Balloon

Balloon Application for Low effort Lexicon creation

Uwe Reichel
Department of Phonetics and Speech Communication
reichelu@phonetik.uni-muenchen.de
Input and Output

- **Input**: German text

- **Output**
 - Part-of-Speech Tags
 - Morphological Segmentation
 - Orthographical Syllable Segmentation
 - Grapheme to Phoneme Conversion
 - Phonologic Syllable Segmentation
 - Word Stress Assignment
Information Flow

\[\text{morphseg} \rightarrow \text{orth.} \rightarrow \text{syllseg} \rightarrow \text{gr2ph} \]

\[\text{stress} \rightarrow \text{phon.} \rightarrow \text{syllseg} \]
Text Preprocessing

- Tokenizer based on regular expressions (detection of ordinal numbers, abbreviations, etc.)
- Transducer converts digit numbers to letters
- Local Grammar for appropriate inflectional ending of ordinal numbers
Part-of-Speech Tagging

- **Generalization of a Markov model part-of-speech (POS) tagger:** replacing the $P(w|t)$ emission probabilities of word w given tag t by a linear interpolation of tag emission probabilities given a list of representations of w

- **Word Representation:** string suffix of word cut off at a local maximum of backward successor variety

- **What for?** retrieval of linguistically meaningful string suffixes, that may relate to certain POS labels, without the need of linguistic knowledge (language independence, addressing out of vocabulary problem)
Basic Form of a Markov POS Tagger (Jelinek, 1985)

- **Estimate for most probable tag sequence** \hat{T} **given word sequence** W

$$\hat{T} = \max_T \left[P(T|W) \right] = \max_T \left[P(T)P(W|T) \right] \quad \text{(Bayes, } P(W) \text{ constant)}$$

- **Simplifying Assumptions**
 - Probability of word w_i depends only on its tag t_i
 - Probability of tag t_i depends only on a limited tag history

$$\hat{T} = \max_{t_1...t_n} \left[\prod_{i=1}^{n} P(t_i|\text{t-history})P(w_i|t_i) \right]$$

- **Retrieval of** \hat{T} **using the Viterbi algorithm**
Generalisations of the Basic Model

• by linear interpolation

• replacing $P(t_i|\text{t-history})$ by $\sum_j u_j P(t_i|\text{t-history}_j)$

• replacing $P(w_i|t_i)$ by $\frac{P(w_i)}{P(t_i)} \sum_k v_k P(t_i|\text{w-representation}_k)$
 (incl. reapplication of Bayes formula)

$$\hat{T} = \max_{t_1...t_n} \left[\prod_{i=1}^{n} \frac{1}{P(t_i)} \sum_j u_j P(t_i|\text{t-history}_j) \sum_k v_k P(t_i|\text{w-representation}_k) \right]$$

• calculation of interpolation weights u_j and v_k via the EM algorithm
Word Representation (I)

- suffixes are determined by **Weighted Backward Successor Variety (SV)**

- **SV** of a string: number of different characters that follow it in given lexicon

- **Backward SV**: SV's are calculated from reversed strings in order to separate linguistically meaningful suffixes

- **Weighting**: SV's are weighted w.r.t. mean SV at the corresponding string position to eliminate positional effects

- lexicon of reversed words represented in form of a trie (see next sheet)

- SV at given state: number of transitions to other states

- **Usage**: treat SV peaks as morpheme boundaries (cf. Peak and Plateau algorithm (Nascimento and da Cunha, 1998))
Word Representation (II)

- Lexicon Trie (reversely) storing the entries *Einigung*, *Kreuzigung* and *Eignung*

- The SV maxima at nodes 3 and 5 correspond to the boundaries of the morphemes *ung* and *ig* respectively
Data and Results

- **Data:** 382402 tokens tagged by the IMS Tree Tagger (Schmidt, 1995) and partially hand corrected; 85% used for training, 15% for testing
- **Classes:** 54 different POS tags (Tree Tagger inventory)

<table>
<thead>
<tr>
<th>Baseline Taggers:</th>
<th>accuracy</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unigram</td>
<td>89.61 %</td>
<td>0.89</td>
</tr>
<tr>
<td>lin. interpolated Trigram</td>
<td>93.22 %</td>
<td>0.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Tagger:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigram, word repr.</td>
<td>95.36 %</td>
<td>0.95</td>
</tr>
</tbody>
</table>

- This study’s tagger significantly outperforms the baseline taggers (two tailed McNemar test, $p = 0.001$)
- Error data probably affects accuracy (e.g. finite vs. infinite verbs)
Morphological Segmentation

Input: POS labeled text

Lexicon construction

• lexicon initially comprises grammatical morphemes

