensional F1, F2, F3 space with coordinates for
vowel a F1 = 500 Hz, F2 = 1500 Hz, F3 = 2500 Hz and for vowel b F1 = 220 Hz, F2 = 2400 Hz,
F3 = 3000 Hz, then the straight line, Euclidean distance between a and b is just over 1066 Hz as
follows:

a = c(500, 1500, 2500)
b = c(220, 2400, 3000)
euclid(a, b)
1066.958

Exactly the same principle (and hence the same function) works in 4, 5, …n dimensional spaces
even though any space higher than three dimensions cannot be seen or drawn. The only
obligation on the function is that the vectors should be of the same length. The function can be
made to break giving an error message, if the user should try to do otherwise:

 135

euclid <- function(a, b)
{
Function to calculate Euclidean distance between a and b;
a and b are vectors of the same length
if(length(a) != length(b))
stop("a and b must be of the same length")
sqrt(sum((a - b)^2))
}

a = c(3, 4)
b = c(10, 1, 2)
euclid(a, b)
Error in euclid(a, b) : a and b must be of the same length

For the present task of assessing vowel space expansion, the distance of all the vowel
tokens to the centre of the space will have to be measured. For illustrative purposes, a
comparison will be made between the male and female speakers on the lax vowel data
considered so far, although in practice, this technique is more likely to be used to compare
vowels in easy and hard words or in accented and unaccented words as described earlier. The
question we are asking is: is there any evidence that the lax vowels of the female speaker are
more expanded, that is more distant from the centre of the vowel space than those of the male
speaker in Figs. 6.9 and 6.10? A glance at Fig. 6.10 in particular must surely suggest that the
answer to this question is 'yes' and indeed, the greater area of the polygon for the female speaker
partly comes about because of the female's higher F1 and F2 values.

Fig. 6.14 about here

In order to quantify these differences, a single point that is at the centre of the speaker's vowel
space, known as the centroid, has to be defined. This could be taken across a much larger
sample of the speaker's vowels than are available in these data sets: for the present, it will be
taken to be the mean across all of the speaker's lax vowels. For the male and female speaker
these are:

temp = vowlax.spkr == "67"
m.av = apply(vowlax.fdat.5[temp,1:2], 2, mean)
m.av
 T1 T2
 495.1756 1568.8098

f.av = apply(vowlax.fdat.5[!temp,1:2], 2, mean)
f.av
 T1 T2
 533.8439 1965.8293

But there are good grounds for objecting to these means: in particular, the distribution of vowel
tokens across the categories is not equal, as the following shows for the male speaker (the
distribution is the same for the female speaker):

table(vowlax.l[temp])
 a E I O
63 41 85 16

In view of the relatively few back vowels, the centroids are likely to be biased towards the front
of the vowel space. As an alternative, the centroids could be defined as the mean of the vowel

 136

means, which is the point that is at the centre of the polygons in Fig. 6.10. Recall that for the
female speaker the mean position of all the vowels was given by:

temp = vowlax.spkr == "67"
f = apply(vowlax.fdat.5[!temp,1:2], 2, tapply, vowlax.l[!temp],
mean)
f

 T1 T2
a 786.1429 1540.159
E 515.9268 2202.268
I 358.0941 2318.812
O 520.0000 1160.813

So the mean of these means is:

f.av = apply(f, 2, mean)
f.av
 T1 T2
 545.041 1805.51

The centroid is shown in Fig. 6.14 and was produced as follows:

temp = vowlax.spkr=="68"
eplot(vowlax.fdat.5[temp,1:2], vowlax.l[temp], dopoints=T,
form=T, xlab="F2 (Hz)", ylab="F1 (Hz)", doellipse=F)
text(-f.av[2], -f.av[1], "X", cex=3)

The Euclidean distances of each data point to X in Fig. 6.14 can be obtained by applying
euclid() to the rows of the matrix using apply()with a second argument of 1 (meaning
apply to rows):

temp = vowlax.spkr=="68"
e.f = apply(vowlax.fdat.5[temp,1:2], 1, euclid, f.av)

The same technique as in 6.4 could be used to keep all the various objects that have something to
do with lax vowels parallel to each other, as follows:

Vector of zeros to store the results
edistances = rep(0, nrow(vowlax.fdat.5))
Logical vector to identify speaker 67
temp = vowlax.spkr == "67"
The next two commands give the male speaker's centroid analogous to f.av
m = apply(vowlax.fdat.5[temp,1:2], 2, tapply, vowlax.l[temp],
mean)
m.av = apply(m, 2, mean)
Distances to the centroid for the male speaker
edistances[temp] = apply(vowlax.fdat.5[temp,1:2], 1, euclid,
m.av)
Distances to the centroid for the female speaker
edistances[!temp] = apply(vowlax.fdat.5[!temp,1:2], 1, euclid,
f.av)

Since all the objects are parallel to each other, it only takes one line to produce a boxplot of the
results comparing the Euclidean distances for the male and female speakers separately by vowel
category (Fig 6.15):

 137

boxplot(edistances ~ factor(vowlax.spkr) * factor(vowlax.l),
ylab= "Distance (Hz)")

Fig. 6.15 about here

Fig. 6.15 confirms what was suspected: the Euclidean distances are greater on every vowel
category for the female speaker.

6.5.2 Relative distance between vowel categories

In the study of dialect and sound change, there is often a need to compare the relative
position of two vowel categories in a formant space. The sound change can sometimes be linked
to age and social class, as the various pioneering studies by Labov (1994, 2001) have shown. It
might be hypothesised that a vowel is in the process of fronting or raising: for example, the
vowel in who'd in the standard accent of English has fronted in the last fifty years (Harrington et
al, 2008; Hawkins & Midgley, 2005), there has been a substantial rearrangement of the front lax
vowels in New Zealand English (Maclagen & Hay, 2007), and there is extensive evidence in
Labov (1994, 2001) of numerous diachronic changes to North American vowels.

Vowels are often compared across two different age groups so that if there is a vowel
change in progress, the position of the vowel in the older and younger groups might be different
(this type of study is known as an apparent time study: see e.g., Bailey et al, 1991). Of course
independently of sound change, studies comparing different dialects might seek to provide
quantitative evidence for the relative differences in vowel positions: whether, for example, the
vowel in Australian English head is higher and/or fronter than that of Standard Southern British
English.
 There are a number of ways of providing quantitative data of this kind. The one to be
illustrated here is concerned with determining whether the position of a vowel in relation to other
vowels is different in one set of data compared with another. I used just this technique
(Harrington, 2006) to assess whether the long, final lax vowel in words like city, plenty, ready,
was relatively closer to the tense vowel in [i] (heed) than in the lax vowel in [ɪ] (hid) in the more
recent Christmas messages broadcast by Queen Elizabeth II over a fifty year period.

For illustrative purposes, the analysis will again make use of the lax vowel data. Fig. 6.10
suggests that [ɛ] is closer to [ɪ] than it is to [a] in the female than in the male speaker. Perhaps
this is a sound change in progress, perhaps the female subject does not speak exactly the same
variety as the male speaker; or perhaps it has something to do with differences between the
speakers along the hyper- and hypoarticulation continuum, or perhaps it is an artefact of
anatomical differences in the vocal tract between the male and female speaker. Whatever the
reasons, it is just this sort of problem that can arise in sociophonetics in dealing with gradual and
incremental sound change.

The way of addressing this issue based on Harrington (2006) is to work out two
Euclidean distances: d1, the distance of all of the [ɛ] tokens to the centroid of [ɪ]; and d2, the
distance of all of the same [ɛ] tokens to the centroid of [a]. The ratio of these two distances, d1/d2
is indicative of how close (in terms of Euclidean distances) the [ɛ] tokens are to [ɪ] in relation to
[a].The logarithm of this ratio, which will be termed ERATIO, gives the same information but in a
more convenient form. More specifically, since

ERATIO = log(d1/ d2)

= log(d1) – log(d2)

The following three relationships hold for any single token of [ɛ]:

 138

(a) if an [ɛ] token is exactly equidistant between the [ɪ] and [a] centroids, then log(d1) = log(d2),
and so ERATIO is zero.

(b) if an [ɛ] token is closer to the centroid of [ɪ], then log(d1) < log(d2) and so ERATIO is
negative.

(c) if an [ɛ] token is closer to [a] than to [ɪ], log(d1) > log(d2) and so ERATIO is positive.

The hypothesis to be tested is that the female speaker's [ɛ] vowels are closer to her [ɪ]
than to her [a] vowels compared with those for the male speaker. If so, then the female speaker's
ERATIO should be smaller than that for the male speaker. The Euclidean distance calculations will
be carried out as before in the F2 × F1 vowel space using the euclid() function written in
6.5.1. Here are the commands for the female speaker:

Next two lines calculate the centroid of female [ɪ]
temp = vowlax.spkr == "68" & vowlax.l=="I"
mean.I = apply(vowlax.fdat.5[temp,1:2], 2, mean)

Next two lines calculate the centroid of female [a]
temp = vowlax.spkr == "68" & vowlax.l=="a"
mean.a = apply(vowlax.fdat.5[temp,1:2], 2, mean)

Logical vector to identify all the female speaker's [ɛ] vowels
temp = vowlax.spkr == "68" & vowlax.l=="E"

This is d1 above i.e., the distance of [ɛ] tokens to [ɪ] centroid
etoI = apply(vowlax.fdat.5[temp,1:2], 1, euclid, mean.I)

This is d2 above i.e., the distance of [ɛ] tokens to [a] centroid
etoa = apply(vowlax.fdat.5[temp,1:2], 1, euclid, mean.a)

ERATIO for the female speaker
ratio.log.f = log(etoI/etoa)

Exactly the same instructions can be carried out for the male speaker except that 68 should be
replaced with 67 throughout in the above instructions. For the final line for the male speaker,
ratio.log.m is used to store the male speaker's ERATIO values. A histogram of the ERATIO
distributions for these two speakers can then be created as follows (Fig. 6.16):

par(mfrow=c(1,2)); xlim = c(-3, 2)
col = "steelblue"; xlab=expression(E[RATIO])
hist(ratio.log.f, xlim=xlim, col=col, xlab=xlab, main="Speaker
67")
hist(ratio.log.m, xlim=xlim, col=col, xlab=xlab, main="Speaker
68")

It is clear enough that the ERATIO values are smaller than those for the male speaker as a statistical
test would confirm: (e.g, assuming the data are normally distributed,
t.test(ratio.log.f, ratio.log.m)). So compared with the male speaker, the female
speaker's [ɛ] is relatively closer to [ɪ] in a formant space than it is to [a].

 139

Fig. 6.16 about here

6.6 Vowel undershoot and formant smoothing

The calculation of the Euclidean distance to the centre of the vowel space discussed in
6.5.1 is one of the possible methods for measuring vowel undershoot, a term first used by
Lindblom (1963) to refer to the way in which vowels failed to reach their targets due to
contextual influences such as the flanking consonants and stress. But in such calculations, the
extent of vowel undershoot (or expansion) is being measured only at a single time point. The
technique to be discussed in this section is based on a parameterisation of the entire formant
trajectory. These parameterisations involve reducing an entire formant trajectory to a set of
coefficients – this can be thought of as the analysis mode. A by-product of this reduction is that
if the formant trajectories are reconstructed from the coefficients that were obtained in the
analysis mode, then a smoothed formant contour can be derived – this is the synthesis mode and
it is discussed more fully at the end of this section.

The type of coefficients to be considered are due to van Bergem (1993) and involve
fitting a parabola, that is an equation of the form F = c0 + c1t + c2t2, where F is a formant from
the start to the end of a vowel that changes as a function of time t. As the equation shows, there
are three coefficients c0, c1, and c2 that have to be calculated for each vowel separately from the
formant's trajectory. The shape of a parabola is necessarily curved in an arc, either U-shaped if c2
is positive, or ∩-shaped if c2 is negative. The principle that lies behind fitting such an equation is
as follows. The shape of a formant trajectory, and in particular that of F2, over the extent of a
vowel, is influenced mostly both by the vowel and by the immediately preceding and following
sounds: that is by the left and right contexts. At the vowel target, which for most
monophthongs is nearest the vowel's temporal midpoint, the shape is predominantly determined
by the phonetic quality of the vowel, but it is reasonable to assume that the influence from the
context increases progressively nearer the vowel onset and offset (e.g. Broad & Fertig, 1970).
Consider for example the case in which the vowel has no target at all. Just this hypothesis has
been suggested for schwa vowels by Browman & Goldstein (1992b) in an articulatory analysis
and by van Bergem (1994) using acoustic data. In such a situation, a formant trajectory might
approximately follow a straight line between its values at the vowel onset and vowel offset: this
would happen if the vowel target has no influence so that the trajectory's shape is entirely
determined by the left and right contexts. On the other hand, if a vowel has a prominent target, as
if often the case if it is emphasised or prosodically accented (Pierrehumbert & Talkin, 1990),
then, it is likely to deviate considerably from a straight line joining its onset and offset. Since a
formant trajectory often follows reasonably well a parabolic trajectory (Lindblom, 1963), one
way to measure the extent of deviation from the straight line and hence to estimate how much it
is undershot is to fit a parabola to the formant and then measure the parabola's curvature. If the
formant is heavily undershot and follows more or less a straight line path between its endpoints,
then the curvature will be almost zero; on the other hand, the more prominent the target, the
greater the deviation from the straight line, and the greater the magnitude of the curvature, in
either a positive or a negative direction.

The way that the parabola is fitted in van Bergem (1993) is essentially to rescale the time
axis of a trajectory linearly between t = -1 and t = 1. This rescaled time-axis can be obtained
using the seq() function, if the length of the trajectory in data points is known. As an
example, the length of the F2-trajectory for the first segment in the lax vowel data is given by:

N = length(frames(vowlax.fdat[1,2]))
N
18

So the linearly rescaled time axis between t = ± 1 is given by:
times = seq(-1, 1, length=N)

 140

Since a precise estimate of the formant will need to be made at time t = 0, the number of data
points that supports the trajectory could be increased using linear interpolation with the
approx() function. The shape of the trajectory stays exactly the same, but the interval along
the time axis becomes more fine grained (this procedure is sometimes known as linear time
normalization). For example, the F2-trajectory for the first segment in the lax vowel dataset
could be given 101 rather than 17 points as in Fig. 6.17 which was created as follows (an odd
number of points is chosen here, because this makes sure that there will be a value at t = 0):

N = 101
F2int = approx(frames(vowlax.fdat[1,2]), n=N)
times = seq(-1, 1, length=N)
par(mfrow=c(1,2));
plot(times, F2int$y, type="b", xlab="Normalized time", ylab="F2
(Hz)")
The original F2 for this segment
plot(vowlax.fdat[1,2], type="b", xlab="Time (ms)", ylab="")

Fig. 6.17 about here

There are three unknown coefficients to be found in the parabola F = c0 + c1t + c2t2 that is to be
fitted to the data of the left panel in Fig. 6.17 and this requires inserting three sets of data points
into this equation. It can be shown (van Bergem, 1993) that when the data is extended on the
time axis between t = ± 1, the coefficients have the following values:

c0 is the value at t = 0.
c0 = F2int$y[times==0]
c1 is half of the difference between the first and last data points.
c1 <- 0.5 * (F2int$y[N] - F2int$y[1])
c2 is half of the sum of the first and last data points minus c0
c2 <- 0.5 * (F2int$y[N] + F2int$y[1]) - c0

If you follow through the example in R, you will get values of 1774, -84, and 30 for c0, c1, and c2
respectively. Since these are the coefficients, the parabola over the entire trajectory can be
calculated by inserting these coefficients values into the equation c0 + c1t + c2t2. So for this
segment, the values of the parabola are:

c0 + c1 * times + c2 * (times^2)

Fig. 6.18 about here

These values could be plotted as a function of time to obtain the fitted curve. However, there is a
function in the Emu-R library plafit()that does all these steps. So for the present data, the
coefficients are:

plafit(frames(vowlax.fdat[1,2]))
 c0 c c2
 1774 -84 30

Moreover, the additional argument fit=T returns the formant values of the fitted parabola
linearly time-normalized back to the same length as the original data to which the plafit()
function was applied. So a superimposed plot of the raw and parabolically-smoothed F2-track for
this first segment is:

 141

Calculate the values of the parabola
F2par = plafit(frames(vowlax.fdat[1,2]), fit=T)
ylim = range(c(F2par, frames(vowlax.fdat[1,2])))
xlab="Time (ms)"; ylab="F2 (Hz)"
Plot the raw values
plot(vowlax.fdat[1,2], type="b", ylim=ylim, xlab=xlab,
ylab=ylab)
Superimpose the smoothed values
par(new=T)
plot(as.numeric(names(F2par)), F2par, type="l", ylim=ylim,
xlab=xlab, ylab=ylab, lwd=2)

The fitted parabola (Fig. 6.18) always passes through the first and last points of the trajectory
and through whichever point is closest to the temporal midpoint. The coefficient c0 is the y-axis
value at the temporal midpoint. The coefficient c1, being the average of the first and last values,
is negative for falling trajectories and positive for rising trajectories. As already mentioned, c2
measures the trajectory's curvature: positive values on c2 mean that the parabola has a U-shape,
as in Fig. 6.18, negative values that it is ∩-shaped. Notice that these coefficients encode the
trajectory's shape independently of time. So the above trajectory extends over a duration of
about 80 ms; however, even if the duration were 1/10th or 100 times as great, the coefficients
would all be the same, if the trajectory's shape were unchanged. So it would be wrong to say that
very much can be inferred about the rate of change of the formant (in Hz/s) from c1 (or to do so,
c1 would have to be divided by the formant's duration).
 The task now is to explore a worked example of measuring formant curvatures in a larger
sample of speech. The analysis of the vowel spaces in the F2 × F1 plane, as well as the
Euclidean distance measurements in 6.5 have suggested that the female speaker produces more
distinctive vowel targets, or in terms of Lindblom's (1990) H&H theory, her vowels show greater
evidence of hyperarticulation and less of a tendency to be undershot. Is this also reflected in a
difference in the extent of formant curvature?

In order to address this question, the two speakers' [ɛ] vowels will be compared. Before
applying an algorithm for quantifying the data, it is always helpful to look at a few plots first, if
this is possible (if only because a gross inconsistency between what is seen and what is obtained
numerically often indicates that there is a mistake in the calculation!). A plot of all of the F2
trajectories lined up at the temporal midpoint and shown separately for the two speakers does not
seem to be especially revealing (Fig. 6.19, left panel), perhaps in part because the trajectories
have different durations and, as was mentioned earlier, in order to compare whether one
trajectory is more curved than another, they need to be time normalized to the same length. The
argument norm=T in the dplot() function does just this by linearly stretching and
compressing the trajectories so that they extend in time between 0 and 1. There is some
suggestion from the time-normalized data (Fig. 6.19 centre) that the female's F2 trajectories are
more curved than for the male speaker. This emerges especially clearly when the linearly time-
normalzed, male and female F2-trajectories are separately averaged (Fig. 6.19, right). However,
the average is just that: at best a trend, and one that we will now seek to quantify by calculating
the c2 coefficients of the fitted parabola. Before doing this, here are the instructions for producing
Fig. 6.19:

temp = vowlax.l == "E"
par(mfrow=c(1,3)); ylim = c(1500, 2500)
F2 of E separately for M and F synchronised at the midpoint
dplot(vowlax.fdat[temp,2], vowlax.spkr[temp], offset=.5,
ylab="F2 (Hz)", ylim=ylim, xlab="Time (ms)",legend=F)
As above with linear time normalization

 142

dplot(vowlax.fdat[temp,2], vowlax.spkr[temp], norm=T,
xlab="Normalized time", ylim=ylim, legend=F)
As above and averaged
dplot(vowlax.fdat[temp,2], vowlax.spkr[temp], norm=T, average=T,
ylim=ylim, xlab="Normalized time")

Fig. 6.18 about here

The plafit() can be applied to any vector of values, just like the euclid() function
created earlier. For example, this instruction finds the three coefficients of a parabola that have
been fitted to 10 random numbers.

r = runif(10)
plafit(r)

Sind plafit() evidently works on frames of speech data (see the instructions for creating Fig.
6.18), then, for all the reasons given in 5.5.1 of the preceding Chapter, it can also be used inside
trapply(). Moreover, since the function will return the same number of elements per segment
(3 in this case), then, for the further reasons discussed in 5.5.1, the argument simplify=T can
be set, which has the effect of returning a matrix with the same number of rows as there are
segments:

Logical vector to identify E vowels
temp = vowlax.l == "E"
Matrix of coefficients, one row per segment.
coeffs = trapply(vowlax.fdat[temp,2], plafit, simplify=T)

coeffs has 3 columns (one per coefficient) and the same number of rows as there are [ɛ]
segments (this can be verified with nrow(coeffs) == sum(temp)). Fig. 6.20 compares
the F2-curvatures of the male and female speakers using a boxplot. There are two outliers (both
for the female speaker) with values less than -500 (as sum(coeffs[,3] < -500) shows)
and these have been excluded from the plot by setting the y-axis limits:

ylim = c(-550, 150)
boxplot(coeffs[,3] ~ factor(vowlax.spkr[temp]),
ylab="Amplitude", ylim=ylim)

Fig. 6.20 about here

Fig. 6.20 shows greater negative values on c2 for the female speaker which is consistent with the
view that there is indeed greater curvature in the female speaker's F2 of [ɛ] than for the male
speaker.

As foreshadowed at various stages in this section, the fit=T argument applies the
function in synthesis mode: it works out the corresponding fitted formant parabola as a function
of time. In order to smooth an entire trackdata object, trapply()can once again be used but
this time with the argument returntrack=T to build a trackdata object (see 5.5.2):

Calculate the fitted F2 parabolas for all the vowel data
vow.sm2 = trapply(vowlax.fdat[,2], plafit, T, returntrack=T)

The smoothed and raw F2 data can be superimposed on each other for any segment as in Fig.
6.21 and in the manner described below.

 143

Although fitting a parabola is an effective method of data reduction that is especially useful
for measuring formant curvature and hence undershoot, there are two disadvantages as far as
obtaining a smoothed contour are concerned:

• not every formant trajectory has a parabolic shape
• parabolic fitting of the kind illustrated above forces a fit at the segment onset, offset, and

midpoint as is evident from Figs. 6.21.

One way around both of these problems is to use the discrete cosine transformation (see e.g.,
Watson & Harrington; 1999; Harrington, 2006; Harrington et al., 2008) which will be discussed
more fully in Chapter 8. This transformation decomposes a trajectory into a set of coefficients
(this is the analysis mode) that are the amplitudes of half-cycle cosine waves of increasing
frequency. The number of coefficients derived from the discrete cosine transformation (DCT) is
the same as the length of the trajectory. If, in synthesis mode, all of these cosine waves are
summed, then the original, raw trajectory is exactly reconstructed. However, if only the first few
lowest frequency cosine waves are summed, then a smoothed trajectory is derived. Moreover,
the fewer the cosine waves that are summed, the greater the degree of smoothing. Therefore, an
advantage of this type of smoothing over that of fitting parabolas is that it is possible to control
the degree of smoothing. Another advantage is that the DCT does not necessarily force the
smoothed trajectory to pass through the values at the onset, offset, and midpoint and so is not as
prone to produce a wildly inaccurate contour, if formant onsets and offsets were inaccurately
tracked (which is often the case especially if there is a preceding or following voiceless
segment).

There is a function in the Emu-R library for computing the DCT coefficients,
dct()which, just like plafit() and euclid() takes a vector of values as its main
argument. The function can be used in an exactly analogous way to the plafit() function in
synthesis mode for obtaining smoothed trajectories from the coefficients that are calculated in
analysis mode. In the example in Fig. 6.21, a smoothed F2 trajectory is calculated from the first
five DCT coefficients. The DCT coefficients were calculated as follows:

Fig. 6.21 about here

Calculate a smoothed-trajectory based on the lowest 5 DCT coefficients
vow.dct2 = trapply(vowlax.fdat[,2], dct, fit=T, 4,
returntrack=T)

Fig. 6.21 containing the raw and two types of smoothed trajectories for the 8th segment in the
segment list was produced with the following commands:

j = 8
A label vector to identify the trajectories
lab = c("raw", "parabola", "DCT")
Row-bind the three trajectories into one trackdata object
dat = rbind(vowlax.fdat[j,2], vow.sm2[j,], vow.dct2[j,])
dplot(dat, lab, ylab="F2 (Hz)", xlab="Time (ms)")

6.7 F2 locus, place of articulation and variability

In the production of an oral stop, the vocal tract is initially sealed during which time air-
pressure builds up and is then released. At the point of release, the shape of the vocal tract has a
marked influence on the acoustic signal and this influence extends at least to the beginning of the
formant transitions, if the following segment is a vowel. Since the shape of the vocal tract is
quite different for labial, alveolar, and velar places of articulation, the way in which the acoustic

 144

signal is influenced following the release differs correspondingly. If the influence extends to the
onset of periodicity for the following vowel, then the formant onset frequencies of the same
phonetic vowel should be different when it occurs after consonants at different places of
articulation.

As a study by Potter, Kopp and Green (1947) had shown, different places of articulation
have their greatest influence on the onset of the second formant frequency. But it was the famous
perception experiments using hand-painted spectrograms at the Haskins Laboratories that gave
rise to the concept of an F2-locus. In these experiments, Liberman and colleagues (Delattre,
Liberman & Cooper, 1955; Liberman, Delattre, Cooper & Gerstman, 1954; Liberman, et al,
1958) showed that the origin of the second formant frequency influenced the perception of the
place of articulation of the following consonant. More specifically, if the F2-onset was low and
at around 700 Hz, listeners would predominantly hear /b/; if it was roughly in the 1800 Hz
region, they would hear /d/; while if the F2-onset began near 3000 Hz, listeners would perceive
/g/ before front vowels. The locus frequency was not at the acoustic vowel onset itself, but at
some point prior to it during the consonantal closure. More specifically, in synthesising a CV
transition, formants would be painted from the F2-locus somewhere in the consonant closure to
the F2-vowel target and then the first part of the transition up to where the voicing for the vowel
began would be erased. With these experiments, Liberman and colleagues also demonstrated that
the perception of place of articulation was categorical and this finding was interpreted in favour
of the famous motor theory of speech perception (see e.g. Hawkins, 1999 for a thorough review
of these issues).

In the years following the Haskins Laboratories experiments, various large-scale acoustic
studies were concerned with finding evidence for an F2-locus (including e.g., Fant, 1973;
Kewley-Port, 1982; Lehiste & Peterson, 1961; Öhman, 1966). These studies showed that the
most stable F2-locus was for alveolars (i.e., alveolars exhibit the least F2-onset variation of the
three places of articulation) whereas velars, which exhibit a great deal of variability depending
on the backness of the following vowel, showed no real evidence from acoustic data of a single
F2-locus.

From the early 1990s, Sussman and Colleagues applied the concept of a locus equation
to suggest that F2 transitions might in some form provide invariant cues to the place of
articulation (see e.g., Sussman et al, 1991; Sussman et al, 1995), a position that has also not
been without its critics (e.g., Brancazio & Fowler, 1998; Löfqvist, 1999).

Locus equations were first investigated systematically by Krull (1988, 1989) and they
provide a numerical index of the extent to which vowels exert a coarticulatory influence on a
consonant's place of articulation. Thus, whereas in studies of vowel undershoot, the concern is
with the way in which context influences vowel targets, here it is the other way round: that is, the
aim is to find out the extent to which vowel targets exert a coarticulatory influence on the place
of articulation of flanking consonants.

Fig. 6.22 about here

The basic idea behind a locus equation is illustrated with some made-up data in Fig. 6.22

showing two hypothetical F2-trajectories for [bɛb] and [bob]. In the trajectories on the left, the
extent of influence of the vowel on the consonant is nil. This is because, in spite of very
different F2 vowel targets, the F2 frequencies of [ɛ] and of [o] both converge to exactly the same
F2-locus at 700 Hz for the bilabial – that is, the F2-onset frequency is determined entirely by the
consonant with no influence from the vowel. The other (equally unlikely) extreme is shown on
the right. In this case, the influence of the vowel on the consonant's place of articulation is
maximal so that there is absolutely no convergence to any locus and therefore no transition.

A locus equation is computed by transforming F2 frequencies (top row, Fig. 6.22) as a
function of time into the plane of F2-target × F2-onset (bottom row, Fig. 6.22) in order to
estimate the extent of coarticulatory influence of the vowel on the consonant. Firstly, when there

 145

is no vowel-on-consonant coarticulation (left), the locus equation, which is the line that connects
[bɛb] and [bob] is horizontal: this is because they both converge to the same locus frequency and
so F2-onset is 700 Hz in both cases. Secondly, when vowel-on-consonant coarticulation is at a
maximum (right), then the locus equation is a diagonal in this plane because the locus frequency
is equal to the target frequency.

A fundamental difference between these two extreme cases of coarticulation is in the
slope of the locus equation. On the left, the slope in this plane is zero (because the locus equation
is horizontal) and on the right it is one (because F2Target = F2Onset). Therefore, for real speech
data, the slope of the locus equation can be used as a measure of the extent of vowel-on-
consonant coarticulation: the closer the slope is to one, the more the consonant's place of
articulation is influenced by the vowel (and the slope must always lie between 0 and 1 since
these are the two extreme cases of zero and maximal coarticulation). Finally, it can be shown
(with some algebraic manipulation: see Harrington & Cassidy 1999, p. 128-130) that the locus
frequency itself, that is the frequency towards which transitions tend to converge, can be
estimated by establishing either where the locus equation and the line F2Target = F2Onset bisect.
This is shown for the case of zero vowel-on-consonant coarticulation on left in Fig. 6.22: this
line bisects the locus equation at the frequency at which the transitions in the top left panel of
Fig. 6.22 converge, i.e. at 700 Hz which is the locus frequency. On the right, the line F2Target =
F2Onset cannot bisect the locus equation, because it is the same as the locus equation. Because
these lines do not bisect, there is no locus frequency, as is of course obvious from the 'transitions'
in Fig. 6.22 top right that never converge.

This theory can be applied to some simple isolated word data produced by the first author
of Clark et al (2007). In 1991, John Clark produced a number of isolated /dVd/ words where the
V is one of the 13 possible monophthongs of Australian English. The relevant dataset which is
part of the Emu-R library includes a segment list of the vowel in these words (isol), a vector of
vowel labels (isol.l) and a trackdata object of the first four formant frequencies between the
vowel onset and offset (isol.fdat).

The task is to investigate whether the coarticulatory influence of the vowel is greater on
the final, than on the initial, consonant. There are various reasons for expecting this to be so.
Foremost are the arguments presented in Ohala (1990) and Ohala & Kawasaki (1984) that initial
CV (consonant-vowel) transitions tend to be a good deal more salient than VC transitions:
compatibly, there are many more sound changes in which the vowel and syllable-final consonant
merge resulting in consonant loss (such as the nasalization of vowels and associated final nasal
consonant deletion in French) than is the case for initial CV syllables. This would suggest that
synchronically a consonant and vowel are more sharply delineated from each other in CV than in
VC syllables and again there are numerous aerodynamic and acoustic experiments to support this
view. Secondly, there are various investigations (Butcher, 1989, Hoole et al, 1990) which show
that in V1CV2 sequences where C is an alveolar, the perseverative influence of V1 on V2 is
greater than the anticipatory influence of V2 on V1. This suggests that the alveolar consonant
resists coarticulatory influences of the following V2 (so the alveolar has a blocking effect on the
coarticulatory influences of a following vowel) but is more transparent to the coarticulatory
influences of the preceding V2 (so the alveolar does not block the coarticulatory influences of a
preceding vowel to the same extent). Therefore, the vowel-on-consonant coarticulatory
influences can be expected to be weaker when the vowel follows the alveolar in /dV/ than when
it precedes it in /Vd/.

Fig. 6.23 about here

Before proceeding to the details of quantification, it will be helpful as always to plot the
data. Fig. 6.23 shows the second formant frequency trajectories synchronised at the vowel onset
on the left and at the vowel offset on the right. The trajectories are of F2 of the separate vowel

 146

categories and there is only one token per vowel category, as table(isol.l) shows49. The
plots can be obtained by setting the offset argument in this function argument to 0 (for
alignment at the segment onset) and to 1 (for alignment at the segment offset).

par(mfrow=c(1,2))
dplot(isol.fdat[,2], offset=0, ylab = "F2 (Hz)", xlab="Time
(ms)")
dplot(isol.fdat[,2], offset=1, xlab="Time (ms)")

It seems clear enough from Fig. 6.23 that there is greater convergence of the F2-transitions at the
alignment point on the left (segment onset) than on the right (segment offset). So far, the
hypothesis seems to be supported.

The task now is to switch to the plane of F2-target × F2-onset (F2-offset) and calculate
locus equations in these two planes. The vowel target is taken to be at the temporal midpoint of
the vowel. The following three vectors are F2 at the vowel onset, target, and offset respectively:

f2onset = dcut(isol.fdat[,2], 0, prop=T)
f2targ = dcut(isol.fdat[,2], .5, prop=T)
f2offset= dcut(isol.fdat[,2], 1, prop=T)

 The next step is to plot the data and then to calculate a straight line of best fit known as a
regression line through the scatter of points: that is, there will not be two points that lie on the
same line as in the theoretical example in Fig. 6.22, but several points that lie close to a line of
best fit. The technique of linear regression, which for speech analysis in R is described in detail
in Johnson (2008), is to calculate such a line, which is defined as the line to which the distances
of the points are minimised. The function lm() is used to do this. Thus for the vowel onset data,
the second and third commands below are used to calculate and draw the straight line of best fit:

plot(f2targ, f2onset)
regr = lm(f2onset ~ f2targ)
abline(regr)

The information about the slope is stored in $coeff which also gives the intercept (the value
at which the regression line cuts the y-axis, i.e. the F2-onset axis). The slope of the line is just
over 0.27:

regr$coeff
 (Intercept) f2targ
1217.8046955 0.2720668

Recall that the best estimate of the locus is where the line F2Target = F2Onset cuts this regression
line. Such a line can be superimposed on the plot as follows:

abline(0, 1, lty=2)

There is a function in the Emu-R library, locus(), that carries out all of these operations. The
first two arguments are for the data to be plotted on the x- and y-axes (in this case the F2-target
and the F2-onset respectively) and there is a third optional argument for superimposing a parallel
set of labels. In this example, the vowel labels are superimposed on the scatter and the x- and y-
ranges are set to be identical (Fig. 6.24):

49 The relationship between the machine readable ad phonetic alphabet for Australian vowels is given at the
beginning of the book.

 147

xlim = c(500, 2500); ylim = xlim; par(mfrow=c(1,2))
xlab = "F2-target (Hz)"; ylab = "F2-onset (Hz)"
stats.on = locus(f2targ, f2onset, isol.l, xlim=xlim, ylim=ylim,
xlab=xlab, ylab=ylab)
stats.off = locus(f2targ, f2offset, isol.l, xlim=xlim,
ylim=ylim, xlab=xlab)

Fig. 6.24 about here

Fig. 6.24 shows that the regression line (locus equation) is not as steep for the F2-onset
compared with the F2-offset data. The following two commands show the actual values of the
slopes (and intercepts) firstly in the F2-target × F2-onset plane and secondly in the F2-target ×
F2-offset plane:

stats.on$coeff
 (Intercept) target
1217.8046955 0.2720668

stats.off$coeff
(Intercept) target
850.4935279 0.4447689

The locus() function also calculates the point at which the regression line and the lines

F2Target = F2Onset (Fig. 6.24, left) and F2Target = F2Offset (Fig. 6.24, right) bisect, thus giving a best
estimate of the locus frequency. These estimates are in $locus and the calculated values for
the data in the left and right panels of Fig. 6.24 respectively are 1673 Hz and 1532 Hz. In fact,
the locus frequency can also be derived from:

(1) L = c/(1 – α)

where L is the locus frequency and c and α are the intercept and slope of the locus equation
respectively (Harrington, 2009). Thus the estimated locus frequency for the CV syllables is
equivalently given by:

1217.8046955/(1- 0.2720668)
1672.962

The reason why there is this 141 Hz difference in the calculation of the locus frequencies

for initial as opposed to final /d/ is not immediately clear; but nevertheless as Fig. 6.23 shows,
these are reasonable estimates of the point at which the F2 transitions tend, on average, to
converge. Finally, statistical diagnostics on the extent to which the regression line could be fitted
to the points is given by the summary function:

summary(stats.on)
Call:
lm(formula = onset ~ target)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.218e+03 5.134e+01 23.721 8.51e-11 ***
target 2.721e-01 3.308e-02 8.224 5.02e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 53.12 on 11 degrees of freedom

 148

Multiple R-squared: 0.8601, Adjusted R-squared: 0.8474
F-statistic: 67.64 on 1 and 11 DF, p-value: 5.018e-06

The probability that the regression line slope accounts for the data is given by the results of t-
test in the line beginning target. The null hypothesis is that there is no relationship at all
between the F2-onset and F2-target (which would mean that the slope of the regression line
would be zero): the t-test computes the likelihood that this could be the case. This probability is
shown to be 5.02e-06 or 0.00000502 i.e., very small. So the null hypothesis is rejected. The
other important diagnostic is given under adjusted R-squared which is a measure of how
much of the variance is explained by the regression line. It shows that for these data, just over
86% of the variance is explained by the regression line and the probability that this value is
different from zero is given by the results of an F-test in the next line beginning 'F-statistic'.

The analysis of these (very limited) data lends some support to the view that the
coarticulatory influence of the vowel on an alveolar stop is greater when the consonant is in final
than when it is in initial position. However, data from continuous speech and above all from
other consonant categories will not always give such clear results, so the locus equation
calculations must be used with care. In particular, an initial plot of the data to check the formant
transitions for any outliers due to formant tracking errors is essential. If the slope of the line is
negative or greater 1, then it means either that the data could not be reliably modelled by any
kind of regression line and/or that no sensible locus frequency could be computed (i.e., the
formant transitions do not converge, and the resulting locus frequency calculation is likely to be
absurd).

6.8 Questions

These questions make use of existing objects in the Emu-R library.

A. Plotting vowel ellipses and removing outliers (sections 6.1 and 6.2)
A1. Extract the formant data at the temporal midpoint from the trackdata object vowlax.fdat
and convert the Hz values to Bark.

A2. F3–F2 in Bark was suggested by Syrdal & Gopal (1986) as an alternative to F2 in Hz for
representing vowel backness. Make a plot like the one in Fig. 6.25 of the female speaker's
(speaker 68) E vowels in the plane of –F1 in Bark (y-axis) and F3 – F2 in Bark (x-axis)
showing the data points.

A3. Using a logical vector, create a matrix that is the same as the one in A1 (of Bark values at
the temporal midpoint) but which excludes the very obvious outlier shown in the upper left of
Fig. 6.25.

Fig. 6.25 about here

A4. Use the same logical vector as in A3, make a vector of speaker labels from
vowlax.spkr and a vector of vowel labels from vowlax.l that are each parallel to the
matrix that you created in A3.

A5. Make two plots as shown in Fig. 6.26 of the male and female speakers' data in the plane
scaled to the same axes as in Fig. 6.25.

Fig. 6.26 about here

B. Finding targets (section 6.3)

 149

B1. The trackdata object vowlax.rms contains dB-RMS data that is parallel to the segment list
vowlax and the other objects associated with it. Use peakfun()from 6.3 or otherwise to find
for each segment the time within the vowel at which the dB-RMS reaches a maximum value.

B2. Extract the F1 and F2 data from the trackdata object vowlax.fdat for the male speaker
67 at the target time defined by B1 and make a plot of the vowels in the F2 x F1 plane.

B3. The objects dip (segment list), dip.fdat (trackdata objects of F1-F4), dip.l (vector of
diphthong labels), and dip.spkr (vector of speaker labels) are available for three diphthongs
in German [aɪ, aʊ, ɔʏ] for the same two speakers as for the lax vowel data presented in this
Chapter. Make a plot of F1 as a function of time for the male speaker's [aʊ] thereby verifying
that F1 seems to reach a target/plateau in the first half of the diphthong.

B4. Make a matrix of the F1 and F2 values at the time at which F1 reaches a maximum in the
first half of [aʊ]. Create a vector of [aʊ] labels that is parallel to this matrix (i.e., a vector of the
same length as there are rows in the matrix and consisting entirely of aU, aU, aU …).

B5. The task is to check how close the quality of the diphthong at the alignment point in B4 is to
the same speaker's (67) lax [a, ɔ] (a, O) vowels extracted from F1 and F2 data at the temporal
midpoint. Using the data from B4 above in combination with the R objects of these lax
monophthongs in A1, make a plot of the kind shown in Fig. 6.27 for this purpose. What can you
conclude about the quality of the first target of this diphthong? What phonetic factor might cause
it to have lower F2 values than the lax monophthong [a]?

Fig. 6.27 about here

C. Formant curvature and undershoot (section 6.4)
C1 Which diphthong, [aɪ] or [ɔʏ] would you expect to have greater curvature in F1 and why?

C2. Produce a linearly time-normalized plot of F1 of the female speaker's [aɪ] or [ɔʏ]
diphthongs. Does this match your predictions in C1?

C3. Fit parabolas to F1 of the diphthongs for both speakers (i.e., create a matrix of coefficients
that is parallel to the R objects for the diphthong segments). Based on the evidence of the
hyperarticulation differences between the speakers presented in this Chapter, which speaker is
expected to show less formant F1-curvature in the diphthongs?

C4. Produce on one page four boxplots (analogous to Fig. 6.15) of the curvature-parameter for
the label combinations aI.67 (the male speaker's [aɪ]), OY.67 (the male speaker's [ɔʏ]),
aI.68 (the female speaker's [aɪ]), and OY.68 (the femmale speaker's [ɔʏ]).

D. F2-loci (section 6.7)
D1.
(a) How would you expect the slope of the locus equation to be different in continuous speech
compared with the type of isolated, citation-form production examined in 6.7 above?

(b) If the female speaker 68 hyperarticulates compared with the male speaker 67, i.e., produces
more distinctive consonant and vowel targets, how might their locus equation slopes differ for
the same place of articulation?

 150

(c) Check your predictions by calculating and plotting locus equations in the plane of F2-Onset x
F2-Target for /d/ preceding the lax vowels in the segment list vowlax separately for both
speakers (the left context labels are given in vowlax.left; take F2 at the temporal midpoint
for F2-target values). Set the ranges for the x- and y-axes to be between 1000 Hz and 2500 Hz in
both cases.

D2. How would you expect (a) the estimated F2-locus frequency and (b) the slope of the locus
equation for initial [v] to compare with those of initial [d]? Check your hypotheses by making F2
locus equations based on vowels following initial [v] analogous to the ones above for initial [d]
and compare the F2-loci and slopes between these places of articulation for both speakers.

D3. Make a time-aligned plot colour-coded for [v] or [d] of F2-trajectories for the male speaker
following these two consonants (a plot like the one in Fig. 6.23 but in which the trajectories are
of F2 for the vowels following [d] or [v]). Is the plot consistent with your results from D2 (i.e,
locus differences and slope differences?).

6.9 Answers
A1.
mid = dcut(vowlax.fdat, .5, prop=T)
mid = bark(mid)

A2.
temp = vowlax.spkr=="68" & vowlax.l=="E"
eplot(cbind(mid[temp,3]-mid[temp,2], -mid[temp,1]),
vowlax.l[temp], dopoints=T, ylab="- F1 (Bark)", xlab="F3 - F2
(Bark)")

A3.
temp = vowlax.spkr=="68" & vowlax.l=="E" & mid[,3]-mid[,2] < -12
mid = mid[!temp,]

A4.
mid.sp = vowlax.spkr[!temp]
mid.l = vowlax.l[!temp]

A5.
temp = mid.sp=="67"
par(mfrow=c(1,2)); xlim = c(0, 8); ylim = c(-9, -2)
ylab="- F1 (Bark)"; xlab="F3 - F2 (Bark)"
eplot(cbind(mid[temp,3]-mid[temp,2], -mid[temp,1]), mid.l[temp],
dopoints=T, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
eplot(cbind(mid[!temp,3]-mid[!temp,2], -mid[!temp,1]),
mid.l[!temp], dopoints=T, xlim=xlim, ylim=ylim, xlab=xlab)

B1.
mtime = trapply(vowlax.rms, peakfun, simplify=T)

B2.
form = dcut(vowlax.fdat[,1:2], mtime)
temp = vowlax.spkr == "68"
eplot(form[temp,], vowlax.l[temp], centroid=T, form=T)

B3.

 151

temp = dip.l == "aU"
dplot(dip.fdat[temp,1], ylab="F1 (Hz)")

B4.
maxf1 = trapply(dcut(dip.fdat[,1], 0, 0.5, prop=T), peakfun,
simplify=T)
temp = dip.l == "aU"
formau = dcut(dip.fdat[temp,1:2], maxf1[temp])
labsau = dip.l[temp]

B5. [ʊ] has a backing effect on [a] in the diphthong [aʊ], thus lowering F2.

temp = vowlax.l %in% c("a", "O") & vowlax.spkr == "67"
mono.f.5 = dcut(vowlax.fdat[temp,1:2], .5, prop=T)
both = rbind(mono.f.5, formau)
both.l = c(vowlax.l[temp], labsau)
eplot(both, both.l, form=T, dopoints=T, xlab="F2 (Hz)", ylab="F1
(Hz)")

C1. [aɪ] because the change in openness of the vocal tract between the two component vowels is
greater than for [ɔʏ].

C2.
temp = dip.l %in% c("aI", "OY") & dip.spkr == "68"
dplot(dip.fdat[temp,1], dip.l[temp], norm=T)

Yes.

C3. Speaker 67.
coeff = trapply(dip.fdat[,1], plafit, simplify=T)

C4.
temp = dip.l %in% c("aI", "OY")
boxplot(coeff[temp,3] ~ dip.l[temp] * dip.spkr[temp])

D1.
(a) The slope in continuous speech should be higher because of the greater coarticulatory effects.
(b) The slopes for speaker 68 should be lower.
(c)
temp = vowlax.left=="d" & vowlax.spkr == "67"
on.m = dcut(vowlax.fdat[temp,2], 0, prop=T)
mid.m = dcut(vowlax.fdat[temp,2], .5, prop=T)

temp = vowlax.left=="d" & vowlax.spkr == "68"
on.f = dcut(vowlax.fdat[temp,2], 0, prop=T)
mid.f = dcut(vowlax.fdat[temp,2], .5, prop=T)

par(mfrow=c(1,2)); xlim=ylim=c(1000, 2500)
l.m.d = locus(mid.m, on.m, xlim=xlim, ylim=ylim)
l.f.d = locus(mid.f, on.f, xlim=xlim, ylim=ylim)

D2.

 152

(a) The locus frequency for [v] should be lower because labials according to the locus theory
have a lower F2-locus than alveolars.

(b) The slope of the locus equation for [v] should be higher. This is because alveolars are
supposed to have the most stable locus of labials, alveolars, and velars, i.e., the place of
articulation for alveolars, and hence the F2-locus, shifts the least due to the effects of vowel
context.

temp = vowlax.left=="v" & vowlax.spkr == "67"
on.m = dcut(vowlax.fdat[temp,2], 0, prop=T)
mid.m = dcut(vowlax.fdat[temp,2], .5, prop=T)

temp = vowlax.left=="v" & vowlax.spkr == "68"
on.f = dcut(vowlax.fdat[temp,2], 0, prop=T)
mid.f = dcut(vowlax.fdat[temp,2], .5, prop=T)

par(mfrow=c(1,2)); xlim=ylim=c(1000, 2500)
l.m.v = locus(mid.m, on.m, xlim=xlim, ylim=ylim)
l.f.v = locus(mid.f, on.f, xlim=xlim, ylim=ylim)

The F2 locus for [v] (given by l.m.v$locus and l.f.v$locus) for the male and female
speakers respectively are, rounded to the nearest Hz, 749 Hz and 995 Hz, i.e. markedly lower
than for alveolars. The slopes of the locus equations for [v] (given by entering by l.m.v and
l.f.v) are 0.794 and 0.729 for the male and female speakers respectively and these are both
higher than for the alveolar.

D3.
temp = vowlax.left %in% c("v", "d") & vowlax.spkr=="67"
dplot(vowlax.fdat[temp,2], vowlax.left[temp], ylab="F2 (Hz)")

Fig. 6.28 about here

Yes. The [v] and [d] transitions point to different locis as Fig. 6.28 shows. Fig. 6.28 also shows
that the locus equation slope for [d] is likely to be lower because, even though the F2 range at the
vowel target is quite large (over 1000 Hz) at time point 50 ms, the F2-transitions for [d]
nevertheless converge to about 1600-1700 Hz at F2-onset (t = 0 ms). There is much less
evidence of any convergence for [v] and this is why the locus equation slope for [v] is higher
than for [d].

 153

Chapter 7. Electropalatography

7.1. Palatography and electropalatography

Palatography is the general term given to the experimental technique for obtaining
records of where the tongue makes a contact with the roof of the mouth. The earliest types of
palatographic techniques were static allowing recordings to be made of a single consonant
typically produced between vowels. In static palatography, which is still very useful especially in
fieldwork (Ladefoged, 2003), the roof of the mouth is coated in a mixture of olive oil and
powdered charcoal and the subject produces a consonant. Details of the consonant's place of
articulation and stricture are obtained from a photograph taken of the roof of the mouth showing
where the powder was wiped-off and sometimes also of the tongue (which is coated in the
powder at the point where tongue-palate contact was made). Dynamic electropalatography
(Hardcastle, 1972; Hardcastle et al., 1991) is an extension of this technique in which tongue-
palate contacts are recorded as a function of time. In dynamic palatography, an acrylic palate is
custom-made for each subject and fixed to the roof of the mouth using clasps placed over the
teeth. The palate is very thin and contains a number of electrodes that are exposed to the surface
of the tongue (Fig. 7.1).

Fig. 7.1 about here

Each electrode is connected to a wire and all the wires from the electrodes are passed out of the
corner of the subject's mouth in two bundles. The wires are fed into a processing unit whose job
it is to detect whether or not there is electrical activity in any of the electrodes. The choice is
binary in all cases: either there is activity or there is not. Electrical activity is registered
whenever the tongue surface touches an electrode because this closes an electrical circuit that is
created by means of a small electrical current passed through the subject's body via a hand-held
electrode.

Three EPG systems that have been commercially available include the Reading EPG3
system developed at the University of Reading and now sold by Articulate Instruments; a
Japanese system produced by the Rion corporation and an American system that has been sold
by Kay Elemetrics Corporation (see Gibbon & Nicolaidis, 1999 for a comparison of the three
systems).

The palate of the Reading EPG3 system, which is the system that is compatible with
Emu-R, contains 62 electrodes as shown in Fig. 7.1 that are arranged in eight rows. The first
row, at the front of the palate and just behind the upper front teeth contains six electrodes, and
the remaining rows each have 8 electrodes. There is a greater density of electrodes in the dental-
alveolar than in the dorsal region to ensure that the fine detail of lingual activity that is possible
in the dental, alveolar, and post-alveolar zones can be recorded. The last row is generally
positioned at the junction between the subject's hard and soft-palate.

Fig 7.1 also shows the type of display produced by the EPG-system; the cells are either
black (1) when the corresponding electrode is touched by the tongue surface or white (0) when it
is not. This type of display is known as a palatogram and the EPG3 system typically produces
palatograms at a sampling frequency of 100 Hz, i.e., one palatogram every 10 ms. As Fig. 7.1
shows, the palate is designed to register contacts extending from the alveolar to velar
articulations with divisions broadly into alveolar (rows 1-2), post-alveolar (rows 3-4), palatal
(rows 5-7) and velar (row 8).

Electropalatography is an excellent tool for studying consonant cluster overlap and
timing. It also has an important application in the diagnosis and the treatment of speech
disorders. There is mostly a reasonably transparent relationship between phonetic quality and
EPG output: a [t] really does show up as contacts in the alveolar zone, the different groove
widths between [s] and [ʃ] are usually very clearly manifested in EPG displays, and

 154

coarticulatory and assimilatory influences can often be seen and quantified. (See Gibbon, 2005,
for a bibliography of electropalatographic studies since 1957).

At the same time, it is important to be clear about some of the limitations of this
technique:

• A separate palate (involving a visit to the dentist for a plaster-cast impression of the roof
of the mouth) has to be made for each subject which can be both time-consuming and
expensive.

• As with any articulatory technique, subject-to-subject variation can be considerable. This
variation can come about not only because subjects may invoke different articulatory
strategies for producing the same phonetic segment, but also because the rows of
electrodes are not always aligned with exactly the same articulatory landmarks across
subjects.

• EPG can obviously give no direct information about labial consonants (apart from
coarticulatory effects induced by other segments) and there is usually only limited
information for places of articulation beyond a post-palatal or pre-velar articulation: that
is, /k/ in English shows up clearly in key, but for many subjects there may be scarcely
any recorded activity for the retracted /k/ in call.

• EPG can only give limited information about vowels. It does register contact at the sides
of the palate in non-low front vowels, but provides little information about tongue
position and velocity.

• Some older EPG systems have fixed sampling rates of 100 Hz and 10 kHz for the
palatograms and acoustic signal respectively. A 100 Hz palatogram rate is often too slow
to record details of rapid articulatory movements; a 10000 Hz sampling frequency with
the associated 5000 Hz cut-off is often too low for carrying out articulatory-acoustic
modelling of fricatives.

7.2. An overview of electropalatography in Emu-R
 The databases listed at the beginning of this book whose names begin with epg include
electropalatographic data and they can all be downloaded following the procedure discussed in
2.1. When an utterance is opened from any of these databases, a palatographic frame appears at
the time point of the cursor (Fig. 7.2). The electropalatographic data that is compatible with Emu
is derived from the 62-electrode EPG system manufactured by Articulate Instruments50. If you
already have your own EPG data from this system, then the files need to be converted into an
SSFF (simple signal file format) to read them into Emu: this can be done after starting Emu from
Arrange Tools and then EPG2SSFF.

Fig. 7.2 about here

 Once an EPG-database is available in Emu, then the EPG signal files of the database are
accessible to Emu-R in all of the ways that have been described in the preceding Chapters. In
addition, there are some functions that are specific to an EPG analysis in Emu-R and these and
the relationship between them are summarised in Fig. 7.3.

As Fig. 7.3 shows, there are four main components to the EPG analysis in Emu-R.

1. Accessing the database. The EPG-data is accessed from the database in the usual way
from a segment list via the emu.track() function.

2. EPG Objects. The EPG-data that is read into R with emu.track() is an EPG-
compressed trackdata object (Fig. 7.3, box 2, A) which compresses the 62 zero and one
values of each palatogram into a vector of just 8 values. Since this is a trackdata object,

50 http://www.articulateinstruments.com/

 155

then it is amenable to dcut() for obtaining an EPG-compressed matrix at a single
time point (Fig. 7.3, box 2, B). Both of these EPG-compressed objects can be
uncompressed in R (using the palate() function) to produce a 3D palatographic
array (Fig. 7.3, box 2, C): that is, an array of palatograms containing 0s and 1s in an 8 x
8 matrix.

Any of the objects listed under 2. are then amenable to two kinds of analysis: plotting or further
parameterisation, as follows:

3. EPG Plots. Two kinds of plots are possible: either the palatograms showing their time-
stamps, or a three-dimensional grey-scale plot that represents the frequency of contact
over two or more palatograms.

4. EPG data-reduced objects. In this case, the 62 palatographic values from each

palatogram are reduced to a single value. As will be shown later in this Chapter, these
data-reduced objects can be very useful for quantifying consonantal overlap and
coarticulation.

Fig. 7.3 about here

It will be helpful to begin by looking in some further detail at the types of R objects in
box 2 (EPG Objects) of Fig. 7.3, because they are central to all the other forms of EPG analysis,
as the figure shows. All of the EPG-databases that are pre-stored and accessible within the Emu-
R library and used as examples in this Chapter are initially in the form of EPG-compressed-
trackdata objects (A. in Fig. 7.3) and this is also always the way that you would first encounter
EPG data in R if you are using your own database obtained from the Articulate Instruments EPG
system. One of the available EPG-database fragments is epgcoutts, recorded by Sallyanne
Palethorpe, and it includes the following R objects:

coutts Segment list

 of the sentence just relax said Coutts. (One segment per word).
coutts.sam Sampled speech trackdata object of coutts.
coutts.epg EPG-compressed-trackdata
 object of coutts (frame rate 5 ms).

The segment list, coutts, consists of four words of a sentence produced by a female speaker of
Australian English and the sentence forms part of a passage that was constructed by Hewlett &
Shockey (1992) for investigating (acoustically) coarticulation in /k/ and /t/. Here is the segment
list:

coutts
segment list from database: epgcoutts
query was: [Word!=x ^ Utterance=u1]
 labels start end utts
1 just 16018.8 16348.8 spstoryfast01
2 relax 16348.8 16685.7 spstoryfast01
3 said 16685.7 16840.1 spstoryfast01
4 Coutts 16840.1 17413.7 spstoryfast01

The EPG-compressed trackdata object coutts.epg therefore also necessarily consists of four
segments, as can be verified with nrow(coutts.epg). Thus the speech frames of EPG data
for the first word in the segment list, just, are given by frames(coutts.epg[1,]). The
command dim(frames(coutts.epg[1,])) shows that this is a 66 x 8 matrix: 66 rows

 156

because there are 66 palatograms between the start and end time of just and 8 columns which
provide the information about palatographic contacts in columns 8-1 respectively. As for all
trackdata objects, the times at which these EPG-frames of data occur are stored as row names
(accessible with tracktimes(coutts.epg)) and for this example they show that
palatographic frames occur at intervals of 5 ms (i.e. at times 16020 ms, 16025 ms, etc.).

Each of the EPG-frames can be unpacked into a series of zeros and ones corresponding to
the absence and presence of contact in the palatogram. The unpacking is done by converting
these values into binary numbers after adding 1 (one). More specifically, consider e.g. the 23rd
EPG-frame of the 1st segment:

frames(coutts.epg[1,])[23,]
T1 T2 T3 T4 T5 T6 T7 T8
195 195 131 131 129 1 0 0

The first value, corresponding to row 8 is 195. In order to derive the corresponding palatographic
contacts for this row, 195 + 1 = 196 is converted into binary numbers. 196 in binary form is
11000011 and so this is the contact pattern for the last (8th row) of the palate at time 16020 ms
(i.e., there is lateral contact and no contact at the centre of the palate). Since the next entry is also
195, then row 7 evidently has the same contact pattern.

This job of converting EPG-frames into binary values and hence palatographic contacts is
done by the palate() function. So the palatogram for all 66 rows of data in
coutts.epg[1,] i.e., of the word just extending in time from 16020 ms to 16340 ms is
obtained as follows:

p = palate(coutts.epg[1,])

p is a three-dimensional array of palatograms, as shown by the following:
dim(p)
8 8 66

The first element that is returned by dim(p) refers to the number of palatographic rows and
the second to the number of palatographic columns: these are therefore always both 8 because
each palatogram contains contacts defined over an 8 x 8 grid. The third entry is the number of
palatograms. The result here is 66 because, as has just been shown, this is the number of
palatograms between the start and end times of just.

A three-dimensional palatographic array is indexed in R with [r, c, n] where r and
c are the row and column number of the palatogram and n is the frame number (from 1 to 66 in
the present example). In order to get at the entire palatogram, omit the r and c arguments. So the
first palatogram at the onset of the word just (at time 16020 ms corresponding to the first row of
frames(coutts.epg[1,])is:

p[,,1]
 C1 C2 C3 C4 C5 C6 C7 C8
R1 0 1 1 1 1 1 0 0
R2 1 1 1 1 1 1 1 1
R3 1 1 1 0 0 1 1 1
R4 1 1 1 0 0 0 1 1
R5 1 1 0 0 0 0 0 1
R6 1 1 0 0 0 0 1 1
R7 1 1 0 0 0 0 1 1
R8 1 1 0 0 0 0 1 1

In this type of array, the row and column numbers are given as the respective dimension names.
Since the first row of the EPG3 palate has 6 contacts (i.e., it is missing the two most lateral
contacts), the values in both row 1 column 1 and in row 1 column 8 are always zero.

 157

The indexing on the palatograms works as for matrices, but since this is a 3D-array, two
preceding commas have to be included to get at the palatogram number: so p[,,1:3] refers to
the first three palatograms, p[,,c(2, 4)], to palatograms 2 and 4, p[,,-1] to all
palatograms except the first one, and so on. It is worthwhile getting used to manipulating these
kinds of palatographic arrays because this is often the primary data that you will have to work
with, if you ever need to write your own functions for analysing EPG data (all of the functions
for EPG plotting and EPG data reduction in boxes 3 and 4 of Fig. 7.3 are operations on these
kinds of arrays). On way to become familiar with these kinds of arrays is to make up some
palatographic data. For example:

Create 4 empty palatograms
fake = array(0, c(8, 8, 4))

Give fake appropriate row and dimension names for a palatogram
rownames(fake) = paste("R", 1:8, sep="")
colnames(fake) = paste("C", 1:8, sep="")

Fill up row 2 of the 3rd palatogram with contacts
fake[2,,3] = 1

Fill up row 1, columns 3-6, of the 3rd palatogram only with contacts
fake[1,3:6,3] = 1

Look at the 3rd palatogram
fake[,,3]
 C1 C2 C3 C4 C5 C6 C7 C8
R1 0 0 1 1 1 1 0 0
R2 1 1 1 1 1 1 1 1
R3 0 0 0 0 0 0 0 0
R4 0 0 0 0 0 0 0 0
R5 0 0 0 0 0 0 0 0
R6 0 0 0 0 0 0 0 0
R7 0 0 0 0 0 0 0 0
R8 0 0 0 0 0 0 0 0

Give contacts to rows 7-8, columns 1, 2, 7, 8 of palatograms 1, 2, 4
fake[7:8, c(1, 2, 7, 8), c(1, 2, 4)] = 1

Look at rows 5 and 7, columns 6 and 8, of the palatograms 2 and 4:
fake[c(5,7), c(6, 8), c(2,4)]
, , 1
 C6 C8
R5 0 0
R7 0 1

, , 2
 C6 C8
R5 0 0
R7 0 1

The times at which palatograms occur are stored as the names of the third dimension and they
can be set as follows:

Assume that these four palatograms occur at times 0, 5, 10, 15 ms
times = seq(0, by=5, length=4)
Store these times as dimension names of fake

 158

dimnames(fake)[[3]] = times

This causes the time values to appear instead of the index number. So the same instruction as the
previous one now looks like this51:

, , 5
 C6 C8
R5 0 0
R7 0 1

, , 15
 C6 C8
R5 0 0
R7 0 1

Functions can be applied to the separate components of arrays in R using the apply()
function. For 3D-arrays, 1 and 2 in the second argument to apply() refer to the rows and
columns (as they do for matrices) and 3 to the 3rd dimension of the array, for example:

Sum the number of contacts in the 4 palatograms
apply(fake, 3, sum)
0 0 12 0

Sum the number of contacts in the columns
apply(fake, c(2,3), sum)
 0 5 10 15
C1 2 2 1 2
C2 2 2 1 2
C3 0 0 2 0
C4 0 0 2 0
C5 0 0 2 0
C6 0 0 2 0
C7 2 2 1 2
C8 2 2 1 2

Notice that the above command returns a matrix whose columns refer to palatograms 1-4
respectively (at times 0, 5, 10, 15 ms) and whose rows show the summed values per
palatographic column. So the entries in row 1 means: the number of contacts in column 1 of the
palatograms occurring at 0, 5, 10, 15 ms are 2, 2, 1, 2 respectively. If you want to sum (or to
apply any meaningful function) by row or column across all palatograms together, then the
second argument has to be 1 (for rows) of 2 (for columns) on its own. Thus:
apply(fake, 1, sum)
R1 R2 R3 R4 R5 R6 R7 R8
 4 8 0 0 0 0 12 12

The first returned entry under R1 means that the sum of the contacts in row 1 of all four
palatograms together is 4 (which is also given by sum(fake[1,,])).

As already mentioned, arrays can be combined with logical vectors in the usual way – but
take great care where to place the comma! For example, suppose that these are four palatograms
corresponding to the labels k, k, t, k respectively. Then the palatograms for k can be given
by:

lab = c("k", "k", "t", "k")

51 However, the times do not appear as dimension names if you look at only a single palatogram:
because in this special case, an array is turned into a matrix (which has only 2 dimensions as a
result of which the 3rd dimension name cannot be represented).

 159

temp = lab=="k"
fake[,,temp]

and rows 1-4 of the palatograms for t are:

fake[1:4,,!temp]

and so on. Finally, in order to apply the functions in boxes 3 and 4 of Fig. 7.3 to made-up data of
this kind, the data must be declared to be of class "EPG" (this tells the functions that these are
EPG-objects). This is done straightforwardly as:

class(fake) = "EPG"

 Having established some basic attributes of EPG objects in R, the two functions for
plotting palatograms can now be considered. As Fig. 7.4 shows, palatograms can be plotted
directly from EPG-compressed trackdata objects or from time slices extracted from these using
dcut(), or else from the 3D palatographic arrays of the kind discussed above. We will begin
by looking at EPG data from the third and fourth segments said Coutts. This is given by
epgplot(coutts.epg[3:4,]) (or by epgplot(palate(coutts.epg[3:4,])))
and the corresponding waveform, from which the palatograms are derived, by
plot(coutts.sam[3:4,], type="l").

Fig. 7.4 about here

Some of the main characteristics of the resulting palatograms shown in Fig. 7.4 are:

• The alveolar constriction for the fricative [s] of said is in evidence in the first 7
palatograms between 16690 ms and 16720 ms.

• The alveolar constriction for [d] of said begins to form at 16800 ms and there is a
complete alveolar closure for 8 palatograms, i.e., for 40 ms.

• There is clear evidence of a doubly-articulated [d ͡k] in said Coutts (i.e., a stop produced
with simultaneous alveolar and velar closures) between 16825 ms and 16835 ms.

• [k] of Coutts is released at 16920 ms.
• The aspiration of Coutts and the following [ʉ] vowel extend through to about 17105 ms.
• The closure for the final alveolar [t] of Coutts is first completed at 17120 ms. The release

of this stop into the final [s] is at 17205 ms.

The interval including at least the doubly-articulated [d͡k] has been marked by vertical
lines on the waveform in Fig. 7.5. This was done with the locator() function that allows any
number of points on a plot to be selected and the values in either x- or y-dimension to be stored
(these commands must be entered after those used to plot Fig. 7.5):

Select two time points at store the x-coordinates
times = locator(2)$x

The vertical boundaries in Fig. 7.5 are at these times
times
16828.48 16932.20
abline(v=times)

Fig. 7.5 about here

 160

The xlim argument can be used to plot the palatograms over this time interval and optionally
the mfrow argument to set the number of rows and columns (you will also often need to sweep
out the graphics window in R to get an approximately square shape for the palatograms):

A 2 × 11 display of palatograms plotted between the interval defined by times
epgplot(coutts.epg, xlim=times, mfrow=c(2,11))

Fig. 7.6 about here

The next example of manipulating and plotting electropalatographic data is taken from a
fragment of a database of Polish fricatives that was collected in Guzik & Harrington (2007). This
database was used to investigate the relative stability of fricatives in word-final and word-initial
position. Four fricatives were investigated: the alveolar [s], a post-alveolar [ʃ], an alveolo-palatal
[ɕ], and a velar [x]. They were produced in word-pairs in all possible combinations with each
other across word boundaries. So there are sequences like [s#ʃ] (in wlos szary), [ʃ#ɕ] (in pytasz
siostre), [x#s] (in dach sali) and so on for all possible 4 × 4 cross-word boundary combinations,
including the homorganic sequences [s#s], [ʃ#ʃ], [ɕ#ɕ], [x#x]. The database fragment polhom
is of the homorganic sequences produced by one native, adult male speaker of Polish. The
palatographic data was sampled at 100 Hz:

polhom Segment list of Polish homorganic fricatives
polhom.l A parallel vector of labels (s, S, c, x, for [s#s], [ʃ#ʃ], [ɕ#ɕ], [x#x])
polhom.epg Parallel EPG trackdata

As table(polhom.l) shows, there are 10 homorganic fricatives in each category. If you
have accessed the corresponding database epgpolish from the Arrange tools → DB
Installer in Emu, then you will see that the segment boundaries in the segment list polhom
extend approximately from the acoustic onset to the acoustic offset of each of these homorganic
fricatives.

Fig. 7.7 about here

The first task will be to compare [s] with [ʃ] as far as differences and similarities in
palatographic contact patterns are concerned and this will be done by extracting the
palatographic frames closest to the temporal midpoint of the fricatives. The data for [s] and [ʃ]
are accessed with a logical vector, and dcut() is used for extracting the frames at the midpoint:

Logical vector to identify [s] and [ʃ]
temp = polhom.l %in% c("s", "S")

EPG-compressed trackdata for [s] and [ʃ]
cor.epg = polhom.epg[temp,]

Matrix of EPG-compressed data for [s] and [ʃ] at the temporal midpoint
cor.epg.5 = dcut(cor.epg, 0.5, prop=T)

Labels for the above
cor.l = polhom.l[temp]

sum(temp) shows that there are 20 fricatives and table(cor.l) confirms that there are 10
fricatives per category. The following produces a plot like Fig. 7.7 of the palatograms at the

 161

temporal midpoint, firstly for [s], then for [ʃ]. Rather than displaying the times at which they
occur, the palatograms have been numbered with the num=T argument:

temp = cor.l =="s"
epgplot(cor.epg.5[temp,], num=T)
epgplot(cor.epg.5[!temp,], num=T)

As expected, the primary stricture for [s] is further forward than for [ʃ] as shown by the presence
of contacts for [s] but not for [ʃ] in row 1. A three-dimensional, gray-scale image can be a useful
way of summarising the differences between two different types of segments: the function for
doing this is epggs():

par(mfrow=c(1,2))
epggs(cor.epg.5[temp,], main="s")
epggs(cor.epg.5[!temp,], main="S")

Fig. 7.8 about here

At the core of epggs() is a procedure for calculating the proportional number of times a cell
was contacted. When a cell is black, then it means that it was contacted in all the palatograms
over which the function was calculated, and when a cell is white, then there were no contacts.
Thus for [s] in Fig. 7.8, the entire first column is black in this three-dimensional display because,
as Fig. 7.7 shows, all ten palatograms for [s] have their contacts on in column 1; and columns 3
and 5 of rows 1 for [s] are dark-gray, because, while most [s] palatograms had a contact for these
cells (numbers 2, 5, 6, 9, 10 in Fig. 7.7), others did not.

7.3. EPG data reduced objects
 As discussed earlier, various functions can be applied to EPG-data that reduce each
palatogram to a single value (Fig. 7.3, box 4). The most basic of these is a function for producing
a contact profile in which the contacts per palate are summed (7.3.1). The other data reduction
functions which are discussed in 7.3.2 are essentially further operations on contact profiles. In
7.4, some of these data reduction functions are put to use for measuring the extent of overlap in
consonant clusters and vowel-induced consonantal coarticulation.
 All data reduction functions work on the same kinds of EPG-objects as those for plotting
electropalatographic data in 7.3. Thus, they can be applied to EPG-compressed trackdata objects,
a matrix of EPG-compressed data extracted at a single time slice, or to a 3D-palatographic array.
In all cases, the output is a single value per palatogram: if the data reduction functions are
applied to an EPG-compressed trackdata object, these values are structured into a trackdata
object. These points are elaborated further in the next section.

7.3.1 Contact profiles
 A contact profile is a form of data reduction in which palatographic data are summed by
row(s) and/or by column(s). Contact profiles have a number of applications in phonetics: they
can be used to distinguish between stops and fricatives at the same place of articulation (by
summing the number of contacts in certain rows) or between different places of articulation (by
summing contacts in different rows).

 The function for calculating a contact profile is epgsum() and its default is to sum all
the contacts per palate. Thus for the 3D-array fake created earlier, epgsum(fake) gives
the same result as the operation applied in 7.2 for summing contacts in the four palatograms,

 162

apply(fake, 3, sum)52. But epgsum() can also be used to sum selectively by row and
column. So epgsum(fake, rows=1:4) sums the contacts in rows 1-4, epgsum(fake,
rows=1:4, columns=c(1, 2, 7, 8)) sums contacts in rows 1-4 of columns 1, 2, 7
and 8. The additional argument inactive=T can be used to sum the inactive electrodes (the
0s of the palatograms) also by row and by column. The default is to sum the entire palatogram
(in selected rows and or columns) but it is also possible to show the summations for the separate
rows or columns using a second argument of 1 (for rows) or 2 (for columns). For example, in the
previous section it was shown how apply(fake, c(2,3), sum) gives the sum of the
contacts in the columns: an equivalent way of doing this is epgsum(fake, 2). See
help(epgsum) for further examples.
 In Fig. 7.4, the separate palatograms at 5 ms intervals were shown for the words said
Coutts. By making a display of the summed contacts in rows 1-3, the articulations in the front
part of the palate should become very clearly visible, while a summation in the back two rows
over columns 3-6 should produce a display which is associated with the degree of tongue-
dorsum contact in /k/ of Coutts. Here are these two contact profiles:

Sum rows 1-3 of the EPG-trackdata object over said
fsum = epgsum(coutts.epg[3:4,], rows=1:3)

Sum rows 7-8, columns 3-6 of the EPG-trackdata object over said Coutts
bsum = epgsum(coutts.epg[3:4,], rows=7:8, columns=3:6)

A plot of the contact profiles superimposed on each other together with the waveform is shown
in Fig. 7.9 and can be produced as follows:

Column-bind the trackdata objects
both = cbind(fsum, bsum)

save the defaults for setting graphical parameters
oldpar = par(no.readonly = TRUE)

par(mfrow=c(2,1)); par(mar=c(1,4,1,1))
xlim = c(start(coutts[3,]), end(coutts[4,]))
plot(both, type="l", ylab="Summed contacts", xlab="", axes=F,
xlim=xlim)
axis(side=2); axis(side=1)
mtext("Time (ms)", side=1, at=17300)

Superimpose some symbols
text(c(16816, 16846, 17158, 17291), c(19.6, 8.7, 17.1,
15.0), c("d", "k", "t", "s"))

Plot the synchronised acoustic waveform
plot(coutts.sam[3:4,], type="l", axes=F, xlab="Time (ms)",
ylab="", xlim=xlim)

Restore the margin defaults
par(mar = oldpar$mar)

Fig. 7.9 about here

52 As described earlier, fake must an object of class EPG for this to work. So if
class(fake) returns array, then enter class(fake) = "EPG"

 163

The synchronised contact profiles in Fig. 7.9 provide a great deal of information about the
overlap and lenition of the alveolar and velar articulations. For example:

• The tongue dorsum for [k] already begins to rise during [ɛ] of said.
• The maximum overlap between [d] and [k] is at the point of the final stop release in said.
• The [t] of Coutts is less lenited compared with [d] of said, as shown by the greater

number of contacts for the former extending over a greater duration.

 Contact profiles could be used to distinguish between the Polish [s,ʃ] fricatives discussed
earlier according to the central groove width which could be defined as the smallest number of
inactive electrodes in any row over the central columns 3-6. For example, in the first five
palatograms of [s] in Fig. 7.7, this central groove width is 3, 1, 2, 2, 1 respectively. For the first 5
[ʃ] palatograms in Fig. 7.7, the central groove width is usually at least one inactive contact
greater.

In order to obtain groove widths for the data in Fig. 7.7, the first step is to count the
number of inactive electrodes (i.e., those with a value of zero) over a particular row and column
range: we will restrict this to the first four rows and to columns 3-6, since, as Fig. 7.7 shows, this
is the region of the palate within which the point of maximum narrowing occurs:

Commands repeated from before
temp = polhom.l %in% c("s", "S")
cor.epg = polhom.epg[temp,]
cor.epg.5 = dcut(cor.epg, 0.5, prop=T)
cor.l = polhom.l[temp]

Count the number of inactive electrodes in rows 1-4, columns 3-6
in.sum = epgsum(cor.epg.5, 1, rows=1:4, columns=3:6, inactive=T)

Show the first two rows of in.sum
in.sum[1:2,]
 R1 R2 R3 R4
2120 3 3 4 4
1170 1 1 3 4

So that it is completely clear what is being counted, the first two palatograms of the array are
listed below. The count on the right is of the zeros in bold:

p = palate(cor.epg.5)
p [,,1:2]

, , 2120

 C1 C2 C3 C4 C5 C6 C7 C8
R1 0 1 0 0 0 1 1 0 3
R2 1 1 0 0 0 1 1 1 3
R3 1 1 0 0 0 0 1 1 4
R4 1 1 0 0 0 0 0 1 4
R5 1 0 0 0 0 0 0 0
R6 1 0 0 0 0 0 0 1
R7 1 0 0 0 0 0 0 1
R8 1 0 0 0 0 0 1 1

 164

, , 1170

 C1 C2 C3 C4 C5 C6 C7 C8
R1 0 1 1 0 1 1 1 0 1
R2 1 1 1 0 1 1 1 1 1
R3 1 1 0 0 0 1 1 1 3
R4 1 1 0 0 0 0 1 1 4
R5 1 0 0 0 0 0 0 0
R6 1 0 0 0 0 0 0 1
R7 1 0 0 0 0 0 0 1
R8 1 0 0 0 0 0 1 1

A function is needed to get the minimum groove width – that is, the function should return 3 and
1 respectively for the above two palatograms. Since in.sum is a matrix, this can be done with
the apply() function:

Find the row with the fewest 0s and return the number of 0s for that row
min.groove = apply(in.sum, 1, min)

Minima for the first two palatograms above: this is correct (see the palatograms above)
min.groove[1:2]
2120 1170
 3 1

Fig. 7.10 about here

The histogram in Fig. 7.10 of the minimum groove width provides some limited evidence that it
is less for [s] than for [ʃ]. The histogram was created with the following commands:

xlim = c(1,3); ylim = c(0, 6); par(mfrow=c(1,2))
xlab = "Min groove width"

Logical vector that is True for [s]
temp = cor.l=="s"
hist(min.groove[temp], col="gray", main="s", xlim=xlim,
ylim=ylim, xlab=xlab)
hist(min.groove[!temp], col="slategray", main="S", xlim=xlim,
ylim=ylim, xlab=xlab)

The above analysis was for one single palatogram per segment extracted at the temporal
midpoint. The same kind of analysis could be carried out for every palatogram between the
temporal onset and offset of these fricatives. This would allow us to see not only if there is a
difference in minimum groove width between [s,ʃ], but also whether groove width decreases
from the fricative margins towards the fricatives' temporal midpoint (this is to be expected given
that the homorganic fricatives were flanked by vowels and given that the extent of stricture in
fricative production tends to increase from the margins towards the temporal midpoint).

The first step is to count the number of inactive electrodes in rows 1-4 and columns 3-6
as before, but this time for all the palatograms contained in the entire EPG-compressed trackdata
object. This is done in the following command by summing the number of inactive electrodes
from the onset to the offset for all segments in the EPG-trackdata object polhom.epg and
storing the count separately by row:

in.sum.all = epgsum(polhom.epg, 1, rows=1:4, columns=3:6,
inactive=T)

 165

Fig. 7.11 about here

The object in.sum.all is four-dimensional (as shown by summary(in.sum.all)) and
consists of the sum of inactive electrodes in rows 1-4 of columns 3-6 for every palatogram
between the onset and offset of each fricative. So that it is clear what has just been calculated,
Fig. 7.11 shows the EPG data for the 10th segment (given by
epgplot(polhom.epg[10,])), together with the corresponding minimum groove widths
(given by frames(in.sum.all[10,])). Thus, the values of the rows at 1290 ms in the
matrix on the right of Fig. 7.11 are 1, 1, 3, 4 because this is the count of inactive electrodes in
rows 1-4, columns 3-6 of the palatogram shown on the left at that time. A function is now
needed similar to the one before to find the minimum value per row in the EPG frames:

minfun <- function(contacts)
{
 # Find the minimum per row
 apply(contacts, 1, min)
}

When this function is applied to the data of the 10th segment, the minimum groove widths of the
palatograms at intervals of 10 ms between the start and end time of the 10th segment are
returned:

minfun(frames(in.sum.all[10,]))
1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380
 2 1 1 1 1 1 1 1 1 1 2 3 4

This function must now be applied to every segment which can be done using the trapply()
function with returntrack=T to build a corresponding trackdata object (see 5.5.2):

groove.min = trapply(in.sum.all, minfun, returntrack=T)

 A plot of the 10th segment of this trackdata object should give the same values that were
returned by minfun(frames(in.sum.all[10,]), which is indeed the case (Fig. 7.12).

plot(groove.min[10,], type="b", ylab="Minimum groove width",
xlab="Time (ms)")

Fig. 7.12 about here

Finally, a plot from segment onset to segment offset should show both the differences on this
parameter between [s] and [ʃ] and also a progressively decreasing minimum groove width
towards the temporal midpoint of the segments, as the fricative's stricture is increased. Such a
plot can be produced with dplot() and in this example, the 10 fricatives per category are
averaged after linear time normalisation (Fig. 7.13):

temp = polhom.l %in% c("s", "S")
dplot(groove.min[temp,], polhom.l[temp], norm=T, average=T,
ylab="Minimum groove width", xlab="Normalised time",
leg="topleft")

Fig. 7.13 about here

 166

Evidently, the groove width decreases on average towards the temporal midpoint for [ʃ] and
somewhat after the temporal midpoint for [s]. Fig. 7.13 also shows that the groove width for [s]
is well below that of [ʃ] at equal proportional time points from segment onset to segment offset.

7.3.2 Contact distribution indices
 As discussed in Gibbon & Nicolaidis (1999), various EPG parameters have been devised
for quantifying both the distribution and the extent of tongue palate contacts. Almost all of these
are based on some form of summation of the palates (see e.g., Recasens et al., 1993; Hardcastle,
Gibbon and Nicolaidis, 1991 for details). These are the anteriority index (AI), the centrality
index (CI), the dorsopalatal index (DI) and the centre of gravity (COG). The first three of
these all vary between 0 and 1 and COG varies between 0.5 and 7.6. The R functions in the
Emu-R library for calculating them are epgai(), epgci(), epgdi(), and epgcog()
respectively.

Fig. 7.14 about here

 The anteriority index quantifies how far forward the contacts are on the palate in rows 1-
5. Rows 6-8 are not taken into account in this calculation. AI is especially useful for quantifying
the place of articulation as far back as the post-alveolar zone (row 5) and can also be used to
quantify the degree of stricture for two consonants at the same place of articulation. The data in
Fig. 7.14 shows AI for various made-up palatograms. (Details of how to produce these are given
at the end of this Chapter in the exercises). Four general principles are involved in calculating
AI (Fig. 7.14):

1. The further forward the contacts in any row, the higher AI. Thus, the palatogram with the
filled row of contacts in row 1 in (a) has a higher AI value than (c) for which the contacts
are filled in row 2. AI decreases from 0.9822 (filled row of contacts in row 1) to 0.08
(filled row of contacts in row 5). Any palatogram with contacts exclusively in rows 6-8
has an AI of 0.

2. Any single contact in row i always has a higher AI than any number of contacts in row j,

where i < j. So the AIs for palatograms (b) and (d) that each have a single contact in row
2 are greater than the AI of palatogram (e) in which all contacts are filled in a lower row
number, row 3.

3. The same number of contacts in any row has the same AI irrespective of their lateral

distribution (distribution by column). So the fact that the lateral distribution of the single
contact is different in palatograms (b) and (d) makes no difference as far as AI is
concerned, since both palatograms have a single contact in row 2.

4. The greater the number of contacts, the higher AI – but only up to the limit specified by

2. above. So palatogram (f) which has rows 3-5 completely filled has a higher AI than
palatogram (e), in which only row 3 is filled; but since palatogram (f) has no contacts
forward of row 3, its AI is lower than those of (b) or (c) that have a single contact in row
2.

Fig. 7.15 about here

The centrality index (CI), as its name suggests, measures the extent of contact at the centre of
the palate and varies between 0 and 1. In general, the more the contacts are laterally distributed,
the lower the value of CI. This parameter could be used to distinguish between consonants that
have a narrow vs. wide central groove, as in the [s,ʃ] fricatives discussed earlier. The actual

 167

calculation of CI can be explained in terms of a set of principles that are very similar to those of
AI, except that they are based on columns and the relative lateralisation of contacts:

1. In the case of a single filled column of contacts, CI is higher nearer the centre of the
palate: thus higher for filled columns 4 or 5 (palatograms (b), (e) in Fig. 7.15) than for the
more laterally filled columns 3 or 6 (palatograms (a), (d)).

2. Any single contact in a given column has a higher CI than a palatogram filled with any

number of contacts in more lateral columns. So the CIs for palatograms (g) and (h) which
have a single contact in columns 4 and 5 are higher than those of palatograms (a) and (d)
in which all contacts are filled in the more lateral columns 3 and 6.

3. The same number of contacts in any column has the same CI irrespective of the

distribution by row: thus, palatograms (g) and (h) have the same CI.

4. The greater the number of contacts, the higher CI – but only up to the limit specified by
2. above.

Fig. 7.16 about here

The dorsopalatal index (DI) also varies between 0 and 1 and is a measure of the extent of

contact in the last three rows, i.e. in the palatal and post-palatal region. It is a simple proportional
measure: when all 24 electrodes are contacted in rows 6-8, then DI has a value of 1; if 12 are
contacted, then DI is 0.5, etc.

Finally, the centre of gravity index (COG) is a measure of the distribution of the place of
articulation between the front and back of the palate: further advanced/retracted places of
articulation are associated with higher/lower COG values. COG varies between 7.6 (when row 1
alone is filled) to 0.5 (when row 8 alone is filled). COG is calculated from a weighted average of
the sum of contacts in the rows, where the weights on rows 1-8 are 7.6, 6.5…0.5. For example,
for palatogram (c) in Fig. 7.16, COG is calculated as follows:

Sum of the contacts in rows 1-8 for (c) in Fig. 7.16
contacts = c(0, 0, 0, 2, 2, 3, 4, 4)

Weights on rows 1-8
weights = seq(7.6, 0.5, by = -1)

COG for (c)
sum(contacts * weights)/sum(contacts)
2.2

In Fig 7.16, (a) and (b) have the same contact patterns, except that in (b) some contacts in the
first row are missing. Thus, the overall distribution of contacts is further towards the front in (a)
than in (b) and so COG is higher. (c) and (d) have no contacts in the first three rows and so have
lower COG values than those of either (a) or (b). Finally (c) and (d) have the same pattern of
contacts except that in (d) the last row is filled: consequently the overall distribution of contacts
in (d) is furthest towards the back of all the palatograms and so it has the lowest COG of all.
 An example of how AI, DI and COG vary is shown for the first two words just relax
from the epgcoutts database considered earlier in Fig. 7.17. AI, DI, and COG for the first two
segments are obtained as follows:

ai = epgai(coutts.epg[1:2,])
di = epgdi(coutts.epg[1:2,])

 168

cog = epgcog(coutts.epg[1:2,])

Save the default graphical parameters
oldpar = par(no.readonly=TRUE)

Set the display for a 3 x 1 plot and define the margins
par(mfrow=c(3,1)); par(mar=c(1, 2, 1, 1))

Waveform
plot(coutts.sam[1:2,], type="l", axes=F, ylab="Amplitude")
axis(side=1)
mtext("Time (ms)", side=1, at=16600, line=-1)

AI and DI
plot(cbind(ai, di), type="l", axes=F)
axis(side=2, line=-1)

Some superimposed labels
text(c(16048, 16250, 16434, 16616, 16674), c(0.80, 0.88,
0.60, 0.69, 0.82), c("dZ", "t", "l", "k", "s"))

COG
plot(cog, type="l", axes=F, ylab="COG")
axis(side=1)

Mark in some time values
times = c(16050, 16250, 16442, 16600, 16650)
abline(v=times)

Restore the plotting device defaults
par(oldpar)

Plot palatograms at these time values
epgplot(coutts.epg[1:2,], times, mfrow=c(1,5))

Fig. 7.17 about here

The contact profiles in Fig. 7.17 lead to the following conclusions:

• AI is somewhat lower for the lateral of relax than either [ʤ] (dZ) or [st] of just because,
in contrast to these segments, [l] has only one contact in the first row, as the palatogram
at 16440 ms shows.

• DI has a high value during [ʤ] and this is because, as the palatogram at 16050 ms shows,

there is quite a lot of contact in the back three rows.

• COG often tends to track AI quite closely and this is also evident for the data in figure
7.17. However unlike AI, COG takes account of the overall distribution of the contacts
from front to back; and unlike AI, COG is not biased towards giving a higher ranking if
there is a single contact in a low row number. Therefore, because the two leftmost
palatograms in Fig 7.17 have contacts in the first row, they have high AI values which
are higher than those of the 3rd palatogram from the left at 16440 ms during [l]. But of

 169

these three, the leftmost palatogram at 16050 ms has the lowest COG because of the large
number of contacts in the back rows.

 Finally, some of these data-reduction parameters will be applied to the Polish fricatives
considered earlier. For this analysis, the data from the alveolo-palatal [ɕ] is included as well as
from [s,ʃ]. Here again is a grayscale palatographic display, this time averaged over the middle
third of each fricative:

par(mfrow=c(1,3))
for(j in c("s", "S", "c")){
 temp = polhom.l == j
 epggs(dcut(polhom.epg[temp,], .33, .67, prop=T), main=j)
}

Fig. 7.18 about here

These greyscale palatographic displays in Fig. 7.18 can be used to make various predictions
about how these three places of articulation might be separated on some of the EPG data
reduction parameters:

• AI: highest for [s] (greatest number of contacts in rows 1 and 2) and possibly higher for
[ɕ] than for [ʃ] (more contacts in rows 1-2).

• DI: highest for [ɕ] (greatest number of contacts in rows 5-8)
• CI: lowest for [ʃ] (least number of contacts medially in columns 4-5)
• COG: highest for [s], possibly with little distinction between [ʃ] and [ɕ] since the

distribution of contacts from front to back is about the same for these fricatives.

In the example in Fig. 7.19, these parameters were calculated across the entire temporal extent of
the homorganic fricatives. Since the fricatives were flanked by vowels, then the parameters
might be expected to rise towards the temporal midpoint in most cases. The commands for
creating Fig. 7.19 are as follows.

AI, DI, CI, COG
ai = epgai(polhom.epg); di = epgdi(polhom.epg)
ci = epgci(polhom.epg); cog = epgcog(polhom.epg)

Logical vector to identify the three fricatives
temp = polhom.l %in% c("s", "S", "c")

par(mfrow=c(2,2)); par(mar=c(1,2,1.3,1))
dplot(ai[temp,], polhom.l[temp], offset=.5, axes=F, main="AI",
bty="n")
axis(side=2)
dplot(di[temp,], polhom.l[temp], offset=.5, axes=F, legend=F,
main="DI", bty="n")
axis(side=2)
dplot(ci[temp,], polhom.l[temp], offset=.5, legend=F, axes=F,
main="CI", bty="n")
axis(side=1, line=-1); axis(side=2)
mtext("Time (ms)", side=1, at=120, line=0)
dplot(cog[temp,], polhom.l[temp], offset=.5, legend=F, axes=F,
main="COG", bty="n")

 170

axis(side=1, line=-1); axis(side=2)

Fig. 7.19 about here

Three of the parameters distinguish one fricative category from the other two: thus DI separates
[ɕ] from [s,ʃ], CI separates [ʃ] from [s,ʃ,ɕ], COG separates [s] from [ɕ,ʃ] while AI produces a
clear distinction between all three categories.

7.4. Analysis of EPG data
 The mechanisms are now in place to carry out many different kinds of analysis using
electropalatographic data. Two common kinds of investigation to which an EPG-analysis is
particularly suited are presented in this section: an investigation into the extent of consonant
overlap in alveolar-velar consonant clusters (7.4.1); and vowel-induced place of articulation
variation in dorsal fricatives and stops (7.4.2).

7.4.1 Consonant overlap
 The database fragment in this section is part of a larger database that was collected and
analysed by Lisa Stephenson (Stephenson, 2003, 2004, 2005; Stephenson & Harrington, 2002) in
studying consonant overlap in the production of blends in English and Japanese. In her
experiments, subjects saw two hypothetical town names on a screen and had to produce a blend
from the two words as quickly as possible after seeing them. They might see for example
Randon and Pressgate and the task was to produce a blend by combining the first syllable of the
first word with the second syllable of the second word, thus Rangate.

Stephenson's database included a number of blends formed with combinations of /n/ and
a following consonant and in the analysis in this section, two of these types will be compared:
blends formed with /nk, ng/ and blends formed with /sk, sg/ clusters. No differentiation will be
made between the voicing status of the final consonant: so the comparison is between /nK/ vs.
/sK/ where /K/ stands for either /k/ or /g/. The question that is addressed is the following: is the
extent of alveolar-velar overlap the same in /nK/ and /sK/?

As an initial hypothesis, it is reasonable to expect more overlap in /nK/ for at least two
reasons. Firstly because of the well-known tendency for /n/ to assimilate in this context (see e.g.,
Hardcastle, 1994) whereas /s/ does not audibly retract its place of articulation in e.g., mascot or
must get and is often resistant to coarticulatory influences (e.g., Recasens, 2004). Secondly,
whereas it is quite possible to sustain an alveolar [n] production when there is tongue-dorsum
contact at the velum for [k] or for [g], this type of overlapping or double-articulation is likely to
be more difficult in [sk] or [sg]: this is because if there is substantial velar closure during the
production of the alveolar, then the airflow through the oral cavity will be inhibited as a result of
which it will be difficult to sustain the high aerodynamic power required for the production of
the sibilant fricative [s].

The available database fragment is epgassim and there are the usual sets of parallel R
objects associated with this:

engassim Segment list from the acoustic onset to the

 acoustic offset of the entire [nk,ng,sk,sg] sequences
engassim.l Label vector of the above. nK for [nk, ng] vs. sK for [sk, sg].
engassim.w Label vector of the words from which the sequences
 were derived.
engassim.epg Parallel EPG trackdata at a frame rate of 5 ms.

Fig. 7.20 about here

 171

In 7.3 it was shown how the anteriority and dorsopalatal indices tend to provide positive
evidence for productions at alveolar and velar places of articulation respectively. The data will
therefore be analysed for these parameters, but as with any more complicated parametric
analysis, it is always a good idea to look at some samples of the data first. A plot of all of the nK
data separately per segment and from the onset of the [n] to the offset of the velar can be
produced as follows. (Use the left-mouse button to advance through each plot; you will have to
do this 17 times, since there are 17 nK segments. Use the same commands to get the
corresponding sK data, but replace temp with its logical inverse !temp). The EPG frames
from the first run through the loop (for the first nK and sK segments) are shown in Fig. 7.20:

temp = engassim.l == "nK"
for(j in 1:sum(temp)){
 # Show palate numbers rather than times
 epgplot(engassim.epg[temp,][j,], numbering=T)
 # Left mouse button to advance
 locator(1)
}

Palatograms from two segments are shown in Fig. 7.20: on the left is /nk/from duncourt and on
the right, /sk/ from bescan. For /nk/ on the left, the alveolar stricture increases from palatogram
2. It is complete by palatogram 6 and the release of the alveolar occurs 50 ms after that by frame
16. The same display shows how the velar closure begins to form during this interval such that
the maximum visible extent of velar closure takes place by frame 16. Evidently then, although
the alveolar and velar articulations are not simultaneous (i.e., are not completely doubly
articulated), they overlap a good deal. Consider now /sk/ in Fig. 7.20. The alveolar constriction
for [s] extends approximately over 115 ms between palatograms 10 and 23, but the greatest
degree of narrowing for the velar stop /k/ does not take place until well after this at frame 31.
 The aim now is to see whether there is any evidence for a greater extent of alveolar-velar
overlap in nK in all of the data, using anteriority and dorsopalatal indices to parameterise the
extent of contact at the front and at the back of the palate respectively:

ai = epgai(engassim.epg); di = epgdi(engassim.epg)
par(mfrow=c(1,2))
temp = engassim.l == "nK"

Data for nK
dplot(ai[temp,], ylim=c(0,1), main="/nK/", lwd=2, leg=F)
par(new=T)
dplot(di[temp,], ylim=c(0,1), col="slategray", lwd=2, leg=F)

Data for sK
dplot(ai[!temp,], ylim=c(0,1), main="/sK/", lwd=2, leg=F)
par(new=T)
dplot(di[!temp,], ylim=c(0,1), col="slategray", lwd=2, leg=F)

It is apparent from Fig. 7.21 that the tongue-dorsum activity for [k] is timed to occur a good deal
earlier relative to the preceding consonant in the clusters with [n] compared with those of [s]. In
particular, the left panel of Fig. 7.20 shows how the dorsopalatal index rises throughout the AI-
plateau for [n]; by contrast, there is a dorsopalatal trough for most of the AI-plateau for [s]
between roughly 40 ms and 100 ms on the right.

Fig. 7.21 about here

 172

 The differences in the extent of alveolar-velar overlap could be further highlighted by
producing grayscale EPG-images at about 50 ms after the acoustic onset of the consonant
cluster: as Fig. 7.20 shows, this is approximately the time at which the AI maxima are first
attained in nK and sK.

par(mfrow=c(1,2))
temp = engassim.l == "nK"
epggs(dcut(engassim.epg[temp,], start(engassim[temp,])+50),
main="/nK/")
epggs(dcut(engassim.epg[!temp,], start(engassim[!temp,])+50),
main="/sK/")

The grayscale images in Fig. 7.22 show greater evidence of alveolar-velar overlap for /nK/
which, in contrast to /sK/, has more filled cells in the last two rows.

Fig. 7.22 about here

7.4.2 VC coarticulation in German dorsal fricatives
 The analysis in this section is concerned with dorsal fricative assimilation in German and
more specifically with whether the influence of a vowel on the following consonant is greater
when the consonant is a dorsal fricative, which, for compatibility with the machine readable
phonetic alphabet, will be denoted phonemically as /x/, compared with an oral stop, /k/. This
analysis was carried out in a seminar at the IPDS, University of Kiel, and then further developed
in a paper by Ambrazaitis & John (2004).
 In German, a post-vocalic dorsal fricative varies in place of articulation depending
largely on the backness of a preceding tautomorphemic vowel. After front vowels, /x/ is
produced in Standard German and many German varieties as a palatal fricative (e.g., [ri:ç], [lɪçt],
[pɛç]; riech/smell, Licht/light, Pech/bad luck respectively), as a velar fricative after high back
vowels (e.g. [bu:x], Buch/book) and quite possibly as a uvular fricative after central or back non-
high vowels (e.g., [maχ], make; [lɔχ], Loch/hole). In his extensive analysis of German
phonology, Wiese (1996) raises the interesting point that, while this type of vowel-dependent
place of articulation in the fricative is both audible and well-documented, the same cannot be
said for analogous contexts with /k/. Thus, there are tautomorphemic sequences of /i:k, ɪk, ɛk/
(flieg/fly; Blick/view; Fleck/stain), and of /u:k, ɔk/ (Pflug/plough; Stock/stick) and of /ak/
(Lack/paint). However, it not so clear either auditorily nor from any experimental analysis
whether there is the same extent of allophonic variation between palatal and uvular places of
articulation.

We can consider two hypotheses as far as these possible differences in coarticulatory
influences on /x/ and /k/ are concerned. Firstly, if the size of coarticulatory effects is entirely
determined by the phonetic quality of the preceding vowel, then there is indeed no reason to
expect there to be any differences in the variation of place of articulation between the fricative
and the stop: that is, the extent of vowel-on-consonant coarticulation should be the same for
both. However, perhaps the coarticulatory variation is simply much less audible in the case of /k/
because the release of the stop, which together with the burst contains most of the acoustic cues
to place of articulation, is so much shorter than in the fricative. The alternative hypothesis is that
there is a categorical distinction between the allophones of the fricative, but not between those of
/k/. Under this hypothesis, we might expect not only a sharper distinction in speech production
between the front and back allophones of the fricative but also that the variation within the front
or back allophones might be less for the fricative than the stop.

 It is certainly difficult to answer this question completely with the available fragment of
the database of a single speaker, but it is nevertheless possible to develop a methodology that
could be applied to many speakers in subsequent experiments. The database fragment here is

 173

epgdorsal that forms part of a corpus recorded by phonetics students at the IPDS Kiel in 2003
and also part of the study by Ambrazaitis & John (2004). The EPG data was recorded at a frame
rate of 10 ms at the Zentrum für allgemeine Sprachwissenschaft in Berlin. For the recording, the
subject had to create and produce a street name by forming a blend of a hypothetical town name
and a suffix that were shown simultaneously on a screen. For example, the subject was shown
RIEKEN and –UNTERWEG at the same time, and had to produce RIEKUNDERWEG as
quickly as possible. In this example, the underlined part of this blend includes /i:kʊ/. Blends
were formed in an analogous way to create /V1CV2/ sequences where V1 included vowels
varying in backness and height, C = /k, x/, and V2 = /ʊ, ɪ/. In all cases, primary stress is
necessarily on V2. To take another example, the subject produced RECHINSKIWEG in response
to RECHEN and –INSKIWEG resulting in a blend containing /ɛxɪ/ over the underlined
segments.

For the database fragment to be examined here, there are six different V1 vowels whose
qualities are close to IPA [i:, ɪ, ɛ, a, ɔ, ʊ] (i, I, E, a, O, U respectively in this database) and
that vary phonetically in backness more or less in the order shown. So assuming that the
following V2 = /ʊ, ɪ/ has much less influence on the dorsal fricative than the preceding vowel,
which was indeed shown to be the case in Ambrazaitis & John (2004), we can expect a relatively
front allophone of the fricative or stop after the front vowels [i:, ɪ, ɛ] but a back allophone after
[ɔ, ʊ].
 The following parallel objects are available in the dataset dorsal for investigating this
issue. With the exception of dorsal.bound which marks the time of V1C acoustic boundary,
their boundary times extend from the acoustic onset V1 to the acoustic offset of C (the acoustic
offset of the dorsal):

dorsal Segment list of V1C (C = /k, x/)
dorsal.epg EPG-compressed trackdata of dorsal
dorsal.sam sampled waveform trackdata of dorsal
dorsal.fm Formant trackdata of dorsal
dorsal.vlab Label vector of V1 (i, I, E, a, O, U)
dorsal.clab Label vector of C (k or x)
dorsal.bound Event times of the acoustic V1C boundary

There were 2 tokens per /V1CV2/ category (2 tokens each of /i:kɪ/, /i:kʊ/, /i:xɪ/, /i:xʊ/, … etc.)
giving 4 tokens for each separate V1 in /V1k/ and 4 tokens per /V1x/ (although since V1 was not
always realised in the way that was intended - e.g., /ɪ/ was sometimes produced instead of /i:/ -
there is some deviation from this number, as table(label(dorsal)) shows). In order to
be clear about how the above R objects are related, Fig. 7.23 shows the sampled waveform and
electropalatographic data over the third segment in the database which, as
label(dorsal[3,]) shows, was ak53:

plot(dorsal.sam[3,], type="l",main="ak", xlab="Time (ms)",
ylab="", axes=F, bty="n")
axis(side=1)
epgplot(dorsal.epg[3,], mfrow=c(2,8))

For the investigation of the variation in place of articulation in dorsal consonants, the anteriority
index is not appropriate because this only registers contact in rows 1-5. The dorsopalatal index
might shed more light on place of articulation variation: however, given that it is based on

53 The waveform and EPG-data have to be created as separate plots in the current
implementation of Emu-R.

 174

summing the number of contacts in the back three rows, it is likely to register differences
between the lesser stricture of the fricatives than the stops. But this is not what is needed.
Instead, we need a parameter that is affected mostly by shifting the tongue from front to back
along the palate and which does so in more or less the same way for the fricative and the stop
categories.
 The parameter that is most likely to be useful here is the EPG centre of gravity (COG)
which should show decreasing values as the primary dorsal stricture moves back along the
palate. COG should also show a predictable relationship by vowel category. It should be highest
for a high front vowel like [i:] that tends to have a good deal of contact laterally in the palatal
region and decrease for [ɪ,ɛ] which have a weaker palatal contact. It should have the lowest
values for [ʊ,ɔ] in which any contact is expected at the back of the palate.

COG should show some relationship to the vowel's second formant frequency, since F2
of [i:] is higher than F2 of [ɪ,ɛ] and since of course F2 of front vowels is greater than F2 of low,
central and back vowels. These relationships between COG, vowel category and F2 can be
examined during the interval for which sensible formant data is available, i.e., during the voiced
part of the vowel. Given that the interest in this analysis is in the influence of the vowel on the
following consonant, we will consider data extracted at the vowel-consonant boundary close the
vowel's last glottal pulse, i.e. close to the time at which the voiced vowel gives way to the
(voiceless) fricative or stop. Two different types of COG will be presented. In one, COG is
calculated as in section 7.3 over the entire palate: in the other, which will be called the posterior
centre of gravity (P-COG), the COG calculations are restricted to rows 5-8. P-COG is relevant
for the present investigation because the study is concerned exclusively with sounds made in the
dorsal region such as vowels followed by dorsal consonants. It should be mentioned at this point
that this version of P-COG is not quite the same as the one in Gibbon & Nicolaidis (1999) who
restrict the calculations not only to rows 5-8 but also to columns 3-6 (see the picture on the
jacket cover of Hardcastle & Hewlett, 1999), i.e. to a central region of the palate. However, this
parameter is likely to exclude much of the information that is relevant in the present
investigation, given that the distinction between high front and back vowels often shows up as
differences in lateral tongue-palate contact (present for high front vowels, absent for back
vowels), i.e. at the palatographic margins.

Fig. 7.24 about here

 The relationship between the centre of gravity parameters and F2 at the acoustic vowel
offset is shown in Fig. 7.24 which was created with the following commands:

COG and PCOG, from the onset to the offset of VC
cog = epgcog(dorsal.epg); pcog = epgcog(dorsal.epg, rows=5:8)

COG and PCOG at the VC boundary
cog.voffset = dcut(cog, dorsal.bound)
pcog.voffset = dcut(pcog, dorsal.bound)

F2 at the VC boundary
f2.voffset = dcut(dorsal.fm[,2], dorsal.bound)
par(mfrow=c(1,2))
plot(f2.voffset, cog.voffset, pch=dorsal.vlab, xlab="F2 (Hz)",
ylab="COG")
plot(f2.voffset, pcog.voffset, pch=dorsal.vlab, xlab="F2 (Hz)",
ylab="PCOG")

 175

As Fig. 7.24 shows, both COG and PCOG show a fairly linear relationship to the second formant
frequency at the vowel offset. They also show a clear separation between vowel categories, with
the low back vowels appearing at the bottom left of the display and the high and mid-high front
vowel in the top right. For this particular speaker, these relationships between acoustic data,
articulatory data and vowel category emerge especially clearly. It must be emphasised that this
will not always be so for all speakers! PCOG shows a slightly better correlation with the F2-data
than COG (as cor.test(f2.voffset, pcog.voffset) and
cor.test(f2.voffset, cog.voffset) show). However, COG shows a clearer
distinction within the front vowel categories [i:,ɪ,ɛ] – and this could be important in determining
whether the coarticulatory influences of the vowel on the consonant are more categorical for /x/
than for /k/ (if this were so, then we would expect less variation in /x/ following these different
front vowels, if /x/ is realised as basically the same front allophone in all three cases). The
subsequent analyses are all based on COG – some further calculations with PCOG are given in
the exercises.
 In order to get some insight into how /k,x/ vary with the preceding vowel context, a plot
of COG will be made 30 ms on either side of the vowel boundary. This is shown in Fig. 7.25 and
was produced as follows:

Cut the EPG-data to ±30 ms either side of V1C boundary
epg30 = dcut(dorsal.epg, dorsal.bound-30, dorsal.bound+30)
Calculate COG
cog30 = epgcog(epg30)

Logical vector that is True when the consonant is /k/ as opposed to /x/
temp = dorsal.clab=="k"
ylim = c(0.5, 3.5); xlim=c(-50, 50)
par(mfrow=c(1,2))
dplot(cog30[temp,], dorsal.vlab[temp], offset=.5, xlim=xlim,
ylim=ylim, leg="topright", ylab="EPG COG", main="/k/", bty="n")
mtext("Time (ms)", side=1, line=1, at=70)
dplot(cog30[!temp,], dorsal.vlab[!temp], offset=.5, xlim=xlim,
ylim=ylim, leg=F, main="/x/", bty="n")

Fig. 7.25 about here

As Fig. 7.25 shows, there is a clearer separation (for this speaker at least) on this parameter
between the front vowels [i, ɪ, ɛ] on the one hand and the non-front /a, ɔ, ʊ/ in the context of /x/;
on the other hand, the separation is much less in evidence in the context of /k/. A histogram of
COG 30 ms after the acoustic VC boundary brings out the greater categorical separation
between these allophone groups preceding /x/ quite clearly.

COG values at 30 ms after the VC boundary. Either:
cog30end = dcut(cog30, 1, prop=T)
Or
cog30end = dcut(cog30, dorsal.bound+30)

Logical vector, T when clab is /k/, F when clab is /x/
temp = dorsal.clab=="k"
par(mfrow=c(1,2))
Histogram of EPG-COG 30 ms after the VC boundary for /k/
hist(cog30end[temp], main="/k/", xlab="EPG-COG at t = 30 ms",
col="blue")
As above but for /x/

 176

hist(cog30end[!temp], main="/x/", xlab="EPG-COG at t = 30 ms",
col="blue")

Fig. 7.26 about here

There is evidently a bimodal distribution on COG 30 ms after the VC boundary for both /x/ and
/k/, but this is somewhat more pronounced for /x/: such a finding is consistent with the view that
there may be a more marked separation into front and non-front allophones for /x/ than for /k/. In
order to test this hypothesis further, the EPG-COG data are plotted over the extent of the
consonant (over the fricative or the stop closure) in Fig. 7.26:

Centre of gravity from acoustic onset to offset of the consonant
cogcons = epgcog(dcut(dorsal.epg, dorsal.bound,
end(dorsal.epg)))

Logical vector that is True when dorsal.clab is k
temp = dorsal.clab=="k"
par(mfrow=c(1,2)); ylim = c(0.5, 3.5); xlim=c(-60, 60)
col = c(1, "slategray", "slategray", 1, 1, "slategray")
linet=c(1,1,5,5,1,1) ; lwd=c(2,2,1,1,1,1)
dplot(cogcons[temp,], dorsal.vlab[temp], offset=.5,
leg="topleft", ylab="COG", ylim=ylim, xlim=xlim, main="/k/",
col=col, lty=linet, lwd=lwd)
dplot(cogcons[!temp,], dorsal.vlab[!temp], offset=.5, ylim=ylim,
xlim=xlim, leg=F, main="/x/", col=col, lty=linet, lwd=lwd)

There is once again a clearer separation of EPG-COG in /x/ depending on whether the preceding
vowel is front or back. Notice in particular how COG seems to climb to a target for /ɛx/ and
reach a position that is not very different from that for /ix/ or /ɪx/.
 For this single speaker, the data does indeed suggest a greater categorical allophonic
distinction for /x/ than for /k/.

Fig. 7.27 about here

7.5. Summary
 One of the central concerns in experimental phonetics is with how segments overlap and
the way in which they are coordinated with each other. The acoustic speech signal provides a
rich source of information allowing these types of processes in speech production to be inferred
indirectly. However, it is clear that acoustics is of little use for the kind of study presented in the
latter part of this Chapter in analysing how the tongue moves due to the influence of context
during an acoustic stop closure. Also, it is very difficult and probably impossible to quantify
reliably from speech acoustics the way in which the tongue is repositioned from an alveolar to a
velar place of articulation in the kinds of /nk/ sequences that were examined earlier, largely
because this kind of subtle change is very difficult to detect in the acoustics of nasal consonants.
Moreover, an acoustic analysis could not reveal the differences in segmental coordination
between /sk/ and /nk/ that were in evidence in analysing these productions
electropalatographically.

As discussed earlier, electropalatography is much more limited compared with a
technique like electromagnetic articulometry (EMA) presented in Chapter 5, because it cannot
provide as much information about the dynamics of tongue movement; and EPG in comparison
with EMA has little to offer in analysing vowels or consonants produced beyond the hard/soft
palate junction. On the other hand, EPG tracks can often be more transparently related to
phonetic landmarks than the data from EMA, although critics of EPG also argue (not

 177

unjustifiably) that the EPG parameters like AI, DI, and COG are too simplistic for inferring the
complexities of speech motor control.

A central aim in this Chapter has been to show how many of the procedures for handling
acoustic data in R can be applied to data-reduced versions of the EPG signal. Thus the tools for
plotting and quantifying EPG data are, for the most part, the same as those that were used in the
analysis of movement and formant data in the preceding two Chapters and for spectral data to the
discussed in the next Chapter. As a result, the mechanisms are in place for carrying out various
kinds of articulatory-acoustic relationships, of which one example was provided earlier (Fig.
7.24). In addition, the extensive resources for quantifying data that are available from the
numerous R libraries can also be applied to further analyses of palatographic data.

7.6 Questions

1. Make a 3D palatographic array for creating the figure in Fig. 7.14, then plot Fig. 7.14 and use
the made-up array to verify the values for the anteriority index.

2. Write R commands to display the 1st, 4th, and 7th palatograms at the acoustic temporal
midpoint of [ɕ] (c) in the epgpolish database fragment with the R objects (dataset) polhom.

3. The R dataset coutts2 of the database fragment epgcoutts contains the same utterance
produced by the same speaker as coutts but at a slower rate. The R-objects for coutts2 are:

coutts2 Segment list of words
coutts2.l Vector of word labels
coutts2.epg EPG-compressed trackdata object
coutts2.sam Trackdata of the acoustic waveform

Produce palatographic plots over a comparable extent as in Fig. 7.5 from the /d/ of said up to the
release of /k/ in said Coutts. Comment on the main ways the timing of /d/ and /k/ differ in the
normal and slow database fragments.

4. For the polhom data set of Polish homorganic fricatives (segment list, vector of labels, and
trackdata polhom, polhom.l, polhom.epg respectively), write R-expressions for the
following:

4.1 For each segment onset, the sum of the contacts in rows 1-3.

4.2 For each segment, the sum of all palatographic contacts at 20 ms after the segment onset.

4.3 For each segment, the sum of the contacts in rows 1-3 and columns 1-2 and 7-8 at the
segment midpoint.

4.4 For each s segment, the anteriority index at the segment offset.

4.5 For each s and S segment, the dorsopalatal index 20 ms after the segment midpoint.

4.6 An ensemble plot as a function of time of the sum of the contacts in rows 2 and 4 for all
segments, colour-coded for segment type (i.e., a different colour or line-type for each of s, S,
c, x) and synchronised at the temporal midpoint of the segment.

 178

4.7 An ensemble plot as a function of time of the sum of the inactive electrodes in columns 1,
2, 7, and 8 and rows 2-8 for all S and c segments for a duration of 40 ms after the segment onset
and synchronised 20 ms after segment onset.

4.8 An averaged, and linearly time-normalized ensemble plot for c and x as a function of
time of the posterior centre of gravity PCOG (see 7.4.2).

4.9 For each segment, the median of the anteriority index between segment onset and offset.

4.10 A boxplot of the centre of gravity index averaged across a 50 ms window, 25 ms on
either side of the segment's temporal midpoint, for s and S segments.

5. For the engassim dataset, the AI and DI indices were calculated as follows:

ai = epgai(engassim.epg); di = epgdi(engassim.epg)

Calculate over these data AITMAX the time at which AI first reaches a maximum value and
DITMAX, the time at which DI first reaches a maximum value. Make a boxplot of the difference
between these times, DITMAX – AITMAX, to show that the duration between these two maxima is
greater for sK than for nK.

7.7 Answers
1.
palai = array(0, c(8, 8, 8))
palai[1,2:7,1] = 1
palai[2,4,2] = 1
palai[2,,3] = 1
palai[2,8,4] = 1
palai[3,,5] = 1
palai[3:5,,6] = 1
palai[4,,7] = 1
palai[5,,8] = 1
class(palai) = "EPG"
aivals = round(epgai(palai), 4)
aivals
epgplot(palai, mfrow=c(1,8), num=as.character(aivals))

2.
EPG data at the midpoint
polhom.epg.5 = dcut(polhom.epg, 0.5, prop=T)

EPG data at the midpoint of c
temp = polhom.l == "c"
polhom.epg.c.5 = polhom.epg.5[temp,]

Plot of the 1st, 4th, 7th c segments at the midpoint
epgplot(polhom.epg.c.5[c(1,4,7),], mfrow=c(1,3))

3.
epgplot(coutts2.epg, xlim=c(end(coutts2)[3]-120,
start(coutts2)[4]+120))

 179

The main difference is that in the slow rate, /d/ is released (at 14910 ms) well before the
maximum extent of dorsal closure is formed (at 14935 ms), i.e., the stops are not doubly
articulated.

4.1
epgsum(dcut(polhom.epg, 0, prop=T), r=1:3)

4.2
times = start(polhom)+20
epgsum(dcut(polhom.epg, times))

4.3
epgsum(dcut(polhom.epg, 0.5, prop=T), r=1:3, c=c(1, 2, 7, 8))

4.4
epgai(dcut(polhom.epg[polhom.l=="s",], 1, prop=T))

4.5
temp = polhom.l %in% c("s", "S")
times = (start(polhom[temp,])+end(polhom[temp,]))/2 + 20
epgdi(dcut(polhom.epg[temp,], times[temp]))

4.6
dplot(epgsum(polhom.epg, r=c(2,4)), polhom.l, offset=0.5)

4.7
EPG-trackdata from the onset for 40 ms
trackto40 = dcut(polhom.epg, start(polhom.epg),
start(polhom.epg)+40)

Trackdata of the above but with rows and columns summed
esum = epgsum(trackto40, r=2:8, c=c(1, 2, 7, 8), inactive=T)
Logical vector that is True for S or c
temp = polhom.l %in% c("S", "c")

A plot of the summed contacts synchronised 20 ms after segment onset
dplot(esum[temp,], polhom.l[temp],
offset=start(polhom.epg[temp,])+20, prop=F)

4.8
temp = polhom.l %in% c("c", "x")
dplot(epgcog(polhom.epg[temp,], rows=5:8), polhom.l[temp],
norm=T, average=T)

4.9
trapply(epgai(polhom.epg), median, simplify=T)

4.10
EPG-trackdata from the temporally medial 50 ms
midtime = (start(polhom.epg) + end(polhom.epg))/2
trackmid = dcut(polhom.epg, midtime-25, midtime+25)

COG index of the above

 180

cogvals = epgcog(trackmid)

The mean COG value per segment over this interval
mcog = trapply(cogvals, mean, simplify=T)

A boxplot of the mean COG for s and S
temp = polhom.l %in% c("S", "s")
boxplot(mcog[temp] ~ polhom.l[temp], ylab="Average COG")

5.
Function for calculating the time at which the maximum first occurs
peakfun <- function(fr, maxtime=T)
{
if(maxtime) num = which.max(fr)
else num = which.min(fr)
tracktimes(fr)[num]
}

ai = epgai(engassim.epg)
di = epgdi(engassim.epg)

Get the times at which the AI- and DI-maxima first occur
aimax = trapply(ai, peakfun, simplify=T)
dimax = trapply(di, peakfun, simplify=T)
diffmax = dimax - aimax

boxplot(diffmax ~ engassim.l, ylab="Duration (ms)")

 181

Chapter 8. Spectral analysis.
The material in this chapter provides an introduction to the analysis of speech data that

has been transformed into a frequency representation using some form of a Fourier
transformation. In the first section, some fundamental concepts of spectra including the
relationship between time and frequency resolution are reviewed. In section 8.2 some basic
techniques are discussed for reducing the quantity of data in a spectrum. Section 8.3 is concerned
with what are called spectral moments that encode properties of the shape of the spectrum. The
final section provides an introduction to the discrete cosine transformation (DCT) that is often
applied to spectra and auditorily-scaled spectra. As well as encoding properties of the shape of
the spectrum, the DCT can also be used to remove much of the contribution of the source (vocal
fold vibration for voiced sounds, a turbulent airstream for voiceless sounds) from the filter (the
shape of the vocal tract). The DCT can then be used to derive a smoothed spectrum.

8. 1 Background to spectral analysis
8.1. 1 The sinusoid.

The digital sinusoid, which is the building block for all forms of computationally based
spectral analysis can be derived from the height of a point above a line as a function of time as it
moves in discrete jumps, or steps, at a constant speed around a circle. In deriving a digital
sinusoid, there are four variables to consider: the amplitude, frequency, phase, and the
number of points per repetition or cycle. Examples of digital sinusoids are shown in Fig. 8.1
and were produced with the Emu-R crplot() function as follows:

par(mfrow=c(3,2)); par(mar=c(1, 2, 1, 1))
oldpar = par(no.readonly=TRUE)

Plot a circle and its sinusoid with defaults
crplot()
Set the amplitude to 0.75
crplot(A=.75)
Set the frequency to 3 cycles
crplot(k=3)
Set the phase to –π/2 radians.
crplot(p=-pi/2)
Set the frequency to 3 cycles and plot these with 24 points
crplot(k=3, N=24)
Set the frequency to 13 cycles
crplot(k=13)
par(oldpar)

In the default case (Fig. 8.1a), the point hops around the circle at a constant speed at intervals
that are equally spaced on the circumference starting at the top of the circle. A plot of the height
of these points about the horizontal line results in the digital sinusoid known as a cosine wave.
The cosine wave has an amplitude that is equal to the circle's radius and it has a frequency of k =
1 cycle, because the point jumps around the circle once for the 16 points that are available. In
Fig. 8.1b, the same cosine wave is derived but with a reduced amplitude, corresponding to a
decrease in the circle's radius – but notice that all the other variables (frequency, phase, number
of points) are the same. In Fig. 8.1c, the variables are the same as for Fig. 8.1a, except that the
frequency has been changed to k = 3 cycles. Here, then, the point hops around the circle three
times given the same number of digital points – and so necessarily the angle at the centre of
the circle that is made between successive hops is three times as large compared with those in
Figs. 8.1(a, b, d) for which k = 1. In Fig. 8.1d, the variable that is changed relative to Fig. 8.1a is
the phase, which is measured in radians. If the point begins at the top of the circle as in Figs.
8.1a-c, then the phase is defined to be zero radians. The phase can vary between ± π radians: at -

 182

π/2 radians, as in Fig. 8.1(d), the point starts a quarter of a cycle earlier to produce what is called
a sine wave; if the phase is π/4 radians (argument p = pi/4), then the point starts at 1/8
cycle later, and so on.

Fig. 8.1 about here

The number of digital points that are available per cycle can be varied independently of
the other parameters. Fig. 8.1e is the same as the one in Fig. 8.1c except that the point hops
around the circle three times with 24 points (8 more than in 8.1c). The resulting sinusoid that is
produced – a three cycle cosine wave – is the same as the one in Fig. 8.1c except that it is
supported by a greater number of digital points (and for this reason it is smoother and looks a bit
more like an analog cosine wave). Since there are more points available, then the angle made at
the centre of circle is necessarily smaller (compare the angles between points in Fig. 8.1c and
Fig. 8.1e). Finally, Fig. 8.1f illustrates the property of aliasing that comes about when k, the
number of cycles, exceeds half the number of available data points. This is so in Fig. 8.1(f) for
which k = 13 and N = 16. In this case, the point has to hop 13 times around the circle but
in 16 discrete jumps. Since the number of cycles is so large relative to the number of available
data points, the angle between the hops at the centre of the circle is very large. Thus in making
the first hop between time points 0 and 1, the point has to move almost all the way round the
circle in order to achieve the required 13 revolutions with only 16 points. Indeed, the jump is so
big that the point always ends up on the opposite side of the circle compared with the sinusoid at
k = 3 cycles in Fig. 8.1c. For this reason, when k = 13 and N = 16, the result is not a 13-
cycle sinusoid at all, but the same three-cycle sinusoid shown in Fig. 8.1c.

It is an axiom of Nyquist's theorem (1822) that it is never possible to get frequencies of
more than N/2 cycles from N points. So for the present example with N = 16, the sinusoid with
the highest frequency has 8 cycles (try crplot(k=8)), but for higher k, all the other resulting
sinusoids are aliases of those at lower frequencies. Specifically the frequencies k and N-k cycles
produce exactly the same sinusoids if the phase is the same: thus crplot(k=15) and
crplot(k=1) both result in the same 1-cycle sinusoid. The highest frequency up to which the
sinusoids are unique is k = N/2 and this is known as the critical Nyquist or folding frequency.
Beyond k = N/2, the sinusoids are aliases of those at lower frequencies.

Fig. 8.2 about here

Finally, we will sometimes come across a sinusoid with a frequency of k = 0. What could
this look like? Since the frequency is zero, the point does not complete any cycles and so has to
stay where it is: that is, for N= 8 points, it hops up and down 8 times on the same spot. The result
must therefore be a straight line, as Fig. 8.2 (given by crplot(k=0, N=8)) shows.

8.1.2 Fourier analysis and Fourier synthesis

Fourier analysis is a technique that decomposes any signal into a set of sinusoids which,
when summed reconstruct exactly the original signal. This summation, or reconstruction, of the
signal from the sinusoids into which it was decomposed is called Fourier synthesis.

When Fourier analysis is applied to a digital signal of length N data points, then a
calculation is made of the amplitudes and phases of the sinusoids at integer frequency intervals
from 0 to N-1 cycles. So for a signal of length 8 data points, the Fourier analysis calculates the
amplitude and phase of the k = 0 sinusoid, the amplitude and phase of the k = 1 sinusoid, the
amplitude and phase of the k = 2 sinusoid… the amplitude and phase of the k = N-1 = 7th
sinusoid. Moreover it does so in such a way that if all these sinusoids are added up, then the
original signal is reconstructed.

In order to get some understanding of this operation (and without going into
mathematical details which would lead too far into discussions of exponentials and complex

 183

numbers), a signal consisting of 8 random numbers will be decomposed into a set of sinusoids;
the original signal will then be reconstructed by summing them. Here are 8 random numbers
between -10 and 10:

r = runif(8, -10, 10)

The principal operation for carrying out the Fourier analysis on a computer is the discrete
Fourier transform (DFT) of which there is a faster version known as the Fast Fourier
Transform (the FFT). The FFT can only be used if the window length – that is the number of
data points that are subjected to Fourier analysis – is exactly a power of 2. In all other cases, the
DFT has to be used. Since in the special case when the FFT can be used it gives exactly
equivalent results to a DFT, the mathematical operation for carrying out Fourier analysis on a
time signal will be referred to as the DFT, while recognising in practice that, for the sake of
speed, a window length will usually be chosen that is a power of 2, thereby allowing the faster
version of the DFT, the FFT, to be implemented. In R, the function for carrying out a DFT (FFT)
is the function fft(). Thus the DFT of the above signal is:

r.f = fft(r)

r.f in the above calculation is a vector of 8 complex numbers involving the square root of
minus 1. Each such complex number can be thought of as a convenient code that embodies the
amplitude and phase values of the sinusoids from k = 0 to k = 7 cycles. To look at the sinusoids
that were derived by Fourier analysis, their amplitude and phase values must be derived (the
frequencies are already known: these are k = 0, 1, ...7). The amplitude is obtained by taking the
modulus, and the phase by taking the argument of the complex number representations. In R,
these two operations are carried out with the functions Mod() and Arg() respectively:

r.a = Mod(r.f) Amplitudes
r.p = Arg(r.f) Phases

So a plot can now be produced of the sinusoids into which the 8 random numbers were
decomposed using the cr() function for plotting sinusoids: (Fig. 8.3):
par(mfrow=c(8,1)); par(mar=c(1,2,1,1))
for(j in 1:8){
 cr(r.a[j], j-1, r.p[j], 8, main=paste(j-1, "cycles"), axes=F)
 axis(side=2)
}

Fig. 8.3 about here

Following the earlier discussion, the amplitude of the sinusoid with frequency k = 0 cycles is a
straight line, and the sinusoids at frequencies N-k are aliases of those at frequencies of k (so the
sinusoids for the pairs k = 1 and k = 7; k = 2 and k = 6; k = 3 and k = 5 are the same). Also, the
amplitude of the k = 0 sinusoid54 is equal to the sum of the values of the waveform (compare
sum(r) and r.a[1]).

Carrying out Fourier synthesis involves summing the sinusoids in Fig. 8.3, an operation
which should exactly reconstruct the original random number signal. However, since the results
of a DFT are inflated by the length of the window - that is by the length of the signal to which
Fourier analysis was applied - what we get back is N times the values of the original signal. So to
reconstruct the original signal, the length of window has to be normalised by dividing by N (by 8

54 This sinusoid at 0 Hz is equal to what is sometimes called the DC offset divided by the length of the signal (i.e.,
the DC offset is the mean of the signal's amplitude).

 184

in this case). The summation of the sinusoids can also be done with the same cr() function as
follows:

summed = cr(r.a, 0:7, r.p, 8, values=T)/8

Rounding errors apart, summed and the original signal r are the same, as can be verified by
subtracting one from the other. However, the usual way of doing Fourier synthesis in digital
signal processing is to carry out an inverse Fourier transform on the complex numbers and in
R this is also done with the fft() function by including the argument inverse=T. The result
is something that looks like a vector of complex numbers, but in fact the so-called imaginary
part, involving the square root of minus one, is in all cases zero. To get the vector in a form
without the +0i, take the real part using the Re() function. The follow does this and normalises
for the length of the signal:

summed2 = Re(fft(r.f, inverse=T))/8

There is thus equivalence between the original waveform of 8 random numbers, r, summed2
obtained with an inverse Fourier transform, and summed obtained by summing the sinusoids.

8.1.3 Amplitude spectrum
 An amplitude spectrum, or just spectrum, is a plot of the sinusoids' amplitudes as a
function of frequency. A phase spectrum is a plot of their phase values as a function of
frequency. (This Chapter will only be concerned with amplitude spectra, since phase spectra do
not contribute a great deal, if anything, to the distinction between most phonetic categories).
Since the information above k = N/2 is, as discussed in 8.1.1, replicated in the bottom part of the
spectrum, it is usually discarded. Here (Fig. 8.4) then is the (amplitude) spectrum for these 8
random numbers up to and including k = N/2 cycles (normalised for the length of the window).
In the commands below, the Emu-R function as.spectral() makes the objects of class
'spectral' so that various functions like plot() can handle them appropriately55.

Discard amplitudes above k = N/2
r.a = r.a[1:5]
Normalise for the length of the window and make r.a into a spectral object:
r.a = as.spectral(r.a/8)
Amplitude spectrum
plot(r.a, xlab="Frequency (number of cycles)", ylab="Amplitude",
type="b")

Fig. 8.4 about here

8.1.4 Sampling frequency

So far, frequency has been represented in an integer numbers of cycles which, as
discussed in 8.1.1, refers to the number of revolutions made around the circle per N points. But
usually the frequency axis of the spectrum is in cycles per second or Hertz and the Hertz values
depend on the sampling frequency. If the digital signal to which the Fourier transform was
applied has a sampling frequency of fs Hz and is of length N data points, then the frequency in
Hz corresponding to k cycles is fs k/N. So for a sampling frequency of 10000 Hz and N = 8
points, the spectrum up to the critical Nyquist has amplitudes at frequency components in Hz of:

10000 * 0:4/8

55 Specifically, when an object of class spectral is called with plot(), then, as a result of an object oriented
programming implementation of spectral data in Emu-R, it is actually called with plot.spectral()).

 185

0 1250 2500 3750 5000

From another point of view, the spectrum of an N-point digital signal sampled at fs Hz consists of
N/2 + 1 spectral components (has N/2 + 1 amplitude values) extending between 0 Hz and fs/2 Hz
with a frequency interval between them of fs /N Hz.

8.1.5 dB-Spectrum

It is usual in obtaining a spectrum of a speech signal to use the decibel scale for
representing the amplitude values. A decibel is 10 times one Bel and a Bel is defined as the
logarithm of the ratio of the acoustic intensity of a sound (IS) to the acoustic intensity of a
reference sound (IR). Leaving aside the meaning of 'reference sound' for the moment, the
intensity of a sound is given by:

 (1) IS = 10 log10(IS/IR) dB

The acoustic or sound intensity IS is a physical measurable quantity with units Watts per square
metre. Thus to take an example, if IS = 10-8 watts/m2 and IR = 10-4 watts/m2, then IS is 40 dB
relative to IR (40 decibels more intense than IR).

More importantly for the present discussion, there is a relationship between acoustic
intensity and the more familiar amplitude of air-pressure which is recorded with a pressure-
sensitive microphone. The relationship is I = kA2, where k is a constant. Thus (1) can be rewritten
as:

(2) IS = 10 log10 (kAS

2 / kAR
2) dB = 10 log10(AS/AR)2 dB

and since log ab = b log a and since log(a/b) = log a – log b, (3) is the same as (2):

(3) IS = 20 log10AS – 20 log10AR dB

The Emu-tkassp system that is used to compute dB-spectra assumes that the amplitude of the
reference sound, AR (and hence 20 log10AR), is zero. So, finally, the decibel values that you will
see in the spectra in this Chapter and indeed in this book are 20 log10AS where AS refers to the
amplitudes of sinusoids produced in Fourier analysis. Now since log(1) is always equal to zero,
then this effectively means that the reference sound is a signal with an amplitude of ±1 unit: a
signal with any sequence of +1 or -1 like 1, 1, -1, 1… etc. 

There are two main reasons for using decibels. Firstly, the decibel scale is more closely
related to perceived loudness than amplitudes of air-pressure variation. Secondly, the range of
amplitude of air-pressure variations within the hearing range is considerable and, because of the
logarithmic conversion, the decibel scale represents this range in more manageable values (from
e.g. 0 to 120 dB).

An important point to remember is that the decibel scale always expresses a ratio of
powers: in a decibel calculation, the intensity of a signal is always defined relative to a reference
sound. If the latter is taken to be the threshold of hearing, then the units are said to be dB SPL
where SPL stands for sound pressure level (and 0 dB is defined as the threshold of hearing).
Independently of what we take to be the reference sound, it is useful to remember that 3 dB
represents an approximate doubling of power and whenever the power is increased ten fold, then
there is an increase of 10 dB (the power is the square of the amplitude of air-pressure variations).

Another helpful way of thinking of decibels is as percentages, because this is an
important reminder that a decibel, like a percentage, is not an actual quantity (like a meter or
second) but a ratio. For example, one decibel represents a power increase of 27%, 3 dB
represents a power increase of 100% (a doubling of power), and 10 dB represents a power
increase of 1000% (a tenfold increase of power).

 186

8.1.6 Hamming and Hann(ing) windows

If a DFT is applied to a signal that is made up exactly of an integer number of sinusoidal
cycles, then the only frequencies that show up in the spectrum are the sinusoids' frequencies. For
example, row 1 column 1 of Fig. 8.5 shows a sinusoid of exactly 20 cycles i.e. there is one cycle
per 5 points. The result of making a spectrum of this 20-cycle waveform is a single component at
the same frequency as the numer of cycles (Fig. 8.5, row 1, right). Its spectrum was calculated
with the spect() function below which simply packages up some of the commands that have
been discussed in the previous section.

spect <- function(signal, ...)
{
 # The number of points in this signal
 N = length(signal)
 # Apply FFT and take the modulus
 signal.f = fft(signal); signal.a = Mod(signal.f)
 # Discard magnitudes above the critical Nyquist and normalise
 signal.a = signal.a[1:(N/2+1)]/N
 as.spectral(signal.a, ...)
}

Fig. 8.5 about here

The 20-cycle sinusoid (Fig. 8.5, row 1) and its spectrum are then given by:
par(mfrow=c(3,2))
a20 = cr(k=20, N=100, values=T, type="l", xlab="")
plot(spect(a20), type="h", xlab="", ylab="")

Fig. 8.5 about here

But the sinusoid's frequency only shows up faithfully in the spectrum in this way if the window
to which the DFT is applied is made up of an exact number of whole sinusoidal cycles. When
this is not the case, then a phenomenon called spectral leakage occurs, in which magnitudes
show up in the spectrum, other than at the sinusoidal frequency. This is illustrated in the middle
panel of Fig. 8.5 for a sinusoid whose frequency is fractional at 20.5 cycles.

a20.5 = cr(k=20.5, N=100, values=T, type="l", xlab="")
plot(spect(a20.5), type="h", xlab="", ylab="")

Because a DFT can only compute amplitudes at integer values of k, the sinusoid with a
frequency of 20.5 cycles falls, as it were, between the cracks: the spectrum does have a peak
around k = 20 and k = 21 cycles, but there are also amplitudes at other frequencies. Obviously
something is not right: a frequency of k = 20.5 should somehow show up in the spectrum at only
that frequency and not as energy that is distributed throughout the spectrum.

What is actually happening for the k = 20.5 frequency is that the spectrum is being
convolved with the spectrum of what is called a rectangular window. Why should this be so?
Firstly, we need to be clear about an important characteristic of digital signals: they are finite, i.e.
they have an abrupt beginning and an abrupt ending. So although the sinusoids in the first two
rows of Fig. 8.5 look as if they might carry on forever, in fact they do not and, as far as the DFT
is concerned, they are zero-valued outside the windows that are shown: that is, the signals in Fig.
8.5 start abruptly at n = 0 and they end abruptly at n = 99. In digital signal processing, this is
equivalent to saying that a sinusoid whose duration is infinite is multiplied with a rectangular
window whose values are 1 over the extent of the signals that can be seen in Fig. 8.5 (thereby

 187

leaving the values between n = 0 and n = 99 untouched, since multiplication with 1 gives back
the same result) and multiplied by zero everywhere else. This means that any finite-duration
signal that is spectrally analysed is effectively multiplied by just such a rectangular window. But
this also means that when a DFT of a finite-duration signal is calculated, a DFT is effectively
also being calculated of the rectangular window and it is the abrupt switch from 0 to 1 and back
to 0 that causes extra magnitudes to appear in the spectrum as in the middle right panel of Fig.
8.5. Now it so happens that when the signal consists of an integer number of sinusoidal cycles so
that an exact number of cycles fits into the window as in the top row of Fig. 8.5, then the
rectangular window has no effect on the spectrum: therefore, the sinusoidal frequencies show up
faithfully in the spectrum (top right panel of Fig. 8.5). However in all other cases – and this will
certainly be so for any speech signal – the spectrum is also influenced by the rectangular
window.

Although such effects of a rectangular window cannot be completely eliminated, there is
a way to reduce them. One way to do this is to make the transitions at the edges of the signal
gradual, rather than abrupt: in this case, there will no longer be abrupt jumps between 0 and 1
and so the spectral influence due to the rectangular window should be diminished. A common
way of achieving this is to multiply the signal with some form of cosine function and two such
commonly used functions in speech analysis are the Hamming window and the Hanning window
(the latter is a misnomer, in fact, since the window is due to Julius von Hann). An N-point
Hamming or Hanning window can be produced with the following function:

w <- function(a=0.5, b=0.5, N=512)
{
 n = 0: (N-1)
 a - b * cos(2 * pi * n/(N-1))
}

With no arguments, the above w() function defaults to a 512-point Hanning window that can be
plotted with plot(w()); for a Hamming window, set a and b to 0.54 and 0.46 respectively.

The bottom left panel of Fig. 8.5 shows the 20.5 cycle sinusoid of the middle left panel
multiplied with a Hanning window. The spectrum of the resulting Hanning-windowed signal is
shown in the bottom right of the same figure. The commands to produce these plots are as
follows:

Lower panel of Fig. 8.5. Multiply a20.5 with a Hanning window of the same length
N = length(a20.5)
a20.5h = a20.5 * w(N=N)
The Hanning-windowed 20.5 cycle sinusoid
plot(0:(N-1), a20.5h, type="l", xlab="Time (number of points)")
Calculate its spectral values
a20.5h.f = spect(a20.5h)
plot(a20.5h.f, type="h", xlab="Frequency (number of cycles)",
ylab="")

A comparison of the middle and bottom right panels of Fig. 8.5 shows that, although the spectral
leakage has not been eliminated, multiplication with the Hanning window has certainly caused it
to be reduced.

8.1.7 Time and frequency resolution

One of the fundamental properties of any kind of spectral analysis is that time resolution
and frequency resolution are inversely proportional. 'Resolution' in this context defines the extent
to which two events in time or two components in frequency are distinguishable. Because time
and frequency resolution are inversely proportional, then if the time resolution is high (i.e., two

 188

events that occur very close together in time are distinguishable), then the frequency resolution is
low (i.e., two components that are close together in frequency are indistinguishable) and vice-
versa.

In computing a DFT, the frequency resolution is the interval between the spectral
components and, as discussed in 8.1.2, this depends on N, the length of the signal or window to
which the DFT is applied. Thus, when N is large (i.e., the DFT is applied to a signal long in
duration), then the frequency resolution is high, and when N is low, the frequency resolution is
coarse. More specifically, when a DFT is applied to an N-point signal, then the frequency
resolution is fs/N, where fs is the sampling frequency. So for a sampling frequency of fs = 16000
Hz and a signal of length N = 512 points (= 32 ms at 16000 Hz), the frequency resolution is fs/N
= 16000/512 = 31.25 Hz. Thus magnitudes will show up in the spectrum at 0 Hz, 31.25 Hz,
62.50 Hz, 93.75 Hz… up to 8000 Hz and at only these frequencies so that all other frequencies
are undefined. If, on the other hand, the DFT is applied to a much shorter signal at the same
sampling frequency, such as to a signal of N = 64 points (4 ms), then the frequency resolution is
much coarser at fs/N = 250 Hz and this means that there can only be spectral components at
intervals of 250 Hz, i.e. at 0 Hz, 250 Hz, 500 Hz… 8000 Hz.

These principles can be further illustrated by computing DFTs for different values of N
over the signal shown in Fig. 8.6. This signal is of 512 sampled speech data points extracted
from the first segment of segment list vowlax of German lax monophthongs. The sampled
speech data is stored in the trackdata object v.sam (if you have downloaded the kielread
database, then you can (re)create this object from v.sam = emu.track(vowlax[1,],
"samples", 0.5, 512)). The data in Fig. 8.6 was plotted as follows:

plot(v.sam[1,], type="l", xlab="Time (ms)", ylab="Amplitude")
Mark vertical lines spanning 4 pitch periods by clicking the mouse twice,
once at each of the time points shown in the figure
v = locator(2)$x
abline(v=v, lty=2)
Interval (ms) between these lines
diff(v)
26.37400

Fig. 8.6 about here

The figure shows that four pitch periods have a duration of 26.42 ms, so the fundamental
frequency over this interval is 4000/26.42 ≈ 151 Hz. If a DFT is applied to this signal, then the
fundamental frequency and its associated harmonics should show up approximately at multiples
of this fundamental frequency in the resulting spectrum. In the following, the spect()
function has been updated to include the various commands discussed earlier for calculating a
dB-spectrum and for applying a Hanning window:

spect <- function(signal,..., hanning=T, dbspec=T)
{
 # The Hanning window function
 w <- function(a=0.5, b=0.5, N=512)
 {
 n = 0: (N-1)
 a - b * cos(2 * pi * n/(N-1))
 }
 # The number of points in this signal
 N = length(signal)
 # Apply a Hanning window
 if(hanning)

 189

 signal = signal * w(N=N)
 # Apply FFT and take the modulus
 signal.f = fft(signal); signal.a = Mod(signal.f)
 # Discard magnitudes above the critical Nyquist and normalise for N
 signal.a = signal.a[1:(N/2+1)]/N
 # Convert to dB
 if(dbspec)
 signal.a = 20 * log(signal.a, base=10)
 as.spectral(signal.a, ...)
}

Here is the dB-spectrum (right panel, Fig. 8.6):

Store the sampled speech data of the 1st segment in a vector for convenience
sam512 = v.sam[1,]$data
dB-spectrum. The sampling frequency of the signal is the 2nd argument
sam512.db = spect(sam512, 16000)
Plot the log-magnitude spectrum up to 1000 Hz
plot(sam512.db, type="b", xlim=c(0, 1000), xlab="Frequency
(Hz)", ylab="Intensity (dB)")

Consider how the harmonics show up in the spectrum. Firstly, since f0 was estimated to be 151
Hz from the waveform in Fig.8.6, then f0 and harmonics 2-5 are to be expected at the following
frequencies:

seq(151, by=151, length=5)
151 302 453 604 755

However, for a sampling frequency of 16000 Hz and a window length of N=512, the first 20
spectral magnitudes are computed only at these frequencies:

seq(0, by=16000/512, length=20)
0.00 31.25 62.50 93.75 128.00 156.25 187.50 218.75 250.00 281.25 312.50
343.75 378.00 406.25 437.50 468.75 500.00 531.25 562.50 593.75

Thus, there can be no peaks in the spectrum due to f0 and the harmonics at exactly their
frequencies (because there is no frequency in the digital spectrum to support them), but instead at
whichever spectral component they come closest to. These are
shown in bold above, and if you count where they are in the vector, you will see that these are
the 6th, 11th, 16th, and 20th spectral components. Vertical lines have been superimposed on the
spectrum at these frequencies as follows:

abline(v=seq(0, by=16000/512, length=20) [c(6, 11, 16, 20)],
lty=2)

Indeed the spectrum does show peaks at these frequencies. Notice that the relationship between
the expected peak location (vertical lines) and actual peaks is least accurate for the 3rd vertical
line. This is because there is quite a large deviation between the estimated frequency of the 3rd
harmonic (453 Hz) and the (16th) spectral component that is closest to it in frequency (468.75
Hz). (In fact it can be seen that the estimated 3rd harmonic falls almost exactly halfway in
frequency between two spectral components).

The harmonics can only make their presence felt in a spectrum of voiced speech as long
as the signal over which the DFT is applied includes at least two pitch periods. Consequently,
harmonics can only be seen in the spectrum if the frequency resolution (interval between

 190

frequency components in the spectrum) is quite a lot less than the fundamental frequency.
Consider, then, the effect of applying a DFT to just the first 64 points of the same signal. A 64-
point DFT at 16000 Hz results in a frequency resolution of 16000/64 = 250 Hz, so there will be
33 spectral components between 0 Hz and 8000 Hz at intervals of 250 Hz: that is, at a frequency
interval that is greater than the fundamental frequency, and therefore too wide for the frequency
and separate harmonics to have much of an effect on the spectrum. The corresponding spectrum
up to 3500 Hz in Fig. 8.7 was produced as follows:

sam64 = sam512[1:64]
ylim = c(10, 70)
plot(spect(sam64, 16000), type = "b", xlim=c(0, 3500),
ylim=ylim, xlab="Frequency (Hz)", ylab="Intensity (dB)")

The influence of the fundamental frequency and harmonics is no longer visible, but instead the
formant structure emerges more clearly. The first four formants, calculated with the Emu LPC-
based formant tracker at roughly the same time point for which the spectrum was calculated, are:

dcut(vowlax.fdat[1,], 0.5, prop=T)
T1 T2 T3 T4
562 1768 2379 3399

Fig. 8.7 about here

The frequencies of the first two of these have been superimposed on the spectrum in Fig. 8.7
(left) as vertical lines with abline(v=c(562, 1768)) .

As discussed earlier, there are no magnitudes other than those that occur at fs/N and so the
spectrum in Fig. 8.7 (left) is undefined except at frequencies 0, 250 Hz, 500 Hz…8000 Hz. It is
possible however to interpolate between these spectral components thereby making the spectrum
smoother using a technique called zero padding. In this technique, a number of zero-valued data
samples are appended to the speech waveform to increase its length to, for example, 256 points.
(NB: these zero data values should be appended after the signal has been Hamming- or Hanning-
windowed, otherwise the zeros will distort the resulting spectrum). One of the main practical
applications of zero-padding is to fill up the number of data points of a window to a power of 2
so that the FFT algorithm can be applied to the signal data. Suppose that a user has the option of
specifying the window length of a signal that is to be Fourier analysed in milliseconds rather
than points and suppose a user chooses an analysis window of 3 ms. At a sampling frequency of
16000 Hz, a duration of 3 ms is 48 sampled data points. But if the program makes use of the FFT
algorithm, there will be a problem because, as discussed earlier, the FFT requires the window
length, N, to be an integer power of 2, and 48 is not a power 2. One option then would be to
append 24 zero data sample values to bring the window length up to the next power of 2 that is
to 64.
 The command lines to do the zero-padding have been incorporated into the evolving
spect() function using the argument fftlength that defines the length of the window to
which the DFT is applied. If fftlength is greater than the number of points in the signal,
then the signal is appended with a number of zeros equal to the difference between fftlength
and the signal's length. (For example, if fftlength is 64 and the signal length is 30, then 34
zeros are appended to the signal). The function with this modification is as follows:

"spect" <-
function(signal,..., hanning=T, dbspec=T, fftlength=NULL)
{
 w <- function(a=0.5, b=0.5, N=512)
 {

 191

 n = 0: (N-1)
 a - b * cos(2 * pi * n/(N-1))
 }
 # The number of points in this signal
 N = length(signal)
 # Apply a Hanning window
 if(hanning)
 signal = signal * w(N=N)
 # If fftlength is specified…
 if(!is.null(fftlength))
 {
 # and if fftlength is longer than the length of the signal…
 if(fftlength > N)
 # then pad out the signal with zeros
 signal = c(signal, rep(0, fftlength-N))
 }
 # Apply FFT and take the modulus
 signal.f = fft(signal); signal.a = Mod(signal.f)
 # Discard magnitudes above the critical Nyquist and normalise
 if(is.null(fftlength))
 signal.a = signal.a[1:(N/2+1)]/N
 else
 signal.a = signal.a[1:(fftlength/2+1)]/N
 # Convert to dB
 if(dbspec)
 signal.a = 20 * log(signal.a, base=10)
 as.spectral(signal.a, ...)
}

In the following, the same 64-point signal is zero-padded to bring it up to a signal length of 256
(i.e., it is appended with 192 zeros). The spectrum of this zero-padded signal is shown as the
continuous line in Fig. 8.7 (right) superimposed on the 64-point spectrum:

ylim = c(10, 70)
plot(spect(sam64, 16000), type = "p", xlim=c(0, 3500),
xlab="Frequency (Hz)", ylim=ylim)
par(new=T)
plot(spect(sam64, 16000, fftlength=256), type = "l", xlim=c(0,
3500), xlab="", ylim=ylim)

As the right panel of Fig. 8.7 shows, a spectrum derived from zero padding passes through the
same spectral components that were derived without it (thus, zero padding provides additional
points of interpolation). An important point to remember is that zero padding does not improve
the spectral resolution: zero-padding does not add any new data beyond providing a few extra
smooth interpolation points between spectral components that really are in the signal.
Sometimes, as Hamming (1989) argues, zero-padding can provide misleading information about
the true spectral content of a signal.

8.1.8 Pre-emphasis

In certain kinds of acoustic analysis, the speech signal is pre-emphasised which means
that the resulting spectrum has its energy levels boosted by somewhat under 6 dB per doubling
of frequency, or (just less than) 6 dB/octave. This is sometimes done to give greater emphasis to
the spectral content at higher frequencies, but also sometimes to mimic the roughly 6 dB/octave

 192

lift that is produced when the acoustic speech signal is transmitted beyond the lips. Irrespective
of these motivations, pre-emphasising the signal can be useful in order to distinguish between
two speech sounds that are otherwise mostly differentiated by energy at high frequencies. For
example, the difference in the spectra of the release burst of a syllable-initial [t] and [d] can lie
not just below 500 Hz if [d] really is produced with vocal fold vibration in the closure and
release (and often in English or German it is not), but often in a high frequency range above
4000 Hz. In particular, the spectrum of [t] can be more intense in the upper frequency range
because the greater pressure build-up behind the closure can cause a more abrupt change in the
signal from near acoustic silence (during the closure) to noise (at the release). A more abrupt
change in the signal always has an effect on the higher frequencies (for example a 1000 Hz
sinusoid changes faster in time than a 1 Hz sinusoid and, of course, has a higher frequency).
When I explained this [t]-[d] difference to my engineering colleagues during my time at CSTR
Edinburgh in the 1980s, they suggested pre-emphasising the bursts because this could magnify
even further the spectral difference in the high frequency range (and so lead to a better separation
between these stops).

A 6 dB/octave boost in frequency can be brought about by differencing a speech signal
where differencing has the meaning of subtracting a signal delayed by one data point from itself.
You can delay a signal by k data points with the shift() function in the Emu-R library which
causes x[n] to become x[n+1] in the signal x. For example:

x = c(2, 4, 0, 8, 5, -4, 6)
shift(x, 1)
6 2 4 0 8 5 -4

The shifting is done circularly by default in this function which means that the last data point
becomes the first resulting in a signal of the same length. Other than that, it is clear that the effect
of delaying the signal by one point is that that x[2] has moved to the 3rd position, x[3] to the
4th position, and so on. To difference a signal, the signal is subtracted from a delayed version of
itself, i.e. the differenced signal is x - shift(x, 1). A spectrum of this differenced signal
can be shown to have just less than a 6 dB/octave lift relative to the original signal.

This can be verified with the 64 point signal created in 8.1.7, sam64. To see the
uncontaminated effect of the boost to higher frequencies, don't apply a Hanning window in the
spect() function:

dB-spectrum of signal
sam64.db = spect(sam64, 16000, hanning=F)
A one-point differenced signal
dnd = sam64 - shift(sam64, 1)
The dB-spectrum of the differenced signal
dnd.db = spect(dnd, 16000, hanning=F)
Superimpose the two spectra
ylim = range(c(sam64.db[-1], dnd.db[-1]))
par(mfrow=c(1,2))
plot(sam64.db[-1], type="l", ylim=ylim, xlab="Frequency (Hz)",
ylab="Intensity (dB)")
par(new=T)
plot(dnd.db[-1], type="l", ylim=ylim, col="slategray", lwd=2)
Plot the difference between the spectra of the differenced and original signal
excluding the DC offset
plot(dnd.db[-1] - sam64.db[-1], type="l", xlab="Frequency (Hz)",
ylab="Intensity (dB)")

 193

The effect of differencing is indeed to increase the energy in frequencies in the upper part of the
spectrum but also to decrease them in the lower spectral range. Thus, it is as if the entire
spectrum is tilted upwards about the frequency axis (Fig. 8.8, left panel). The extent of the dB-
change can be seen by subtracting the spectrum of the differenced signal from the spectrum of
the original signal and this has been done to obtain the spectrum on the right in Fig. 8.8. The
meaning of an approximate 6 dB/octave change is as follows. Take any two frequencies such
that one is double the other and read off the dB-levels: the difference between these dB-levels
will be near 6 dB. For example, the dB-levels at 1000, 2000 and 4000 Hz for the spectrum on the
right are -8.17 dB, - 2.32 dB and 3.01 dB. So the change in dB from 1000 to 2000 Hz is similar
to the change from 2000 Hz to 4000 Hz (roughly 5.5 dB). You will notice that the dB-level
towards 0 Hz gets smaller and smaller and is in fact minus infinity at 0 Hz (this is why the plot
on the left excludes the DC offset at 0 Hz).

Fig. 8.8 about here

8.1.9 Handling spectral data in Emu-R
 The usual way of getting spectral data into R is not with the functions like spect() of
the previous section (which was created simply to show some of the different components that
make up a dB-spectrum), but with the spectrum option in the Emu-tkassp toolkit (Chapter 3) for
calculating spectral data allowing the DFT length, frame shift and other parameters to be set.
These routines create signal files of spectral data that can be read into Emu-R with
emu.track() which creates a spectral trackdata object.
 The object plos.dft is such a spectral trackdata object and it contains spectral data
between the acoustic closure onset and the onset of periodicity for German /b, d/ in syllable-
initial position). The stops were produced by an adult male speaker of a Standard North German
variety in a carrier sentence of the form ich muss /SVCn/ sagen (I must /SVCn/ say) where S is
the syllable-initial /b, d/ and /SVCn/ corresponds to words like /botn/ (boten, past tense of they
bid), /degn/ (Degen, dagger) etc. The speech data was sampled at 16 kHz so the spectra extend
up to 8000 Hz. The DFT window length was 256 points and spectra were calculated every 5 ms
to derive plos.dft which is part of the plos dataset:

plos Segment list /b, d/ from closure onset to the periodic
 onset of the following vowel
plos.l A vector of labels (b, d)
plos.w A vector of the word labels from which the segments were taken
plos.lv A vector of labels of the following vowels.
plos.asp Vector of times at which the burst onset occurs
plos.sam Sampled speech data of plos
plos.dft Spectral trackdata object of plos

You can verify that plos.dft is a spectral (trackdata) object by entering
is.spectral(plos.dft), which is to ask the question: is this a spectral object? Since the
sampling frequency for this dataset was 16000 Hz and since the window size used to derive the
data was 256 points, then, following the discussion of the previous section, there should be 256/2
+ 1 = 129 spectral components equally spaced between 0 Hz and the critical Nyquist, 8000 Hz.

This information is given as follows:
ncol(plos.dft)
129
trackfreq(plos.dft)
0.0 62.5 125.0 187.5 250.0… 7812.5 7878.0 7937.5 8000.0

 194

Compatibly with the discussion from 8.1.7, the above information shows that the spectral
components occur at 0 Hz, 62.5 Hz and at intervals of 62.5 Hz up to 8000 Hz. We were also told
that the frame shift in calculating the DFT was 5 ms. So how many spectra, or spectral slices, can
be expected for e.g., the 47th segment? The 47th segment is a /d/, which is shown below, has a
start time of 316 ms and a duration of just over 80 ms:

plos[47,]
labels start end utts
47 d 316.948 397.214 gam070
dur(plos[47,])
80.266

So for this segment, around 16 spectral slices (80/5) are to be expected. Here are the times at
which these slices occur:

tracktimes(plos.dft[47,])
317.5 322.5 327.5 332.5 337.5 ... 387.5 392.5

They are at 5 ms intervals and as length(tracktimes(plos.dft[47,])) shows, there
are indeed 16 of them. So to be completely clear: plos.dft[47,] contains 16 spectral slices
each of 129 values and spaced on the time-axis at 5 ms intervals. A plot of the last nine of these,
together with the times at which they occur is shown in Fig. 8.9 and was created as follows:

dat = frames(plos.dft[47,])[8:16,]
times = tracktimes(dat)
par(mfrow=c(3,3)); par(mar=c(2, 1, .4, 1))
ylim =c(-20, 50)
for(j in 1:nrow(dat)){
 plot(dat[j,], bty="n", axes=F, ylim=ylim, lwd=2)
 if(any(j == c(7:9)))
 {
 freqs = seq(0, 8000, by=2000)
 axis(side=1, at=freqs, labels=as.character(freqs/1000))
 }
 abline(h=0, lty=2, lwd=1)
 mtext(paste(times[j], "ms"), cex=.5)
 if(j == 8)
 mtext("Frequency (kHz)", 1, 2, cex=.5)
 if(j == 4)
 mtext("Intensity", 2, 1, cex=.75)
}

Since these spectral data were obtained with a DFT of 256 points and a sampling frequency of
16000 Hz, the window length is equal to a duration of (256 × 1000/16000) = 256/16 = 16 ms.
The temporal midpoint of the DFT window is shown above each spectral slice. For example, the
6th spectral slice in Fig 8.9 (thus the 13th row of plos.dft) has a time stamp of 377.5 ms and
so the DFT window that was used to calculate this spectrum extends from 377.5 – 8 = 369.5 ms
to 377.5 + 8 = 388.5 ms.

Fig. 8.9 about here

The dcut() function can be used to extract trackdata between two time points, or at a
single time point, either from millisecond times or proportionally (see 5.5.3). Thus spectral data
at the temporal midpoint of the segment list is given by:

 195

plos.dft.5 = dcut(plos.dft, .5, prop=T)

For spectral trackdata objects and spectral matrices, what comes after the comma within
the index brackets refers not to column numbers directly, but to frequencies. The subscripting
pulls out those spectral components that are closest to the frequencies specified. For example, the
following command makes a new spectral trackdata object spec from plos.dft but
containing only the frequencies 2000-4000 Hz. (The subsequent trackfreq() command
verifies that these are the frequency components of the newly created object):

spec = plos.dft[,2000:4000]
trackfreq(spec)
2000.0 2062.5 2125.0 2187.5 2250.0 2312.5 2375.0 2437.5 2500.0 2562.5 2625.0
2687.5 2750.0 2812.5 2875.0 2937.5 3000.0 3062.5 3125.0 3187.5 3250.0 3312.5
3375.0 3437.5 3500.0 3562.5 3625.0 3687.5 3750.0 3812.5 3875.0 3937.5 4000.0

Notice that spec now has 33 columns (given by either ncol(spec) or
length(trackfreq(spec))) with each column including data from the frequencies listed
above. Some further examples of handling spectral objects in Emu-R are as follows:

Trackdata object 0-3000 Hz
spec = plos.dft[,0:3000]

As above, but of segments 1-4 only
spec = plos.dft[1:4,0:3000]
dim(spec)
4 49

Trackdata object of the data at 1400 Hz only
spec = plos.dft[,1400]
trackfreq(spec)
1375
ncol(spec)
1

Trackdata object of all frequencies except 0-2000 Hz and except 4000-7500 Hz
spec = plos.dft[,-c(0:2000, 4000:7500)]
trackfreq(spec)
2062.5 2125.0 2187.5 2250.0 2312.5 2375.0 2437.5 2500.0 2562.5 2625.0 2687.5
2750.0 2812.5 2875.0 2937.5 3000.0 3062.5 3125.0 3187.5 3250.0 3312.5 3375.0
3437.5 3500.0 3562.5 3625.0 3687.5 3750.0 3812.5 3875.0 3937.5 7562.5 7625.0
7687.5 7750.0 7812.5 7875.0 7937.5 8000.0

DC offset (0 Hz), segments 1-10:
spec = plos.dft[1:10,0]

Use -1 to get rid of the DC offset which is the spectral component at 0 Hz:

All spectral components of segments 1-10, except the DC offset
spec = plos.dft[1:10,-1]

Exactly the same commands work on spectral matrices that are the output of dcut(). Thus:

Spectral data at the temporal midpoint
plos.dft.5 = dcut(plos.dft, .5, prop=T)

 196

As above, but 1-3 kHz
spec = plos.dft.5[,1000:3000]
A plot in the spectral range 1-3 kHz at the temporal midpoint for the 11th segment
plot(spec[11,], type="l")

Notice that, if you pull out a single row from a spectral matrix, the result is no longer a (spectral)
matrix but a (spectral) vector: in this special case, just put the desired frequencies inside square
brackets without a comma (as when indexing any vector). Thus:

spec = plos.dft.5[11,]
class(spec)
"numeric" "spectral"
plot the values between 1000-3000 Hz
plot(spec[1000:3000])

8.2. Spectral average, sum, ratio, difference, slope.
 The aim in this section is to consider some of the ways in which spectra can be
parameterised for distinguishing between different phonetic categories. A spectral parameter
almost always involves some form of data reduction of the usually very large number of spectral
components that are derived from the Fourier analysis of a waveform. One of the simplest forms
of spectral data reduction is averaging and summing energy in frequency bands. The dataset
fric to which these parameters will be applied is given below: these are German fricatives
produced by an adult male speaker in read sentences taken from the kielread database. The
fricatives were produced in an intervocalic environment and are phonetically (rather than just
phonologically) voiceless and voiced respectively and they occur respectively in words like
[bø:zә] (böse/angry) and [vasә] (Wasser/water):

fric Segment list of intervocalic [s,z]
fric.l Vector of (phonetic) labels
fric.w Vector of word labels from which the fricatives were taken
fric.dft Spectral trackdata object (256 point DFT, 16000 Hz sampling freq.)

An ensemble plot of all the [s] and [z] fricatives at the temporal midpoint in the left panel of Fig.
8.10 is given by:

fric.dft.5 = dcut(fric.dft, .5, prop=T)
plot(fric.dft.5, fric.l)

Fig. 8.10 about here

It can also be helpful to look at averaged spectral plots per category. However, since decibels are
logarithms, then the addition and subtraction of logaritms really implies multiplication and
division respectively; consequently, any arithmetic operation which, like averaging, involves
summation, cannot (or should not) be directly applied to logarithms. For example, the average of
0 dB and 10 dB is not 5 dB. Instead, the values first have to be converted back into a linear scale
where the averaging (or other numerical operation) takes place; the result can then be converted
back into decibels. Since decibels are essentially power ratios, they could be converted to the
(linear) power scale prior to averaging. This can be done by dividing by 10 and then taking the
anti-logarithm (i.e., raising to a power of 10). Under this definition, the average of 0 dB and 10
dB is calculated as follows:

dbvals = c(0, 10)
Convert to powers

 197

pow = 10^(dbvals/10)
Take the average
pow.mean = mean(pow)
Convert back to decibels
10 * log(pow.mean, base=10)
7.403627

For plots of spectral data, this conversion to powers before averaging is done within the plot()
function by including the argument power=T. Thus the ensemble averaged spectra are given by:

plot(fric.dft.5, fric.l, fun=mean, power=T)

There is clearly a greater amount of energy below about 500 Hz for [z] (Fig. 8.10, right), and this
is to be expected because of the influence of the fundamental frequency on the spectrum in the
case of voiced [z].
 One way of quantifying this observed difference between [s] and [z] is to sum or to
average the spectral energy in a low frequency band using the functions sum() or mean()
respectively. Thus mean(fric.dft.5[1,0:500]) returns the mean energy value in the
frequency range 0-500 Hz for the first segment. More specifically, this command returns the
mean of these dB values

fric.dft.5[1,0:500]
T1 T2 T3 T4 T5 T6 T7 T8 T9
22.4465 52.8590 63.8125 64.2507 46.0111 60.1562 57.4044 51.6558 51.6887

that occur respectively at these frequencies

trackfreq(fric.dft.5[1,0:500])
0.0 62.5 125.0 187.5 250.0 312.5 375.0 437.5 500.0

In order to obtain corresponding mean values separately for the 2nd, 3rd, 4th...34th segment, a for-
loop could be used around this command. Alternatively (and more simply), the
fapply(spec, fun) function can be used for the same purpose, where spec is a spectral
object and fun a function to be applied to spec. Thus for a single segment,
mean(fric.dft.5[1,0:500]) and fapply(fric.dft.5[1,0:500], mean) both
return the same single mean dB value in the 0-500 Hz range for the first segment. In order to
calculate the mean values separately for each segment, the command is:

fapply(fric.dft.5[,0:500], mean)

which returns 34 mean values (arranged in a 34 × 1 matrix), one mean value per segment. The
function fapply() also has an optional argument power=T that converts from decibels to
power values before the function is applied: for the reasons discussed earlier, this should be done
when averaging or summing energy in a spectrum. Therefore, the sum and mean energy levels
in the frequency band 0-500 Hz at the midpoint of the fricatives are given by:

s500 = fapply(fric.dft.5[,0:500], sum, power=T)
m500 = fapply(fric.dft.5[,0:500], mean, power=T)

A boxplot (Fig. 8.11) for the first of these, the summed energy in the 0-500 Hz band, shows that
this parameter distinguishes between [s,z] very effectively:

boxplot(s500 ~ fric.l, ylab="dB")

 198

Fig. 8.11 about here

 When two categories are compared on amplitude or intensity levels, there is usually an
implicit assumption that they are not artificially affected by variations in loudness caused, for
example, because the speaker did not keep at a constant distance from the microphone, or
because the speaker happened to produce some utterance with greater loudness than others. This
is not especially likely for the present corpus, but one way of reducing this kind of artefact is to
calculate the ratio of energy levels. More specifically, the ratio of energy in the 0-500 Hz band
relative to the total energy in the spectrum should not be expected to vary too much with, say,
variations in speaker distance from the microphone. The sum of the energy in the entire spectrum
(0-8000 Hz) is given by:

stotal = fapply(fric.dft.5, sum, power=T)

To get the desired energy ratio (middle panel of Fig. 8.11), subtract one from the other in
decibels:

s500r = s500 - stotal
boxplot(s500r ~ fric.l, ylab="dB")

The energy ratio could be calculated between two separate bands, rather than between one band
and the energy in the entire spectrum, and this too would have a similar effect of reducing some
of the artificially induced differences in the amplitude level discussed earlier. Since Fig. 8.10
shows that [s] seems to have marginally more energy around 6500 Hz, then the category
differences might also emerge more clearly by calculating the ratio of summed energy in the 0-
500 Hz band to that in the 6000 - 7000 Hz band (Fig. 8.11, right panel):

shigh = fapply(fric.dft.5[,6000:7000], sum, power=T)
s500tohigh = s500 - shigh
boxplot(s500tohigh ~ factor(fric.l), ylab="dB")

Another way of normalising for artificially induced differences in the amplitude level is
to calculate difference spectra, obtained as its name suggests by subtracting one spectrum from
another, usually in the same syllable, word, or phrase. (A difference spectrum has already been
calculated in the discussion of pre-emphasis in 8.1.8). But independently of this consideration,
difference spectra have been shown to be valuable in distinguish place of articulation in both oral
(Lahiri et al., 1984) and nasal (Kurowski & Blumstein, 1984; Harrington, 1994) stops. A
difference spectrum shows how the energy in the spectrum changes between two time points. For
the following example, difference spectra will be calculated for the database of plosives
considered earlier. More specifically, spectra are to be calculated (a) during the closure 20 ms
before the release of the stop and (b) 10 ms after the release of the stop; a difference spectrum
will then be obtained by subtracting (a) from (b). Because /d/ tends to have a lot more energy in
the upper part of the spectrum at stop release than /b/, then such differences between these two
categories should show up above about 4000 Hz in the difference spectrum. The ensemble
averaged plot of the difference spectrum as well as the summed energy values in the difference
spectrum between 4-7 kHz confirms this (Fig. 8.12):

(a) Spectra 20 ms before the stop release
before = dcut(plos.dft, plos.asp-20)
(b) Spectra 10 ms after the stop release
after = dcut(plos.dft, plos.asp+10)
Difference spectra: (b) - (a)
d = after - before

 199

Ensemble-averaged plot of the difference spectra separately for /b, d/
par(mfrow=c(1,2))
plot(d, plos.l, fun=mean, power=T, xlab="Frequency (Hz)",
ylab="Intensity (dB)", leg="bottomleft")
Summed energy in the difference spectra 4-7 kHz
dsum = fapply(d[,4000:7000], sum, power=T)
Boxplot (Fig. 8.12)
boxplot(dsum ~ factor(plos.l), ylab="Summed energy 4-7 kHz")

Fig. 8.12 about here

The (linear) spectral slope is a parameter that reduces a spectrum to a pair of values, the
intercept and the slope of the (straight) line of best fit through the spectral values. There is
evidence that these differences in spectral slope are important for distinguishing between places
of articulation in oral stops (Blumstein & Stevens, 1979, 1980). The R function lm() can be
used to compute the straight line of best fit (a linear regression based on least squares), as
follows:

Spectrum of the 1st segment 10 ms after the stop release (Fig. 8.13, left)
plot(after[1,], xlab="Frequency (Hz)", ylab="Intensity (dB)")
Calculate the coefficients of the linear regression equation
m = lm(after[1,] ~ trackfreq(after))
Superimpose the regression equation
abline(m)
m$coeff
The intercept and slope
 Intercept X
54.523549132 -0.003075377

Fig. 8.13 about here

The slope is negative because, as Fig. 8.13 (left panel) shows, the spectrum falls with increasing
frequency.

A first step in parameterising the data as spectral slopes is to look at ensemble-averaged
spectra of [b,d] in order to decide roughly over which frequency range the slopes should be
calculated. These are shown in the right panel of Fig. 8.13 which was created as follows:

plot(after, plos.l, fun=mean, power=T, xlab="Frequency
(Hz)",ylab="Intensity (dB)")

Spectral slopes will now be calculated in the frequency range 500 – 4000 Hz, because as the
right panel of Fig. 8.13 shows, this is where the slope differences between the categories emerge
most clearly. In order to calculate slopes for the entire matrix of spectral data (rather than for a
single segment, as done in the left panel of Fig. 8.13), the fapply(x, fun) function can be
used again, where fun is now a function that calculates the slope per spectrum. First of all, the
function for calculating the slope has to be written:

slope <- function(x)
{
 # Calculate the intercept and slope
 lm(x ~ trackfreq(x))$coeff
}

 200

The coefficients of the regression through the spectrum for the first segment could be obtained
from:

slope(after[1,])
 Intercept X
54.523549132 -0.003075377

The same function can be used inside fapply() in order to calculate the slopes separately for
each segment in the 500-4000 Hz range:

m <- fapply(after[,500:4000], slope)

The object m is a two-columned matrix with the intercept and slope values per segment in
columns 1 and 2 respectively. So the extent to which [b,d] are distinguished by the spectral slope
calculated in the 500-4000 Hz range can be judged from the following display (Fig. 8.14, left
panel):

boxplot(m[,2] ~ plos.l, ylab="Spectral slope (dB/Hz)")

Fig. 8.14 about here

Compatibly with Blumstein & Stevens (1979, 1980), Fig. 8.14 shows that the slope for [b] is
predominantly negative whereas for [d] it is mostly positive.

It is interesting to consider the extent to which this parameter and the one calculated
earlier, the sum of the energy from a difference spectrum, both contribute to the [b,d] distinction.
The eplot() function could be used to look at the distribution of these categories on these
parameters together (Fig. 8.14, right panel):

eplot(cbind(m[,2], dsum), plos.l, dopoints=T, xlab="Spectral
slope (dB/Hz)", ylab="Summed energy 4-7 kHz")

In fact, both parameters together give just about 100% separation between [b,d]. However, closer
inspection of the right panel of Fig. 8.14 shows that most of the 'work' in separating them is done
by the spectral slope parameter: if you draw a vertical line at around -0.00168 (abline(v= -
0.00168)) , then you will see that only 2-3 [b] tokens fall on the wrong, i.e.[d]-side, of the
line. So the slope parameter separates the data more effectively than does the parameter of
summed energy values.
 Finally, these functions have been applied so far to spectral slices extracted from a
spectral trackdata object at a single point in time. However, they can be just as easily applied to
spectra spaced at equal time intervals in a trackdata object. Recall from the earlier discussion that
the spectral trackdata object plos.dft has spectral data from the start time to the end time of
each segment. The spectra for the first segment are given by frames(plos.dft[1,])
which has 24 rows and 129 columns. The rows contain spectra at the points in time given by
tracktimes(plos.dft[1,]):

412.5 417.5 422.5 427.5 432.5 437.5 442.5 447.5 452.5 457.5 462.5 467.5 472.5
477.5 482.5 487.5 492.5 497.5 502.5 507.5 512.5 517.5 522.5 527.5

that is, they occur at 5 ms intervals. Thus at time point 412.5 ms there are 129 dB values
spanning the frequency range given between 0 - 8000 Hz at a frequency interval of 62.5 Hz.
Then 5 ms on from this, there are another 129 dB value over the same frequency range and so
on. Thus plos.dft[1,] has 24 spectral slices at 5 ms intervals: these are the spectral slices
that would give rise to a spectrogram between the start and end time of the first segment in the

 201

corresponding segment list plos[1,], a /d/ burst. What if we now wanted to calculate the
mean dB value for each such spectral slice? One way is to make use of the method presented so
far: fapply(frames(plos.dft[1,]), mean) returns 24 mean values, one per spectral
slice per 5 ms. However, fapply() can be more conveniently applied to a spectral trackdata
object directly. Thus the same result is given without having to use the frames() function just
with fapply(plos.dft[1,], mean). Moreover a major advantage of using fapply()
in this way is that the output is also a trackdata object whose times extend over the same
intervals (between 412.5 to 527.5 in this case). Since the output is a trackdata object, then a plot
of the mean dB per spectral slice between the start and end time of this segment is given by
plot(fapply(plos.dft[1,], mean)). In order to produce an ensemble plot on this
parameter for all segments color-coded by segment type (and synchronised at their onsets), omit
the subscripting and supply a parallel vector of annotations, thus
dplot(fapply(plos.dft, mean), plos.l, type="l").
 Consider now how this functionality could be applied to produce an ensemble plot of the
spectral slope values in the 500-4000 Hz range as a function of time between the burst's onset
and offset. The first step is to apply the slope() function written earlier to the spectral
trackdata object, thus:

slopetrack = fapply(plos.dft[,500:4000], slope)

Fig. 8.15 about here

slopetrack is now a two-dimensional trackdata object containing the intercept and slope for
each spectrum at 5 ms intervals per segment between the burst onset and offset. So it is possible
to inspect how the spectral slope changes between the onset and offset in e.g., the 10th segment
as follows (left panel, Fig. 8.15):

dplot(slopetrack[10,2], plos.l[10], xlab="Time (ms)",
ylab="Spectral slope (dB/Hz)")

The right panel of Fig. 8.15 shows an ensemble plot of these data averaged separately by
phonetic category after synchronization at the burst onset:

dplot(slopetrack[,2], plos.l, plos.asp, prop=F, average = T,
ylab="Spectral slope (dB/Hz)", xlab="Time (ms)")

These data show very clearly how, beyond the burst onset at t = 0 ms, labials have falling, but
alveolars rising spectral slopes.

8.3. Spectral moments

The types of parameters discussed in the preceding section can often effectively
distinguish between spectra of different phonetic categories. Another useful way of quantifying
spectral differences is to reduce the spectrum to a small number of parameters that encode basic
properties of its shape. This can be done by calculating what are often called spectral moments
(Forrest et al., 1988). The function for calculating moments is borrowed from statistics in which
the first four moments describe the mean, variance, skew, and kurtosis of a probability
distribution.

Before looking at spectral moments, it will be helpful to consider (statistical) moments in
general. The matrix bridge includes some hypothetical data of counts that were made on three
separate days of the number of cars crossing a bridge at hourly intervals. It looks like this:

bridge

 202

 Mon Tues Wed
0 9 1 0
1 35 1 1
2 68 5 7
3 94 4 27
...

The first row shows that between midday and 1 p.m., 9 cars were counted on Monday, one on
Tuesday, and none on Wednesday. The second row has the same meaning but is the count of cars
between 1 p.m. and 2 p.m. Fig. 8.16 shows the distribution of the counts on these three separate
days:

par(mfrow=c(1,3))
barplot(bridge[,1], ylab="Observed number of cars",
main="Monday")
barplot(bridge[,2], xlab="Hours", main="Tuesday")
barplot(bridge[,3], main="Wednesday")

There are obviously overall differences in the shape of these distributions. The plot for Monday
is skewed to the left, the one for Tuesday is a mirror-image of the Monday data and is skewed to
the right. The data for Wednesday is not as dispersed as for the other days: that is, it has more of
its values concentrated around the mean.

Leaving aside kurtosis for the present, the following predictions can be made:

• Monday's mean (1st moment) is somewhere around 4-5 p.m. while the mean for Tuesday
is a good deal higher (later), nearer 8 or 9 p.m. The mean for Wednesday seems to be
between these two, around 6-7 p.m.

• The values for Wednesday are not as spread out as for Monday or Tuesday: it is likely

therefore that its variance (2nd moment) will be lower than for those of the other two
days.

• As already observed, Monday, Tuesday, and Wednesday are all likely to have different

values for skew (3rd moment).

Fig. 8.16 about here

The core calculation of moments involves the formula:

(1)

in which f is the observed frequency (observed number of cars in this example) x is the class
(hours from 0 to 12 in our example), m is the moment (m =1, 2, 3, 4) and k is a constant (see also
Harrington, 2009). The above formula can be translated directly into R as:

sum(f * (x - k)^m) / sum(f)

This formula can be put into a function that defaults to calculating the first moment with m
defaulting to 1 and k to 0 (the constant is zero when calculating the first moment):

mfun <- function(x, f, k = 0, m = 1)
{
 sum(f * (x - k)^m) / sum(f)

 203

}

To get the mean or first moment, the class, x, has to be created which in the present bridge
data consists of the integers 0 through to 12:

hours = 0:12

So the first moment for the Monday data is

first = mfun(hours, bridge[,1])

For the other moments, the constant, k, is set equal to the first moment that has just been
calculated, and m, the moment number to be calculated, is set to 2, 3, 4 respectively. Thus for the
Monday data:

second = mfun(hours, bridge[,1], first, 2)
third = mfun(hours, bridge[,1], first, 3)
fourth = mfun(hours, bridge[,1], first, 4)

Two more adjustments need to be made. The third moment has to be divided by the second
moment raised to the power 1.5:

third = third/second^1.5

and the 4th moment is divided by the square of the second moment and then 3 is subtracted from
the result (the subtraction of 3 is done to make a normal distribution have zero kurtosis):

fourth = fourth/second^2 - 3

There is a function in the Emu-R library, moments(count, x) that carries out all of the
above calculations. In this function, count is the observed frequency and x the class. So the
first four moments for the Monday data are given by moments(bridge[,1], hours)56
while all four moments for Monday, Tuesday, Wednesday are given by:

t(apply(bridge, 2, moments, hours))
 [,1] [,2] [,3] [,4]
Mon 4.172 4.422416 0.47063226 0.08290827
Tues 7.828 4.422416 -0.47063226 0.08290827
Wed 8.992 2.851936 -0.07963716 -0.39367681

(t() is the transpose function and does nothing more than turn the resulting matrix the other
way round so that the days of the week appear as rows, and the first four moments are in the
columns).

As expected, the first moment (column 1) is at about 4-5 p.m. for Monday, close to 6
p.m. for Wednesday, and higher (later) than this for Tuesday. Also, as expected, the variance
(second moment), whose unit in this example is hours2, is least for Wednesday.

The skew is a dimensionless number that varies between -1 and 1. When the skew is
zero, then the values are distributed evenly about the mean, as they are for a Gaussian normal
distribution. When the values are skewed to the left so that there is a longer tail to the right, then

56 The x argument can be omitted: if it is missing, then it defaults to 0:(N-1), where N is the
length of count. So moments(bridge[,1]) gives the same result.

 204

it is positive (as it is for the Monday data); the skew is negative when the values are skewed to
the right (as for the Tuesday data).

Finally, the kurtosis is also a dimensionless number that is zero for a normal Gaussian
distribution. Kurtosis is often described as a measure of how ‘peaked’ a distribution is. In very
general terms, if the distribution is flat – that is, its shape looks rectangular – then kurtosis is
negative, whereas if the distribution is peaked, then kurtosis is typically positive. However, this
general assumption only applies if the distributions are not skewed (skewed distributions tend to
have positive kurtosis) and kurtosis depends not just on the peak but also on whether there are
high values at the extremes of the distribution (see Wuensch, 2009 for some good examples of
this). For all these reasons - and in particular in view of the fact that spectra are not usually
symmetrical about the frequency axis - it is quite difficult to use kurtosis to make predictions
about the spectral differences between phonetic categories.
 When spectral moments are calculated, then x and f in both (1) and the corresponding R
function are the frequency in Hz and the corresponding dB values (and not the other way
round!). This can be understood most easily by having another look at Fig. 8.16 and pretending it
is a spectrum with a horizontal axis of frequency in Hz and a vertical axis of dB. On this
assumption, the calculation of the 1st spectral moment results in a value in Hz (analogous to a
value in hours for the worked example above), and the second spectral moment a value in Hz2,
while the 3rd and 4th spectral moments are dimensionless, as before.

Spectral moments will be investigated in the matrix of spectra at the temporal midpoint
of the [s,z] fricatives extracted earlier with:

fric.dft.5 = dcut(fric.dft, .5, prop=T)

To apply the moments(count, x) function, count is a vector of dB values and x, the class,
contains the frequencies at which these dB values occur. Since for example in the 3rd segment,
the dB values are given by fric.dft.5[3,] and their frequencies by
trackfreq(fric.dft.5) then the moments for this spectrum must be:

moments(fric.dft.5[3,], trackfreq(fric.dft.5))

However, the above command may sometimes fail. This is because some of the dB values can be
negative and yet the calculation of moments assumes that the values for the observations are
positive (it would never be possible, for example, to have a negative value in counting how many
cars crossed the bridge in an hourly time interval!). To overcome this problem, the dB values are
typically rescaled in calculating moments so that the minimum dB value is set to zero (as a result
of which all dB values are positive and the smallest value is 0 dB). The moments() function
does this whenever the argument minval=T is included. Thus:

moments(fric.dft.5[3,], trackfreq(fric.dft.5), minval=T)

Finally, since the moments() function can work out for itself the frequencies if it is supplied
with spectral data, the second argument can be dropped. So the spectral moments for the 3rd
segment are equivalently and more simply given by:

moments(fric.dft.5[3,], minval=T)

In order to calculate spectral moments not just for the 3rd but for all the segments, use the
fapply(x, y) function as before. Notice in the following command how any additional
arguments to y (in this case minval=T of the moments() function) are appended after y,
thus:

 205

m = fapply(fric.dft.5, moments, minval=T)

So m[3,] gives back the same result as moments(fric.dft.5[3,], minval=T).

Since, as discussed in 8.2, fapply() can be used to apply a function to a trackdata
object, then a plot of the 1st spectral moment from the onset to the offset of the third segment is
given by:

m = fapply(fric.dft, moments, minval=T)
plot(m[3,1], xlab="Time (ms)", ylab="1st spectral moment (Hz)",
type="l")

An ensemble plot of the 1st spectral moment for each segment between the acoustic onset and
offset, synchronised at the temporal midpoint and coded for phonetic category (Fig. 8.17) is
given by:

dplot(m[,1], fric.l, 0.5, xlab="Time (ms)", ylab="First spectral
moment (Hz)")

The first spectral moment for [s] is higher than for [z] because, as Fig. 8.10 had shown, [s] has
less energy at low frequencies and slightly more energy at high frequencies than [z].

Fig. 8.17 about here

 Finally spectral moments will also be used to assess the extent to which palatal and velar
fricatives in German are separated: this was a theme presented in the preceding Chapter using
electropalatographic data. The dorsal fricatives in the Kiel Corpus of Read Speech were
transcribed with either a front allophone [ç] (MRPA/SAMPA C) or with a back allophone [x]
(MRPA/SAMPA x). Recall from the EPG analysis in Chapter 7 that there seems to be
articulatory evidence for a categorical distinction between these two fricatives. The same
problem will be analysed by comparing the fricative spectra of dorsal fricatives following vowels
differing in phonetic backness. The dataset in this case is acoustic data of a female speaker taken
from the Kiel corpus of read speech:

dorfric Segment list, postvocalic German dorsal fricatives
dorfric.l A vector of their labels: C or x
dorfric.lv A vector of the vowel labels preceding these fricatives
dorfric.w A vector of the word labels containing these fricatives
dorfric.dft Spectral trackdata object, 256 point DFT, 16 kHz sampling freq.

The preceding vowel types arranged from phonetically front to back are I, E, a:, O, o:, u:
corresponding to IPA [ɪ, ɛ, a:, ɔ, o:, u:] (the long [a:] and short [a] that distinguish German
Lamm (lamb) and lahm (lame) have been collapsed into a single category because there was only
one [a] token). As you will see from unique(paste(dorfric.lv, dorfric.l,
sep=".")), the dorsal fricatives were transcribed in the Kiel Corpus with the palatal [ç]
following [ɪ,ɛ] and with the velar [x] following the other vowels. The aim in the present analysis
is to establish whether there is any acoustic justification for this. It will, as always, help to plot
all the fricative spectra at the temporal midpoint separately by vowel category (Fig. 8.18):

Fricative spectra at the temporal midpoint
dorfric.dft.5 = dcut(dorfric.dft, .5, prop=T)
Overlaid spectra separately by vowel category

 206

par(mfrow=c(2,3)); par(mar=rep(2, 4))
for(j in unique(dorfric.lv)){
 temp = dorfric.lv==j
 plot(dorfric.dft.5[temp,], main=j)
}

Fig. 8.18 about here

There do indeed seem to be differences in accordance with the transcriptions. After [ɪ, ɛ], there
is a concentration of energy around 3-4 kHz whereas after the other vowels, the spectra fall with
increasing frequency and there is not the same concentration of energy at any one frequency.
Based on these plots, it seems likely that the fricatives after [ɪ, ɛ] have a lower second spectral
moment, because the spectral energy is not so diffuse or spread along the frequency axis as it is
after the other vowel categories. It is also possible that the mean, or first spectral moment, is
higher for [ɪ, ɛ] because the other fricatives have proportionally slightly more energy in the
lower part (0-2000 Hz) of the spectrum.

These predictions can be tested by calculating spectral moments for the fricatives shown
in Fig. 8.18. In calculating moments, researchers sometimes leave out at least the DC offset
(frequency at 0 Hz) which is just the average amplitude of the spectrum multiplied by the signal
length, N; and it is also a good idea to cut out the frequencies near the Nyquist frequency because
these are often not very reliable. In the example, the frequencies below 500 Hz and above 7000
Hz were removed. The 2nd spectral moment (variance) has also been converted into the spectral
standard-deviation by taking its square root, in order to have more manageable values in Hz
(rather than values in the region of 105 for Hz2).

Spectral moments 500 – 7000 Hz range
m = fapply(dorfric.dft.5[,500:7000], moments, minval=T)
Spectral standard deviation in Hz
m[,2] = sqrt(m[,2])

Fig. 8.19 shows ellipse plots for these calculated spectral moments of the fricatives but showing
the vowel labels at the data points:

eplot(m[,1:2], dorfric.l, dorfric.lv, dopoints=T, xlab="First
spectral moment (Hz)", ylab="Second spectral moment (Hz)")

Fig. 8.19 about here

This Figure shows that there does indeed seem to be a very good separation between the tokens
labelled as C and x. Also, the relative positions according to context are roughly in accordance
with the predictions made earlier from the spectra: the dorsal fricatives following the front
vowels [ɪ,ɛ] have a high first spectral moment; and [ɔ, o:, u:] have a higher second spectral
moment than [ɪ,ɛ] with the open vowel [a:] falling roughly between these vowel groups on this
parameter.

8.4. The discrete cosine transformation

The discrete cosine transformation (DCT) is a mathematical operation that is very much
like a discrete Fourier transform: it decomposes a signal into a set of sinusoids such that, when
these are summed the same signal is reconstructed. One of the main differences between the two
is that in the DCT the sinusoids are at half-cycles, that is, at k = 0, 0.5, 1, 1.5… ½(N – 1) rather
than, as for the DFT, at integer cycles (k = 0, 1, 2, …N-1). Another is that the output of the DCT
is sinusoids with no phase. But any sinusoid with no phase is a cosine wave, so we may say that

 207

a DCT decomposes a signal into a set of cosine waves at frequencies k = 0, 0.5, 1.0, 1.5, … ½(N
– 1); and hence the name, discrete cosine transformation.

The amplitudes of these cosine waves are called DCT coefficients and they are usually
labelled from 0 to N-1. So the 0th coefficient, k0, is the amplitude of the k = 0 cosine wave; k1, the
1st coefficient, is the amplitude of the k = 0.5 cosine wave, and so on. Now it turns out that these
DCT coefficients encode global properties of the signal's shape: in particular, as will be shown
below, k0, k1, k2 are proportional to the signal's mean, slope, and curvature respectively. For this
reason, they serve the same important function as do spectral moments that were discussed in the
previous section: DCT-coefficients, like spectral moments, reduce the quantity of information in
a spectrum to a handful of values and, importantly, in such a way that different phonetic
categories are often quite well separated (assuming these categories have differently shaped
spectra).

The DCT has another useful application in phonetics: it can be used to smooth a signal.
The way that this works is as follows. Suppose you are driving along a road and your task is to
draw a crescent or an arc on a sheet of paper. Just as you draw the arc, the car goes over a long
cattle-grid that produces a series of bumps throughout the car. You find that your drawing looks
like an arc (assuming that size of the bumps is not too big), but also has a minor deviations from
an arc that are caused by the regularly spaced bumps of the cattle grid. It turns that if you make a
spectrum of what you drew, then the bits of the signal that are due to the bumps would show up
at high frequencies. This is to be expected: the bumps cause the pencil to change rapidly up and
down above the arc that you are trying to draw. But anything that changes rapidly also shows up
as a high frequency in the spectrum. Now we said that when a DCT is applied to a signal, then
the signal is decomposed into cosine waves of progressively increasing frequency (k = 0, ½ ,
1…). Therefore, if a DCT is applied to the bumpy arc, then the bumpy part should show up at
high cosine frequencies. If all of the cosine waves are summed, then the same bumpy arc is
reconstructed, but if only the first few frequencies are summed, then the influence of the bumps,
which only affect the high frequencies, should be more or less removed: the net result is a
smoother arc than the one that was drawn (more like the one you intended to draw), which can
be called a DCT-smoothed signal. Moreover, the fewer cosine waves that are summed, the
smoother the result: so a summation of the first three cosine waves at frequencies k = 0, 0.5, 1 is
going to produce a smoother result than summing cosine waves at frequencies k = 0, 0.5, 1, 1.5,
2 cycles.

Now dB-spectra of speech derived using Fourier analysis techniques discussed in this
Chapter often have just this of property of bumpiness superimposed on a trend line. In voiced
speech, the trend line is due to the formants which are responsible for a number of large peaks
and troughs up and down the frequency axis. However, as discussed in 8.1, there is also a
superimposed jaggedness or bumpiness that is the result of the harmonics due to vocal fold
vibration that are spaced on the frequency axis at roughly pitch frequency. Thus in speech
production, the filter is due to the shape of the vocal tract and produces a fairly smooth trend line
in the spectrum while the source causes short-term changes (the bumpiness or saw-tooth effect).
Following the earlier analogy, if a DCT is applied to a spectrum of speech but only the lower
frequency cosine waves are summed, then the result will essentially be to filter out much of the
bumpy part due to the source leaving predominantly the 'trend-line' due to the filter which is the
spectrum that is due to the shape of the vocal tract.

Finally, before looking in closer detail at how the DCT can be applied in Emu-R, it
should be mentioned that there is more or less an equivalence between the application of a DCT
to a spectrum and cepstral analysis. In speech technology research, the output of a DCT applied
to a spectrum is considered to be (a very close) approximation to cepstral analysis (Milnar &
Shao, 2006), but the differences between the two are negligible for most kinds of phonetic and
indeed speech signal processing analysis. Thus leaving these minor differences aside, the
amplitudes of the ½ cycle cosine waves into which a spectrum is decomposed by a DCT analysis
are the DCT-coefficients which are essentially cepstral coefficients. A plot of the DCT-

 208

coefficients as a function of the coefficient number (a plot of k0, k1, k2... as a function of 0, 1, 2...)
is a cepstrum; and a DCT-smoothed spectrum is a cepstrally smoothed spectrum. In automatic
speech recognition, speech scientists often parameterise the signal every 5 or 10 ms in terms of
what they call mel-scaled cepstral coefficients. These are DCT coefficients that are derived by
applying a discrete cosine transformation to a Mel-scaled spectrum. This point will be explored
in more detail at the end of this Chapter.

8.4.1 Calculating DCT-coefficients in EMU-R

In order to emphasise the very important point that the DCT is a transformation that is
not specific to speech, the first example will be of a DCT applied to some of the data in bridge
(a hypothetical count of cars crossing a bridge between midday and midnight). In the example
below, the DCT is applied to the data in column 1 which is initially stored (for convenience) in a
vector x. The function for calculating DCT coefficients is the Emu-R function dct().
(Formulae for the DCT are not given here, but see Harrington et al, 2008, Harrington, 2009;
Nossair & Zahorian, 1991; Watson & Harrington, 1999).

x = bridge[,1]
DCT coefficients
x.dct = dct(x)
round to 2 places for convenience
round(x.dct, 2)
 0 1 2 3 4 5 6 7 8 9 10
 54.39 29.54 -26.13 -24.65 -8.77 -2.96 -0.58 -0.06 0.59 2.14 -1.75
 11 12
 -3.31 3.26

x.dct contains the DCT-coefficients: remember that these are amplitudes of ½-cycle cosine
waves. The cosine waves into which the signal has been decomposed using the DCT can be
inspected using this function:

cfun <- function(A, j=0)
{
 # A: DCT-coefficients (amplitude of ½ cycle cosine wave)
 # j: frequency (cycles) of ½ cycle cosine wave
 N = length(A)
A[1] = A[1]/sqrt(2)
n = 0:(N-1)
 k = seq(0, by=.5, length=N)
 # The cosine wave corresponding to kj
 A[j+1] * cos(2 * pi * k[j+1] * (n+0.5)/N)
}

Here is a plot of the first four cosine waves corresponding to k0, k1, k2, k3 (Fig. 8.20):

par(mfrow=c(2,2)); par(mar=rep(2,4))
for(j in 0:3){
 plot(cfun(x.dct, j), type="l", xlab="", ylab="",
main=paste("k", j, sep=""))
}

Fig. 8.20 about here

k0 has a frequency of 0 cycles and so, for the reasons discussed earlier (Fig. 8.2), it is a straight
line. Also its amplitude is equal to the mean of the signal to which the DCT was applied. The

 209

figure also shows that cosine waves are produced at frequencies of ½, 1, and 1½ cycles for the
next higher coefficients respectively (the reason why k2 and k3 are upside-down cosine waves is
because these coefficients are negative). Notice that, with the exception of k0, the peak
amplitudes of these cosine waves are equal to the corresponding DCT-coefficients57 (see
round(x.dct, 2) given above). This is to be expected since DCT-coefficients are just the
(peak) amplitudes of these cosine waves.

If all of these half-cycle cosine waves are summed, then the result is the original signal to
which the DCT transformation has just been applied:

N = length(x.dct)
mat = rep(0, length(x.dct))
for(j in 0:(N-1)){
 mat = mat+cfun(x.dct, j)
}

Apart from rounding errors, mat, the reconstructed signal, is the same as the original signal x, as
the following subtraction of the original from the reconstructed signal shows:

round(mat-x, 5)
0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0

Following the reasoning in 8.4.1 above, if only the few lowest frequencies are summed, e.g., the
cosine waves corresponding to k0 through to k3 shown in Fig. 8.20, then the result is a DCT-
smoothed signal, i.e. a smoother version of the original signal. The summation could be
accomplished with the for-loop given above. Alternatively, and more conveniently, the same
dct() function can be used not just for DCT-analysis but also for DCT-synthesis to add up the
cosine waves into which the signal was decomposed. The following adds up the first four half-
cycle cosine waves shown in Fig. 8.20:

Sum to k3
dctsum = dct(x, 3, T)

The above is the same as:
dctsum= rep(0, length(x.dct))
for(j in 0:3){
 dctsum = dctsum+cfun(x.dct, j)
}

A plot of the original signal and DCT-smoothed signal using coefficients 0-3 is shown in Fig.
8.21 and is given by the following commands:

ylim = range(c(dctsum, x))
plot(x, type="l", ylim=ylim, xlab="Time (points)", ylab="",
col="slategray", axes=F)
par(new=T)
plot(dctsum, type="b", ylim=ylim, xlab="Time (points)",
ylab="Amplitude")

The more coefficients that are used, the closer the DCT-smoothed signal approximates the
original signal.

57 For reasons to do with the implementation of the DCT algorithm (see Watson & Harrington, 1999 and Harrington,
2009 for formlae), k0 is the value shown in Fig. 8.20 multiplied by √2.

 210

Fig. 8.21 about here

8.4.2 DCT-coefficients of a spectrum

The leftmost panel of Fig. 8.22 shows a 512-point dB-spectrum calculated at the temporal
midpoint of an [ɛ] vowel sampled at 16000 Hz (the midpoint of the first segment in vowlax as
it happens) and plotted with plot(e.dft, type="l"). Following the discussion earlier in
this Chapter, the 512 point window is easily wide enough so that harmonics appear: there is a
gradual rise and fall due to the presence of formants and superimposed on this is a jaggedness
produced by the fundamental frequency and its associated harmonics. The DCT-coefficients of
this spectrum can be calculated following the procedure in 8.4.1. Such a calculation produces the
amplitudes of the ½ cycle cosine waves and a plot of them as a function of the corresponding
DCT-coefficient number (middle panel, Fig. 8.22) is a cepstrum:

DCT coefficients
e.dct = dct(e.dft)
N = length(e.dct); k = 0:(N-1)
Cepstrum
plot(k, e.dct, ylim=c(-5, 5), type="l", xlab="Time (number of
points", ylab="Amplitude of cosine waves")

Fig. 8.22 about here

In the earlier example of trying to draw an arc while driving over a cattle-grid, it was argued that
the deviations caused by the bumps show up at high frequency cosine waves and that
analogously so would the oscillations due to the harmonics caused by vocal fold vibration (the
source) that produce the jaggedness in a spectrum. In the present example, their effect is visible
as the pronounced spike in the cepstrum between 100 and 150 points. The spike occurs at the
107th DCT-coefficient (k107). With this information, the fundamental frequency of the signal can
be estimated: 107 points corresponds to 0.0066875 s at the sampling frequency of 16000 Hz and
therefore to a fundamental frequency of 1/0.0066875 = 149.5 Hz. The estimated f0 can be
checked against the spectrum. For example, the 4th harmonic in the spectrum in the left panel of
Fig.8.22 is associated with a peak at 593.75 Hz which means that the fundamental frequency is
593.75/4 = 148.4 Hz, which is a value that is within about 1 Hz of the f0 estimated from the
cepstrum. So this demonstrates another use of DCT (cepstral) analysis: it can be used to estimate
whether or not the signal is voiced (whether there is/is not a spike) and also for estimating the
signal's fundamental frequency.

A DCT or cepstrally-smoothed version of the spectrum that excludes the contribution
from the source signal can be obtained as long as the summation does not include the higher
frequency cosine waves around k107 that encode the information about the fundamental
frequency and harmonics. Beyond this, there can be no guidelines about how many cosine waves
should be summed: the more that are summed, the more the resulting signal approximates the
original spectrum. In the right panel of Fig. 8.22, the first 31 coefficients have been summed and
the result superimposed on the original raw spectrum as follows:

Carry out DCT analysis then sum from k0 to k30
coeffto30 = dct(e.dft, 30, T)
We have to tell R that this is spectral data at a sampling frequency of 16000 Hz
coeffto30 = as.spectral(coeffto30, 16000)
ylim = range(coeffto30, e.dft)
Raw dB-spectrum

 211

plot(e.dft, ylim=ylim, xlab="", ylab="", axes=F,
col="slategray", type="l")
par(new=T)
Superimposed DCT-smoothed (cepstrally-smoothed) spectrum
plot(coeffto30, ylim=ylim, xlab="Frequency (Hz)",
ylab="Intensity (dB) ")

The smooth line through the spectrum, a cepstrally-smoothed spectrum, has none of the
influence due to the source. Finally, if you want to derive cepstrally smoothed spectra from
either a spectral matrix or trackdata object58, then this can be done using dct() with the
argument fit=T inside fapply(). For example, a plot of cepstrally smoothed spectra using 5
coefficients for a spectral matrix of stop bursts is given by:

smooth = fapply(keng.dft.5, dct, 5, fit=T)
plot(smooth, keng.l)

8.4.3 DCT-coefficients and trajectory shape
 The lowest three DCT-coefficients are, as has already been mentioned, related to the
mean, slope, and curvature respectively of the signal to which the DCT transformation is applied.
k0 in the DCT-algorithm that is implemented here (and discussed in Watson & Harrington, 1999)
is the mean of the signal multiplied by . k1 is directly proportional to the linear slope of the
signal. This relationship can be verified by calculating the linear slope using the slope()
function created in 8.2 and then correlating the slope with k1. For example, for the dorsal
fricative data:

slope <- function(x)
{
 # Calculate the intercept and slope in a spectral vector
 lm(x ~ trackfreq(x))$coeff
}

Spectra at the temporal midpoint
dorfric.dft.5 = dcut(dorfric.dft, .5, prop=T)

Spectral slope – N.B. the slope is stored in column 2
sp = fapply(dorfric.dft.5, slope)

Coefficients up to k1 (N.B. k1 is in column 2)
k = fapply(dorfric.dft.5, dct, 1)
How strongly is the linear slope correlated with k1?
cor(sp[,2], k[,2])
-0.9979162

The above shows that there is almost complete (negative) correlation between these variables,
i.e. greater positive slopes correspond to greater negative k1 values and vice-versa (this is clearly
seen in plot(sp[,2], d[,2]) where you can also see that when the linear slope is zero,
so is k1).

58 Calculating cepstrally smoothed spectra on a spectral trackdata object is at the time of writing very slow in R.
There is a signal processing routine in Emu-tkassp for calculating cepstrally smoothed spectra directly from the
audio signals (LP type CSS in the spectrum pane).

 212

 k2 is most closely related to the signal's curvature, where curvature has the definition
given in 6.6 of Chapter 6, i.e., it is the coefficient c2 in a parabola y = c0 + c1x + c2x2. Recall that
the coefficient c2 can be calculated as follows:

c2 for F1 data, lax vowels. c2 is stored in coeffs[,3]
coeffs= trapply(vowlax.fdat[,1], plafit, simplify=T)

The DCT-coefficients: k2 is stored in k[,3]
k = trapply(vowlax.fdat[,1], dct, 3, simplify=T)

The correlation between c2 and k2 is very high:
cor(coeffs[,3], k[,3])
0.939339

In general, there will only be such a direct correspondence between curvature in a parabola and
k2 as long as the signal has a basic parabolic shape. If it does not, then the relationship between
the two is likely to be much weaker.

8.4.4 Mel- and Bark-scaled DCT (cepstral) coefficients
 The Bark scale has already been discussed in the chapter on vowels: it is a scale that
warps the physical frequency axis in Hz into one which corresponds more closely to the way in
which frequency is processed in the ear. Another auditory scale that was more commonly used in
phonetics in the 1970s and which is used in automatic speech recognition research today is the
Mel scale. As discussed in Fant (1968), the Mel scale is obtained in such a way that a doubling
on the Mel scale corresponds roughly to a doubling of perceived pitch. Also, 1000 Mel = 1000
Hz. If you want to see the relationship between Mel and Hz, then enter:

plot(0:10000, mel(0:10000), type="l", xlab="Frequency (Hz)",
ylab="Frequency (mels)")

In fact, the Bark and Mel scale warp the frequency scale in rather a similar way, especially for
frequencies above about 1000 Hz.
 There are two main ways to see what a spectrum looks like when its frequency axis is
converted to an auditory scale. The first just converts trackfreq(x) from Hz into Mel or
Bark (where x is a spectral object). Since the auditory scales are approximately linear up to
1000 Hz and quasi-logarithmic thereafter, the result of the first method is that there are more data
points at higher frequencies in the auditorily-scaled spectra: this is because the interval in Bark
or Mel for the same frequency width in Hz becomes progressively smaller with increasing
frequency (compare for example the difference in Bark between 7000 Hz and 6000 Hz given by
bark(7000) - bark(6000) with the Bark difference between 2000 Hz and 1000 Hz).
The second method uses a linear interpolation technique (see 6.6 and Fig. 6.18) so that the data
points in the spectrum are spaced at equal Mel or Bark intervals along the frequency axis.
Therefore, with this second method, there is the same number of data points between 1 and 2
Bark as between 3 and 4 Bark and so on. Both methods give more or less the same spectral
shape, but obviously some of the detail is lost in the high frequency range with the second
method because there are fewer data points. Here finally are the two methods for the spectrum of
the [ɛ] vowel considered earlier:

Method 1
plot(e.dft, freq=bark(trackfreq(e.dft)), type="l",
xlab="Frequency (Bark)")
Method 2
plot(bark(e.dft), type="l", xlab="Frequency (Bark)")

 213

 A Bark-scaled DCT-transformation is just a DCT transformation that is applied to a
spectrum after the spectrum's frequency axis has been converted into Bark (or into Mel for a
Mel-scaled DCT-transformation). Only the second method, in which the data points represent
equal intervals of frequency is available for DCT-analysis, and not the first59. This is because
the DCT-analysis is predicated on the assumption that the digital points are at equal intervals (of
time or of frequency).

The motivation for converting to an auditory scale is not just that this scale is obviously
more closely related to the way in which frequency is perceived, but also because, as various
studies in automatic speech recognition have shown, fewer Bark- or Mel-scaled DCT (cepstral)
coefficients are needed to distinguish effectively between different phonetic categories than
when DCT coefficients are derived from a Hz scale. In order to illustrate this point, calculate a
DCT-smoothed spectrum with and without auditory scaling using only a small number of
coefficients (six in this example, up to k5), as follows:

DCT (cepstrally) smoothed Hz spectrum with 6 coefficients
hz.dft = dct(e.dft, 5, T)
hz.dft = as.spectral(hz.dft, trackfreq(e.dft))

DCT (cepstrally) smoothed Bark spectrum with 6 coefficients
bk.dft = dct(bark(e.dft), 5, T)
bk.dft = as.spectral(bk.dft, trackfreq(bark(e.dft)))
par(mfrow=c(1,2))
plot(hz.dft, xlab="Frequency (Hz)", ylab="Intensity (dB)")
plot(bk.dft, xlab="Frequency (Bark)")

Superimpose a kHz axis up to 3.5 kHz
values = seq(0, 6000, by=500)
axis(side=3, at=bark(values), labels=as.character(values/1000))
mtext("Frequency (kHz)", side=3, line=2)

Fig. 8.23 about here

The DCT-smoothed Hz spectrum (left panel, Fig. 8.23) is too smooth: above all it does not allow
the most important information that characterises an [ɛ] vowel, i.e. F1 and F2 to be
distinguished. The DCT-smoothed Bark spectrum seems to be as smooth and is perhaps
therefore just as ineffective as the Hz spectrum for characterising the salient acoustic properties
of [ɛ]. But a closer inspection shows that this is not so. There are evidently two broad peaks in
the DCT-smoothed Bark spectrum that are at 4.32 Bark and 12.63 Bark respectively. The
conversion bark(c(4.32, 12.64), inv=T), shows that these Bark frequencies are 432
Hz and 1892 Hz – in other words the frequency location of these peaks is strongly influenced by
the first two formant frequencies60. So the DCT-smoothed Bark-spectrum, in contrast to the
DCT-smoothed Hz-spectrum, seems to have given greater prominence to just those attributes of
[ɛ] that are most important for identifying it phonetically.
 A comparison can now be made of how the raw and auditorily-transformed DCT-
coefficients distinguish between the same German lax vowel categories that were the subject of

59 In fact, there is a third method. In automatic speech recognition, energy values are often summed in a filter-bank
at intervals of 1 Bark. This reduces a spectrum to a series of about 20 values, and it is this data-reduced form that is
then subjected to a DCT (Milner & Shao, 2006). The filter bank approach is discussed in Chapter 9.
60 Recall that this spectrum was taken at the onset of the first vowel in vowlax. The peaks in the Bark-smoothed
cepstrum on the right of Fig. 8.23 are quite close to the F1 and F2 in the first few frames of the calculated formants
for this vowel given by frames(vowlax.fdat[1,1:2]).

 214

analysis in Chapter 6. For this purpose, there is a spectral object vowlax.dft.5 which
contains 256-point dB-spectra at the temporal midpoint of the segment list vowlax. The
relevant objects for the present investigation include:

vowlax.dft.5 Matrix of dB-spectra
vowlax.l Vector of vowel labels
vowlax.spkr Vector of speaker labels
vowlax.fdat.5 F1-F4 formant frequency data at the temporal midpoint

Given that the salient acoustic information for distinguishing between vowel categories is
typically between 200-4000 Hz, the first few DCT coefficients will be calculated in this
frequency range only:

First four DCT-coefficients calculated on Hz spectra
dcthz = fapply(vowlax.dft.5[,200:4000], dct, 3)

...on Bark-scaled spectra
dctbk = fapply(bark(vowlax.dft.5[,200:4000]), dct, 3)
...on Mel-scaled spectra.
dctml = fapply(mel(vowlax.dft.5[,200:4000]), dct, 3)

Remember that at least 6 or 7 auditorily scaled DCT-coefficients are usually necessary to obtain
a discrimination between vowel categories that is as effective as the one from the first two
formant frequencies. Nevertheless, there is a reasonably good separation between the vowels for
female speaker 68 in the plane of k1 × k2 (the reader can experiment with other coefficients pairs
and at the same time verify that the separation is not as good for the male speaker's data on these
coefficients). The same vowels in the formant plane are shown for comparison in the bottom
right pane of Fig. 8.24.

temp = vowlax.spkr == "68"
par(mfrow=c(2,2))
eplot(dcthz[temp,2:3], vowlax.l[temp], centroid=T, main="DCT-
Hz")
eplot(dctbk[temp,2:3], vowlax.l[temp], centroid=T, main="DCT-
Bark")
eplot(dctml[temp,2:3], vowlax.l[temp], centroid=T, main="DCT-
mel")
eplot(dcut(vowlax.fdat[temp,1:2], .5, prop=T), vowlax.l[temp],
centroid=T, form=T, main="F1 x F2")

Fig. 8.24 about here

There are a couple of interesting things about the data in Fig. 8.24. The first is that in all of the
DCT-spaces, there is a resemblance to the shape of the vowel quadrilateral, with the vowel
categories distributed in relation to each other very roughly as they are in the formant plane. This
is perhaps not surprising given the following three connected facts:

• a DCT transformation encodes the overall shape of the spectrum
• The overall spectral shape for vowels is predominantly determined by F1-F3
• F1 and F2 are proportional to phonetic height and backness respectively, and therefore to

the axes of a vowel quadrilateral.

 215

Secondly, the vowel categories are distinguished to a slightly greater extent in the auditorily
transformed DCT-spaces (Bark and Mel) than in the DCT-Hertz spaces. This is especially so as
far as the overlap of [a] with [ɪ, ɛ] is concerned.

Finally, one of the advantages of the DCT over the formant analysis is that there has been
no need to use complicated formant tracking algorithms and above all no need to make any
corrections for outliers. This is one of the reasons why they are preferred in automatic speech
recognition. Another is that, while it makes no sense to track formants for voiceless sounds, the
same DCT coefficients, or auditorily-transformed DCT coefficients, can be used for quantifying
both voiced and voiceless speech.

8.5. Questions

1. This question is about digital sinusoids.

1.1. Use the crplot() function in the Emu-R library to plot the alias of the cosine wave of
length 20 points and with frequency 4 cycles.

1.2. Use the crplot() function to plot a sine wave.

1.3. The alias also requires the phase to be opposite in sign compared with the non-aliased
waveform. Use crplot() to plot the alias of the above sine wave.

1.4. The cr() function produces a plot of where A, k, φ are the cosine's
amplitude, frequency (in cycles) and phase (in radians) respectively. Also, N is the length of the
signal and n is a vector of integers, 0, 1, 2, … N-1. Convert the equation into an R function that
takes A, k, p, N as its arguments, and verify that you get the same results as from cr() for any
choice of amplitude, frequency, phase, and N. (Plot the cosine wave from your function against n
on the x-axis).

1.5. What is the effect of adding to a cosine wave another cosine wave that has been phase-
shifted by π radians (180 degrees)? Use the cr() function with values=T (and round the
result to the nearest 4 places) to check your assumptions.

2. According to Halle, Hughes & Radley (1957), the two major allophones of /k/ before front and
back vowels can be distinguished by a – b , where a and b have the following definitions:

a the sum of the dB-values in the 700 Hz – 9000 Hz range.
b the sum of the dB-values in the 2700 – 9000 Hz range.

Verify (using e.g., a boxplot) whether this is so for the following data:

keng Segment list of the aspiration of syllable-initial

 Australian English /k/ before front /ɪ,ɛ/
 (e.g., kin, kept) and back /ɔ:, ʊ/ vowels (e.g., caught, could).

keng.dft.5 Spectral matrix of the above at the
 temporal midpoint of the segment.
keng.l Labels of the following vowel (front or back)

3. If vowel lip-rounding has an anticipatory coarticulatory influence on a preceding consonant in
a CV sequence, how would you expect the spectra of alveolar fricatives to differ preceding

 216

unrounded and rounded vowels? Plot the spectra of the German syllable-initial [z] fricatives
defined below at their temporal midpoint separately in the unrounded and rounded contexts to
check your predictions.

sib Segment list, syllable-initial [z] preceding [i:, ɪ, u:, ʊ], one male and
 one female speaker.
sib.l A vector of labels: f, for [z] preceding front unrounded [i:, ɪ],
 b for [z] preceding back rounded [u:, ʊ]
sib.w A vector of word labels.
sib.dft Spectral trackdata object (256 point DFT)

from the onset to the offset of [z] with a frame shift of 5 ms.

Apply a metric to the spectra that you have just plotted to see how effectively you can
distinguish between [z] before unrounded and rounded vowels.

4. Here are some F2-data of Australian English and Standard German [i:] vowels, both produced
in read sentences each by one male speaker.

f2geraus Trackdata object of F2
f2geraus.l Vector of labels: either aus or ger corresponding to
 whether the F2-trajectories in f2geraus were produced by
 the Australian or German speaker.

4.1 It is sometimes said that Australian English [i:] has a 'late target' (long onglide). How are the
trajectories between the languages likely to differ on skew?

4.2 Produce a time-normalised, averaged plot of F2 colour-coded for the language to check your
predictions.

4.3 Quantify these predictions by calculating moments for these F2 trajectories (and e.g., making
a boxplot of skew for the two language categories).

5. Sketch (by hand) the likely F2-trajectories of [aɪ, aʊ, a] as a function of time. How are these
F2-trajectories likely to differ on skew? Check your predictions by calculating F2-moments for
[aɪ, aʊ] and [a] for speaker 68. Use the following objects:

dip.fdat Trackdata object of formants containing the diphthongs
dip.l Vector of diphthong labels
dip.spkr Vector of speaker labels for the diphthongs
vowlax.fdat Trackdata object of formants containing [a]
vowlax.l Vector of vowel labels
vowlax.spkr Vector of speaker labels

Make a boxplot showing the skew for these three categories.

6. The features diffuse vs. compact are sometimes used to distinguish between sounds whose
energy is more distributed (diffuse) as opposed to concentrated predominantly in one region
(compact) in the spectrum.

6.1 On which of the moment parameters might diffuse vs. compact spectra be expected to differ?

 217

6.2 In their analysis of stops, Blumstein & Stevens (1979) characterise (the burst of) velars as
having a compact spectrum with mid-frequency peaks as opposed to labials and alveolars for
which the spectra are diffuse in the frequency range 0-4000 Hz. Check whether there is any
evidence for this by plotting ensemble-averaged spectra of the bursts of [b,d,g] overlaid on the
same plot (in the manner of Fig. 8.10, right). All of the data is contained in a spectral matrix
calculated from a 256-point DFT centered 10 ms after the stop release and includes the same
[b,d] spectral data as after derived in 8.2 as well as [g]-bursts before the non-back vowels [i:,
e:, a:, aʊ].

stops10 spectral matrix, 256-point DFT
stops10.lab vector of stop labels

6.3 Calculate in the 0-4000 Hz range whichever moment you think might be appropriate for
distinguishing [g] from the other two stop classes and make a boxplot of the chosen moment
parameter separately for the three classes. Is there any evidence for the diffuse ([b,d]) vs.
compact ([g]) distinction?

7. A tense vowel is often phonetically more peripheral than a lax vowel, and acoustically this can
sometimes be associated with a greater formant curvature (because there is often a greater
deviation in producing a tense vowel from the centre of the vowel space).

7.1 Verify whether there is any evidence for this using dplot() to produce time-normalised,
ensemble-averaged F2-trajectories as a function of time of the German tense and lax [i:, ɪ]
vowels produced by male speaker 67. The data to be plotted is from a trackdata object dat
with a parallel vector of labels lab that can be created as follows:

temp = f2geraus.l == "ger"
F2-trackdata of tense [i:]
dati = f2geraus[temp,]

A parallel vector of labels
labi = rep("i:", sum(temp))

temp = vowlax.l == "I" & vowlax.spkr == "67"
F2-trackdata of lax [ɪ]
datI = vowlax.fdat[temp,2]
A parallel vector of labels
labI = rep("I", sum(temp))

Here are the data and corresponding labels to be plotted
dat = rbind(dati, datI)
lab = c(labi, labI)

7.2. Quantify the data by calculating k2 and displaying the results in a boxplot separately for [i:]
and [ɪ].

8. This question is concerned with the vowels [ɪ, ʊ, a] in the timetable database. The
following objects are available from this database in the Emu-R library:
timevow Segment list of these three vowels
timevow.dft Spectral trackdata object of spectra between
 the start and end times of these vowels
timevow.l Vector of labels

 218

8.1 Make an ensemble-averaged spectral plot in the 0-3000 Hz range (with one average per
vowel category) of spectra extracted at the temporal midpoint of these vowels. Produce the plot
with the x-axis proportional to the Bark scale. Look at the global shape of the spectra and try to
make predictions about how the three vowel categories are likely to differ on Bark-scaled k1 and
k2.

8.2 Calculate Bark-scaled k1 and k2 for these spectra and make ellipse plots of the vowels in this
plane. To what extent are your predictions in 9.1 supported?

8.3 Produce for the first [ɪ] at its temporal midpoint a Bark-spectrum in the 0-4000 Hz range
overlaid with a smoothed spectrum calculated from the first 6 Bark-scaled DCT-coefficients.
Produce the plot with the axis proportional to the Bark scale.

8.6 Answers

1.1.
crplot(k=16, N=20)

1.2.
crplot(p=-pi/2)

1.3.
crplot(k=15, p=pi/2)

1.4.
cfun <- function(A, k, p, N)
{
n = 0:(N-1)
A * cos((2 * pi * k * n)/N + p)
}

For example:

res = cfun(1.5, 1.4, pi/3, 20)
n = 0:19
plot(n, res, col=2)
par(new=T)
cr(1.5, 1.4, pi/3, 20, type="l")

1.5. The sinusoids cancel each other out.

o = cr(p=c(0, pi), values=T)
round(o, 4)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2.
a = fapply(keng.dft.5[,700:9000], sum, power=T)
b = fapply(keng.dft.5[,2700:9000], sum, power=T)
d = a - b
boxplot(d ~ factor(keng.l), ylab="dB-difference")
Yes, this parameter separates the front and back allophones of /k/ quite well (Fig. 8.25).

 219

Fig. 8.25 about here

3. You would expect an overall lowering of the spectral energy: lip-rounding should produce a
decrease in the spectral centre of gravity or first spectral moment (Mann & Repp, 1980). The
parameter chosen here (Fig. 8.26) is the 1st spectral moment in the 2000-7700 Hz range.

Fig. 8.26 about here

sib.mid= dcut(sib.dft, .5, prop=T)
plot(sib.mid, sib.l, fun=mean, power=T, xlab="Frequency (Hz)",
ylab="Intensity (dB)")

m = fapply(sib.mid[,2000:7700], moments, minval=T)
boxplot(m[,1] ~ factor(sib.l), ylab="1st spectral moment (Hz)")

4.1 The F2-trajectories for late target vowels should be skewed to the right.

4.2 The plots are shown in Fig. 8.27 and were created as follows.

par(mfrow=c(1,2))
dplot(f2geraus, f2geraus.l, average=T, normalise=T, xlab=
"Normalized time", ylab="F2 (Hz)", leg="bottomright")

Fig. 8.27 about here

4.3
m = trapply(f2geraus, moments, simplify=T)
skew = m[,3]
boxplot(skew ~ factor(f2geraus.l), ylab="F2-skew")

5. [aɪ] has a late F2 peak, [aʊ] has a late F2-trough (and thus effectively an early peak), and [a]
has its F2 peak near the temporal midpoint. The skew for these three categories should therefore
be negative, positive, and close to zero respectively (Fig. 8.28).

temp1 = dip.l %in% c("aI", "aU") & dip.spkr == "68"
temp2 = vowlax.l == "a" & vowlax.spkr == "68"
dat = rbind(dip.fdat[temp1,2], vowlax.fdat[temp2,2])
labs = c(dip.l[temp1], vowlax.l[temp2])
coeffs = trapply(dat, moments, simplify=T)
boxplot(coeffs[,3] ~ labs, ylab="F2-skew")

Fig. 8.28 about here

6.1 Diffuse and compact should differ on the 2nd moment (i.e., variance).

6.2
plot(stops10[,0:4000], stops10.lab, fun=mean, power=T,
xlab="Frequency (Hz)", ylab="Intensity (dB)", leg="bottomleft")

The averaged spectra in Fig. 8.29 do indeed seem to show a greater concentration of energy in
the mid frequency range for [g] than for the other stop categories and so the spectral variance
should be less.

Fig. 8.29 about here

 220

6.3
m = fapply(stops10[,0:4000], moments, minval=T)
boxplot(sqrt(m[,2]) ~ stops10.lab, ylab="Square root of 2nd
moment (Hz)")

There is some evidence that the spectral variance is less for [g] in the right panel of Fig. 8.29.
However, the data for [g] is dispersed as shown by the large inter-quartile range (the extent of
the rectangle) in comparison with [b, d]: this probably comes about because [g] bursts occur
before both front and back vowels which, of course, induce a good deal of variation in initial [g].

7.1.
dplot(dat, lab, ylab="F2 (Hz)", norm=T, average=T, ylim=c(1600,
2100))

There is evidence from Fig. 8.30 (left) for greater curvature in [i:] as shown by the greater
negative values for /i:/ on k2.

Fig. 8.30 about here

7.2
m = trapply(dat, dct, 2, simplify=T)
boxplot(m[,3] ~ factor(lab), ylab="k2")

8.1.
mid = dcut(timevow.dft, .5, prop=T)
plot(bark(mid[,0:3000]), timevow.l, fun=mean, power=T,
xlab="Frequency (Bark)", ylab="Intensity (dB)")

Since the slope of the spectrum for [ʊ] in the left panel of Fig. 8.31 falls more steeply than for
the other vowels, it should be distinguished from them on k1. The spectra for [ɪ, a] have a ⋃-
shape and ⋂-shape respectively whereas that of [ʊ] shows less evidence of a parabolic shape.
Therefore, k2 should certainly distinguish [ɪ] and [a] (they might have roughly the same value on
k2 but one will be positive and the other negative) and both [ɪ, a] should be distinguished on k2
from the comparatively more flat [ʊ] spectra.

8.2
mid.dct = fapply(bark(mid[,0:3000]), dct, 2)
eplot(mid.dct[,2:3], timevow.l, centroid=T, xlab="Bark-scaled
k1", ylab="Bark-scaled k2")

As Fig. 8.31 shows, the predictions from 8.1 are more or less supported.

Fig. 8.31 about here

8.3
Logical vector for [ɪ]
temp = timevow.l == "I"

n is an index of the first [ɪ]
n = 1:length(timevow.l)
n = n[temp][1]

 221

Bark spectrum for this [ɪ] at the segment's temporal midpoint
ispec = bark(dcut(timevow.dft[n,0:4000], .5, prop=T))

Smoothed-Bark spectrum
smooth = dct(ispec, 5, fit=T)

Equivalently
smooth = fapply(ispec, dct, 5, fit=T)

Row bind the raw and smooth spectra
both = rbind(ispec, smooth)

Make both into a spectral object with the same frequency range
fs = 2 * max(trackfreq(ispec))
both = as.spectral(both, fs)

A plot of the raw and overlaid smoothed spectrum
plot(both, c("raw", "smooth"), xlab="Frequency (Bark)",
ylab="Intensity (dB)")

 222

Chapter 9. Classification.

 At various stages in this book, different classes of speech sounds have been compared
with each other in terms of their acoustic or articulatory proximity. In this Chapter, the
quantification of the similarity between speech sounds is extended by introducing some topics in
classification. This will provide an additional set of tools for establishing both how effectively
classes of speech sounds are separated from each other based on a number of parameters and for
determining the likelihood that a given value within the parameter space belongs to one of the
classes. One of the applications of this methodology in experimental phonetics is to quantify
whether adding a new parameter contributes any further information to the separation between
classes; another is to assess the extent to which there is a correspondence between acoustic and
perceptual classification of speech data. More generally, using probability in experimental
phonetics has become increasingly important in view of research advances in probabilistic
linguistics (Bod et al, 2003) and developments in exemplar models of speech perception and
production that are founded on a probabilistic treatment of speech signals. Probability theory has
been used in recent years in forensic phonetics (Rose, 2002) as a way of expressing the
likelihood of the evidence given a particular hypothesis.
 The introduction to this topic that is presented in this Chapter will begin with a brief
overview of Bayes' theorem and with the classification of single-parameter data using a Gaussian
distribution. This will be extended to two parameter classifications which will provide the tools
for defining an ellipse and the relationship to principal components analysis. Some
consideration will also be given to a support vector machine, a non-Gaussian technique for
classification. At various stages in this Chapter, the problem of how to classify speech signals as
a function of time will also be discussed.

9.1. Probability and Bayes theorem

The starting point for many techniques in probabilistic classification is Bayes' theorem
which provides a way of relating evidence to a hypothesis. In the present context, it allows
questions to be answered such as: given that there is a vowel with a high second formant
frequency, what is the probability that the vowel is /i/ as opposed to /e/ or /a/? In this case, 'F2 is
high' is the evidence and 'the vowel is /i/ as opposed to /e/ or /a/' is the hypothesis.

Consider now the following problem. In a very large labelled corpus of speech, syllables
are labelled categorically depending on whether they were produced with modal voice or with
creak and also on whether they were phrase-final or not. After labelling the corpus, it is
established that 15% of all syllables are phrase-final. It is also found that creak occurs in 80% of
these phrase-final syllables and in 30% of non-phrase final syllables. You are given a syllable
from the corpus that was produced with creak but are not told anything about its phrase-label.
The task is now to find an answer to the following question: what is the probability that the
syllable is phrase-final (the hypothesis) given (the evidence) that it was produced with creak?

Since the large majority of phrase-final syllables were produced with creak while most of
the non phrase-final syllables were not, it would seem that the probability that the creak token is
also a phrase-final syllable is quite high. However, the probability must be computed not just by
considering the proportion of phrase-final syllables that were produced with creak, but also
according to both the proportion of phrase-final syllables in the corpus and the extent to which
creak is found elsewhere (in non-phrase final syllables). Bayes' theorem allows these quantities
to be related and the required probability to be calculated from the following formula:

 (1)

 €

p(H | E) =
p(E |H)p(H)

p(E)

 223

In (1), H is the hypothesis (that the syllable is phrase-final), E is the evidence (the syllable token
has been produced with creak) and p(H|E) is to be read as the probability of the hypothesis given
the evidence. It can be shown that (1) can be re-expressed as (2):

 (2)

where, as before, H is the hypothesis that the syllable is phrase-final and ¬H is the hypothesis
that it is not phrase-final. For the present example, the quantities on the right hand side of (2) are
the following:

• p(E|H) i.e., p(creak|final): the probability of there being creak, given that the syllable is
phrase-final, is 0.8.

• p(H), i.e., p(final): the probability of a syllable in the corpus being phrase final is 0.15.

• p(E|¬H), i.e. p(creak|not-final): the probability that the syllable is produced with creak,

given that the syllable is phrase-medial or phrase-initial, is 0.3.

• p(¬H) = 1 - p(H), i.e., p(not-final): the probability of a syllable in the corpus being
phrase-initial or medial (in non-phrase-final position) is 0.85.

The answer to the question, p(H|E), the probability that the observed token with creak is also
phrase-final is given using (2) as follows:

(0.8 * 0.15) /((0.8 * 0.15) + (0.3 * 0.85))

which is 0.32. Since there are two competing hypothesis (H, the syllable is phrase-final or its
negation, ¬H, the syllable is not phrase-final) and since the total probability must add up to one,
then it follows that the probability of a syllable produced with creak being in non-phrase-final
position is 1-0.32 or 0.68. This quantity can also be derived by replacing H with ¬H in (2), thus:

(0.3 * 0.85)/((0.3 * 0.85) + (0.8 * 0.15))
0.68

Notice that the denominator is the same whichever of these two probabilities is calculated.

These calculations lead to the following conclusion. If you take a syllable from this
corpus without knowing its phrase label, but observe that it was produced with creak, then it is
more likely that this syllable was not phrase-final. The probability of the two hypotheses (that
the syllable is phrase-final or non-phrase-final) can also be expressed as a likelihood ratio (LR)
which is very often used in forensic phonetics (Rose, 2002). For this example:

LR = 0.68/0.32
LR
2.125

from which it follows that it is just over twice as likely for a syllable produced with creak to be
non phrase-final than phrase-final. The more general conclusion is, then, that creak is really not a
very good predictor of the position of the syllable in the phrase, based on the above hypothetical
corpus at least.

€

p(H | E) =
p(E |H)p(H)

p(E |H)p(H) + p(E |¬H)p(¬H)

 224

 The above example can be used to introduce some terminology that will be used in later
examples. Firstly, the quantities p(H) and p(¬H) are known as the prior probabilities: these are
the probabilities that exist independently of any evidence. Thus, the (prior) probability that a
syllable taken at random from the corpus is non phrase-final is 0.85, even without looking at the
evidence (i.e., without establishing whether the syllable was produced with creak or not). The
prior probabilities can have a major outcome on the posterior probabilities and therefore on
classification. In all the examples in this Chapter, the prior probabilities will be based on the
relative sizes of the classes (as in the above examples) and indeed this is the default of the
algorithms for discriminant analysis that will be used later in this Chapter (these prior
probabilities can be overridden, however and supplied by the user). p(E|H) and p(E|¬H) are
known as conditional probabilities. Finally the quantities that are to be calculated, p(H|E) and
p(¬H|E), which involve assigning a label given some evidence, are known as the posterior
probabilities. Thus for the preceding example, the posterior probability is given by:

conditional = 0.8
prior = 0.15
conditional.neg = 0.3
prior.neg = 1 - prior
posterior = (conditional * prior) / ((conditional * prior) +
(conditional.neg * prior.neg))
posterior
0.32

The idea of training and testing is also fundamental to the above example: the training

data is made up of a large number of syllables whose phrase-position and voice quality labels are
known while training itself consists of establishing a quantifiable relationship between the two.
Testing involves taking a syllable whose phrase-label is unknown and using the training data to
make a probabilistic prediction about what the phrase-label is. If the syllable-token is taken from
the same data used for training (ithe experimenter 'pretends' that the phrase label for the syllable
to be tested is unknown), then this is an example of a closed test. An open test is if the token, or
tokens, to be tested are taken from data that was not used for training. In general, an open test
gives a much more reliable indication of the success with which the association between labels
and parameters has been learned in the training data. All of the examples in this Chapter are of
supervised learning because the training phase is based on prior knowledge (from a database)
about how the parameters are associated with the labels. An example of unsupervised learning
is kmeans-clustering that was briefly touched upon in Chapter 6: this algorithm divides up the
clusters into separate groups or classes without any prior training stage.

9.2 Classification: continuous data

The previous example of classification was categorical because the aim was to classify a
syllable in terms of its position in the phrase based on whether it was produced with creak or not.
The evidence, then allows only two choices. There might be several choices (creak, modal,
breathy) but this would still be an instance of a categorical classification because the evidence
(the data to be tested) can only vary over a fixed number of categories. In experimental phonetics
on the other hand, the evidence is much more likely to be continuous: for example, what is the
probability, if you observe an unknown (unlabelled) vowel with F1 = 380 Hz, that the vowel is
/ɪ/ as opposed to any other vowel category? The evidence is continuous because a parameter like
F1 does not jump between discrete values but can take on an infinite number of values within a
certain range. So this in turn means that the basis for establishing the training data is somewhat
different. In the categorical example from the preceding section, the training consisted of
establishing a priori the probability that a phrase-final syllable was produced with creak: this
was determined by counting the number of times that syllables with creak occurred in phrase-

 225

final and non-phrase-final position. In the continuous case, the analogous probability that /ɪ/
could take on a value of 380 Hz needs to be determined not by counting but by fitting a
probability model to continuous data. One of the most common, robust and mathematically
tractable probability models is based on a Gaussian or normal distribution that was first
derived by Abraham De Moivre (1667-1754) but which is more commonly associated with Karl
Friedrich Gauss (1777-1855) and Pierre-Simon Laplace (1749-1827). Some properties of the
normal distribution and its derivation from the binomial distribution are considered briefly in the
next section.

9.2.1 The binomial and normal distributions

Consider tossing an unbiased coin 20 times. What is the most likely number of times that
the coin will come down Heads? Intuitively for an unbiased coin this is 10 and quantitatively is it
given by µ = np, where µ is a theoretical quantity known as the population mean, n is the
number of times that the coin is flipped, and p the probability of 'success', i.e., of the coin
coming down Heads. Of course, in flipping a coin 20 times, the outcome is not always equal to
the population mean of 10: sometimes there will be fewer and sometimes more, and very
occasionally there may even be 20 Heads from 20 coin flips, even if the coin is unbiased. This
variation comes about because of the randomness that is inherent in flipping a coin: it is random
simply because, if the coin is completely unbiased, there is no way to tell a priori whether the
coin is going to come down Heads or Tails.
 The process of flipping the coin 20 times and seeing what the outcome is can be
simulated as follows in R with the sample() function.

sample(c("H", "T"), 20, replace=T)
(You are, of course, most likely to get a different output.)
"T" "H" "H" "H" "H" "H" "H" "H" "H" "H" "T" "T" "H" "T" "H" "T" "T" "T" "T" "T"

The above lines have been incorporated into the following function coin() with parameters n,
the number of times the coin is tossed, and k, the number of trials, that is the number of times
that this experiment is repeated. In each case, the number of Heads is summed.

coin<- function(n=20, k=50)
{
 # n: the number of times a coin is flipped
 # k: the number of times the coin-flipping experiment is repeated
 result = NULL
 for(j in 1:k){
 singleexpt = sample(c("H", "T"), n, replace=T)
 result = c(result, sum(singleexpt=="H"))
 }
 result
}

Thus in the following, a coin is flipped 20 times, the number of Heads is summed, and then this
procedure (of flipping a coin 20 times and counting the number of Heads) is repeated 8 times.

trials8 = coin(k=8)
trials8
The number of Heads from each of the 20 coin flips:
14 5 11 8 8 11 7 8

 226

Notice that (for this case) no trial actually resulted in the most likely number of Heads, µ = np =
10. However, the sample mean, m, gets closer to the theoretical population mean, µ, as n
increases. Consider now 800 trials:

trials800 = coin(k=800)

mean(trials800) is likely to be closer to 10 than mean(trials8). More generally, the
greater the number of trials, the more m, the sample mean, is likely to be closer to µ so that if it
were ever possible to conduct the experiment over an infinite number of trials, m would equal µ
(and this is one of the senses in which µ is a theoretical quantity).

In this coin flipping experiment, there is, then, variation about the theoretical population
mean, µ, in the number of Heads that are obtained per 20 coin flips and in Fig. 9.1, this variation
is displayed in the form of histograms for 50, 500, and 5000 trials. The histograms were
produced as follows:

par(mfrow=c(1,3)); col="slategray"; xlim=c(2, 18)
k50 = coin(k=50); k500 = coin(k=500); k5000 = coin(k=5000)
hist(k50,col=col,xlim=xlim, xlab="",ylab ="Frequency
count",main="k50")
hist(k500, col=col, xlim=xlim, , xlab = "", ylab = "",
main="k500")
hist(k5000, col=col, xlim=xlim, , xlab = "", ylab = "",
main="k5000")

Fig. 9.1 about here

In all three cases, the most frequently observed count of the number of Heads is near µ = 10. But
in addition, the number of Heads per 20 trials falls away from 10 at about the same rate, certainly
for the histograms with 500 and 5000 trials in the middle and right panels of Fig 9.1. The rate at
which the values fall away from the mean is governed by σ, the population standard deviation. In

the case of flipping a coin and counting the number of Heads, σ is given by where n and p
have the same interpretation as before and q = 0.5 = 1 - p is the probability of 'failure', i.e., of
getting Tails. So the population standard deviation for this example is given by sqrt(20 *
0.5 * 0.5) which evaluates to 2.236068. The relationship between the sample standard
deviation, s, and the population standard deviation σ is analogous to that between m and µ: the
greater the number of trials, the closer s tends to σ. (For the data in Fig. 9.1, the sample standard-
deviations can be evaluated with the sd() function: thus sd(k5000) should be the closest to
sqrt(20 * 0.5 * 0.5) of the three).

When a coin is flipped 20 times and the number of Heads is counted as above, then
evidently there can only be any one of 21 outcomes ranging in discrete jumps from 0 to 20
Heads. The probability of any one of these outcomes can be calculated from the binomial
expansion given by the dbinom(x, size, prob) function in R. So the probability of
getting 3 Heads if a coin is flipped four times is dbinom(3, 4, 0.5) and the probability of
8 Heads in 20 coin flips is dbinom(8, 20, 0.5). Notice that an instruction such as
dbinom(7.5, 20, 0.5) is meaningless because this is to ask the probability of there being
7 ½ Heads in 20 flips (and appropriately there is a warning message that x is a non-integer). The
binomial probabilities are, then, those of discrete outcomes. The continuous case of the
binomial distribution is the Gaussian or normal distribution which is defined for all values
between plus and minus infinity and is given in R by the dnorm(x, mean, sd) function. In
this case, the three arguments are respectively the number of successful (Heads) coin flips, µ,

npq

 227

and σ. Thus the probability of there being 8 Heads in 20 coin flips can be estimated from the
normal distribution with:

dnorm(8, 20*0.5, sqrt(20*0.5*0.5))
0.1195934

Since the normal distribution is continuous, then it is also defined for fractional values: thus
dnorm(7.5, 20*0.5, sqrt(20*0.5*0.5)) can be computed and it gives a result that
falls somewhere between the probabilities of getting 7 and 8 heads in 20 coin flips. There is a
slight discrepancy between the theoretical values obtained from the binomial and normal
distributions (dbinom(8, 20, 0.5) evaluates to 0.1201344) but the values from the
binomial distribution get closer to those from the normal distribution as n, the number of coin
flips, tends to infinity.

Fig. 9.2 about here

 The greater the number of trials in this coin-flipping experiment, k, the closer the sample
approximates the theoretical probability values obtained from the binomial/normal distributions.
This is illustrated in the present example by superimposing the binomial/normal probabilities for
obtaining between 0 and 20 Heads when the experiment of flipping a coin 20 times was repeated
k =50, 500, and 5000 times. The plots in Fig. 9.2 were produced as follows:

par(mfrow=c(1,3)); col="slategray"; xlim=c(2, 18); main=""
hist(k50, freq=F, main="50 trials", xlab="", col=col)
curve(dnorm(x, 20*.5, sqrt(20*.5*.5)), 0, 20, add=T, lwd=2)

These are the probabilities of getting 0, 1, ..20 Heads from the binomial distribution
binprobs = dbinom(0:20, 20, .5)
points(0:20, binprobs)
hist(k500, freq=F, main="500 trials", xlab="Number of Heads in
20 coin flips", col=col)
curve(dnorm(x, 20*.5, sqrt(20*.5*.5)), 0, 20, add=T, lwd=2)
points(0:20, binprobs)
hist(k5000, freq=F, main="5000 trials", xlab="", col=col)
curve(dnorm(x, 20*.5, sqrt(20*.5*.5)), 0, 20, add=T, lwd=2)
points(0:20, binprobs)

Fig. 9.2 about here

The vertical axis in Fig. 9.2 (and indeed the output of the dnorm() function) is probability
density and it is derived in such a way that the sum of the histogram bars is equal to one, which
means that the area of each bar becomes a proportion. Thus, the area of the 2nd bar from the left
of the k500 plot in Fig. 9.2 is given by the probability density multiplied by the bar-width which
is 0.05 * 1 or 0.05. This is also the proportion of values falling within this range: 0.05 *
500 is 25 (Heads), as the corresponding bar of the histogram in the middle panel of Fig. 9.1
confirms. More importantly, the correspondence between the distribution of the number of
Heads in the sample and the theoretical binomial/normal probabilities is evidently much closer
for the histogram on the right with the greatest number of trials.
 Some of the other important properties of the normal distribution are:

• the population mean is at the centre of the distribution and has the highest probability.
• the tails of the distribution continue at the left and right edge to plus or minus infinity.
• the total area under the normal distribution is equal to 1.

 228

• the probability that a value is either less or greater than the mean is 0.5.

The R function pnorm(q, mean, sd) calculates cumulative probabilities, i.e., the area
under the normal curve from minus infinity to a given quantile, q. Informally, this function
returns the probability that a sample drawn from the normal distribution is less than that sample.
Thus, pnorm(20, 25, 5)returns the probability of drawing a sample of 20 or less from a
normal distribution with mean 25 and standard deviation 5. To calculate the probabilities within
a range of values requires, therefore, subtraction:

pnorm(40, 25, 5) - pnorm(20, 25, 5)
0.8399948

gives the probability of drawing a sample between 20 and 40 from the same normal distribution.

Here is how qnorm() could be used to find the range of samples whose probability of
occurrence is greater than 0.025 and less than 0.975:

qnorm(c(0.025, 0.975), 25, 5)
15.20018 34.79982

In other words, 95% of the samples (i.e., 0.975-0.025 = 0.95) in a normal distribution with mean
25 and standard deviation 5 extend between 15.20018 and 34.79982.
 Without the second and third arguments, the various functions for computing values from
the normal distribution return so-called z-scores or the values from the standard normal
distribution with µ = 0 and σ = 1. This default setting of qnorm() can be used to work out the
range of values that fall within a certain number of standard deviations from the mean. Thus
without the second and third arguments, qnorm(c(0.025, 0.975)) returns the number of
standard deviations for samples falling within 95% of the mean of any normal distribution, i.e.
the well-known value of ±1.96 from the mean (rounded to two decimal places). Thus the
previously calculated range can also be obtained as follows:

Lower range, -1.959964 standard deviations from the mean (of 25):
25 - 1.959964 * 5
15.20018

Upper range
25 + 1.959964 * 5
34.79982

An example of the use of dnorm() and qnorm() over the same data is given in Fig. 9. 3
which was produced with the following commands:

xlim = c(10, 40); ylim = c(0, 0.08)
curve(dnorm(x, 25, 5), 5, 45, xlim=xlim, ylim=ylim, ylab="",
xlab="")
region95 = qnorm(c(0.025, 0.975), 25, 5)
values = seq(region95[1], region95[2], length=2000)
values.den = dnorm(values, 25, 5)
par(new=T)
plot(values, values.den, type="h", col="slategray", xlim=xlim,
ylim=ylim, ylab="Probability density", xlab="Values")

Fig. 9.3 about here

 229

9.3 Calculating conditional probabilities

Following this brief summary of the theoretical normal distribution, we can now return to
the matter of how to work out the conditional probability p(F1=380|ɪ) which is the probability
that a value of F1 = 380 Hz could have come from a distribution of /ɪ/ vowels. The procedure is
to sample a reasonably large size of F1 for /ɪ/ vowels and then to assume that these follow a
normal distribution. Thus, the assumption here is that the sample of F1 of /ɪ/ deviates from the
normal distribution simply because not enough samples have been obtained (and analogously
with summing the number of Heads in the coin flipping experiment, the normal distribution
would be the theoretical distribution from an infinite number of F1 samples for /ɪ/). It should be
pointed out right away that this assumption of normality could well be wrong. However, the
normal distribution is fairly robust and so it may nevertheless be an appropriate probability
model, even if the sample does deviate from normality; and secondly, as outlined in some detail
in Johnson (2008) and summarised again below, there are some diagnostic tests that can be
applied to test the assumptions of normality.
 As the discussion in 9.2.1 showed, only two parameters are needed to characterise any
normal distribution uniquely, and these are µ and σ, the population mean and population
standard deviation respectively. In contrast to the coin flipping experiment, these population
parameters are unknown in the F1 sample of vowels. However, it can be shown that the best
estimates of these are given by m and s, the mean and standard deviation of the sample which
can be calculated with the mean() and sd() functions61. In Fig. 9.4, these are used to fit a
normal a distribution to F1 of /ɪ/ for data extracted from the temporal midpoint of the male
speaker's vowels in the vowlax dataset in the Emu-R library.

temp = vowlax.spkr == "67" & vowlax.l == "I"
f1 = vowlax.fdat.5[temp,1]
m = mean(f1); s = sd(f1)
hist(f1, freq=F, xlab="F1 (Hz)", main="", col="slategray")
curve(dnorm(x, m, s), 150, 550, add=T, lwd=2)

Fig. 9.4 about here

The data in Fig. 9.4 at least look as if they follow a normal distribution and if need be, a test for
normality can be carried out with the Shapiro test:

shapiro.test(f1)
Shapiro-Wilk normality test
data: f1
W = 0.9834, p-value = 0.3441

If the test shows that the probability value is greater than some significance threshold, say 0.05,
then there is no evidence to suggest that these data are not normally distributed. Another way,
described more fully in Johnson (2008) of testing for normality is with a quantile-quantile plot:

qqnorm(f1); qqline(f1)

61 The sample standard-deviation, s, of a random variable, x, which provides the best estimate of the population

standard deviation, σ, is given by

€

s =
1

(n −1)
(xi −m)

2

i=1

n

∑
 where n is the sample size and m is the sample mean

and this is also what is computed in R with the function sd(x).

 230

If the values fall more or less on the straight line, then there is no evidence that the distribution
does not follow a normal distribution.
 Once a normal distribution has been fitted to the data, the conditional probability can be
calculated using the dnorm() function given earlier (see Fig. 9.3). Thus p(F1=380|I), the
probability that a value of 380 Hz could have come from this distribution of /ɪ/ vowels, is given
by:

conditional = dnorm(380, mean(f1), sd(f1))
conditional
0.006993015

which is the same probability given by the height of the normal curve in Fig. 9.4 at F1 = 380 Hz.

9.4 Calculating posterior probabilities

Suppose you are given a vowel whose F1 you measure to be 500 Hz but you are not told
what the vowel label is except that it is one of /ɪ, ɛ, a/. The task is to find the most likely label,
given the evidence that F1 = 500 Hz. In order to do this, the three posterior probabilities, one for
each of the three vowel categories, has to be calculated and the unknown is then labelled as
whichever one of these posterior probabilities is the greatest. As discussed in 9.1, the posterior
probability requires calculating the prior and conditional probabilities for each vowel category.
Recall also from 9.1 that the prior probabilities can be based on the proportions of each class in
the training sample. The proportions in this example can be derived by tabulating the vowels as
follows:

temp = vowlax.spkr == "67" & vowlax.l != "O"
f1 = vowlax.fdat.5[temp,1]
f1.l = vowlax.l[temp]
table(f1.l)
E I a
41 85 63

Each of these can be thought of as vowel tokens in a bag: if a token is pulled out of the bag at
random, then the prior probability that the token’s label is /a/ is 63 divided by the total number of
tokens (i.e. divided by 41+85+63 = 189). Thus the prior probabilities for these three vowel
categories are given by:

prior = prop.table(table(f1.l))
prior
E I a
0.2169312 0.4497354 0.3333333

So there is a greater prior probability of retrieving /ɪ/ simply because of its greater proportion
compared with the other two vowels. The conditional probabilities have to be calculated
separately for each vowel class, given the evidence that F1 = 500 Hz. As discussed in the
preceding section, these can be obtained with the dnorm() function. In the instructions below,
a for-loop is used to obtain each of the three conditional probabilities, one for each category:

cond = NULL
for(j in names(prior)){
 temp = f1.l==j
 mu = mean(f1[temp]); sig = sd(f1[temp])
 y = dnorm(500, mu, sig)

 231

 cond = c(cond, y)
 }
names(cond) = names(prior)
cond
E I a
0.0063654039 0.0004115088 0.0009872096

The posterior probability that an unknown vowel could be e.g., /a/ given the evidence that its F1
has been measured to be 500 Hz can now be calculated with the formula given in (2) in 9.1. By
substituting the values into (2), this posterior probability, denoted by p(a |F1 = 500), and with the
meaning "the probability that the vowel could be /a/, given the evidence that F1 is 500 Hz", is
given by:

 (3)

The denominator in (3) looks fearsome but closer inspection shows that it is nothing more than
the sum of the conditional probabilities multiplied by the prior probabilities for each of the three
vowel classes. The denominator is therefore sum(cond * prior). The
numerator in (3) is the conditional probability for /a/ multiplied by the prior probability for /a/. In
fact, the posterior probabilities for all categories, p(ɛ|F1 = 500), p(ɪ|F1 = 500), and p(a|F1 = 500)
can be calculated in R in one step as follows:

post = (cond * prior)/sum(cond * prior)
post
E I a
0.72868529 0.09766258 0.17365213

As explained in 9.1, these sum to 1 (as sum(post) confirms). Thus, the unknown vowel with
F1 = 500 Hz is categorised as /ɛ/ because, as the above calculation shows, this is the vowel class
with the highest posterior probability, given the evidence that F1 = 500 Hz.
 All of the above calculations of posterior probabilities can be accomplished with qda()
and the associated predict() functions in the MASS library for carrying out a quadratic
discriminant analysis (you may need to enter library(MASS) to access these functions).
Quadratic discriminant analysis models the probability of each class as a normal distribution and
then categorises unknown tokens based on the greatest posterior probabilities (Srivastava et al,
2007): in other words, much the same as the procedure carried out above.

The first step in using this function involves training (see 9.1 for the distinction between
training and testing) in which normal distributions are fitted to each of the three vowel classes
separately and in which they are also adjusted for the prior probabilities. The second step is the
testing stage in which posterior probabilities are calculated (in this case, given that an unknown
token has F1 = 500 Hz).

The qda() function expects a matrix as its first argument, but f1 is a vector: so in order
to make these two things compatible, the cbind() function is used to turn the vectors into one-
dimensional matrices at both the training and testing stages. The training stage, in which the
prior probabilities and class means are calculated, is carried out as follows:

f1.qda = qda(cbind(f1), f1.l)

The prior probabilities obtained in the training stage are:

€

p(a | F1= 500) =
p(F1= 500 | a)p(a)

p(F1= 500 | E)p(E)+ p(F1= 500 | a)p(a)+ p(F1= 500 | I)p(I)

 232

f1.qda$prior
 E I a
0.2169312 0.4497354 0.3333333

which are the same as those calculated earlier. The calculation of the posterior probabilities,
given the evidence that F1 = 500 Hz, forms part of the testing stage. The predict() function
is used for this purpose, in which the first argument is the model calculated in the training stage
and the second argument is the value to be classified:

pred500 = predict(f1.qda, cbind(500))

The posterior probabilities are given by:

pred500$post
E I a
0.7286853 0.09766258 0.1736521

which are also the same as those obtained earlier. The most probable category, E, is given by:

pred500$class
E
Levels: E I a

 This type of single-parameter classification (single parameter because there is just one
parameter, F1) results in n-1 decision points for n categories (thus 2 points given that there are
three vowel categories in this example): at some F1 value, the classification changes from /a/ to
/ɛ/ and at another from /ɛ/ to /ɪ/. In fact, these decision points are completely predictable from
the points at which the product of the prior and conditional probabilities for the classes overlap
(the denominator can be disregarded in this case, because, as (2) and (3) show, it is the same for
all three vowel categories). For example, a plot of the product of the prior and the conditional
probabilities over a range from 250 Hz to 800 Hz for /ɛ/is given by:

Fig. 9.5 about here

temp = vowlax.spkr == "67" & vowlax.l != "O"
f1 = vowlax.fdat.5[temp,1]
f1.l = vowlax.l[temp]
f1.qda = qda(cbind(f1), f1.l)

temp = f1.l=="E"; mu = mean(f1[temp]); sig = sd(f1[temp])
curve(dnorm(x, mu, sig)* f1.qda$prior[1], 250, 800)

Essentially the above two lines are used inside a for-loop in order to superimpose the three
distributions of the prior multiplied by the conditional probabilities, one per vowel category, on
each other (Fig. 9.5):

xlim = c(250,800); ylim = c(0, 0.0035); k = 1; cols =
c("grey","black","lightblue")
for(j in c("a", "E", "I")){
 temp = f1.l==j
 mu = mean(f1[temp]); sig = sd(f1[temp])
 curve(dnorm(x, mu, sig)* f1.qda$prior[j],xlim=xlim,
ylim=ylim, col=cols[k], xlab=" ", ylab="", lwd=2, axes=F)
 par(new=T)

 233

 k = k+1
}
axis(side=1); axis(side=2); title(xlab="F1 (Hz)",
ylab="Probability density")
par(new=F)

From Fig. 9.5, it can be seen that the F1 value at which the probability distributions for /ɪ/ and
/ɛ/ bisect each other is at around 460 Hz while for /ɛ/ and /a/ it is about 100 Hz higher.
Thus any F1 value less than (approximately) 460 Hz should be classified as /ɪ/; any value
between 460 and 567 Hz as /ɛ/; and any value greater than 567 Hz as /a/. A classification of
values at 5 Hz intervals between 445 Hz and 575 Hz confirms this:

Generate a sequence of values at 5 Hz intervals between 445 and 575 Hz
vec = seq(445, 575, by = 5)

Classify these using the same model established earlier
vec.pred = predict(f1.qda, cbind(vec))

This is done to show how each of these values was classified by the model
names(vec) = vec.pred$class
vec
I I I E E E E E E E E E E E E E E E E E E
445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545
 E E E E a a
550 555 560 565 570 575

9.5 Two-parameters: the bivariate normal distribution and ellipses
So far, classification has been based on a single parameter, F1. However, the mechanisms

for extending this type of classification to two (or more dimensions) are already in place.
Essentially, exactly the same formula for obtaining posterior probabilities is used, but in this case
the conditional probabilities are based on probability densities derived from the bivariate (two
parameters) or multivariate (multiple parameters) normal distribution. In this section, a few
details will be given of the relationship between the bivariate normal and ellipse plots that have
been used at various stages in this book; in the next section, examples are given of classifications
from two or more parameters.

Fig. 9.6 about here

 In the one-parameter classification of the previous section, it was shown how the

population mean and standard deviation could be estimated from the mean and standard
deviation of the sample for each category, assuming a sufficiently large sample size and that
there was no evidence to show that the data did not follow a normal distribution. For the two-
parameter case, there are five population parameters to be estimated from the sample: these are
the two population means (one for each parameter), the two population standard deviations, and
the population correlation coefficient between the parameters. A graphical interpretation of
fitting a bivariate normal distribution for some F1 × F2 data for [æ] is shown in Fig. 9.6. On the
left is the sample of data points and on the right is a two dimensional histogram showing the
count in separate F1 × F2 bins arranged over a two-dimensional grid. A bivariate normal
distribution that has been fitted to these data is shown in Fig. 9.7. The probability density of any
point in the F1 × F2 plane is given by the height of the bivariate normal distribution above the
two-dimensional plane: this is analogous to the height of the bell-shaped normal distribution for
the one-dimensional case. The highest probability (the apex of the bell) is at the point defined by
the mean of F1 and by the mean of F2: this point is sometimes known as the centroid.

 234

Fig. 9.7 about here

The relationship between a bivariate normal and the two-dimensional scatter can also be

interpreted in terms of an ellipse. An ellipse is any horizontal slice cut from the bivariate normal
distribution, in which the cut is made at right angles to the probability axis. The lower down on
the probability axis that the cut is made – that is, the closer the cut is made to the base of the F1
× F2 plane, the greater the area of the ellipse and the more points of the scatter that are included
within the ellipse's outer boundary or circumference. If the cut is made at the very top of the
bivariate normal distribution, the ellipse is so small that it includes only the centroid and a few
points around it. If on the other hand the cut is made very close to the F1 × F2 base on which the
probability values are built, then the ellipse may include almost the entire scatter.

The size of the ellipse is usually measured in ellipse standard deviations from the
mean. There is a direct analogy here to the single parameter case. Recall from Fig. 9.3 that the
number of standard deviations can be used to calculate the probability that a token falls within a
particular range of the mean. So too with ellipse standard deviations. When an ellipse is drawn
with a certain number of standard deviations, then there is an associated probability that a token
will fall within its circumference. The ellipse in Fig. 9.8 is of F2 × F1 data of [æ] plotted at two
standard deviations from the mean and this corresponds to a cumulative probability of 0.865: this
is also the probability of any vowel falling inside the ellipse (and so the probability of it falling
beyond the ellipse is 1 – 0.865 = 0.135). Moreover, if [æ] is normally, or nearly normally,
distributed on F1 × F2 then, for a sufficiently large sample size, approximately 0.865 of the
sample should fall inside the ellipse. In this case, the sample size was 140, so roughly 140 ⋅
0.865 ≈ 121 should be within the ellipse, and 19 tokens should be beyond the ellipse's
circumference (in fact, there are 20 [æ] tokens outside the ellipse's circumference in Fig. 9.8)62.

Fig. 9.8 about here

Whereas in the one-dimensional case, the association between standard-deviations and

cumulative probability was given by qnorm(), for the bivariate case this relationship is
determined by the square root of the quantiles from the χ2 distribution with two degrees of
freedom. In R, this is given by qchisq(p, df) where the two arguments are the cumulative
probability and the degrees of freedom respectively. Thus just under 2.45 ellipse standard
deviations correspond to a cumulative probability of 0.95, as the following shows63:

sqrt(qchisq(0.95, 2))
2.447747

The function pchisq() provides the same information but in the other direction. Thus the
cumulative probability associated with 2.447747 ellipse standard deviations from the mean is
given by:

pchisq(2.447747^2, 2)
0.95

An ellipse is a flattened circle and it has two diameters, a major axis and a minor axis
(Fig. 9.8). The point at which the major and minor axes intersect is the distribution's centroid.
One definition of the major axis is that it is the longest radius that can be drawn between the

62 The square of the number of ellipse standard-deviations from the mean is equivalent to the Mahalanobis distance.
63 In fact, the χ2 distribution with 1 degree of freedom gives the corresponding values for the single parameter
normal curve. For example, the number of standard deviations for a normal curve on either side of the mean
corresponding to a cumulative probability of 0.95 is given by either qnorm(0.975) or sqrt(qchisq(0.95, 1)).

 235

centroid and the ellipse circumference. The minor axis is the shortest radius and it is always at
right-angles to the major axis. Another definition that will be important in the analysis of data
reduction technique in section 9.7 is that the major ellipse axis is the first principal component
of the data.

Fig. 9.9 about here

The first principal component is a straight line that passes through the centroid of the scatter that
explains most of the variance of the data. A graphical way to think about what this means is to
draw any line through the scatter such that it passes through the scatter's centroid. We are then
going to rotate our chosen line and all the data points about the centroid in such a way that it
ends up parallel to the x-axis (parallel to F2-axis for these data). If the variance of F2 is measured
before and after rotation, then the variance will not be the same: the variance might be smaller or
larger after the data has been rotated in this way. The first principal component, which is also the
major axis of the ellipse, can now be defined as the line passing through the centroid that
produces the greatest amount of variance on the x-axis variable (on F2 for these data) after this
type of rotation has taken place.

If the major axis of the ellipse is exactly parallel to the x-axis (as in the right panel of Fig.
9.9), then there is an exact equivalence between the ellipse standard deviation and the standard
deviations of the separate parameters. Fig. 9.10 shows the rotated two standard deviation ellipse
from the right panel of Fig. 9.9 aligned with a two standard deviation normal curve of the same
F2 data after rotation. The mean of F2 is 1599 Hz and the standard deviation of F2 is 92 Hz. The
major axis of the ellipse extends, therefore, along the F2 parameter at ± 2 standard deviations
from the mean i.e., between 1599 + (2 ⋅ 92) = 1783 Hz and 1599 - (2 ⋅ 92) = 1415 Hz.
Similarly, the minor axis extends 2 standard deviations in either direction from the mean of the
rotated F1 data. However, this relationship only applies as long as the major axis is parallel to
the x-axis. At other inclinations of the ellipse, the lengths of the major and minor axes depend on
a complex interaction between the correlation coefficient, r, and the standard deviation of the
two parameters.

Fig. 9.10 about here

In this special case in which the major axis of the ellipse is parallel to the x-axis, the two
parameters are completely uncorrelated or have zero correlation. As discussed in the next
section on classification, the less two parameters are correlated with each other, the more
information they can potentially contribute to the separation between phonetic classes. If on the
other hand two parameters are highly correlated, then it means that one parameter can to a very
large extent be predicted from the other: they therefore tend to provide less useful information
for distinguishing between phonetic classes than uncorrelated ones.

9.6 Classification in two dimensions

The task in this section will be to carry out a probabilistic classification at the temporal
midpoint of five German fricatives [f, s, ʃ, ç, x] from a two-parameter model of the first two
spectral moments (which were shown to be reasonably effective in distinguishing between
fricatives in the preceding Chapter). The spectral data extends from 0 Hz to 8000 Hz and was
calculated at 5 ms intervals with a frequency resolution of 31.25 Hz. The following objects are
available in the Emu-R library:

fr.dft Spectral trackdata object containing spectral data between
 the segment onset and offset at 5 ms intervals
fr.l A vector of phonetic labels
fr.sp A vector of speaker labels

 236

The analysis will be undertaken using the first two spectral moments calculated at the fricatives'
temporal midpoints over the range 200 Hz - 7800 Hz. The data are displayed as ellipses in Fig.
9.11 on these parameters for each of the four fricative categories and separately for the two
speakers. The commands to create these plots in Fig. 9.11 are as follows:

Extract the spectral data at the temporal midpoint
fr.dft5 = dcut(fr.dft, .5, prop=T)

Calculate their spectral moments
fr.m = fapply(fr.dft5[,200:7800], moments, minval=T)

Take the square root of the 2nd spectral moment so that the values are within sensible ranges
fr.m[,2] = sqrt(fr.m[,2])

Give the matrix some column names
colnames(fr.m) = paste("m", 1:4, sep="")

par(mfrow=c(1,2))
xlab = "1st spectral moment (Hz)"; ylab="2nd spectral moment
(Hz)"

Logical vector to identify the male speaker
temp = fr.sp == "67"
eplot(fr.m[temp,1:2], fr.l[temp], dopoints=T, ylab=ylab,
xlab=xlab)
eplot(fr.m[!temp,1:2], fr.l[!temp], dopoints=T, xlab=xlab)

Fig. 9.11 about here

As discussed in section 9.5, the ellipses are horizontal slices each taken from a bivariate normal
distribution and the ellipse standard-deviations have been set to the default such that each
includes at least 95% of the data points. Also, as discussed earlier, the extent to which the
parameters are likely to provide independently useful information is influenced by how
correlated they are. For the male speaker, cor.test(fr.m[temp,1], fr.m[temp,2])
shows both that the correlation is low (r = 0.13) and not significant; for the female speaker, it is
significant although still quite low (r = -0.29). Thus the 2nd spectral moment may well provide
information beyond the first that might be useful for fricative classification and, as Fig. 9.11
shows, it separates [x, s, f] from the other two fricatives reasonably well in both speakers,
whereas the first moment provides a fairly good separation within [x, s, f].

The observations can now be quantified probabilistically using the qda() function in
exactly the same way for training and testing as in the one-dimensional case:

Train on the first two spectral moments, speaker 67
temp = fr.sp == "67"
x.qda = qda(fr.m[temp,1:2], fr.l[temp])

Classification is accomplished by calculating whichever of the five posterior probabilities is the
highest, using the formula in (2) in an analogous way to one-dimensional classification discussed
in section 9.4. Consider then a point [m1, m2] in this two-dimensional moment space with
coordinates [4500, 2000]. Its position in relation to the ellipses in the left panel of Fig. 9.11
suggests that it is likely to be classified as /s/ and this is indeed the case:

 237

unknown = c(4500, 2000)
result = predict(x.qda, unknown)

Posterior probabilities
round(result$post, 5)
C S f s x
0.0013 0.0468 0 0.9519 0

Classification label:
result$class
s
Levels: C S f s x

In the one-dimensional case, it was shown how the classes were separated by a single point that
marked the decision boundary between classes (Fig. 9.5). For two dimensional classification, the
division between classes is not a point but one of a family of quadratics (and hyperquadratics for
higher dimensions) that can take on forms such as planes, ellipses, parabolas of various kinds:
see Duda et al, 2001 Chapter 2 for further details)64. This becomes apparent in classifying a large
number of points over an entire two-dimensional surface that can be done with the
classplot() function in the Emu-R library: its arguments are the model on which the data
was trained (maximally 2 dimensional) and the range over which the points are to be classified.
The result of such a classification for a dense region of points in a plane with similar ranges as
those of the ellipses in Fig. 9.11 is shown in the left panel of Fig 9.12, while the right panel
shows somewhat wider ranges. The first of these was created as follows:

classplot(x.qda, xlim=c(3000, 5000), ylim=c(1900, 2300),
xlab="First moment (Hz)", ylab="Second moment (Hz)")
text(4065, 2060, "C", col="white"); text(3820, 1937, "S");
text(4650, 2115, "s"); text(4060, 2215, "f"); text(3380, 2160,
"x")

Fig. 9.12 about here

It is evident from the left panel of Fig. 9.12 that points around the edge of the region are
classified (clockwise from top left) as [x, f, s ,ʃ] with the region for the palatal fricative [ç] (the
white space) squeezed in the middle. The right panel of Fig. 9.12, which was produced in exactly
the same way except with ylim = c(1500, 3500), shows that these classifications do not
necessarily give contiguous regions, especially for regions far away from the class centroids: as
the right panel of Fig. 9.12 shows, [ç] is split into two by [ʃ] while the territories for /s/ are also
non-contiguous and divided by /x/. The reason for this is to a large extent predictable from the
orientation of the ellipses. Thus since, as the left panel of Fig. 9.11 shows, the ellipse for [ç] has
a near vertical orientation, then points below it will be probabilistically quite close to it. At the
same time, there is an intermediate region at around m2 = 1900 Hz at which the points are
nevertheless probabilistically closer to [ʃ], not just because they are nearer to the [ʃ]-centroid,
but also because the orientation of the [ʃ] ellipse in the left panel of Fig. 9.11 is much closer to
horizontal. One of the important conclusions that emerges from Figs. 9.10 and 9.11 is that it is
not just the distance to the centroids that is important for classification (as it would be in a
classification based on whichever Euclidean distance to the centroids was the least), but also the

64 All of the above commands including those to classplot() can be repeated by substituting qda() with
lda(), the function for linear discriminant analysis which is a Gaussian classification technique based on a shared
covariance across the classes. The decision boundaries between the classes from LDA are straight lines as the
reader can verify with the classplot() function.

 238

size and orientation of the ellipses, and therefore the probability distributions, that are established
in the training stage of Gaussian classification.
 As described earlier, a closed test involves training and testing on the same data and for
this two dimensional spectral moment space, a confusion matrix and 'hit-rate' for the male
speaker’s data is produced as follows:

Train on the first two spectral moments, speaker 67
temp = fr.sp == "67"
x.qda = qda(fr.m[temp,1:2], fr.l[temp])

Classify on the same data
x.pred = predict(x.qda)

Equivalent to the above
x.pred = predict(x.qda, fr.m[temp,1:2])

Confusion matrix
x.mat = table(fr.l[temp], x.pred$class)
x.mat
 C S f s x
 C 17 3 0 0 0
 S 3 17 0 0 0
 f 1 0 16 1 2
 s 0 0 0 20 0
 x 0 0 1 0 19

The confusion matrix could then be sorted on place of articulation as follows:

m = match(c("f", "s", "S", "C", "x"), colnames(x.mat))
x.mat[m,m]
x.l f s S C x
 f 16 1 0 1 2
 s 0 20 0 0 0
 S 0 0 17 3 0
 C 0 0 3 17 0
 x 1 0 0 0 19

The correct classifications are in the diagonals and the misclassifications in the other cells. Thus
16 [f] tokens were correctly classified as /f/, one was misclassified as /s/, and so on. The hit-rate
per class is obtained by dividing the scores in the diagonal by the total number of tokens in the
same row:

diag(x.mat)/apply(x.mat, 1, sum)
C S f s x
0.85 0.85 0.80 1.00 0.95

The total hit rate across all categories is the sum of the scores in the diagonal divided by the total
scores in the matrix:

sum(diag(x.mat))/sum(x.mat)
0.89

The above results show, then, that based on a Gaussian classification in the plane of the first two
spectral moments at the temporal midpoint of fricatives, there is an 89% correct separation of the
fricatives for the data shown in the left panel of Fig. 9.11 and, compatibly with that same Figure,
the greatest confusion is between [ç] and [ʃ].

 239

 The score of 89% is encouragingly high and it is a completely accurate reflection of the
way in which the data in the left panel of Fig. 9.11 are distinguished after a bivariate normal
distribution has been fitted to each class. At the same time, the scores obtained from a closed test
of this kind can be, and often are, very misleading because of the risk of over-fitting the training
model. When over-fitting occurs, which is more likely when training and testing are carried out
in increasingly higher dimensional spaces, then the classification scores and separation may well
be nearly perfect, but only for the data on which the model was trained. For example, rather than
fitting the data with ellipses and bivariate normal distributions, we could imagine an algorithm
which might draw wiggly lines around each of the classes in the left panel of Fig. 9.11 and
thereby achieve a considerably higher separation of perhaps nearer 99%. However, this type of
classification would in all likelihood be entirely specific to this data, so that if we tried to
separate the fricatives in the right panel of Fig. 9.11 using the same wiggly lines established in
the training stage, then classification would almost certainly be much less accurate than from the
Gaussian model considered so far: that is, over-fitting means that the classification model does
not generalise beyond the data that it was trained on.
 An open test, in which the training is carried out on the male data and classification on
the female data in this example, can be obtained in an analogous way to the closed test
considered earlier (the open test could be extended by subsequently training on the female data
and testing on the male data and summing the scores across both classifications):

Train on male data, test on female data.
y.pred = predict(x.qda, fr.m[!temp,1:2])

Confusion matrix.
y.mat = table(fr.l[!temp], y.pred$class)
y.mat
 C S f s x
 C 15 5 0 0 0
 S 12 2 3 3 0
 f 4 0 13 0 3
 s 0 0 1 19 0
 x 0 0 0 0 20

Hit-rate per class.:
diag(y.mat)/apply(y.mat, 1, sum)
C S f s x
0.75 0.10 0.65 0.95 1.00

Total hit-rate:
sum(diag(y.mat))/sum(y.mat)
0.69

The total correct classification has now fallen by 20% compared with the closed test to 69% and
the above confusion matrix reflects more accurately what we see in Fig. 9.11: that the confusion
between [ʃ] and [ç] in this two-dimensional spectral moment space is really quite extensive.

9.7 Classifications in higher dimensional spaces

The same mechanism can be used for carrying out Gaussian training and testing in higher
dimensional spaces, even if spaces beyond three dimensions are impossible to visualise.
However, as already indicated there is an increasingly greater danger of over-fitting as the
number of dimensions increases: therefore, if the dimensions do not contribute independently
useful information to category separation, then the hit-rate in an open test is likely to go down.
Consider as an illustration of this point the result of training and testing on all four spectral

 240

moments. This is done for the same data as above, but to save repeating the same instructions,
the confusion matrix for a closed test is obtained for speaker 67 in one line as follows:

temp = fr.sp == "67"
table(fr.l[temp], predict(qda(fr.m[temp,], fr.l[temp]),
fr.m[temp,])$class)
 C S f s x
 C 20 0 0 0 0
 S 0 20 0 0 0
 f 0 0 19 0 1
 s 0 0 0 20 0
 x 0 0 2 0 18

Here then, there is an almost perfect separation between the categories, and the total hit rate is
97%. The corresponding open test on this four dimensional space in which, as before, training
and testing are carried out on the male and female data respectively is given by the following
command:

table(fr.l[!temp], predict(qda(fr.m[temp,], fr.l[temp]),
fr.m[!temp,])$class)
 C S f s x
 C 17 0 0 3 0
 S 7 7 1 1 4
 f 3 0 11 0 6
 s 0 0 0 20 0
 x 0 0 1 0 19

Here the hit-rate is 74%, a more modest 5% increase on the two-dimensional space. It seems
then that including m3 and m4 do provide only a very small amount of additional information for
separating between these fricatives.
 An inspection of the correlation coefficients between the four parameters can give some
indication of why this is so. Here these are calculated across the male and female data together
(see section 9.9. for a reminder of how the object fr.m was created):
round(cor(fr.m), 3)

[,1] [,2] [,3] [,4]
[1,] 1.000 -0.053 -0.978 0.416
[2,] -0.053 1.000 -0.005 -0.717
[3,] -0.978 -0.005 1.000 -0.429
[4,] 0.416 -0.717 -0.429 1.000

The correlation in the diagonals is always 1 because this is just the result of the parameter being
correlated with itself. The off-diagonals show the correlations between different parameters. So
the second column of row 1 shows that the correlation between the first and second moments is
almost zero at -0.053 (the result is necessarily duplicated in row 2, column 1, the correlation
between the second moment and the first). In general, parameters are much more likely to
contribute independently useful information to class separation if they are uncorrelated with each
other. This is because correlation means predictability: if two parameters are highly correlated
(positively or negatively), then one is more or less predictable from another. But in this case, the
second parameter is not really contributing any new information beyond the first and so will not
improve class separation.
 For this reason, the correlation matrix above shows that including both the first and third
moments in the classification is hardly likely to increase class separation, given that the
correlation between these parameters is almost complete (-0.978). This comes about for the
reasons discussed in Chapter 8: as the first moment, or spectral centre of gravity, shifts up and
down the spectrum, then the spectrum becomes left- or right-skewed accordingly and, since m3 is

 241

a measure of skew, m1 and m3 are likely to be highly correlated. There may be more value in
including m4, however, given that the correlation between m1 and m4 is moderate at 0.416; on the
other hand, m2 and m4 for this data are quite strongly negatively correlated at -0.717, so perhaps
not much more is to be gained as far as class separation is concerned beyond classifications from
the first two moments. Nevertheless, it is worth investigating whether classifications from m1,
m2, and m4 give a better hit-rate in an open-test than from m1 and m2 alone:

Train on male data, test on female data in a 3D-space formed from m1, m2, and m4
temp = fr.sp == "67"
res = table(fr.l[!temp], predict(qda(fr.m[temp,-3], fr.l[temp]),
fr.m[!temp,-3])$class)

Class hit-rate
diag(res)/apply(res, 1, sum)
C S f s x
0.95 0.40 0.75 1.00 1.00

Overall hit rate
sum(diag(res))/sum(res)
0.82

In fact, including m4 does make a difference: the open-test hit-rate is 82% compared with 69%
obtained from the open test classification with m1 and m2 alone. But the result is also interesting
from the perspective of over-fitting raised earlier: notice that this open test score from three
moments is higher than from all four moments together which shows not only that there is
redundant information as far as class separation is concerned in the four-parameter space, but
also that the inclusion of this redundant information leads to an over-fit and therefore a poorer
generalisation to new data.
 The technique of principal components analysis (PCA) can sometimes be used to
remove the redundancies that arise through parameters being correlated with each other. In PCA,
a new set of dimensions is obtained such that they are orthogonal to, or uncorrelated with, each
other and also such that the lower dimensions 'explain' or account for most of the variance in the
data (see Figs. 9.9 and 9.10 for a graphical interpretation of 'explanation of the variance'). The
new rotated dimensions derived from PCA are weighted linear combinations of the old ones and
the weights are known as the eigenvectors. The relationship between original dimensions, rotated
dimensions, and eigenvectors can be demonstrated by applying PCA to the spectral moments
data from the male speaker using prcomp(). Before applying PCA, the data should be
converted to z-scores by subtracting the mean (which is achieved with the default argument
center=T) and by dividing by the standard-deviation65 (the argument scale=T needs to be
set). Thus to apply PCA to the male speaker's spectral moment data:

temp = fr.sp == "67"
p = prcomp(fr.m[temp,], scale=T)

The eigenvectors or weights that are used to transform the original data are stored in
p$rotation which is a 4 × 4 matrix (because there were four original dimensions to which
PCA was applied). The rotated data points themselves are stored in p$x and there is the same
number of dimensions (four) as those in the original data to which PCA was applied.

The first new rotated dimension is obtained by multiplying the weights in column 1 of
p$rotation with the original data and then summing the result (and it is in this sense that the

65 z-score normalisation prior to PCA should be applied because otherwise, as discussed in Harrington & Cassidy
(1999) any original dimension with an especially high variance may exert too great an influence on the outcome.

 242

new PCA-dimensions are weighted linear combinations of the original ones). In order to
demonstrate this, we first have to carry out the same z-score transformation that was applied by
PCA to the original data:

Function to carry out z-score normalisation
zscore = function(x)(x-mean(x))/sd(x)

z-score normalised data
xn = apply(fr.m[temp,], 2, zscore)

The value on the rotated first dimension for, say, the 5th segment is stored in p$x[5,1] and is
equivalently given by a weighted sum of the original values, thus:

sum(xn[5,] * p$rotation[,1])

The multiplications and summations for the entire data are more simply derived with matrix
multiplication using the %*% operator66. Thus the rotated data in p$x is equivalently given by:

xn %*% p$rotation

The fact that the new rotated dimensions are uncorrelated with each other is evident by applying
the correlation function, as before:

round(cor(p$x), 8)

PC1 PC2 PC3 PC4
PC1 1 0 0 0
PC2 0 1 0 0
PC3 0 0 1 0
PC4 0 0 0 1

The importance of the rotated dimensions as far as explaining the variance is concerned is given
by either plot(p) or summary(p). The latter returns the following:

Importance of components:
 PC1 PC2 PC3 PC4
Standard deviation 1.455 1.290 0.4582 0.09236
Proportion of Variance 0.529 0.416 0.0525 0.00213
Cumulative Proportion 0.529 0.945 0.9979 1.00000

The second line shows the proportion of the total variance in the data that is explained by each
rotated dimension, and the third line adds this up cumulatively from lower to higher rotated
dimensions. Thus, 52.9% of the variance is explained alone by the first rotated dimension, PC1,
and, as the last line shows, just about all of the variance (99%) is explained by the first three
rotated dimensions. This result simply confirms what had been established earlier: that there is
redundant information in all four dimensions as far separating the points in this moments-space
are concerned.
 Rather than pursue this example further, we will explore a much higher dimensional
space that is obtained from summed energy values in Bark bands calculated over the same
fricative data. The following commands make use of some of the techniques from Chapter 8 to
derive the Bark parameters. Here, a filter-bank approach is used in which energy in the spectrum
is summed in widths of 1 Bark with centre frequencies extending from 2-20 Bark: that is, the
first parameter contains summed energy over the frequency range 1.5 - 2.5 Bark, the next

66 See Harrington & Cassidy, 1999, Ch.9 and the Appendix therein for further details of matrix operations.

 243

parameter over the frequency range 2.5 - 3.5 Bark and so on up to the last parameter that has
energy from 19.5 - 20.5 Bark. As bark(c(1.5, 20.5), inv=T) shows, this covers the
spectral range from 161-7131 Hz (and reduces it to 19 values). The conversion from Hz to Bark
is straightforward:

fr.bark5 = bark(fr.dft5)

and, for a given integer value of j, the following line is at the core of deriving summed energy
values in Bark bands:

fapply(fr.bark5[,(j-0.5):(j+0.5)], sum, power=T)

So when e.g., j is 5, then the above has the effect of summing the energy in the spectrum
between 4.5 and 5.5 Bark. This line is put inside a for-loop in order to extract energy values in
Bark bands over the spectral range of interest and the results are stored in the matrix fr.bs5:

fr.bs5 = NULL
for(j in 2:20){
 sumvals = fapply(fr.bark5[,(j-0.5):(j+0.5)], sum, power=T)
 fr.bs5 = cbind(fr.bs5, sumvals)
}
colnames(fr.bs5) = paste("Bark", 2:20)

fr.bs5 is now a matrix with the same number of rows as in the original spectral matrix
fr.dft and with 19 columns (so whereas for the spectral-moment data, each fricative was
represented by a point in a four-dimensional space, for these data, each fricative is a point in a
19-dimensional space).
 We could now carry out a Gaussian classification over this 19-dimensional space as
before although this is hardly advisable, given that this would almost certainly produce extreme
over-fitting for the reasons discussed earlier. The alternative solution, then, is to use PCA to
compress much of the non-redundant information into a smaller number of dimensions.
However, in order to maintain the distinction between training and testing - that is between the
data of the male and female speakers in these examples - PCA really should not be applied
across the entire data in one go. This is because a rotation matrix (eigenvectors) would be
derived based on the training and testing set together and, as a result, the training and testing data
are not strictly separated. Thus, in order to maintain the strict separation between training and
testing sets, PCA will be applied to the male speaker's data; subsequently, the rotation-matrix
that is derived from PCA will be used to rotate the data for the female speaker. The latter
operation can be accomplished simply with the generic function predict() which will have
the effect of applying z-score normalisation to the data from the female speaker. This operation
is accomplished by subtracting the male speaker's means and dividing by the male speaker's
standard-deviations (because this is how the male speaker's data was transformed before PCA
was applied):

Separate out the male and female's Bark data
temp = fr.sp == "67"

Apply PCA to the male speaker's z-normalised data
xb.pca = prcomp(fr.bs5[temp,], scale=T)

Rotate the female speaker's data using the eigenvectors and z-score
parameters from the male speaker
yb.pca = predict(xb.pca, fr.bs5[!temp,])

 244

Before carrying out any classifications, the summary() function is used as before to get an
overview of the extent to which the variance in the data is explained by the rotated dimensions
(the results are shown here for just the first eight dimensions, and the scores are rounded to three
decimal places):

sum.pca = summary(xb.pca)
round(sum.pca$im[,1:8], 3)
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Standard deviation 3.035 2.110 1.250 1.001 0.799 0.759 0.593 0.560
Proportion of Variance 0.485 0.234 0.082 0.053 0.034 0.030 0.019 0.016
Cumulative Proportion 0.485 0.719 0.801 0.854 0.887 0.918 0.936 0.953

Thus, 48.5% of the variance is explained by the first rotated dimension, PC1, alone and just over
95% by the first eight dimensions: this result suggests that higher dimensions are going to be of
little consequence as far as distinguishing between the fricatives is concerned.

We can test this by carrying out an open test Gaussian classification on any number of
rotated dimensions using the same functions that were applied to spectral moments. For example,
the total hit-rate (of 76%) from training and testing on the first six dimensions of the rotated
space is obtained from:

Train on the male speaker's data
n = 6
xb.qda = qda(xb.pca$x[,1:n], fr.l[temp])

Test on the female speaker's data
yb.pred = predict(xb.qda, yb.pca[,1:n])
z = table(fr.l[!temp], yb.pred$class)
sum(diag(z))/sum(z)

Fig. 9.13 shows the total hit-rate when training and testing were carried out successively on the
first 2, first 3, …all 19 dimensions and it was produced by putting the above lines inside a for-
loop, thus:

scores = NULL
for(j in 2:19){
 xb.qda = qda(xb.pca$x[,1:j], fr.l[temp])
 yb.pred = predict(xb.qda, yb.pca[,1:j])
 z = table(fr.l[!temp], yb.pred$class)
 scores = c(scores, sum(diag(z))/sum(z))
}

plot(2:19, scores, type="b", xlab="Rotated dimensions 2-n",
ylab="Total hit-rate (proportion)")

Fig. 9.13 about here

Apart from providing another very clear demonstration of the damaging effects of over-fitting,
the total hit-rate, which peaks when training and testing are carried out on the first six rotated
dimensions, reflects precisely what was suggested by examining the proportion of variance
examined earlier: that there is no more useful information for distinguishing between the data-
points and therefore fricative categories beyond this number of dimensions.

9.8 Classifications in time

 245

 All of the above classifications so far have been static, because they have been based on
information at a single point in time. For fricative noise spectra this may be appropriate under the
assumption that the spectral shape of the fricative during the noise does not change appreciably
in time between its onset and offset. However, a static classification from a single time slice
would obviously not be appropriate for the distinction between monophthongs and diphthongs
nor perhaps for differentiating the place of articulation from the burst of oral stops, given that
there may be dynamic information that is important for their distinction (Kewley-Port, 1982;
Lahiri et al, 1984). An example of how dynamic information can be parameterised and then
classified is worked through in the next sections using a corpus of oral stops produced in initial
position in German trochaic words.
 It will be convenient, by way of an introduction to the next section, to relate the time-
based spectral classifications of consonants with vowel formants, discussed briefly in Chapter 6
(e.g., Fig. 6.21). Consider a vowel of duration 100 ms with 20 first formant frequency values at
intervals of 5 ms between the vowel onset and offset. As described in Chapter 6, the entire F1
time-varying trajectory can be reduced to just three values either by fitting a polynomial or by
using the discrete-cosine-transformation (DCT): in either case, the three resulting values express
the mean, the slope, and the curvature of F1 as a function of time. The same can be done to the
other two time-varying formants, F2 and F3. Thus after applying the DCT to each formant
number separately, a 100 ms vowel, parameterized in raw form by triplets of F1-F3 every 5 ms
(60 values in total) is converted to a single point in a nine-dimensional space.
 The corresponding data reduction of spectra is the same, but it needs one additional step
that precedes this compression in time. Suppose an /s/ is of duration 100 ms and there is a
spectral slice every 5 ms (thus 20 spectra between the onset and offset of the /s/). We can use the
DCT in the manner discussed in Chapter 8 to compress each spectrum, consisting originally of
perhaps 129 dB values (for a 256 point DFT) to 3 values. As a result of this operation, each
spectrum is represented by three DCT or cepstral (see 8.4) coefficients which can be denoted by
k0, k1, k2. It will now be helpful to think of k0, k1, k2 as analogous to F1-F3 in the case of the
vowel. Under this interpretation, /s/ is parameterized by a triplet of DCT coefficients every 5 ms
in the same way that the vowel in raw form is parameterized by a triplet of formants every 5 ms.
Thus there is time-varying k0, time-varying k1, and time-varying k2 between the onset and offset
of /s/ in the same way that there is time-varying F1, time-varying F2, and time-varying F3
between the onset and offset of the vowel. The final step involves applying the DCT to compress
separately each such time-varying parameter to three values, as summarised in the preceding
paragraph: thus after this second transformation, k0 as a function of time will be compressed to
three values, in the same way that F1 as a function of time is reduced to three values. The same
applies to time-varying k1 and to time-varying k2 which are also each compressed to three values
after the separate application of the DCT. Thus a 100 ms /s/ which is initially parameterised as
129 dB values per spectrum that occur every 5 ms (i.e., 2580 values in total since for 100 ms
there are 20 spectral slices) is also reduced after these transformations to a single point in a nine-
dimensional space.
 These issues are now further illustrated in the next section using the stops data set.

9.8.1 Parameterising dynamic spectral information
 The corpus fragment for the analysis of dynamic spectral information includes a word-
initial stop, /C = b, d, ɡ/ followed by a tense vowel or diphthong V = /a: au e: i: o: ø: oɪ u:/ in
meaningful German words such as baten, Bauten, beten, bieten, boten, böten, Beute, Buden. The
data were recorded as part of a seminar in 2003 at the IPDS, University of Kiel from 3 male and
4 female speakers (one of the female speakers only produced the words once or twice rather than
3 times which is why the total number of stops is 470 rather than the expected 504 from 3 stops x
8 vowels x 7 speakers x 3 repetitions). The sampled speech data were digitised at 16 kHz and
spectral sections were calculated from a 512 point (32 ms) DFT at intervals of 2 ms. The
utterances of the downloadable stops database were segmented into a closure, a burst

 246

extending from the stop-release to the periodic vowel onset, and the following vowel (between
its periodic onset and offset). The objects from this database in the Emu-R library include the
stop burst only (which across all speakers has a mean duration of just over 22 ms):

stops Segment list of the stop-burst.
stops.l A vector of stops labels for the above.
stopsvow.l A vector of labels of the following vowel context.
stops.sp A vector of labels for the speaker.
stops.dft Trackdata object of spectral data between the onset and offset of the burst.
stops.bark Trackdata object as stops.dft but
 with the frequency axis converted into Bark.
stops.dct Trackdata object of the lowest three DCT c
 coefficients derived from stops.bark.

The procedure that will be used here for parameterizing spectral information draws upon the
techniques discussed in Chapter 8. There are three main steps, outlined below, which together
have the effect of compressing the entire burst spectrum, initially represented by spectral slices at
2 ms intervals, to a single point in a nine-dimensional space, as described above.

1. Bark-scaled, DFT-spectra (stops.bark). The frequency axis is warped from the
physical Hertz to the auditory Bark scale in the frequency range 200 - 7800 Hz (this
range is selected both to discount information below 200 Hz that is unlikely to be useful
for the acoustic distinction between stop place of articulation and to remove frequency
information near the Nyquist frequency that may be unreliable).

2. Bark-scaled DCT coefficients (stops.dct). A DCT-transformation is applied to the
output of 1. in order to obtain Bark-scaled DCT (cepstral) coefficients. Only the first
three coefficients are calculated, i.e. k0, k1, k2 which, as explained in Chapter 8, are
proportional to the spectrum's mean, linear slope, and curvature. These three parameters
are obtained for each spectral slice resulting in three trajectories between the burst onset
and offset, each supported by data points at 2 ms intervals.

3. Polynomial fitting. Following step 2, the equivalent of a 2nd order polynomial is fitted
again using the DCT to each of the three trajectories thereby reducing each trajectory to
just 3 values (the coefficients of the polynomial).

Steps 1-3 are now worked through in some more detail using a single stop burst token for a /d/
beginning with a perspective plot showing how its spectrum changes in time over the extent of
the burst using the persp() function. Fig. 9.14(a) which shows the raw spectrum in Hz was
created as follows. There are a couple of fiddly issues in this type of plot to do with arranging the
display so that the burst onset is at the front and the vowel onset at the back: this requires
changing the time-axis so that increasing negative values are closer to the vowel onset and
reversing the row-order of the dB-spectra. The arguments theta and phi in the persp()
function define the viewing direction67.

Get the spectral data between the burst onset and offset for the 2nd stop from 200-7800 Hz
d.dft = stops.dft[2,200:7800]

Rearrange the time-axis
times = tracktimes(d.dft) - max(tracktimes(d.dft))

67 The reader will almost certainly have to adjust other graphical parameters to reproduce Fig. 9.14. Within the
persp() function, I used cex.lab=.75 and cex.axis=.6 to control the font-size of the axis label and titles;
lwd=1 for panel (a) and lwd=.4 for the other panels to control the line-width and hence darkness of the plot. I
also used par(mar=rep(3, 4)) to reset the margin size before plotting (d).

 247

These are the frequencies of the spectral slices
freqs = trackfreq(d.dft)

These are the dB-values at those times (rows) and frequencies (columns)
dbvals = frames(d.dft)
par(mfrow=c(2,2)); par(mar=rep(.75, 4))
persp(times, freqs, dbvals[nrow(dbvals):1,], theta = 120, phi =
25, col="lightblue", expand=.75, ticktype="detailed",
main="(a)",xlab="Time (ms)", ylab="Frequency (Hz)", zlab="dB")

Fig. 9.14(a) shows that the overall level of the spectrum increases from the burst onset at t = 0
ms (the front of the display) towards the vowel onset at t = - 20 ms (which is to be expected,
given that the burst follows the near acoustic silence of the closure) and there are clearly some
spectral peaks, although it is not easy to see where these are. However, the delineation of the
peaks and troughs can be brought out much more effectively by smoothing the spectra with the
discrete-cosine-transformation in the manner described in Chapter 8 (see Fig. 8.22, right panel)
to obtain DCT-smoothed Hz-spectra. The corresponding spectral plot is shown in Fig. 9.14(b).
This was smoothed with the first 11 DCT-coefficients, thereby retaining a fair amount of detail
in the spectrum:

d.sm = fapply(d.dft, dct, 10, T)
persp(times, freqs, frames(d.sm)[nrow(dbvals):1,], theta = 120,
phi = 25, col="lightblue", expand=.75, ticktype="detailed",
main="(b)",xlab="Time (ms)", ylab="Frequency (Hz)", zlab="dB")

Fig. 9.14 about here

The smoothed display in Fig. 9.14(b) shows more clearly that there are approximately four peaks
and an especially prominent one at around 2.5 kHz.

Steps 1 and 2, outlined earlier (9.8.1), additionally involve warping the frequency axis to
the Bark scale and calculating only the first three DCT-coefficients. The commands for this are:

d.bark = bark(d.dft)
d.dct = fapply(d.bark, dct, 2)

d.dct contains the Bark-scaled DCT-coefficients (analogous to MFCC, mel-frequency cepstral
coefficients in the speech technology literature). Also, there are three coefficients per time slice
(which is why frames(d.dct) is a matrix of 11 rows and 3 columns) which define the shape
of the spectrum at that point in time. The corresponding DCT-smoothed spectrum is calculated in
the same way, but with the additional argument to the dct() function fit=T. This becomes
one of the arguments appended after dct, as described in Chapter 8:

DCT-smoothed spectra; one per time slice
d.dctf = fapply(d.bark, dct, 2, fit=T)

d.dctf is a spectral trackdata object containing spectral slices at intervals of 5 ms. Each
spectral slice will, of course, be very smooth indeed (because of the small number of
coefficients). In Fig. 9.14(c) these spectra smoothed with just 3 DCT coefficients are arranged in
the same kind of perspective plot:

freqs = trackfreq(d.dctf)

 248

persp(times, freqs, frames(d.dctf)[nrow(dbvals):1,], theta =
120, phi = 25, col="lightblue", expand=.75, ticktype="detailed",
main="(c)",xlab="Time (ms)", ylab="Frequency (Hz)", zlab="dB")

The shape of the perspective spectral plot is now more like a billowing sheet and the reader may
wonder whether we have not smoothed away all of the salient information in the /d/ spectra!
However, the analogous representation of the corresponding Bark-scaled coefficients as a
function of time in Fig. 9.14(d) shows that even this radically smoothed spectral representation
retains a fair amount of dynamic information. (Moreover, the actual values of these trajectories
may be enough to separate out the three separate places of articulation). Since d.dct (derived
from the commands above) is a trackdata object, it can be plotted with the generic plot()
function. The result of this is shown in Fig. 9.14(d) and given by the following command:

plot(d.dct, type="b", lty=1:3, col=rep(1, 3), lwd=2, main =
"(d)", ylab="Amplitude", xlab="Time (ms)")

 It should be noted at this point that, as far as classification is concerned, the bottom two
panels of Fig. 9.14 contain equivalent information: that is, they are just two ways of looking at
the same phenomenon. In the time-series plot, the three Bark-scaled DCT-coefficients are
displayed as a function of time. In the 3D-perspective plot, each of these three numbers is
expanded into its own spectrum. It looks as if the spectrum contains more information, but it
does not. In the time-series plot, the three numbers at each time point are the amplitudes of
cosine waves at frequencies 0, ½, and 1 cycles. In the 3D-perspective plot, the three cosine
waves at these amplitudes are unwrapped over 256 points and then summed at equal frequencies.
Since the shapes of these cosine waves are entirely predictable from the amplitudes (because the
frequencies are known and the phase is zero in all cases), there is no more information in the 3D-
perspective plot than in plotting the amplitudes of the ½ cycle cosine waves (i.e., the DCT-
coefficients) as a function of time.
 We have now arrived at the end of step 2 outlined earlier. Before proceeding to the next
step, which is yet another compression and transformation of the data in Fig. 9.14(d), here is a
brief recap of the information that is contained in the trajectories in Fig. 9.14(d).

k0 (the DCT coefficient at a frequency of k = 0 cycles) encodes the average level in the spectrum.
Thus, since k0 (the top track whose points are marked with circles in Fig. 9.14(d)) rises as a
function of time, then the mean dB-level of the spectrum from one spectra slice to the next must
also be rising. This is evident from any of Figs 9.14(a, b, c) which all show that the spectra have
progressively increasing values on the dB-axis in progressing in time towards the vowel
(compare in particular the last spectrum at time t = -20 ms with the first at the burst onset). The
correspondence between k0 and the spectral mean can also be verified numerically:

Calculate the mean dB-value per spectral slice across all frequencies
m = fapply(d.bark, mean)
This shows a perfect correlation between the mean dB and k0
cor(frames(m), frames(d.dct[,1]))
1

k1, which is the middle track in Fig. 9.14(d), encodes the spectral tilt i.e, the linear slope
calculated with dB on the y-axis and Hz (or Bark) on the x-axis in the manner of Fig. 8.13 of
Chapter 8. Fig. 9.14(d) suggests that there is not much change in the spectral slope as a function
of time and also that the slope is negative (positive values on k1 denote a falling slope). The fact
that the spectrum is tilted downwards with increasing frequency is evident from any of the
displays in Fig. 9.14 (a, b, c). The association between k1 and the linear slope can be

 249

demonstrated in the manner presented in Chapter 8 by showing that they are strongly negatively
correlated with each other:

Function to calculate the linear slope of a spectrum
slope <- function(x)
{
 lm(x ~ trackfreq(x))$coeff[2]
}
specslope = fapply(d.bark, slope)
cor(frames(specslope), frames(d.dct[,2]))
-0.991261

Finally, k2 which is the bottom track in Fig. 9.14(d), shows the spectral curvature as a function of
time. If each spectral slice could be modelled entirely by a straight line, then the values on this
parameter would be zero. Evidently they are not and since these values are negative, then the
spectra should be broadly ∩-shaped, and this is most apparent in the heavily smoothed spectrum
in Fig. 9.14(c). Once again it is possible to show that k2 is related to curvature by calculating a
2nd order polynomial regression on each spectral slice, i.e. by fitting a function to each spectral
slice of the form:

dB = a0 + a1f + a2f2 (4)

The second coefficient a2 of (4) defines the curvature and the closer it is to zero, the less curved
the trajectory. Fitting a 2nd order polynomial to each spectral slice can be accomplished in an
analogous manner to obtaining the linear slope above. Once again, the correlation between k2
and curvature is very high:

Function to apply 2nd order polynomial regression to a spectrum. Only a2 is stored.
regpoly <- function(x)
{
 lm(x ~ trackfreq(x) + I(trackfreq(x)^2))$coeff[3]
}

Apply this function to all 11 spectral slices
speccurve = fapply(d.bark, regpoly)
Demonstrate the correlation with k2
cor(frames(speccurve), frames(d.dct[,3]))
0.9984751

 So far, then, the spectral slices as a function of time have been reduced to three tracks
that encode the spectral mean, linear slope, and curvature also as a function of time. In step 3
outlined earlier, this information is compressed further still by applying the discrete-cosine-
transformation once more to each track in Fig. 9.14(d). In the command below, this
transformation is applied to k0:

trapply(d.dct[,1], dct, 2, simplify=T)
63.85595 -18.59999 -9.272398

So following the earlier discussion, k0 as a function of time must have a positive linear slope
(because the middle coefficient, -18.6, that defines the linear slope, is negative). It must also be
curved (because the last coefficient that defines the curvature is not zero) and it must also be ∩-

 250

shaped (because the last coefficient is negative): indeed, this is what we see in looking at the
overall shape of k0 as a function of time in Fig. 9.14(d)68.

The same operation can be applied separately to the other two tracks in Fig. 9.14(d), so
that we end up with 9 values. Thus the time-varying spectral burst of /d/ has now been reduced to
a point in a 9-dimensional space (a considerable compression from the original 11 times slices x
257 DFT = 2827 dB values). To be sure, the dimensions are now necessarily fairly abstract, but
they do still have an interpretation: they are the mean, linear slope, and curvature each calculated
on the spectral mean (k0), spectral tilt (k1), and spectral curvature (k2) as a function of time.
 This 9 dimensional representation is now derived for all of the stops in this mini-database
with the commands below and it is stored in a 470 × 9 matrix (470 rows because there are 470
segments). You can leave out the first step (in calculating stops.dct) because this object is in
the Emu-R library (and can take a few minutes to calculate, depending on the power of your
computer):

Calculate k0, k1, k2, the first three Bark-scaled DCT coefficients: this object is available.
stops.dct = fapply(stops.bark, dct, 2)

Reduced k0, k1, and k2, each to three values:
dct0coefs = trapply(stops.dct[,1], dct, 2, simplify=T)
dct1coefs = trapply(stops.dct[,2], dct, 2, simplify=T)
dct2coefs = trapply(stops.dct[,3], dct, 2, simplify=T)

Put them into a data-frame after giving the matrix some column names.
d = cbind(dct0coefs, dct1coefs, dct2coefs)
n = c("a0", "a1", "a2")
m = c(paste("k0", n, sep="."), paste("k1", n, sep="."),
paste("k2", n, sep="."))
colnames(d) = m

Add the stop labels as a factor.
bdg = data.frame(d, phonetic=factor(stops.l))

We are now ready to classify.

9.9 Support vector machines

Or are we? One of the real difficulties in classifying velar stops is that they are highly
context-dependent, i.e. the place of articulation with which /k, ɡ/ is produced shifts with the
frontness of the vowel, often ranging between a palatal, or post-palatal articulation before front
vowels like /i/ to a post-velar production before /u/. Moreover, as theoretical models of
articulatory-acoustic relationships show, this shift has a marked effect on the acoustic signal such
that the front and back velar allophones can be acoustically more similar to alveolar and labial
stops (e.g., Halle, Hughes & Radley, 1957) respectively rather than to each other.

This wide allophonic variation of /ɡ/ becomes evident in inspecting them on two of the
previously calculated parameters. In Fig. 9.15, the display on the left shows the distribution of /ɡ/
in the plane of parameters 4 and 7 as a function of the following vowel context. On the right are
ellipse plots of the other two stops on the same parameters. The plot was created as follows:

par(mfrow=c(1,2)); xlim = c(-5, 35); ylim = c(-15, 10)
temp = stops.l=="g"; xlab="Mean of the slope"; ylab="Mean of the
curvature"

68 The first coefficient 63.85595 is equal to √2 multiplied by the mean of k0 as can be verified from sqrt(2) *
trapply(d.dct[,1], mean, simplify=T) .

 251

plot(d[temp,c(4, 7)], type="n", xlab=xlab, ylab=ylab, bty="n",
xlim=xlim, ylim=ylim)
text(d[temp,4], d[temp,7], stopsvow.l[temp])
eplot(d[!temp,c(4,7)], stops.l[!temp], col=c("black",
"slategray"), dopoints=T, xlab=xlab, ylab="", xlim=xlim,
ylim=ylim)

Fig. 9.15 about here

It is evident from the right panel of Fig. 9.15 that, although /b, d/ are likely to be quite well
separated on these two parameters in a classification model, the distribution for /ɡ/ shown in the
left panel of the same figure is more or less determined by the vowel context (and follows the
distribution in the familiar F2 × F1 vowel formant plane). Moreover, fitting a Gaussian model to
these /ɡ/ data is likely to be inappropriate for at least two reasons. Firstly, they are not normally
distributed: they do not cluster around a mean and they are not distributed along a principal
component in the way that /b, d/ are. Secondly, the mean of /ɡ/ falls pretty much in the same
region as the means of /b, d/ in the right panel of Fig. 9.15. Thus the ellipse for /ɡ/ would
encompass almost all of /b, d/, perhaps resulting in large number of misclassifications. Given
that a Gaussian distribution may be inappropriate for these data, we will consider another way of
classifying the data using a support vector machine (SVM) that makes no assumptions about
normality.
 The development of SVMs can be traced back to the late 1970s, but in recent years they
have been used for a variety of classification problems, including the recognition of handwriting,
digits, speakers, and faces (Burges, 1998) and they have also been used in automatic speech
recognition (Ganapathiraju et al, 2004). The following provides a very brief and non-technical
overview of SVMs - for more mathematical details, see Duda et al. (2001).
 Consider firstly the distribution of two classes, the filled and open circles, in a two-
parameter space in Fig. 9.16. It is evident that the two classes could be separated by a drawing a
line between them. In fact, as the left panel shows, there is not just one line but an infinite
number of lines that could be used to separate them. But is there any principled way of choosing
the line that optimally separates these categories? In SVM this optimal line is defined in terms of
finding the widest so-called margin of parallel lines that can be created before hitting a data
point from either class, as shown in the right panel of Fig. 9.16. These data points through which
the margin passes are called the support vectors.

Fig. 9.16 about here

The right panel in Fig. 9.16 is a schematic example of a linear SVM classifier in which the
categories are separated by a straight line. But there will, of course, be many instances in which
this type of linear separation cannot be made. For example, it is not possible to separate linearly
the two categories displayed in one dimension in the left panel of Fig. 9.17, nor can any single
line be drawn to categorise the exclusive-OR example in the left panel of Fig. 9.18 in which the
points from the two categories are in opposite corners of the plane. Now it can be shown (see
e.g., Duda et al, 2001) that two categories can be separated by applying a non-linear
transformation that projects the points into a higher dimensional space. The function that does
this mapping to the higher dimensional space is called the kernel: although there are many
different kinds of kernel functions that could be used for this purpose, a few have been to found
to work especially well as far as category separation is concerned including the radial basis
function which is a type of Gaussian transformation (and the default kernel for svm() in
library(e1071) in R). This is also the same as the sigmoid kernel that is used in
feedforward neural networks.
 A schematic example, taken from Moore (2003), of how projection into a higher

 252

dimensional space enables classes to be separated using the same sort of margin as in Fig. 9.16 is
shown for the data in Fig. 9.17. As already stated, it is not possible to separate completely the
classes on the left in Fig. 9.17 with a straight line. However, when these data are projected into a
two-dimensional space by applying a second order polynomial transformation, x → x2, or
informally by plotting the squared values as a function of the original values, then the two
classes can be separated by the same kind of wide margin as considered earlier.

Fig. 9.17 about here

For the X-OR data in the left panel of Fig. 9.18, the separation with a margin can be made by
applying a kernel function to transform the data to a six-dimensional space (Duda et al, 2001). It
is of course not possible to draw this in the same way as for Fig. 9.17, but it is possible to make a
classification plot to show how svm() classifies the regions in the vicinity of these points. This
is shown in the right panel of Fig. 9.18. In order to create this plot, the first step is to train the
data as follows69:

The four points and their hypothetical labels.
x = c(-1, -1, 1, 1); y = c(-1, 1, -1, 1)
lab = c("d", "g", "g", "d")

Bundle all of this into a data-frame and attach the data-frame.
d.df = data.frame(phonetic=factor(lab), X=x, Y=y)
attach(d.df)

Train the labels on these four points.
m = svm(phonetic ~ X+Y)

A closed test (i.e., a classification of these four points) can then be carried out using the generic
predict() function in the same way that was done with the Gaussian classification:

predict(m)
1 2 3 4
d g g d
Levels: d g

Thus the four points have been correctly classified on this closed test. A classification plot could
be produced with the same function used on the Gaussian data, i.e. classplot(m,
xlim=c(-1, 1), ylim=c(-1, 1)). Alternatively, there is a simpler (and prettier) way
of achieving the same result with the generic plot() function which takes the SVM-model as
the first argument and the data-frame as the second:

plot(m, d.df)

Fig. 9.18 about here

After training on these four data points, the support vector machine has partitioned the space into
four quadrants so that all points in the bottom left and top right quadrants are classified as /d/ and
the other two quadrants as /ɡ/. It would certainly be beyond the capabilities of any Gaussian
classifier to achieve this kind of (entirely appropriate) classification and separation over this
space from such a small number of data points!

69 You might need to install the e1071 package with install.packages("e1071"). Then enter
library(e1071) to access the svm() function.

 253

 We can now compare the classifications using an SVM and Gaussian classification on the
same two-parameter space as in Fig. 9.15. A support vector machine is a two-category
classificatory system, but it can be extended to the case when there are more than two classes
using a so-called ‘one-against-one’ approach by training k(k-1)/2 binary SVM classifiers, where
k is the number of classes (see Duda et al, 2001 for some further details).

We begin by comparing classification plots to see how the Gaussian and SVM models
divide up the two-parameter space:

detach(d.df)
attach(bdg)

Train using SVM on parameters 4 and 7
p47.svm = svm(bdg[,c(4, 7)], phonetic)

Train using a Gaussian model on the same parameters
p47.qda = qda(bdg[,c(4, 7)], phonetic)

SVM and Gaussian classification plots over the range of Fig. 9.15
xlim = c(-10, 40); ylim = c(-15, 10); col=c("black",
"lightblue", "slategray")
ylab = "Parameter 7"; xlab="Parameter 4"
par(mfrow=c(1,2))
classplot(p47.svm, xlim=xlim, ylim=ylim, col=col, ylab=ylab,
xlab=xlab)
text(c(25, 5, 15, -5), c(0, 0, -10, -8), c("b", "d", "g", "b"),
col=c("white", "black", "black", "white"))
classplot(p47.qda, xlim=xlim, ylim=ylim, col=col, xlab=xlab,
ylab="")
text(c(25, 5, 15), c(0, 0, -10), c("b", "d", "g"),
col=c("white", "black", "black"))

Fig. 9.19 about here

There are similarities in the way that the two classification techniques have partitioned the plane:
the regions for /b, d, ɡ / are broadly similar and in particular /ɡ/ engulfs the /b, d/ territories in
both cases. But there are also obvious differences. The /b, d/ shapes from the Gaussian classifier
are much more ellipsoidal whereas the SVM has carved out boundaries more in line with the
way that the tokens are actually distributed in Fig. 9.15. For this reason, a separate small region
for /b/ is produced with SVM classification, presumably because of the handful of /b/-outliers at
coordinates [0, -5] in the right panel of Fig. 9.15.
 The reader can manipulate the commands below by selecting columns 4 and 7 to see
which approach actually gives the higher classification performance in an open-test. In the
commands below, training and testing are carried out on all 9 dimensions. Moreover, in the
training stage, training is done on only 6 of the 7 speakers; then the data values for the speaker
who is left out of the training stage are classified. This is done iteratively for all speakers. In this
way, a maximum amount of data is submitted to the training algorithm while at the same time,
the training and testing are always done on different speakers. (If not already done, enter
attach(bdg)).

A vector in which the classificatory labels will be stored.
svm.res = qda.res = rep("", length(phonetic))

Loop over each speaker separately

 254

for(j in unique(stops.sp)){

 # Logical vector to identify the speaker
 temp = stops.sp == j

 # Train on the other speakers
 train.qda = qda(bdg[!temp,1:9], phonetic[!temp])

 # Test on this speaker
 pred.qda = predict(train.qda, bdg[temp,1:9])

 # Store the classificatory label
 qda.res[temp] = as.character(pred.qda$class)

 # As above but for the SVM
 train.svm = svm(bdg[!temp,1:9], phonetic[!temp])
 pred.svm = predict(train.svm, bdg[temp,1:9])
 svm.res[temp] = as.character(pred.svm)
}

Confusion matrix from the Gaussian classifier.
tab.qda = table(phonetic, qda.res); tab.qda
qda.res
phonetic b d g
 b 116 16 23
 d 8 133 16
 g 23 22 113

And from the SVM
tab.svm = table(phonetic, svm.res); tab.svm
svm.res
phonetic b d g
 b 120 15 20
 d 8 131 18
 g 16 21 121

Total hit rates for the Gaussian and SVM classifiers
n = length(phonetic); sum(diag(tab.qda)/n);
sum(diag(tab.svm)/n)
0.7702128
0.7914894

So in fact the scores (77% and 79%) are quite similar from both techniques and this is an
example of just how robust the Gaussian model can be, even though the data for /ɡ / are so
obviously not normally distributed on at least two parameters, as the left panel of Fig. 9.15
shows. However, the confusion matrices also show that while /b, d/ are quite similarly classified
in both techniques, the hit-rate for /ɡ/ is slightly higher with the SVM (79.6%) than with the
Gaussian classifier (71.5%).

9.10 Summary
 Classification in speech involves assigning a label or category given one or more
parameters such as formant frequencies, parameters derived from spectra or even physiological
data. In order for classification to be possible, there must have been a prior training stage (also
known as supervised learning) that establishes a relationship between categories and parameters
from an annotated database. One of the well-established ways of carrying out training is by using

 255

a Gaussian model in which a normal distribution is fitted separately to each category. If there is
only one parameter, then the fitting is done using the category's mean and standard-deviation;
otherwise a multidimensional normal distribution is established using the parameter means, or
centroid, and the so-called covariance matrix that incorporates the standard deviation of the
parameters and the correlation between them. Once Gaussian models have been fitted in this
way, then Bayes' theorem can be used to calculate the probability that any point in a parameter
space is a member of that category: specifically, it is the combination of supervised training and
Bayes' theorem that allows a question to be answered such as: given an observed formant
pattern, what is the probability that it could be a particular vowel?
 The same question can be asked for each category in the training model and the point is
then classified, i.e., labelled as one of the categories based on whichever probability is the
greatest. This can be done for every point in a chosen parameter space resulting in a 'categorical
map' marking the borders between categories (e.g., Fig. 9.19) from which a confusion matrix
quantifying the extent of category overlap can be derived.
 An important consideration in multi-dimensional classification is the extent to which the
parameters are correlated with each other: the greater the correlation between them, the less
likely they are to make independent contributions to the separation between categories. The
technique of principal components analysis can be used to rotate a multi-parameter space and
thereby derive new parameters that are uncorrelated with each other. Moreover classification
accuracy in a so-called open-test, in which training and testing are carried out on separate sets of
data, is often improved using a smaller set of PCA-rotated parameters than the original high-
dimensional space from which they were derived. Independently of these considerations, an
open-test validation of classifications is always important in order to discount the possibility of
over-fitting: this comes about when a high classification accuracy is specific only to the training
data so that the probability model established from training does not generalise to other sets of
data.
 Two further issues were discussed in this Chapter. The first is classification based on
support vector machines which have not yet been rigorously tested on speech data, but which
may enable a greater separation between categories to be made than using Gaussian techniques,
especially if the data do not follow a normal distribution. The second is to do with classifications
in time: in this Chapter, time-based classifications were carried out by fitting the equivalent of
a 2nd order polynomial to successive, auditorily-scaled and data-reduced spectra. Time-based
classifications are important in speech research given that speech is an inherently dynamic
activity and that the cues for a given speech category are very often distributed in time.

9.11 Questions
1. This exercise makes use of the vowel monophthong and diphthong formants in the dataset
stops that were described in some detail at the beginning of section 9.8 and also analysed in
this Chapter. The vowels/diphthongs occur in the first syllable of German trochaic words with
initial C = /b, d, g/. There are 7 speakers, 3 male (gam, lbo, sbo) 4 female (agr, gbr, rlo,
tjo). The relevant objects for this exercise are given below: enter table(stops.l,
stopsvow.l, stops.sp) to see the distribution of stops × vowel/diphthongs × speaker).

stops.l A vector of stops labels preceding the vowels/diphthongs
stopsvow Segment list of the vowels/diphthongs following the stop burst
stopsvow.l A vector of labels of the vowels/diphthongs
stops.sp A vector of labels for the speaker
stopsvow.fm Trackdata object, first four formants for the vowels/diphthongs
 (derived from emu.track(stopsvow, "fm"))

The question is concerned with the F1 and F2 change as a function of time in distinguishing
between [a: aʊ ɔʏ] (MRPA/SAMPA a: au oy).

 256

(a) Sketch possible F1 and F2 trajectories for these three segments. Why might the
parameterisation of these formants with the third moment (see Chapter 8) be a useful way of
distinguishing between these three classes? Why might speaker normalization not be necessary
in classifying speech data with this parameter?

(b) Use trapply() on the trackdata object stopsvow.fm in order to calculate spectral
moments in each segment separately for F1 and F2.

(c) Produce ellipse plots in the plane of F1m3 × F2m3 (the third moment of F1 × the third
moment of F2) for the three classes [a: aʊ ɔʏ] in the manner shown in the left panel of Fig. 9.20.

Fig. 9.20 about here

 (d) Establish a training model using quadratic discriminant analysis in order to produce the
classification plot for these three classes shown in the right panel of Fig. 9.20.

(e) Calculate the third moment for the diphthong aI (German diphthong [aɪ], one male, one
female speaker, read speech) separately for F1 and F2 in the diphthong dataset:

dip.fm Trackdata object, F1-F4
dip.l Vector of phonetic labels

(f) Use points() to superimpose on the right panel of Fig. 9.20 the F1m3 × F2m3 values
for these [aɪ] diphthongs.

(g) As the right panel of Fig. 9.20 shows, the values for [aɪ] are around the border between
[aʊ] and [ɔʏ] and do not overlap very much with [a:]. How can this result be explained in terms
of the relative phonetic similarity between [aɪ] and the three classes on which the model was
trained in (d)?

2. The object of this exercise is to test the effectiveness of some of the shape parameters derived
from a DCT-analysis for vowel classification.

(a) Calculate the first three DCT-coefficients firstly for F1 and then for F2 between the acoustic
onset and offset of the vowels/diphthongs in the trackdata object stopsvow.fm described in
question 1. above. (You should end up with two 3-columned matrices: the first matrix has k0, k1,
k2 calculated on F1 in columns 1-3; and the second matrix also contains the first three DCT-
coefficients, but calculated on F2. The number of rows in each matrix is equal to the number of
segments in the trackdata object).

(b) The following function can be used to carry out an open-test classification using a 'leave-one-
out' procedure similar to the one presented at the end of 9.9.

cfun <- function(d, labs, speaker)
{
 # The next three lines allow the function to be applied when d is one-dimensional
 if(is.null(dimnames(d)))
 d = as.matrix(d)
 dimnames(d) = NULL
 qda.res = rep("", length(labs))
 for(j in unique(speaker)){

 257

 temp = speaker == j
 # Train on all the other speakers
 train.qda = qda(as.matrix(d[!temp,]), labs[!temp])
 # Test on this speaker
 pred.qda = predict(train.qda, as.matrix(d[temp,]))
 # Store the classificatory label
 qda.res[temp] = pred.qda$class
 }
 # The confusion matrix
 table(labs, qda.res)
}

In this function, training is carried out on k -1 speakers and testing on the speaker that was left
out of the training. This is done iteratively for all speakers. The results of the classifications from
all speakers are summed and presented as a confusion matrix. The arguments to the function are:

d a matrix or vector of data
labs a parallel vector of vowel labels
speaker a parallel vector of speaker labels

Use the function to carry out a classification on a four-parameter model using k0 and k2 (i.e., the
mean and curvature of each formant) of F1 and of F2 calculated in (a) above. What is the hit-rate
(proportion of correctly classified vowels/diphthongs)?

(c) To what extent are the confusions that you see in (b) explicable in terms of the phonetic
similarity between the vowel/diphthong classes?

(d) In what way might including the third moment calculated on F1 reduce the confusions? Test
this hypothesis by carrying out the same classification as in (b) but with a five-parameter model
that includes the third moment of F1.

(e) Some of the remaining confusions may come about because of training and testing on male
and female speakers together. Test whether the misclassifications are reduced further by
classifying on the same 5-parameter model as in (d), but on the 4 female speakers (agr, gbr,
rlo, tjo) only.

9.11 Answers
1 (a) The three vowel classes are likely to differ in the time at which their F1- and F2-peaks
occur. In particular, F1 for [aʊ] is likely to show an early prominent peak centered on the first
phonetically open diphthong component, while [ɔʏ] should result in a relatively late F2-peak due
to movement towards the phonetically front [ʏ]. Thus the vowel classes should show some
differences on the skew of the formants which is quantified by the third moment. The reason
why speaker normalization may be unnecessary is both because skew parameterizes the global
shape of the formant trajectory but in particular because skew is dimensionless.

1 (b)
f1.m3 = trapply(stopsvow.fm[,1], moments, simplify=T)[,3]
f2.m3 = trapply(stopsvow.fm[,2], moments, simplify=T)[,3]

1 (c)
m3= cbind(f1.m3, f2.m3)
temp = stopsvow.l %in% c("a:", "au", "oy")

 258

xlim = c(-.2, .6); ylim=c(-.6, .6)
eplot(m3[temp,], stopsvow.l[temp], centroid=T, xlab= "Third
moment (F1)", ylab= "Third moment (F2)", xlim=xlim, ylim=ylim)

1 (d)
m3.qda = qda(m3[temp,], stopsvow.l[temp])
xlim = c(-.2, .6); ylim=c(-.6, .6)
classplot(m3.qda, xlim=xlim, ylim=ylim)

1 (e)
m.f1 = trapply(dip.fdat[,1], moments, simplify=T)
m.f2 = trapply(dip.fdat[,2], moments, simplify=T)

1 (f)
points(m.f1[,3], m.f2[,3], col="gray100")

1 (g)
[aɪ] shares in common with [aʊ, ɔʏ] that it is a diphthong. For this reason, its formants are likely
to be skewed away from the temporal midpoint. Consequently (and in contrast to [a:]) the third
moment of the formants will have values that are not centered on [0, 0]. [aɪ] falls roughly on the
border between the other two diphthongs because it shares phonetic characteristics with both of
them: like [aʊ], the peak in F1 is likely to be early, and like [ɔʏ] the F2-peak is comparatively
late.

2(a)
f1.dct = trapply(stopsvow.fm[,1], dct, 2, simplify=T)
f2.dct = trapply(stopsvow.fm[,2], dct, 2, simplify=T)

2(b)
d = cbind(f1.dct[,c(1, 3)], f2.dct[,c(1, 3)])
result = cfun(d, stopsvow.l, stops.sp)

qda.res
labs 1 2 3 4 5 6 7 8
 a: 50 8 0 0 0 0 0 0
 au 10 47 0 0 1 0 3 0
 e: 0 0 48 8 0 3 0 0
 i: 0 0 4 54 0 0 0 0
 o: 0 1 0 0 48 0 0 10
 oe 0 0 2 0 0 52 5 0
 oy 0 11 0 0 0 4 42 0
 u: 0 1 0 0 6 0 4 48

Hit-rate
sum(diag(result)/sum(result))
0.8276596

2(c) Most of the confusions arise between phonetically similar classes. In particular the
following pairs of phonetically similar vowels/diphthongs are misclassified as each other:

• 18 (8 + 10) misclassifications of [a:]/[aʊ]
• 12 (8 + 4) misclassifications of [e:]/[i:]
• 16 (10+6) misclassifications of [o:]/[u:]
• 14 (11+3) misclassifications of [aʊ]/[ɔʏ]

 259

2(d) Based on the answers to question 1, including the third moment of F1 might reduce the
diphthong misclassifications in particular [a:]/[aʊ] and [aʊ]/[ɔʏ].

Third moment of F1
m3.f1 = trapply(stopsvow.fm[,1], moments, simplify=T)[,3]
d = cbind(d, m3.f1)
result = cfun(d, stopsvow.l, stops.sp)
result
qda.res
labs 1 2 3 4 5 6 7 8
 a: 58 0 0 0 0 0 0 0
 au 1 57 0 0 0 0 3 0
 e: 0 0 51 7 0 1 0 0
 i: 0 0 4 54 0 0 0 0
 o: 0 1 0 0 48 0 0 10
 oe 0 0 2 1 0 53 3 0
 oy 3 1 0 0 0 3 50 0
 u: 0 1 0 0 6 0 4 48

Hit-rate
sum(diag(result)/sum(result))
[1] 0.8914894

Yes, the diphthong misclassifications have been reduced.

2(e)
temp = stops.sp %in% c("agr", "gbr", "rlo", "tjo")
result = cfun(d[temp,], stopsvow.l[temp], stops.sp[temp])
result
qda.res
labs 1 2 3 4 5 6 7 8
 a: 31 0 0 0 0 0 0 0
 au 0 31 0 0 1 0 1 0
 e: 0 0 32 0 0 0 0 0
 i: 0 0 1 30 0 0 0 0
 o: 0 0 0 0 29 0 0 3
 oe 0 0 0 0 0 32 0 0
 oy 0 1 0 0 0 1 29 0
 u: 0 0 0 0 4 0 0 28

sum(diag(result)/sum(result))
[1] 0.952756

Yes, training and testing on female speakers has reduced misclassifications further: there is now
close to 100% correct classification on an open test.

 260

References

Abercrombie, D., (1967) Elements of General Phonetics. Edinburgh University Press:
Edinburgh

Adank, P., Smits, R., and van Hout, R. (2004) A comparison of vowel normalization procedures
for language variation research. Journal of the Acoustical Society of America, 116, 3099–3107.

Ambrazaitis, G. and John, T. (2004). On the allophonic behaviour of German /x/ vs /k/ - an EPG
investigation. Arbeitsberichte des Instituts für Phonetik und digitale Sprachverarbeitung der
Universität Kiel, 34, 1-14.

Anderson, A., Bader, M., Bard, E., Boyle, E., Doherty, G. M., Garrod, S., Isard, S., Kowtko, J.,
McAllister, J., Miller, J., Sotillo, C., Thompson, H. S. and Weinert, R. (1991). The HCRC Map
Task Corpus. Language & Speech, 34, 351-366.

Assmann, P., Nearey, T., and Hogan, J. (1982) Vowel identification: orthographic, perceptual
and acoustic aspects. Journal of the Acoustical Society of America, 71, 975-989.

Baayen, R.H. (in press) Analyzing Linguistic Data: A Practical Introduction to Statistics.
Cambridge University Press: Cambridge.

Baayen, R., Piepenbrock, R. & Gulikers, L. (1995) The CELEX Lexical Database (CD-ROM).
Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA.

Bailey, G., Wikle, T., Tillery, J., & Sand, L. (1991). The apparent time construct. Language
Variation and Change, 3, 241–264.

Bard, E., Anderson, A., Sotillo, C., Aylett, M., Doherty-Sneddon, G. and Newlands, A. (2000).
Controlling the intelligibility of referring expressions in dialogue. Journal of Memory and
Language, 42, 1-22.

Barras, C., Geoffrois, E., Wu,Z., Liberman, M. (2001) Transcriber: Development and use of a
tool for assisting speech corpora production. Speech Communication, 33, 5-22.

Barry, W. & Fourcin, A.J. (1992) Levels of Labelling. Computer Speech and Language, 6, 1-
14.

Beck, J. (2005) Perceptual analysis of voice quality: the place of vocal profile analysis. I In W.J.
Hardcastle & J. Beck (eds). A Figure of Speech (Festschrift for John Laver). Routledge. p. 285-
322.

Beckman, M. E., Munson, B., & Edwards, J. (2007). Vocabulary growth and the developmental
expansion of types of phonological knowledge. In: Jennifer Cole, Jose Ignacio Hualde, eds.
Laboratory Phonology, 9. Berlin: Mouton de Gruyter, p. 241-264.

Beckman, M. E., Edwards, J., & Fletcher, J. (1992). Prosodic structure and tempo in a sonority
model of articulatory dynamics. In G. J. Docherty & D. R. Ladd, eds., Papers in Laboratory
Phonology II: Segment, Gesture, Prosody, pp. 68-86. Cambridge University Press: Cambridge.

 261

Beckman, M., J. Hirschberg, and S. Shattuck-Hufnagel (2005) The original ToBI system and the
evolution of the ToBI framework. In Sun-Ah Jun (ed.) Prosodic Typology: The Phonology of
Intonation and Phrasing. Oxford University Press: Oxford.

Beckman, M. and Pierrehumbert, J. (1986) Intonational structure in Japanese and English.
Phonology Yearbook, 3, 255-310.

Bell, A., Jurafsky, D., Fosler-Lussier, E., Girand, C., Gregory, M., and Gildea. D. (2003).
Effects of disfluencies, predictability, and utterance position on word form variation in English
conversation. Journal of the Acoustical Society of America 113, 1001-1024.

Bird, S. & Liberman, M. (2001) A formal framework for linguistic annotation. Speech
Communication, 33, 23-60.

Bladon, R.A.W., Henton, C.G. and Pickering, J.B., (1984) Towards an auditory theory of
speaker normalisation, Language and Communication, 4, 59 -69.

Blumstein, S. and Stevens, K. (1979) Acoustic invariance in speech production: evidence from
measurements of the spectral characteristics of stop consonants. Journal of the Acoustical
Society of America, 66, 1001 -1017.

Blumstein, S. and Stevens, K., (1980) Perceptual invariance and onset spectra for stop
consonants in different vowel environments. Journal of the Acoustical Society of America, 67,
648-662.

Bod, R., Hay, J., and Jannedy, S. (2003) Probabilistic Linguistics. MIT Press.

Boersma, P. & Hamann, S. (2008). The evolution of auditory dispersion in bidirectional
constraint grammars. Phonology, 25, 217-270.

Boersma, P. & Weenink, D. (2005) Praat: doing phonetics by computer (Version 4.3.14)
[Computer program]. Retrieved May 26, 2005, from http://www.praat.org/

Bombien, L., Mooshammer, C., Hoole, P., Rathcke, T. & Kühnert, B. (2007). Articulatory
Strengthening in Initial German /kl/ Clusters under Prosodic Variation. In: J. Trouvain & W.
Barry (eds.), Proceedings of the 16th International Congress of Phonetic Sciences, Saarbrücken,
Germany. p. 457-460

Bombien, L., Cassidy, S., Harrington, J., John, T., Palethorpe, S. (2006) Recent developments in
the Emu speech database system. Proceedings of the Australian Speech Science and Technology
Conference, Auckland, December 2006. (p. 313-316).

Brancazio, L., and Fowler, C. (1998) The relevance of locus equations for production and
perception of stop consonants. Perception and Psychophysics 60, 24–50.

Broad, D., and Fertig, R. H. (1970). Formant-frequency trajectories in selected CVC utterances.
Journal of the Acoustical Society of America 47, 572-1582.

Broad, D. J. and Wakita, H., (1977) Piecewise-planar representation of vowel formant
frequencies. Journal of the Acoustical Society of America, 62, 1467 -1473.

Browman, C. P., & Goldstein, L. (1990a). Gestural specification using dynamically-defined

 262

articulatory structures. Journal of Phonetics, 18, 299-320.

Browman, C. P., & Goldstein, L. (1990b). Representation and reality: Physical systems and
phonological structure. Journal of Phonetics, 18, 411-424.

Browman, C. P., & Goldstein, L. (1990c). Tiers in articulatory phonology, with some
implications for casual speech. In T. Kingston & M. E. Beckman (Eds.), Papers in Laboratory
Phonology I: Between the Grammar and Physics of Speech (pp. 341-376). Cambridge University
Press: Cambridge.

Browman, C. P., & Goldstein, L. (1992). Articulatory phonology: An overview. Phonetica, 49,
155-180.

Browman, C.P. & Goldstein, L. (1992b). ‘Targetless’ schwa: An articulatory analysis. In
Docherty, G. & Ladd, D.R. (eds.), Papers in Laboratory Phonology II Gesture, Segment,
Prosody. Cambridge University Press: Cambridge. (p. 26–56).

Burges, C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2, 121–167.

Butcher, A. (1989) Measuring coarticulation and variability in tongue contact patterns. Clinical
Linguistics and Phonetics, 3, 39-47.

Bybee, J. (2001) Phonology and Language Use. Cambridge: Cambridge University Press.

Byrd, D., (1992). Preliminary results on speaker-dependent variation in the TIMIT database.
Journal of the Acoustical Society of America, 92, 593–596.

Byrd, D., (1993). 54,000 American stops. UCLA Working Papers in Phonetics, 83, 97–116.

Byrd, D., (1994). Relations of sex and dialect to reduction. Speech Communication, 15, 39–54.

Byrd, D., Kaun, A., Narayanan, S. & Saltzman, E. (2000) Phrasal signatures in articulation. In
M. B. Broe and J. B. Pierrehumbert, (Eds.). Papers in Laboratory Phonology V. Cambridge:
Cambridge University Press. p. 70 - 87.

Campbell, N., (2002) Labelling natural conversational speech data. Proceedings of the
Acoustical Society of Japan, 273-274.

Campbell, N. (2004) Databases of expressive speech. Journal of Chinese Language and
Computing, 14.4, 295-304.

Carletta, J., Evert, S., Heid, U., Kilgour, J. (2005) The NITE XML Toolkit: data model and
query. Language Resources and Evaluation Journal, 39, 313-334.

Carlson, R. & Hawkins, S. (2007) When is fine phonetic detail a detail? In Trouvain, J. & Barry,
W. (eds.), Proceedings of the 16th International Congress of Phonetic Sciences, p. 211-214.

Cassidy, S. (1999) Compiling multi-tiered speech databases into the relational model:
experiments with the Emu System. In Proceedings of Eurospeech '99, Budapest, September
1999.

 263

Cassidy, S. (2002) XQuery as an annotation query language: a use case analysis. Proceedings of
Third International Conference on Language Resources and Evaluation. Las Palmas, Spain.

Cassidy, S. and Bird, S. (2000) Querying databases of annotated speech, Proceedings of the
Eleventh Australasian Database Conference, (p.12-20).

Cassidy, S., Welby, P., McGory, J., and Beckman, M. (2000) Testing the adequacy of query
languages against annotated spoken dialog. Proceedings of the 8th Australian International
Conference on Speech Science and Technology. p. 428-433.

Cassidy, S. and Harrington, J. (2001). Multi-level annotation in the Emu speech database
management system. Speech Communication, 33, 61-77.

Cassidy, S. and Harrington, J. (1996). EMU: an enhanced hierarchical speech database
management system. Proceedings of the 6th Australian International Conference on Speech
Science and Technology (p. 361-366).

Chiba, T. and Kajiyama, M, (1941) The Vowel: its Nature and Structure. Tokyo Publishing
Company, Tokyo.

Clark, H. (1973). The language-as-fixed-effect fallacy: A critique of language statistics in
psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335–359.

Clark, J., Yallop, C. & Fletcher J. (2007). An Introduction to Phonetics and Phonology (3rd
Edition). Oxford: Blackwell.

Clopper, C. G., & Pisoni, D. B. (2006). The Nationwide Speech Project: A new corpus of
American English dialects. Speech Communication, 48, 633-644.

Cox, F. & Palethorpe, S. (2007). An illustration of the IPA: Australian English. Journal of the
International Phonetic Association, 37, 341-350.

De Jong, K. (1995) The supraglottal articulation of prominence in English: Linguistic stress as
localized hyperarticulation. Journal of the Acoustical Society of America 97, 491-504.

Delattre, P. C., Liberman, A. M., and Cooper, F. S. (1955) Acoustic loci and transitional cues for
consonants. Journal of the Acoustical Society of America 27, 769–773.

Disner, S. (1980) Evaluation of vowel normalization procedures. Journal of the Acoustical
Society of America 67, 253–261.

Docherty, G.J. (2007) Speech in its natural habitat: accounting for social factors in phonetic
variability. In: Jennifer Cole, Jose Ignacio Hualde, Eds. Laboratory Phonology, 9. Berlin:
Mouton de Gruyter, pp. 1-35.

Docherty, G.J. & Foulkes, P. (2005) Glottal variants of /t/ in the Tyneside variety of English. In:
William J. Hardcastle, Janet Mackenzie Beck, eds. A Figure of Speech: A Festschrift for John
Laver. Routledge. p. 173-199.

Draxler, Chr. (2008). Korpusbasierte Sprachverarbeitung - eine Einführung. Gunter Narr
Verlag.

 264

Draxler, Chr., Jänsch, K. (2004). SpeechRecorder -- a Universal Platform Independent Multi-
Channel Audio Recording Software. In Proc. of the IV. International Conference on Language
Resources and Evaluation, 559-562.

Draxler, Chr., Jänsch, K. (2007) Creating large speech databases via the WWW - the system
architecture of the German ph@ttSessionz web application. Proceedings Language Technology
Conference, Poznan.

Douglas-Cowie, E., Nick Campbell, N., Cowie, R., Roach, P. (2003) Emotional speech: towards
a new generation of databases. Speech Communication, 40, 33-60.

Duda R.O., Hart, P., and Stork D. (2001) Pattern Classification. 2nd ed. New York: Wiley.

Edwards, J. & Beckman, M.E. (2008). Some cross-linguistic evidence for modulation of
implicational universals by language-specific frequency effects in phonological development.
Language, Learning, and Development, 4, 122-156.

Essner, C., (1947) Recherche sur la structure des voyelles orales. Archives Néerlandaises de
Phonétique Expérimentale, 20, 40 -77.

Fant, G. (1966) A note on vocal tract size factors and non-uniform F-pattern scalings. Speech
Transmission Laboratory, Quarterly Progress Status Reports, 4, 22-30.

Fant, G. (1968). Analysis and synthesis of speech processes. In B. Malmberg (Ed.), Manual of
Phonetics. (p. 173-276). Amsterdam: North Holland Publishing Company.

Fant, G., (1973) Speech Sounds and Features. MIT Press, Cambridge, MA.

Fletcher, J. and McVeigh, A. (1991) Segment and syllable duration in Australian English.
Speech Communication, 13, 355-365.

Forster, K. & Masson, M. (2008). Introduction: emerging data analysis. Journal of Memory and
Language, 59, 387–388.

Forrest, K., Weismer, G., Milenkovic, P., and Dougall, R. N. (1988) Statistical analysis of word-
initial voiceless obstruents: Preliminary data. Journal of the Acoustical Society of America 84,
115–124.

Fowler, C. A., and Housum, J. (1987) Talkers’ signaling of ‘new’ and ‘old’ words in speech and
listeners’ perception and use of the distinction. Journal of Memory and Language 26, 489–504.

Fowler, C. A., & Saltzman, E. (1993). Coordination and coarticulation in speech production.
Language and Speech, 36, 171-195

Ganapathiraju, A., Hamaker, J.E., Picone, J. (2004) Signal Processing. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 52, 2348 - 2355.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D. and Dahlgren, N. (1993), DARPA
TIMIT acoustic-phonetic coninuous speech corpus CD-ROM. U.S. Department of Commerce,
Technology Administration, National Institute of Standards and Technology, Computer Systems
Laboratory, Advanced Systems Division.

Gibbon, D., Moore, R., and Winski, R. (1997). Handbook of Standards and Resources for
Spoken Language Systems. Mouton de Gruyter. Berlin.

 265

Gibbon, F. (2005) Bibliography of electropalatographic (EPG) studies in English (1957-2005).
Available from http://www.qmuc.ac.uk/ssrc/pubs/EPG_biblio_2005_september.PDF.

Gibbon F, Nicolaidis K. (1999). Palatography. In: Hardcastle WJ, Hewlett N, Eds.
Coarticulation in Speech Production: Theory, Data, and Techniques. Cambridge: Cambridge
University Press; p. 229-245.

Glasberg B.R. and Moore B.C.J. (1990) Derivation of auditory filter shapes from notched-noise
data. Hearing Research, 47, 103-138.

Godfrey, J., Holliman, E., and McDaniel, J. 1992. SWITCHBOARD: telephone speech corpus
for research and development. In Proceedings of the IEEE International Conference on
Acoustics, Speech, & Signal Processing, San Francisco, 517 – 520.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological
Review, 105, 251–279.

Goldinger, S. (2000). The role of perceptual episodes in lexical processing. In Cutler, A.,
McQueen, J. & Zondervan, R., (Eds.) Proceedings of Spoken Word Access Processes.
Nijmegen: Max-Planck-Institute for Psycholinguistics. p. 155–158.

Grabe, E. and Low, E.L. (2002) Durational Variability in Speech and the Rhythm Class
Hypothesis. Papers in Laboratory Phonology 7, Mouton de Gruyter: Berlin. p. 377-401.

Grice, M., Ladd, D. & Arvaniti, A. (2000) On the place of phrase accents in intonational
phonology, Phonology, 17, 143-185.

Grice, M., Baumann, S. & Benzmüller, R. (2005). German intonation in autosegmental-metrical
phonology. In Jun, Sun-Ah (ed.) Prosodic Typology: The Phonology of Intonation and Phrasing.
Oxford University Press.

Gussenhoven, C. (1986). English plosive allophones and ambisyllabicity. Gramma, 10, 119-
141.

Guzik, K. & Harrington, J. 2007) The quantification of place of articulation assimilation in
electropalatographic data using the similarity index (SI). Advances in Speech–Language
Pathology, 9, 109-119.

Halle, M., Hughes, W. and Radley, J. (1957) Acoustic properties of stop consonants. Journal of
the Acoustical Society of America, 29, 107 -116.

Hamming, R. (1989) Digital Filters (3rd Edition). Prentice-Hall.

Hardcastle, W.J. (1972) The use of electropalatography in phonetic research. Phonetica, 25, 197-
215.

Hardcastle, W.J. (1994) Assimilation of alveolar stops and nasals in connected speech. In J.
Windsor Lewis (Ed). Studies in General and English Phonetics in Honour of Professor J.D.
O'Connor. (pp. 49-67). London: Routledge.

Hardcastle, W., Gibbon, F., and Nicolaidis, K. (1991). EPG data reduction methods and their
implications for studies of lingual coarticulation. Journal of Phonetics, 19, 251-266.

Hardcastle W.J. & Hewlett N. (1999) Coarticulation in Speech Production: Theory, Data, and
Techniques. Cambridge: Cambridge University Press.

 266

Harrington, J. (1994) The contribution of the murmur and vowel to the place of articulation
distinction in nasal consonants. Journal of the Acoustical Society of America, 96, 19-32.

Harrington, J. (2006). An acoustic analysis of ‘happy-tensing’ in the Queen’s Christmas
broadcasts. Journal of Phonetics, 34, 439–457.

Harrington, J. (2009). Acoustic Phonetics. In the revised Edition of Hardcastle W. & Laver J.
(Eds.), The Handbook of Phonetic Sciences. Blackwell.

Harrington, J. & Cassidy, S. (1999). Techniques in Speech Acoustics. Kluwer Academic
Publishers: Foris, Dordrecht.

Harrington, J., Cassidy, S., John, T. and Scheffers, M. (2003). Building an interface between
EMU and Praat: a modular approach to speech database analysis. Proceedings of the 15th
International Conference of Phonetic Sciences, Barcelona, August 2003.

Harrington, J., Cassidy, S., Fletcher, J. and McVeigh, A. (1993). The mu+ system for corpus-
based speech research. Computer Speech & Language, 7, 305-331.

Harrington, J., Fletcher, J. and Beckman, M.E. (2000) Manner and place conflicts in the
articulation of accent in Australian English. In Broe M. (editor), Papers in Laboratory
Phonology, 5. (p. 40-55). Cambridge University Press: Cambridge.

Harrington, J., Fletcher, J., Roberts, C. (1995). An analysis of truncation and linear rescaling in
the production of accented and unaccented vowels. Journal of Phonetics, 23, 305-322.

Harrington, J., Kleber, F., and Reubold, U. (2008) Compensation for coarticulation, /u/-fronting,
and sound change in Standard Southern British: an acoustic and perceptual study. Journal of the
Acoustical Society of America, 123, 2825-2835.

Harrington, J. & Tabain, M. (2004) Speech Production, Models, Phoentic Processes, and
Techniques. Psychology Press: New York.

Hawkins, S. (1999). Reevaluating assumption about speech perception: interactive and
integrative theories. In J. Pickett (Ed.) Speech Communication. (p. 198-214). Allyn & Bacon:
Boston.

Hawkins, S. & Midgley, J. (2005). Formant frequencies of RP monophthongs in four age groups
of speakers. Journal of the International Phonetic Association, 35, 183-199.

Hewlett, N. & Shockey, L. (1992). On types of coarticulation. In G. Docherty & D. R. Ladd
(Eds.) Papers in Laboratory Phonology II. Cambridge University Press: Cambridge. p. 128-138.

Hoole, P. Bombien, L., Kühnert, B. & Mooshammer, C. (in press). Intrinsic and prosodic
effects on articulatory coordination in initial consonant clusters. In G. Fant & H. Fujisaki (Eds.)
Festschrift for Wu Zongji. Commercial Press.

Hoole, P., Gfroerer, S., and Tillmann, H.G. (1990) Electromagnetic articulography as a tool in
the study of lingual coarticulation, Forschungsberichte des Instituts für Phonetik and
Sprachliche Kommunikation der Universität München, 28, 107-122.

Hoole, P., Nguyen, N. (1999). Electromagnetic articulography in coarticulation research. In W.J.
Hardcastle & N. Hewlett (Eds.) Coarticulation: Theory, Data and Techniques, Cambridge
University Press: Cambridge. p. 260-269.

 267

Hoole, P. & Zierdt, A. (2006). Five-dimensional articulography. Stem-, Spraak- en
Taalpathologie 14, 57.

Hoole, P., Zierdt, A. & Geng, C. (2003). Beyond 2D in articulatory data acquisition and analysis.
Proceedings of the 15th International Conference of Phonetic Sciences, Barcelona, 265-268.

Hunnicutt, S. (1985). Intelligibility vs. redundancy - conditions of dependency. Language and
Speech, 28, 47-56.

Jacobi, I., Pols, L. and Stroop, J. (2007). Dutch diphthong and long vowel realizations as socio-
economic markers. Proceedings of the International Conference of Phonetic Sciences,
Saarbrücken, p.1481-1484.

Johnson, (1997). Speech perception without speaker normalization : an exemplar model. In
Johnson, K. & Mullennix, J. (eds.) Talker Variability in Speech Processing. San Diego:
Academic Press. p. 145–165.

Johnson, K. (2004) Acoustic and Auditory phonetics. Blackwell Publishing.

Johnson, K. (2004b) Aligning phonetic transcriptions with their citation forms. Acoustics
Research Letters On-line. 5, 19-24.

Johnson, K. (2005) Speaker Normalization in speech perception. In Pisoni, D.B. & Remez, R.
(eds) The Handbook of Speech Perception. Oxford: Blackwell Publishers. pp. 363-389.

Johnson, K. (2008). Quantitative Methods in Linguistics. Wiley-Blackwell.

Joos, M., (1948) Acoustic Phonetics, Language, 24, 1-136.

Jun, S., Lee, S., Kim, K., and Lee, Y. (2000) Labeler agreement in transcribing Korean
intonation with K-ToBI. Proceedings of the International Conference on Spoken Language
Processing, Beijing: China, p. 211-214.

Jun, S. (2005). Prosodic Typology: The Phonology of Intonation and Phrasing. Oxford
University Press: Oxford.

Kahn, D. (1976) Syllable-based generalizations in English phonology. PhD dissertation, MIT.
Published 1980, New York: Garland.

Keating, P., Byrd, D., Flemming, E., Todaka, Y., (1994). Phonetic analyses of word and segment
variation using the TIMIT corpus of American English. Speech Communication, 14, 131–142.

Keating, P., MacEachern, M., and Shryock, A. (1994) Segmentation and labeling of single words
from spontaneous telephone conversations. Manual written for the Linguistic Data Consortium,
UCLA Working Papers in Phonetics 88, 91-120.

Keating, P., Cho, T., Fougeron, C., and C. Hsu, C. (2003) Domain-initial articulatory
strengthening in four languages. In J. Local, R. Ogden, R. Temple (Eds.) Papers in Laboratory
Phonology 6. Cambridge University Press, Cambridge. p. 143-161.

Kello, C. T. and Plaut, D. C. (2003). The interplay of perception and production in phonological
development: Beginnings of a connectionist model trained on real speech. 15th International
Congress of Phonetic Sciences, Barcelona, Spain.

 268

Kewley-Port, D. (1982) Measurement of formant transitions in naturally produced stop
consonant–vowel syllables. Journal of the Acoustical Society of America 72, 379– 389.

Kohler, K. (2001) Articulatory dynamics of vowels and consonants in speech communication.
Journal of the International Phonetic Association, 31, 1-16.

Krull, D. (1987) Second formant locus patterns as a measure of consonant-vowel coarticulation.
Phonetic Experimental Research at the Institute of Linguistics, 5, 43–61.

Krull, D. (1989) Second formant locus patterns and consonant vowel coarticulation in
spontaneous speech. Phonetic Experimental Research Institute of Linguistics, 10, 87-108.

Kurowski, K., and Blumstein, S. E. (1984) Perceptual integration of the murmur and formant
transitions for place of articulation in nasal consonants. Journal of the Acoustical Society of
America 76, 383–390.

Labov, W. (1994). Principles of Linguistic Change. Vol. 1: Internal factors. Blackwell
Publishing: Oxford.

Labov, W. (2001). Principles of Linguistic Change. Vol. 2: Social factors. Blackwell Publishing:
Oxford.

Labov, W., & Auger, J. (1998). The effects of normal aging on discourse. In H. H. Brownell, &
J. Yves (Eds.), Narrative discourse in neurologically impaired and normal aging adults. San
Diego, CA: Singular Publishing Group. p. 115–134.

Ladd, D.R. (1996) Intonational Phonology. Cambridge University Press.

Ladefoged, P. (1967). Three Areas of Experimental Phonetics. Oxford University Press: Oxford.

Ladefoged, P. (1995) Instrumental techniques for linguistic phonetic fieldwork. In W.J.
Hardcastle & J. Laver (Eds.) The Handbook of Phonetic Sciences. Blackwell. (p. 137-166)

Ladefoged, P. (2003) Phonetic Data Analysis: An Introduction to Fieldwork and Instrumental
Techniques. Blackwell..

Ladefoged, P., Broadbent, D.E., (1957). Information conveyed by vowels. Journal of the
Acoustical Society of America 29, 98–104.

Lahiri, A. and Gewirth, L. and Blumstein, S. (1984) A reconsideration of acoustic invariance for
place of articulation in diffuse stop consonants: evidence from a cross-language study. Journal of
the Acoustical Society of America, 76, 391-404.

Lamel, L., Kassel, R. and Seneff, S. (1986), Speech database development: design and analysis
of the acoustic-phonetic corpus, Proc. DARPA Speech Recognition Workshop, p. 100-109.

Laver, J. (1980) The Phonetic Description of Voice Quality. Cambridge University Press:
Cambridge.

Laver, J. (1991) The Gift of Speech. Edinburgh University Press: Edinburgh.

 269

Laver, J. (1994). Principles of Phonetics. Cambridge University Press: Cambridge.

Lehiste, I., & Peterson, G. (1961). Transitions, glides, and diphthongs. Journal of the Acoustical
Society of America, 33, 268–277.

Liberman, A. M., Delattre, P. C., Cooper, F. S., and Gerstman, L. J. (1954) The role of
consonant-vowel transitions in the perception of the stop and nasal consonants. Psychological
Monographs 68, 1–13.

Liberman, A.M., Delattre, P.C. and Cooper, F.S. (1958) The role of selected stimulus variables
in the perception of voiced and voiceless stops in initial position. Language and Speech, 1, 153 -
167.

Lieberman, P. (1963) Some effects of semantic and grammatical context on the production and
perception of speech. Language and Speech, 6, 172–187.

Liljencrants, L. & Lindblom, B. (1972) Numerical simulation of vowel quality. Language, 48,
839-862.

Lindblom, B., (1963) Spectrographic study of vowel reduction. Journal of the Acoustical Society
of America 35, 1773-1781.

Lindblom, B. (1990) Explaining phonetic variation: A sketch of the H&H theory, in W. J.
Hardcastle and A. Marchal (Eds.) Speech Production and Speech Modeling. Kluwer Academic
Press. p. 403–439.

Lindblom, B.. & Sundberg, J. (1971) Acoustical consequences of lip, tongue, jaw, and larynx
movement, Journal of the Acoustical Society of America, 50, 1166-1179.

Lobanov, B.M., (1971) Classification of Russian vowels spoken by different speakers. Journal of
the Acoustical Society of America, 49, 606-608.

Löfqvist, A. (1999) Interarticulator phasing, locus equations, and degree of coarticulation.
Journal of the Acoustical Society of America, 106, 2022-2030.

Luce, P., & Pisoni, D. (1998). Recognizing spoken words: The neighborhood activation model.
Ear and Hearing, 19, 1–36.

Maclagan, M. & Hay, J. (2007). Getting fed up with our feet: contrast maintenance and the New
Zealand English ‘short’ front vowel shift. Language Variation and Change, 19, 1-25.

Mann, V. A., and Repp, B. H. (1980) Influence of vocalic context on perception of the [ʃ]-[s]
distinction. Perception and Psychophysics 28, 213–228.

Manuel, S.Y., Shattuck-Hufnagel, S., Huffman, M., Stevens, K.N., Carlson, R., Hunnicutt, S.,
(1992). Studies of vowel and consonant reduction. Proceedings of the 1992 International
Conference on Spoken Language Processing, p. 943–946.

Marchal, A. and Hardcastle, W.J. (1993) ACCOR: Instrumentation and database for the cross-
language study of coarticulation. Language and Speech, 36, 137-153.

 270

Marchal, A., Hardcastle, W., Hoole, P., Farnetani, E., Ni Chasaide, A., Schmidbauer, O.,
Galiano-Ronda, I., Engstrand, O. and Recasens, D. (1991) The design of a multichannel
database. Proceedings of the 12th International Congress of phonetic Sciences, Aix-en-
Provence, vol 5, 422-425.

Markel, J. & Gray, A. (1976), Linear Prediction of Speech. Springer Verlag: Berlin.

Max, L., and Onghena, P. (1999). Some issues in the statistical analysis of completely
randomized and repeated measures designs for speech language and hearing research. Journal of
Speech Language and Hearing Research, 42, 261–270.

McVeigh, A. and Harrington, J. (1992). The mu+ system for speech database analysis.
Proceedings of the Fourth International Conference on Speech Science and Technology.
Brisbane, Australia. (p.548-553).

Miller, J. D. (1989) Auditory-perceptual interpretation of the vowel. Journal of the Acoustical
Society of America 85, 2114–2134.

Millar, J.B. (1991) Knowledge of speaker characteristics: its benefits and quantitative
description, In Proceedings of 12th International Congress of Phonetic Sciences, Aix-en-
Provence, p. 538-541.

Millar, J.B., Vonwiller,J.P., Harrington, J., Dermody, P.J. (1994) The Australian National
Database of Spoken Language, In Proceedings of ICASSP-94, Adelaide, Vol.1, p.97-100.

Millar, J., Dermody, P., Harrington, J., and Vonwiller, J. (1997). Spoken language resources for
Australian speech technology. Journal Of Electrical and Electronic Engineers Australia, 1, 13-
23.

Milner, B. & Shao, X. (2006) Clean speech reconstruction from MFCC vectors and fundamental
frequency using an integrated front-end. Speech Communication, 48, 697-715.

Moon, S.-J., and Lindblom, B. (1994) Interaction between duration, context, and speaking style
in English stressed vowels, Journal of the Acoustical Society of America 96, 40–55.

Moore, A. (2003) Support vector machines. Carnegie-Mellon University.
http://www.cs.cmu.edu/~awm/tutorials

Munson, B., Edwards, J., & Beckman, M. E. (2005). Phonological knowledge in typical and
atypical speech sound development. Topics in Language Disorders, 25, 190-206.

Munson, B. & Solomon, N. (2004) The effect of phonological neighorhood density on vowel
articulation. Journal of Speech, Language, and Hearing Research, 47, 1048–1058.

Nam, H. (2007) Syllable-level intergestural timing model: split gesture dynamics focusing on
positional asymmetry and intergestural structure. In J. Cole & J. Hualde (Eds.) Laboratory
Phonology 9. Mouton de Gruyter: Berlin. p. 483-503.

Nearey, T. M. (1989) Static, dynamic, and relational properties in vowel perception. Journal of
the Acoustical Society of America 85, 2088–2113.

 271

Nossair, Z.B. and Zahorian, S.A. (1991) Dynamic spectral shape features as acoustic correlates
for initial stop consonants. Journal of the Acoustical Society of America, 89, 2978 -2991.

Ohala, J. J. (1990) The phonetics and phonology of aspects of assimilation. In J. Kingston & M.
Beckman (eds.), Papers in Laboratory Phonology I: Between the Grammar and the Physics of
Speech. Cambridge: Cambridge University Press. p. 258-275.

Ohala, J. J. & Kawasaki, H. (1984) Prosodic phonology and phonetics. Phonology Yearbook, 1,
113 - 127.

Öhman, S.E.G., (1966) Coarticulation in VCV utterances: Spectrographic measurements.
Journal of the Acoustical Society of America 39, 151-168.

Oostdijk, N. The Spoken Dutch Corpus. Overview and first evaluation. In M. Gravilidou, G.
Carayannis, S. Markantonatou, S. Piperidis & G. Stainhaouer (Eds.), Proceedings of the Second
International Conference on Language Resources and Evaluation(LREC 2000), 887-894.

Oudeyer, P-I. (2002). Phonemic coding might be a result of sensory-motor coupling dynamics.
In Hallam, B., Floreano, D., Hallam, J., Hayes, G. & Meyer, J-A. (Eds.) Proceedings of the 7th
International Conference on the Simulation of Adaptive Behavior. MIT Press: Cambridge, Ma. p.
406–416.

Oudeyer, P. (2004) The self-organization of speech sounds. Journal of Theoretical Biology, 233,
435-449.

Pereira, C. (2000) Dimensions of emotional meaning in speech. SpeechEmotion-2000, 25-28.
(ISCA Tutorial and Research Workshop on Speech and Emotion, Belfast, September 2000).

Peterson, G.E., (1961) Parameters of vowel quality. Journal of Speech and Hearing Research, 4,
10-29.

Peters, B. (2006) Form und Funktion prosodischer Grenzen im Gespräch. PhD dissertation,
Institute of Phonetics and digital Speech Processing, University of Kiel, Germany.

Peterson, G., and Barney, H. L. (1952) Control methods used in a study of the vowels, Journal of
the Acoustical Society of America 24, 175–184.

Pierrehumbert, J. B. (1980) The Phonology and Phonetics of English Intonation. Ph.D.
dissertation, MIT. [Published by Indiana University Linguistics Club, Bloomington].

Pierrehumbert, J. (2002). Word-specific phonetics. In C. Gussenhoven, C. and N. Warner (eds.)
Laboratory phonology 7. Mouton de Gruyter: Berlin and New York. (p. 101-140).

Pierrehumbert, J. (2003a). Probabilistic phonology: discrimination and robustness. In R. Bod, J.
Hay, J. and S. Jannedy (Eds.) Probabilistic Linguistics. MIT Press: Cambridge, Mass. p. 177-
228.

Pierrehumbert, J. (2003b). Phonetic diversity, statistical learning, and acquisition of phonology.
Language & Speech, 46, 115-154.

Pierrehumbert, J. (2006). The next toolkit. Journal of Phonetics, 34, 516-530.

 272

Pierrehumbert, J. and Talkin. D. (1990) Lenition of /h/ and glottal stop. In: Gerard J.
Doherty and D. Robert Ladd (eds.), Gesture, Segment, Prosody (Papers in Laboratory
Phonology 2). Cambridge: Cambridge University Press. p. 90-117.

Pitrelli, J., Beckman, M.E., and Hirschberg, J. (1994). Evaluation of prosodic transcription
labeling reliability in the ToBI framework. Proceedings of the International Conference on
Spoken Language Processing, p. 123-126.

Pitt, M., Johnson, K., Hume, E., Kiesling, S. and Raymond, W. (2005). The Buckeye corpus of
conversational speech: labeling conventions and a test of transcriber reliability. Speech
Communication, 45, 89–95.

Pols, L. (2001) The 10-million-words Spoken Dutch Corpus and its possible use in experimental
phonetics. In Proceedings of 100 Years of Experimental Phonetics in Russia. St. Petersburg,
Russia. p. 141-145.

Pols, L., Tromp, H., and Plomp, R., (1973). Frequency analysis of Dutch vowels from 50 male
speakers. Journal of the Acoustical Society of America 53, 1093-1101.

Potter, R.K., Kopp, G. and Green, H., (1947) Visible Speech. Dover Publications, New York.

Potter, R. K., and Steinberg, J. C. (1950) Toward the specification of speech. Journal of the
Acoustical Society of America 22, 807–820.

Quené, H. & van den Bergh, H. (2008) Examples of mixed-effects modeling with crossed
random effects and with binomial data. Journal of Memory and Language, 59, 413-425.

Rastle, K., Harrington, J., and Coltheart, M. (2002). 358,534 Nonwords: The ARC nonword
database. Quarterly Journal of Experimental Psychology, 2002,55A(4), 1339–1362.

Raymond, W., Dautricourt, R., and Hume, E. (2006). Word-medial /t,d/ deletion in spontaneous
speech: Modeling the effects of extra-linguistic, lexical, and phonological factors. Language
Variation and Change, 18, 55-97.

Recasens, D. (2004). The effect of syllable position on consonant reduction: Evidence from
Catalan consonant clusters. Journal of Phonetics 32, 435-453.

Recasens, D., Farnetani, E., Fontdevila, J. and Pallarès, M.D. (1993) An electropalatographic
study of alveolar and palatal consonants in Catalan and Italian. Language and Speech, 36, 213-
234.

Reed, M., DiPersio, D. and Cieri, C. (2008). The Linguistic Data Consortium member survey:
purpose, execution and results. In Proceedings of the Sixth International Language Resources
and Evaluation, 2969-2973.

Roach, P., Knowles, G., Varadi, T., and Arnfield, S. (1993) MARSEC: A Machine-Readable
Spoken English Corpus. Journal of the International Phonetic Association, 23, 47-54.

Robson, C. (1994) Experiment, Design and Statistics in Psychology. Penguin Books.

Rose, P. (2002) Forensic Speaker Identification. Taylor and. Francis: London.

 273

Saltzman, E. L., & Munhall, K. G. (1989) A dynamical approach to gestural patterning in speech
production. Ecological Psychology, 1, 333-382.

Sankoff, G. (2005) Cross-Sectional and Longitudinal Studies In U. Ammon, N. Dittmar, K..
Mattheier, and P. Trudgill, (Eds.) An International Handbook of the Science of Language and
Society, Volume 2, 2. Berlin: de Gruyter, p.1003-1013.

Schiel F (1999) Automatic phonetic transcription of non-prompted speech. Proceedings of the
International Conference of Phonetic Sciences, 607-610.

Schiel, F. (2004). MAUS goes iterative. In Proc. of the IV. International Conference on
Language Resources and Evaluation, p 1015-1018.

Schiel, F. & Draxler, C. (2004) The Production of Speech Corpora. Bavarian Archive for Speech
Signals: Munich. Available from: http://www.phonetik.uni-
muenchen.de/forschung/Bas/BasLiteratur.html.

Schouten, M. E. H., and Pols, L. C. W. (1979). CV- and VC-transitions: a spectral study of
coarticulation, Part II, Journal of Phonetics, 7, 205-224.

Schafer, A., Speer, S., Warren, P. & White. S. (2000). Intonational disambiguation in sentence
production and comprehension. Journal of Psycholinguistic Research, 29, 169-182.

Shearer, W. (1995) Experimental design and statistics in speech science. In W.J. Hardcastle & J.
Laver (Eds.) The Handbook of Phonetic Sciences. Blackwell. p. 167-187.

Short, T. (2005) R/Rpad Reference Card. http://www.rpad.org/Rpad/Rpad-refcard.pdf

Shriberg, L. and Lof, G., (1991). Reliability studies in broad and narrow phonetic transcription.
Clinical Linguistics and Phonetics, 5, 225–279.

Silverman, K., Beckman, M.E., Pitrelli, J., and Ostendorf, M. (1992). TOBI: A standard for
labelling English prosody. Proceedings International Conference on Spoken Language
Processing, Banff, p. 867-870.

Silverman, K. and J. Pierrehumbert (1990) The Timing of prenuclear high accents in English,
Papers in Laboratory Phonology I, Cambridge University Press, Cambridge. p. 72-106.

Simpson, A. (2001) Does articulatory reduction miss more patterns than it accounts for? Journal
of the International Phonetic Association, 31, 29-39.

Simpson, A. (2002) Gender-specific articulatory-acoustic relations in vowel sequences. Journal
of Phonetics, 30, 417-435.

Simpson, A. (1998). Phonetische Datenbanken des Deutschen in der empirischen
Sprachforschung und der phonologischen Theoriebildung. Arbeitsberichte des Instituts für
Phonetik und digitale Sprachverarbeitung der Universität Kiel. 33.

Simpson, A., Kohler, K., and Rettstadt, T. (1997). The Kiel Corpus of Read/Spontaneous
Speech: acoustic data base, processing tools. Arbeitsberichte des Instituts für Phonetik und
digitale Sprachverarbeitung der Universität Kiel, 32, 31-115.

 274

Sjölander, K. and Beskow, J. (2006). Wavesurfer. http://www.speech.kth.se/wavesurfer/

Sjölander, K. (2002) Recent developments regarding the WaveSurfer speech tool. Dept. for
Speech, Music and Hearing Quarterly Progress and Status Report, 44, 53-56.

Srivastava, S., Gupta, M, and Frigyik, B. (2007) Bayesian quadratic discriminant analysis.
Journal of Machine Learning Research, 8, 1277-1305.

Stephenson, L.S. (2005) An electropalatographic and acoustic analysis of frequency effects in
the lexicon. Unpublished PhD thesis, Macquarie Centre for Cognitive Science, Macquarie
University, Sydney.

Stephenson, L.S. (2004). Lexical frequency and neighbourhood density effects on vowel
production in words and nonwords. Proceedings of the 10th Australian International Conference
on Speech Science and Technology, p 364-369.

Stephenson, L.S. (2003). An EPG study of repetition and lexical frequency effects in alveolar to
velar assimilation. Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS-
03), p. 1891-1894.

Stephenson, L. & Harrington, J., (2002). Assimilation of place of articulation: Evidence from
English and Japanese. Proceedings of the 9th Australian International Conference on Speech
Science and Technology, p. 592-597.

Stirling, L., Fletcher, J., Mushin, I. and Wales, R. (2001). Representational issues in annotation:
Using the Australian map task corpus to relate prosody and discourse. Speech Communication,
33, 113-134.

Sussman, H.M., McCaffrey, H., and Matthews, S.A., (1991) An investigation of locus equations
as a source of relational invariance for stop place categorization. Journal of the Acoustical
Society of America, 90, 1309-1325.

Sussman, H.M., Fruchter, D., Cable, A., (1995) Locus equations derived from compensatory
articulation. Journal of the Acoustical Society of America 97, 3112-3124.

Syrdal, A. K., and Gopal, H. S. (1986) A perceptual model of vowel recognition based on the
auditory representation of American English vowels. Journal of the Acoustical Society of
America 79, 1086–1100.

Syrdal, A., and McGory, A. (2000) Inter-transcriber reliability of ToBI prosodic labeling.
Proceedings of the International Conference on Spoken Language Processing, Beijing: China, p.
235-238.

Taylor, P., Black, A. & Caley, R (2001) Heterogeneous relation graphs as a formalism for
representing linguistic information. Speech Communication, 33, 153-174.

Traunmüller, H. (1990) Analytical expressions for the tonotopic sensory scale. Journal of the
Acoustical Society of America 88, 97-100.

Traunmüller, H. and Lacerda, F., (1987) Perceptual relativity in identification of two-formant
vowels. Speech Communication, 6, 143 -157.

 275

Trochim, M. (2007). Research Methods Knowledge Base. Thomson: London. Also online at:
http://www.socialresearchmethods.net/kb/index.php

Trudgill, P. (1988). Norwich revisited: Recent linguistic changes in an English urban
dialect. English World Wide, 9, 33-49.

Vance, A. (2009) Data analysts captivated by R’s power. Article in the Business Computing
section of the New York Times, Jan. 6th 2009.

Vasishth, S. (in press). The foundations of statistics: A simulation-based approach.
http://www.ling.uni-potsdam.de/~vasishth/SFLS.html

van Bergem, D.R. (1993) Acoustic vowel reduction as a function of sentence accent, word stress,
and word class, Speech Communication, 12, 1-23.

van Bergem, D.R. (1994). A model of coarticulatory effects on the schwa. Speech
Communication, 14, 143- 62.

van Son, R., and Pols, L. (1990). Formant frequencies of Dutch vowels in a text, read at normal
and fast rate. Journal of the Acoustical Society of America 88, 1683-1693.

Verbrugge, R., Strange, W., Shankweiler, D.P. and Edman, T.R., (1976) What information
enables a listener to map a talker's vowel space? Journal of the Acoustical Society of America,
60, 198-212.

Watson, C. I., and Harrington, J. (1999) Acoustic evidence for dynamic formant trajectories in
Australian English vowels. Journal of the Acoustical Society of America 106, 458–468.

Wedel, A. (2006). Exemplar models, evolution and language change. The Linguistic Review, 23,
247–274.

Wedel, A. (2007) Feedback and regularity in the lexion. Phonology, 24, 147-185.

Weenink, (2001) Vowel normalization with the TIMIT corpus. Proceedings of the Institute of
Phonetic Sciences, University of Amsterdam, 24, 117–123.

Wells, J.C. (1997) SAMPA computer readable phonetic alphabet. In Gibbon, D., Moore, R. and
Winski, R. (eds.), Handbook of Standards and Resources for Spoken Language Systems. Berlin
and New York: Mouton de Gruyter. Part IV, section B.

Wesenick, M. & Kipp, A. (1996) Estimating the quality of phonetic transcriptions and
segmentations of speech signals. Proceedings of the International Conference on Spoken
Language Processing, 129-132.

Wesener, T. (2001) Some non-sequential phenomena in German function words. Journal of the
International Phonetic Association, 31, 17-27.

Westbury, J. R. (1994) X-ray Microbeam Speech Production Database User’s Handbook,
Version 1.0. Madison, WI.

Wiese, R. (1996) The Phonology of German. Clarendon Press: Oxford.

 276

Wrench, A. and Hardcastle, W. (2000) A multichannel articulatory speech database and its
application for automatic speech recognition. Proc. 5th seminar on speech production: models
and data, 305-308.

Wright, R. (2003). Factors of lexical competition in vowel articulation. In J. Local, R. Ogden, and
R. Temple (Eds.), Laboratory Phonology VI, p. 75-87. Cambridge University Press. Cambridge.

Wuensch, K. (2009). Karl Wuensch's statistics lessons
http://core.ecu.edu/psyc/wuenschk/StatsLessons.htm

Yoon, T., Chavarria, S., Cole, J., & Hasegawa-Johnson,. M., (2004) Intertranscriber reliability of
prosodic labeling on telephone conversation using ToBI. Proceedings of the International
Conference on Spoken Language Processing, Nara: Japan. p. 2729- 2732.

Zierdt, A. (2007) Die Entwicklung der Messtechnik für ein fünfdimensionales elektromagnetisches
Artikulographensystem. Ph.D diss. Institute of Phonetics and Speech Processing, University of
Munich.

Zwicker, E. (1961). Subdivisions of the audible frequency range into critical bands. Journal of the
Acoustical Society of America, 33.

 277

Figure legends

Fig. 2.1 An overview of the relationship between the stages of creating, querying, and analysing
speech corpora.

Fig. 2.2. The Emu Database Tool as it appears when you first start up Emu. The left pane is
for showing the available databases, the right pane for the utterances that each database is
composed of.

Fig. 2.3. The Emu DatabaseInstaller is accessible from Arrange Tools. To install
any of the available databases, first specify a path to which you want to save the data from New
Database Storage and then click on any of the zip files. You must have an internet
connection for this to work.

Fig. 2.4. The result of following the procedure described in Fig. 2.3 is access to the database
first that is made up of five utterances shown on the right. The utterance names are displayed
by selecting first in Databases on the left followed by Load Database. Double
clicking any of the names in the Utterances pane on the right causes the utterance to be
opened (Fig. 2.5).

Fig. 2.5. The display that appears when opening utterance gam001 showing four labelling tiers,
a waveform, and a spectrogram. The two vertical lines show a selection. To make a selection,
position the mouse in the waveform, hold down the left button and sweep without letting go of
the left button to the desired position later in time, then release the button. To zoom in to the
selection (Fig. 2.6), click the ↔ symbol in the top left of the display.

Fig. 2.6. The resulting display after zooming in to the segment marks in Fig. 2.5. The following
further adjustments were also made. Firstly, click the button inside the ellipse on the left to get
the pull out menu shown over the spectrogram and then adjust the contrast and brightness sliders
and reset the maximum spectral range to 4000 Hz. You can also produce a narrow band
spectrogram showing harmonics by resetting the bandwidth to e.g., 45 Hz. The waveform and
spectrogram windows can be made bigger/smaller using the triangles shown inside the ellipse on
the right.

Fig. 2.7. The steps for opening the utterance gam002 in Praat from Emu. Click gam002 in the
Utterances pane once to select it, then Praat from the Open with... pull-down menu.
Praat must already be running first for this to work.

Fig. 2.8. The utterance gam002 opened in Praat and segmented and labelled at the Word tier.

Fig. 2.9. The corresponding display in Emu (obtained by double clicking gam002- see Fig. 2.7)
after labelling the data with Praat in the manner of Fig. 2.8. The other labelling tiers have been
removed from the display with Display → SignalViewLevels and then by de-selecting
Phoneme, Phonetic, Target.

Fig. 2.10. Opening files in Praat. Open the utterance msajc023.wav with Read → Read
from File in the left pane, then select to TextGrid from the Annotate pull-down menu
to bring up the pane shown top right and enter Word as a segment tier. After clicking the OK
button in the top right pane, the TextGrid object will appear in the Praat objects window as
shown below right. Select both the sound file and this TextGrid object together to derive the
initially unlabelled waveform and spectrogram in Fig. 2.11.

 278

Fig. 2.11. The audio file msajc023.wav segmented and labelled into words. Save the
TextGrid to the same directory where msajc023.wav is located with File → Write
TextGrid to text file.

Fig. 2.12. The labConvert window for inter-converting between Emu and Praat label files.
Click on Praat 2 Emu to bring up this window, and enter the full path and filename for
msajc023.TextGrid under Input File as shown above. Then choose a directory into
which the output of the conversion is to be written. Make sure you check the box
templatefile as shown in order to create an Emu template during the conversion. Begin the
conversion with Start.

Fig. 2.13 The files in the first directory after converting the Praat TextGrid. At this point, you
should rename the template file p2epreparedtpl.tpl to something else e.g., jec.tpl.

Fig. 2.14. The Emu Database Tool showing the new database whose template should be
edited with Edit Template.

Fig. 2.15. The Tracks (above) and Variables (below) panes of the template file for the
database jec. Specify the extension as wav and the path as x/first, where x is the
directory in which msajc023.wav is stored. For the Variables pane, specify the primary
extension as wav: the utterances of the database will then be defined to be all wav files that are
found under Path of the Tracks pane.

Fig. 2.16. The Emu Database Tool showing the database jec. The utterances are accessible
after editing the template file in the manner described in Fig. 2.15 and then selecting Load
Database. Double clicking on the utterance name opens the utterance in Emu as shown on the
right.

Fig. 2.17. The information to be entered in the Levels pane.

Fig. 2.18. The information to be entered in the Labfiles pane.

Fig. 2.19. The information to be entered in the Tracks pane.

Fig. 2.20. The information to be entered in the Variables pane.

Fig. 2.21. The Emu configuration editor showing the paths for the template files.

Fig. 2.22 The Emu Database Tool showing the myfirst database and associated
utterances.

Fig. 2.23 The utterance gam007 showing a segmentation into words and a single i: segment at
the Phoneme tier.

Fig. 2.24. The labConvert window to convert the Emu annotations into a Praat TextGrid.
Select myfirst from the … pull-down menu at the top, then gam007 from the … menu in the
middle, and then choose Automatic to save the TextGrid to the same directory in which the
Emu annotations are stored. Finally select Start.

Fig. 2.25. The same utterance and annotations in Fig. 2.23 as a Praat TextGrid.

 279

Fig. 3.1 A schematic view of the phonetic vowel quadrilateral and its relationship to the first two
formant frequencies.

Fig. 3.2. Spectrogram and superimposed second formant frequency of a production by a male
speaker of the German word drüben with phonetic segments and boundaries shown. From
Harrington (2009).

Fig. 3.3. The Emu Database Tool after downloading the database second.zip. Enter
gam* and confirm with the ENTER key to select all utterances beginning with gam (the male
speaker) then select Send to tkassp from the Utterance List… menu to bring up the
tkassp window in Fig. 3.4.

Fig. 3.4. Upon selecting Send to tkassp (Fig. 3.3) a window (shown in the middle of this
figure) appears asking whether samples should be selected as the input track. Selecting OK
causes the sampled speech data (audio files) of the utterances to appear in the pane on the left.
Check the forest box as shown to calculate formants and choose the forest pane (at the
top of the display) to see the default parameters. Leaving the default output as auto (top right)
causes the formants to be stored in the same directory as the audio files from which the formants
have been calculated. The calculation of formants is done with the default settings (shown on the
right) which include a window size of 25 ms and a window shift of 5 ms. The formant files are
created with an extension .fms. When you are ready to calculate the formants, select Perform
Analysis.

Fig. 3.5. The additions to the Tracks (above) and View (below) panes that are needed for
displaying the formants. Select Add New Track then enter fm under Track, fms for the
extension and copy the path from the audio file (the path next to wav). In the View pane, check
the fm box which will have the effect of overlaying formants on the spectrograms. Finally, save
the template file.

Fig. 3.6. The utterance gam002 with overlaid formants and spectrogram parameters readjusted
as shown in the Figure. The cursor is positioned close to an evident tracking error in F2, F3, and
F4. The pen buttons on the left can be used for manual correction of the formants (Fig. 3.7).

Fig. 3.7. Manual correction (below) of the F2-formant tracking error (inside the ellipse). The
spectrogram is from the same utterance as in Fig. 3.6 but with the frequency range set to 0 - 1500
Hz. Selecting the pen color corresponding to that of F2 has the effect of showing the F2 values
on the track as points. In order to change the F2 values manually, hold down the left mouse
button without letting go and sweep across the spectrogram, either from left to right or right to
left slowly in order to reposition the point(s). When you are done, release the mouse and select
the same pen color again. You will then be prompted to save the data. Choosing yes causes the
formant file to be overwritten. Choosing no will still have the effect of redrawing the track
according to your manual correction, but when you close the window, you will be asked again to
save the data. If you choose no again, then the formant changes will not be saved.

Fig. 3.8 A flow diagram showing the relationship between signals, annotations, and the output,
ellipses. Entries followed by () are functions in the Emu-R library. Remember to enter
library(emu) at the R prompt to make use of any of these functions.

Fig. 3.9. A display of the first four formants in R (left) and the corresponding formant display in
Emu (right) for an [i:] vowel from the same gam006 utterance. The vertical line in the display
on the left marks the temporal midpoint of the vowel at 562.5 ms and can be marked with
abline(v=562.5), once the formant data have been plotted.

 280

Fig. 3.10. 95% confidence ellipses for five vowels from isolated words produced by a male
speaker of Standard German.

Fig. 3.11 Vowels for the female speaker agr in the F2 × F1 plane (values extracted at the
temporal midpoint of the vowel), after (left) and before (right) correction of an outlier (at F2 = 0
Hz) for [u:].

Fig. 3.12. The tkassp window for calculating intensity data for the aetobi database. Select
the … button in the top right corner then choose manual and from that the directory into which
you want to store the intensity data. Make a note of the directory (path) because it will need to be
included in the template file to tell Emu where these intensity data are located on your system.

Fig. 3.13. The required modifications to the aetobi template file in order to display intensity
data in Emu in the Tracks (top) and View (below) panes. The path entered in the Tracks
pane is the one to which you wrote the intensity data in Fig. 3.12.

Fig. 3.14. The utterance bananas showing a spectrogram and intensity contour.

Fig. 3.15. The same utterance as in Fig. 3.14 showing only the Word tier and intensity contour.

Fig. 3.16. The defaults of the rmsana pane set to a window shift and size of 2 ms and 10 ms
respectively and with an output extension rms2. These data will be saved to the same directory
as the one selected in Fig. 3.13.

Fig. 3.17. The utterance bananas showing intensity contours calculated with a window size
and shift of 25 ms and 5 ms (above) and 10 ms and 2 ms (below) respectively.

Fig. 3.18. A spectrogram and synchronized zero-crossing rate for the bananas utterance
showing word segmentations.

Fig. 3.19. The argument utterance from the aetobi database showing a spectrogram with
overlaid formants and a synchronized f0-contour.

Fig. 3.20. The procedure for calculating signal files, in this case fundamental frequency data
from a segment list. This tkassp window is accessed from Signal Processing →
Speech Signal Analysis after starting Emu. Import the segment list using the Input …
button in the top left and choose Select Segment/Event, then select path/seg.txt
where path is the directory where seg.txt is stored, then OK to samples. This should bring
up the list of segments shown in the left part of the figure. Choose Use f0ana, inspect the
f0ana pane if you wish, and finally click on Perform Analysis. If the input was the plain
text file seg.txt, then the output will be seg-f0.txt containing the fundamental frequency
data in the same directory (by default) as seg.txt.

Fig. 3.21. The Track (above) and View (below) panes of the aetobi database edited to
include the new intensity parameter.

Fig. 4.1. The Emu Query Tool accessed from Database Operations followed by
Query Database (above) and the segment list (below) that results from the query.

Fig 4.2 The Legal Labels pane of the Graphical Template Editor showing how
the annotations at the Phonetic tier are grouped into different classes (features).

 281

Fig. 4.3. A fragment of the utterance thorsten from the downloadable gt database showing
signal (above) and hierarchy (below) views. The signal view has been set to display only the f0
contour (Display → Tracks → F0) and in the range 100-300 Hz by the use of the slider
buttons to the left of the f0 pane. The hierarchy window is accessible from the signal window
using either the Show Hierarchy button or Display → Detach hierarchy to
display both windows simultaneously.

Fig. 4.4 The association between I, Word, and Tone tiers for the same utterance as in Fig. 4.3.
This display was produced with Display → Hierarchy Levels and then by deselecting
the other tiers.

Fig. 4.5. An example of an annotation of the word person showing many-to-many relationships
between both Phonetic and Phoneme, and between Phoneme and Syllable tiers. In
addition, the tiers are in a hierarchical relationship in which Syllable immediately dominates
Phoneme which immediately dominates Phonetic.

Fig. 4.6 The path for the gt database (far left) showing the inter-tier relationships. (S) and (E)
denote segment and event tiers respectively, all other tiers are timeless. A downward arrow
denotes a non-linear, one-to-many relationship. The figure also shows the information in the
Levels (top left), Labels (top right), and Labfiles (below) panes of the template file for
encoding this path.

Fig. 4.7. The hierarchy window of the utterance dort in the gt database before (above) and
after (below) annotation.

Fig. 4.8. The annotations for dort showing the annotation numbers (grey) coded in the
corresponding hlb file. The annotation numbers can be displayed with Display ➝ Toggle
Segment numbers (from the main Emu menu). For simplicity, the Break tier has been
removed from the display (Display ➝ Hierarchy levels).

Fig. 4.9. The Praat TextGrid for the utterance dort corresponding to the structured annotation
in Emu. This TextGrid was created with the labConvert window shown above the Praat
display (accessible from Arrange Tools → Convert Labels → Emu2Praat) by
entering the template file (gt) and input file (dort) and specifying an output directory.

Fig. 4.10. A fragment of the utterance K67MR095 from the kielread corpus showing
apparent segment deletion in the words und, schreiben, and lernen.

Fig. 4.11. The graphical user interface to the Emu query language. Assuming you have loaded
the utterances of the gt database click on graphical query in the query tool window
(Fig 4.1) to open the spreadsheet shown above (initially you will only see the pane on the left). A
query of all H% (intonational phrases) labels that dominate more than 5 words is entered at tier I,
with the label H% and with num > 5 Word. A tick mark is placed next to Word to make a
segment list of annotations at this tier; also click on Word itself to get the # sign which means
that a segment list should be made of words only in this position (rather across this and the next
word). Enter End i at the Word tier to search for intermediate-phrase-final words. At the Tone
tier, enter L*+H to search for these annotations. Then click the >> arrow at the top of the
spreadsheet beneath Position to enter the search criteria in an analogous manner for the
following segment, i.e., L- at tier i and 0 at the Break tier. Finally select the Query button
when you are ready and the system will calculate the search instruction (shown next to
Querystring).

 282

Fig. 4.12 The utterance anna1 from the aetobi database including the f0-contour as
calculated in the exercises of chapter 3.

Fig. 4.13 The modified aetobi template file. Word is made a parent of Tone (left) and
path/aetobi.txt is the file containing the Tcl code that is entered in the Variables pane
(right) under AutoBuild. Also make sure that Word and Tone are selected in
HierarchyViewLevels of the template file's view pane.

Fig. 4.14. The output of the LinkFromTimes function showing links between annotations at
the Word and Tone tiers. This display was obtained by clicking on Build Hierarchy.

Fig. 4.15. The Emu AutoBuild tool that is accessible from Database Operations →
AutoBuildExtern and which will automatically load any Tcl (AutoBuild) script that is
specified in the template file. Follow through the instructions to apply the script to all utterances
in the database.

Fig. 4.16. The path for representing parent-child tiers in aetobi.

Fig. 4.17. The modified Levels pane of the aetobi template file to encode the path
relationships in Fig. 4.16. The simplest way to do this is in text mode by clicking on txt (inside
the ellipse) which will bring up the plain text file of the template. Then replace the existing
level statements with those shown on the right of this figure. Once this is done, click
anywhere inside the GTemplate Editor and answer yes to the prompt: Do you want
to update GTed? to create the corresponding tiers shown here in the Levels pane.
Finally, save the template file in the usual way. (There is no need to save the plain text file).

Fig. 4.18. The result of running tobi2hier.txt on the utterance anyway. If the
Intonational and Intermediate tiers are not visible when you open this utterance, then
select them from Display → Hierarchy levels.

Fig. 4.19. The structural relationships between Word, Morpheme, Phoneme and, in a separate
plane, between Word, Syllable and Phoneme for German kindisch (childish).

Fig. 4.20. The two paths for the hierarchical structures in Fig. 4.19 which can be summarized by
the inter-tier relationships on the right. Since only Phoneme is a segment tier and all other tiers
are timeless, then, where → denotes dominates, Word → Morpheme → Phoneme and Word
→ Syllable → Phoneme.

Fig. 4.21. The path relationships for the ae database. All tiers are timeless except Phonetic
and Tone.

Fig. 4.22. Structural representations for the utterance msajc010 in the ae database for the tiers
from two separate paths that can be selected from Display → Hierarchy Levels.

Fig. 4.23 The utterance schoen from the gt database with an L- phrase tone marked at a point
of time in the second syllable of zusammen.

Fig. 4.24. Prosodic structure for [kita] in Japanese. ω, F, σ, µ are respectively prosodic word,
foot, syllable, and mora. From Harrington, Fletcher & Beckman (2000).

Fig. 4.25. The coding in Emu of the annotations in Fig. 4.24.

 283

Fig. 4.26. The tree in Fig. 4.24 as an equivalent three-dimensional annotation structure (left) and
the derivation from this of the corresponding Emu path structure (right). The path structure gives
expression to the fact that the tier relationships Word-Foot-Syll-Phon, Word-Syll-
Phon and Word-Syll-Mora-Phon are in three separate planes.

Fig. 5.1 The tongue tip (TT), tongue mid (TM), and tongue-back (TB) sensors glued with dental
cement to the surface of the tongue.

Fig. 5.2. The Carstens Medizinelektronik EMA 'cube' used for recording speech movement data.

Fig. 5.3. The sagittal, coronal, and transverse body planes. From
http://training.seer.cancer.gov/module_anatomy/unit1_3_terminology2_planes.html

Fig. 5.4 The position of the sensors in the sagittal plane for the upper lip (UL), lower lip (LL),
jaw (J), tongue tip (TT), tongue mid (TM), and tongue back (TB). The reference sensors are not
shown.

Fig. 5.5. A section from the first utterance of the downloadable ema5 database showing acoustic
phonetic (Segment), tongue tip (TT), and tongue body (TB) labeling tiers, a spectrogram,
vertical tongue-tip movement, and vertical tongue body movement. Also shown are mid-
sagittal (bottom left) and transverse (bottom right) views of the positions of the upper lip (UL),
lower lip (LL), jaw (J), tongue tip (TT), tongue mid (TM) and tongue body (TB) at the time of
the left vertical cursor (offset time of tongue body raising i.e., at the time of the highest point of
the tongue body for /k/).

Fig. 5.6 The annotation structure for the ema5 database in which word-initial /k/ at the
Segment tier is linked to a sequence of raise lower annotations at both the TT and TB
tiers, and in which raise at the TT tier is linked to raise at the TB tier, and lower at the TT
tier to lower at the TB tier.

Fig. 5.7 Relationship between various key functions in Emu-R and their output.

Fig. 5.8. Boxplots showing the median (thick horizontal line), interquartile range (extent of the
rectangle) and range (the extent of the whiskers) for VOT in /kl/ (left) and /kn/ (right).

Fig. 5.9. Positions of the tongue body (dashed) and tongue tip (solid) between the onset of
tongue-dorsum raising and the offset of tongue tip lowering in a /kl/ token.

Fig. 5.10. Vertical position of the tongue tip in /kn/ and /kl/ clusters synchronized at the point of
maximum tongue body raising in /k/ (t = 0 ms) and extending between the tongue tip raising and
lowering movements for /n/ (solid) or /l/ (dashed).

Fig. 5.11. Tongue body (solid) and tongue tip (dashed) trajectories averaged separately for /kn/
(black) and /kl/ (gray) after synchronization at t = 0 ms, the time of maximum tongue-body
raising for /k/.

Fig. 5.12 A sinusoid (open circles) and the rate of change of the sinusoid (diamonds) obtained by
central differencing. The dashed vertical lines are the times at which the rate of change is zero.
The dotted vertical line is the time at which the rate of change is maximum.

Fig. 5.13. Tongue-body position (left) and velocity (right) as a function of time over an interval
of tongue body raising and lowering in the /k/ of /kn/ (solid) and of /kl/ (dashed, gray) clusters.

 284

Fig. 5.14. The same data as in the right panel of Fig. 5.13, but additionally synchronized at the
time of the peak-velocity maximum in the tongue-back raising gesture of individual segments
(left) and averaged after synchronization by category (right).

Fig. 5.15. The position (left) and velocity (right) of a mass in a critically damped mass-spring
system with parameters in equation (3) x(0) = 1, ω = 0.05, v(0) = 0, xtarg = 0.

Fig. 5.16. Tongue-body raising and lowering in producing /k/. a: magnitude of the raising
gesture. b: Duration of the raising gesture. c: Time to peak velocity in the raising gesture. d:
magnitude of the lowering gesture. e: Duration of the lowering gesture. f: Time to peak velocity
in the lowering gesture.

Fig. 5.17. Position (row 1) and velocity (row 2) as a function of time in varying the parameters xo
and ω of equation (2). In column 1, xo was varied in 20 equal steps between 0.75 and 1.5 with
constant ω = 0.05. In column 2, ω was varied in 20 equal steps between 0.025 and 0.075 while
keeping xo constant at 1. The peak velocity is marked by a point on each velocity trajectory.

Fig. 5.18. Data from the raising gesture of /kl/ and /kn/. Left: boxplot of the duration between the
movement onset and the time to peak velocity. Right: the magnitude of the raising gesture as a
function of its peak velocity.

Fig. 5.19. Jaw position as a function of the first formant frequency at the time of the lowest jaw
position in two diphthongs showing the corresponding word label at the points.

Fig. 5.20. Vertical (left) and horizontal (right) position of the tongue mid sensor over the interval
of the acoustic closure of [p] synchronized at the time of the lip-aperture minimum in Kneipe
(black) and Kneipier (dashed, gray).

Fig. 5.21. Boxplot of F2 in [aɪ] and [aʊ] at the time of the lowest position of the jaw in these
diphthongs.

Fig. 5.22. 95% confidence ellipses for two diphthongs in the plane of the horizontal position of
the tongue-mid sensor and lip-aperture with both parameters extracted at the time of the lowest
vertical jaw position in the diphthongs. Lower values on the x-axis correspond to positions nearer
to the lips. The lip-aperture is defined as the difference in position between the upper and lower
lip sensors.

Fig. 5.23. Jaw height trajectories over the interval between the maximum point of tongue tip
raising in /n/ and the minimum jaw aperture in /p/ for Kneipe (solid) and Kneipier (gray, dashed).

Fig. 5.24. Tangential velocity of jaw movement between the time of maximum tongue tip raising
in /n/ and the lip-aperture minimum in /p/ averaged separately in Kneipe (solid) and Kneipier
(dashed, gray).

Fig. 6.1: 95% ellipse contours for F1 × F2 data extracted from the temporal midpoint of four
German lax vowels produced by one speaker.

Fig. 6.2. Left. The [ɪ] ellipse from Fig. 6.1 with the left-context labels superimposed on the data
points. Right: the same data partitioned into two clusters using kmeans-clustering.

 285

Fig. 6.3. An illustration of the steps in kmeans clustering for 10 points in two dimensions. X1 and
Y1 in the left panel are the initial guesses of the means of the two classes. x and y in the middle
panel are the same points classified based on whichever Euclidean distance to X1 and Y1 is least.
In the middle panel, X2 and Y2 are the means (centroids) of the points classified as x and y. In the
right panel, x and y are derived by re-classifying the points based on the shortest Euclidean
distance to X2 and Y2. The means of these two classes in the right panel are X3 and Y3.

Fig. 6.4: F2 trajectories for [ʔɪ] (gray) and for [fɪ] and [vɪ] together (black, dashed) synchronised
at the temporal onset.

Fig. 6.5: 95% confidence intervals ellipses for [ɪ] vowels of speaker 67 at segment onset in the
F1 × F2 plane before (left) and after (right) removing the outlier at F2 = 0 Hz.

Fig. 6.6: Spectrogram (0 - 3000 Hz) from the utterance K67MR096 showing an [ɪ] vowel with
superimposed F1-F3 tracks; the miscalculated F2 values are redrawn on the right. The redrawn
values can be saved – which has the effect of overwriting the signal file data containing the
formant track for that utterance permanently. See Chapter 3 for further details.

Fig. 6.7. Left: F1 and F2 of [a] for a male speaker of standard German synchronised at time t = 0,
the time of the F1 maximum. Right: F1 and F2 from segment onset to offset for an [a]. The
vertical line marks the time within the middle 50% of the vowel at which F1 reaches a
maximum.

Fig. 6.8: The revised labfiles pane in the template file of the kielread database to include
a new Target tier.

Fig. 6.9: German lax monophthongs produced by a male (left) and a female (right) speaker in the
F2 × F1 plane. Data extracted at the temporal midpoint of the vowel.

Fig. 6.10: Mean F2 × F1 values for the male (solid) and female (dashed) data from Fig. 6.9.

Fig. 6.11: Lobanov-normalised F1 and F2 of the data in Fig. 6.9. The axes are numbers of
standard deviations from the mean.

Fig. 6.12: Relationship between the Hertz and Bark scales. The vertical lines mark interval
widths of 1 Bark.

Fig. 6.13. A 3-4-5 triangle. The length of the solid line is the Euclidean distance between the
points (0, 0) and (3, 4). The dotted lines show the horizontal and vertical distances that are used
for the Euclidean distance calculation.

Fig. 6.14: Lax monophthongs in German for the female speaker in the F2 × F1 plane for data
extracted at the vowels' temporal midpoint. X is the centroid defined as the mean position of the
same speaker's mean across all tokens of the four vowel categories.

Fig. 6.15: Boxplots of Euclidean distances to the centroid (Hz) for speaker 67 (male) and speaker
68 (female) for four lax vowel categories in German.

Fig. 6.16: Histograms of the log. Euclidean distance ratios obtained from measuring the relative
distance of [ɛ] tokens to the centroids of [ɪ] and [a] in the F1 × F2 space separately for a female
(left) and a male (right) speaker.

 286

Fig. 6.17: An F2 trajectory (right) and its linearly time normalised equivalent using 101 data
points between t = ± 1.

Fig. 6.18: A raw F2 trajectory (gray) and a fitted parabola.

Fig. 6.19: F2 of [ɛ] for the male (black) and female (gray) speakers synchronised at the temporal
midpoint (left), linearly time normalised (centre), and linearly time normalised and averaged
(right).

Fig. 6.20: Boxplots of the c2 coefficient of a parabola fitted to F2 of [ɛ] for the male (left) and
female (right) speaker.

Fig. 6.21: A raw F2 formant trajectory of a back vowel [ɔ] (solid, gray) produced by a male
speaker of Standard German and two smoothed contours of the raw signal based on fitting a
parabola following van Bergem (1993) (dashed) and the first five coefficients of the discrete
cosine transformation (dotted).

Fig. 6.22: Hypothetical F2-trajectories of [bɛb] (solid) and [bob] (dashed) when there is no V-
on-C coarticulation (left) and when V-on-C coarticulation is maximal (right). First row: the
trajectories as a function of time. Second row: A plot of the F2 values in the plane of the vowel
target × vowel onset for the data in the first row. The dotted line bottom left is the line F2Target =
F2Onset that can be used to estimate the locus frequency. From Harrington (2009).

Fig. 6.23: F2 trajectories in isolated /dVd/ syllables produced by a male speaker of Australian
English for a number of different vowel categories synchronised at the vowel onset (left) and at
the vowel offset (right).

Fig. 6.24. Locus equations (solid lines) for /dVd/ words produced by a male speaker of
Australian English for F2-onset (left) and F2-offset (right) as a function of F2-target. The dotted
line is y = x and is used to estimate the locus frequency at the point of intersection with the locus
equation.

Fig. 6.25: The female speaker's [ɛ] vowels in the plane of F3–F2 Bark and –F1 Bark.

Fig. 6.26: German lax monophthongs produced by a male (left) and a female (right) speaker in
the plane of F3–F2 Bark and –F1 Bark. Data extracted at the temporal midpoint of the vowel.

Fig. 6.27: 95% confidence ellipses in the plane of F2 × F1 at the temporal midpoint of [a, ɔ] and
at the time at which F1 reaches a maximum in [aʊ] for a male speaker of Standard German.

Fig. 6.28: F2 transitions for a male speaker of Standard German following [d] (solid) and [d]
(dashed, gray).

Fig. 7.1: The palate of the EPG3 system in a plaster cast impression of the subject's upper teeth
and roof of the mouth (left) and fixed in the mouth (right). Pictures from the Speech Science
Research centre, Queen Margaret University College, Edinburgh,
http://www.qmuc.ac.uk/ssrc/DownSyndrome/EPG.htm. Bottom left is a figure of the
palatographic array as it appears in R showing 6 contacts in the second row. The relationship to
phonetic zones and to the row (R1-R8) and column (C1-C8) numbers are also shown.

 287

Fig. 7.2. Palatogram in the /n/ of Grangate in the utterance of the same name from the
epgassim database. The palatogram is at the time point shown by the vertical line in the
waveform.

Fig. 7.3: Schematic outline of the relationship between electropalatographic objects and
functions in R.

Fig. 7.4: Palatograms of said Coutts showing the times (ms) at which they occurred.

Fig. 7.5: Waveform over the same time interval as the palatograms in Fig. 7.4. The vertical
dotted lines mark the interval that is selected in Fig. 7.6.

Fig. 7.6: Palatograms over the interval marked by the vertical lines in Fig. 7.5.

Fig. 7.7: Palatograms for 10 [s] (left) and 10 [ʃ] (right) Polish fricatives extracted at the temporal
midpoint from homorganic [s#s] and [ʃ#ʃ] sequences produced by an adult male speaker of
Polish. (The electrode in column 8 row 5 malfunctioned and was off throughout all productions).

Fig. 7.8: Gray-scale images of the data in Fig. 7.7 for [s] (left) and [ʃ] (right). The darkness of a
cell is proportional to the number of times that the cell was contacted.

Fig. 7.9: Sum of the contacts in rows 1-3 (dashed) and in and rows 6-8 (solid) showing some
phonetic landmarks synchronised with an acoustic waveform in said Coutts produced by an adult
female speaker of Australian English.

Fig. 7.10: A histogram of the distribution of the minimum groove width shown separately for
palatograms of Polish [s,ʃ]. The minimum groove width is obtained by finding whichever row
over rows 1-5, columns 3-6 has the fewest number of inactive electrodes and then summing the
inactive electrodes..

Fig. 7.11: Palatograms for the first 12 frames between the acoustic onset and offset of a Polish
[s]. On the right is the number of inactive electrodes for each palatogram in rows 1-7. The count
of inactive electrodes for the palatogram 1290 ms is highlighted.

Fig. 7.12: Minimum groove width (number of off electrodes in the midline of the palate)
between the acoustic onset and offset of a Polish [s].

Fig. 7.13: Minimum groove width between the acoustic onset and offset of Polish [s] (black) and
[ʃ] (gray) averaged after linear time normalisation.

Fig. 7.14: Palatograms with corresponding values on the anteriority index shown above.

Fig. 7.15: Palatograms with corresponding values on the centrality index shown above.

Fig. 7.16: Palatograms with corresponding centre of gravity values shown above.

Fig. 7.17: Synchronised waveform (top) anteriority index (middle panel, solid), dorsopalatal
index (middle panel, dashed), centre of gravity (lower panel) for just relax. The palatograms are
those that are closest to the time points marked by the vertical dotted lines in the segments [ʤ]
and [t] of just, and in [l], [k], [s] of relax.

 288

Fig. 7.18: Grayscale images for 10 tokens each of the Polish fricatives [s,ʃ,ɕ].

Fig. 7.19: Anteriority (AI), dorsopalatal (DI), centrality (CI), and centre of gravity (COG)
indices for 10 tokens each of the Polish fricatives [s,ʃ,ɕ] (solid, dashed, gray) synchronised at
their temporal midpoints.

Fig. 7.20: Palatograms from the acoustic onset to the acoustic offset of /nk/ (left) in the
blend duncourt and /sk/ (right) in the blend bescan produced by an adult female
speaker of Australian English.

Fig. 7.21: Anteriority (black) and dorsopalatal (gray) indices for 17 /nK/ (left) and 15 /sK/ (right)
sequences (K= /k,g/) produced by an adult female speaker of Australian English.

Fig. 7.22: Grayscale EPG images for the /nK/ (left) and the /sK/ (right) for the data in Fig. 7.21
extracted 50 ms after the acoustic onset of the cluster.

Fig. 7.23: Acoustic waveform (top) of /ak/ produced by an adult male speaker of standard
German and the palatograms over the same time interval.

Fig. 7.24: COG (left) and PCOG (right) extracted at the acoustic vowel offset and plotted as a
function of F2 for data pooled across /x/ and /k/. The vowel labels are shown at the data points.

Fig. 7.25: COG calculated 30 ms on either side of the acoustic V1C boundary for /k/ (left) and /x/
(right) shown separately as a function of time by V1 category.

Fig. 7.26: COG for /k/ (left) and /x/ (right) at the V1C boundary.

Fig. 7.27: COG over the extent of the /k/ closure (left) and /x/ frication (right) shown by vowel
category and synchronised at the consonants' acoustic temporal midpoints.

Fig. 8.1: Digital sinusoids and the corresponding circles from which they were derived. The
numbers correspond to the position of the point either on the circle or along the corresponding
sinusoid at time point n. Top left: a 16-point digital cosine wave. Top right: as top left, but in
which the amplitude is reduced. Middle row, left: a three-cycle 16-point cosine wave. Middle
row, right: a 16-point digital sine wave. Bottom left: the same as middle row left except with 24
digital points. Bottom right: A 13-cycle, 16-point cosine wave that necessarily aliases onto a 3-
cycle cosine wave.

Fig. 8.2: An 8-point sinusoid with frequency k = 0 cycles.

Fig. 8.3: The digital sinusoids into which a sequence of 8 random numbers was decomposed with
a DFT.

Fig. 8.4: An amplitude spectrum of an 8-point signal up to the critical Nyquist frequency. These
spectral values are sometimes referred to as the unreflected part of the spectrum.

Fig. 8.5: Waveforms of sinusoids (left column) and their corresponding amplitude spectra (right
column). Row 1: a 20-cycle sinusoid. Row 2: a 20.5 cycle sinusoid. Row 3: As row 2 but after
the application of a Hanning window.

Fig. 8.6: Left: A 512-point waveform of a German [ɛ] produced by a male speaker. The dashed
vertical lines mark out 4 pitch periods. Right: A spectrum of this 512-point signal. The vertical

 289

dashed lines mark the expected frequency location of f0, the 2nd, 3rd, and 4th harmonics based on
the closest points in the digital spectrum. The thin vertical lines show the expected f0 and
harmonics at multiples of 151 Hz which is the fundamental frequency estimated from the
waveform.

Fig. 8.7: A spectrum of the first 64 points of the waveform in Fig. 8.7 (left) and of the first 64
points and padded out with 192 zeros (right).

Fig. 8.8: Left: A spectrum of an [i] calculated without (black) and with (gray) first differencing.
Right: the difference between the two spectra shown on the left.

Fig. 8.9: 256-point spectra calculated at 5 ms intervals between the acoustic onset of a closure
and the onset of periodicity of a /d/ in /daʊ/. The midpoint time of the window over which the
DFT was calculated is shown above each spectrum. The release of the stop is at 378 ms (and can
be related to the rise in the energy of the spectrum at 377.5 ms above 3 kHz). The horizontal
dashed line is at 0 dB.

Fig. 8.10: Spectra (left) and ensemble-averaged spectra (right) of [s] (gray) and [z] (black).

Fig. 8.11: Distribution of [s] and [z] on: summed energy in the 0-500 Hz region (left), the ratio
of energy in this region to that in the total spectrum (middle) and the ratio of energy in this
region to the summed energy in the 6000 -7000 Hz range (right).

Fig. 8.12: Left: Ensemble-averaged difference spectra for [b] and [d] calculated from spectra
taken 20 ms and 10 ms after the stop release. Right: the distributions of [b] and [d] on the change
in summed energy before and after the burst in the 4000 – 7000 Hz range.

Fig. 8.13: Left: A spectrum of a [d] 10 ms after the stop release showing the line of best fit
(dotted) based on least squares regression. Right: Ensemble-averaged spectra for [b] and [d]
calculated 10 ms after the stop release.

Fig. 8.14: Left: Distribution of [b] and [d] on the slope of the spectrum in the 500-4000 Hz range
calculated 10 ms after the stop release. Right: 95% ellipse plots on this parameter (x-axis) and
the summed energy in the 4-7 kHz (y-axis) range also calculated 10 ms after stop release.

Fig. 8.15: Left: The spectral slope in the 500-4000 Hz range plotted as a function of time from
closure onset to the burst offset/vowel onset for a [d] token. Right: The spectral slope over the
same temporal extent averaged separately across all [b] and [d] tokens, after synchronisation at
the burst onset (t = 0 ms).

Fig. 8.16: Hypothetical data of the count of the number of cars crossing a bridge in a 12 hour
period.

Fig. 8.17: First spectral moment as a function of time for [s] (gray) and [z] (black). The tracks
are synchronised at t = 0 ms, the segment midpoint.

Fig. 8.18: Spectra calculated at the temporal midpoint of post-vocalic voiceless dorsal fricatives
in German shown separately as a function of the preceding vowel context (the vowel context is
shown above each spectral plot).

 290

Fig. 8.19: 95% confidence ellipses for [ç] (gray) and [x] (black) in the plane of the first two
spectral moments. The data were calculated at the fricatives’ temporal midpoints. The labels of
the vowels preceding the fricatives are marked at the fricatives’ data points.

Fig. 8.20: The first four half-cycle cosine waves that are the result of applying a DCT to the raw
signal shown in Fig. 8.21.

Fig. 8.21: The raw signal (gray) and a superimposed DCT-smoothed signal (black showing data
points) obtained by summing k0, k1, k2, k3.

Fig. 8.22: Left: a spectrum of an [ɛ] vowel. Middle the output of a DCT-transformation of this
signal (a cepstrum). Right: a DCT-smoothed signal (cepstrally smoothed spectrum)
superimposed on the original spectrum in the left panel and obtained by summing the first 31
half-cycle cosine waves.

Fig. 8.23: Left: a DCT-smoothed Hz spectrum of [ɛ]. Right: A DCT-smoothed, Bark-scaled
spectrum of the same vowel. Both spectra were obtained by summing the first six coefficients,
up to k5. For the spectrum on the right, the frequency axis was converted to Bark with linear
interpolation before applying the DCT.

Fig. 8.24: 95% confidence ellipses for German lax vowels produced by a female speaker
extracted at the temporal midpoint. Top left: k1 × k2 derived from Hz-spectra. Top right: k1 × k2
derived from Bark-spectra. Bottom left: k1 × k2 derived from mel-spectra.

Fig. 8.25: The difference in energy between two frequency bands calculated in the burst of back
and front allophones of /k/.

Fig. 8.26: Left: Averaged spectra of [z] preceding front unrounded (f) and back rounded (b)
vowels. Right: boxplot of the first spectral moment of the same data calculated in the 2000-7700
Hz range.

Fig. 8.27: Left: averaged, time-normalized plots of F2 as a function of time for Australian
English (black) and Standard German (gray) vowels. Right: boxplots of the 3rd spectral moment
calculated across the vowel trajectories from their acoustic onset to their acoustic offset.

Fig. 8.28: Boxplot of third moment calculated across F2 trajectories of one female speaker
separately for two diphthongs and a monophthong.

Fig. 8.29: Left: averaged spectra of the bursts of [b, d, g] in isolated words produced by an adult
male German speaker. The bursts were calculated with a 256 point DFT (sampling frequency
16000 Hz) centered 10 ms after the stop release. Right: The square root of the second spectral
moment for these data calculated in the 0-4000 Hz range.

Fig. 8.30: Left: Linearly time-normalized and then averaged F2-trajectories for German [i:] and
[ɪ]. Right: k2 shown separately for [i:] and [ɪ] calculated by applying a discrete cosine
transformation from the onset to the offset of the F2-trajectories.

Fig. 8.31. Ensemble-averaged spectra (left) at the temporal midpoint of the vowels [ɪ, a, ʊ]
(solid, dashed, dotted) and a plot of the same vowels in the plane of Bark-scaled k1 and k2

calculated over the same frequency range.

 291

Fig. 9.1. Histograms of the number of Heads obtained when a coin is flipped 20 times. The
results are shown when this coin-flipping experiment is repeated 50 (left), 500 (middle), and
5000 (right) times.

Fig.9.2. Probability densities from the fitted normal distribution superimposed on the histograms
from Fig. 9.1 and with the corresponding binomial probability densities shown as points.

Fig. 9.3. A normal distribution with parameters µ = 25, σ = 5. The shaded part has an area of
0.95 and the corresponding values at the lower and upper limits on the x-axis span the range
within which a value falls with a probability of 0.95.

Fig. 9.4. Histogram of F1 values of /ɪ/ with a fitted normal distribution.

Fig. 9.5. Normal curves fitted, from left to right, to F1 values for /ɪ, ɛ, a/ in the male speaker's
vowels from the vowlax dataset.

Fig. 9.6 A scatter plot of the distribution of [æ] on F2 × F1 (left) and the corresponding two-
dimensional histogram (right).

Fig. 9.7. The bivariate normal distribution derived from the scatter in Fig. 9.6.

Fig. 9.8. A two standard-deviation ellipse superimposed on the F2 × F1 scatter of [æ] vowels in
Figs. 9.6 and corresponding to a horizontal slice through the bivariate normal distribution in Fig.
9.7. The straight lines are the major and minor axes respectively of the ellipse. The point at
which these lines intersect is the ellipse's centroid, whose coordinates are the mean of F2 and the
mean of F1.

Fig. 9.9. The ellipse on the right is a rotation of the ellipse on the left around its centroid such
that the ellipse's major axis is made parallel with the F2-axis after rotation. The numbers 1-4
show the positions of four points before (left) and after (right) rotation.

Fig. 9.10. The top part of the figure shows the same two-standard deviation ellipse in the right
panel of Fig. 9.9. The lower part of the figure shows a normal curve for the rotated F2 data
superimposed on the same scale. The dotted vertical lines mark σ = ± 2 standard deviations from
the mean of the normal curve which are in exact alignment with the intersection of the ellipse's
major axis and circumference at two ellipse standard deviations.

Fig 9.11. 95% confidence ellipses for five fricatives on the first two spectral moments extracted
at the temporal midpoint for a male (left) and female (right) speaker of Standard German.

Fig. 9.12. Classification plots on the first two spectral moments after training on the data in the
left panel of Fig. 9.11. The left and right panels of this Figure differ only in the y-axis range over
which the data points were calculated.

Fig. 9.13. Hit-rate in classifying fricative place of articulation using an increasing number of
dimensions derived from principal components analysis applied to summed energy values in
Bark bands. The scores are based on testing on data from a female speaker after training on
corresponding data from a male speaker.

Fig. 9.14. (a) Spectra at 5 ms intervals of the burst of an initial /d/ between the stop’s release (t =
0 ms) and the acoustic vowel onset (t = -20 ms). (b) the same as (a) but smoothed using 11 DCT
coefficients. (c), as (a) but with the frequency axis proportional to the Bark-scale and smoothed

 292

using 3 DCT coefficients. (d) The values of the DCT-coefficients from which the spectra in (c)
are derived between the burst onset (t = 545 ms, corresponding to t = 0 ms in the other panels)
and acoustic vowel onset (t = 565 ms corresponding to t = -20 ms in the other panels). k0, k1 and
k2 are shown by circles, triangles, and crosses respectively.

Fig 9.15. Left: Distribution of /ɡ/ bursts from 7 speakers on two dynamic DCT-parameters
showing the label of the following vowel. Right: 95% confidence ellipses for /b, d/ on the same
parameters.

Fig. 9.16 Left: two classes on two dimensions and the various straight lines that could be drawn
to separate them completely. Right: the same data separated by the widest margin of parallel
lines that can be drawn between the classes. The solid lines are the support vectors and pass
through extreme data points of the two classes. The dotted line is equidistant between the support
vectors and is sometimes called the optimal hyperplane.

Fig. 9.17. Left: the position of values from two classes in one-dimension. Right: the same data
projected into a two-dimensional space and separated by a margin.

Fig. 9.18. Left: A hypothetical exclusive-OR distribution of /b, d/ in which there are two data
points per class and at opposite edges of the plane. Right: the resulting classification plot for this
space after training these four data points using a support vector machine.

Fig. 9.19. Classification plots from a support vector machine (left) and a Gaussian model (right)
produced by training on the data in Fig. 9.15.

Fig. 9.20. Left: 95% confidence ellipses for two diphthongs and a monophthong on the third
moment (skew) calculated over F1 and F2 between acoustic vowel onset and offset. The data are
from 7 German speakers producing isolated words and there are approximately 60 data points
per category. Right: a classification plot obtained by training on the same data using quadratic
discriminant analysis. The points superimposed on the plot are of [aɪ] diphthongs from read
speech produced by a different male and female speaker of standard German.

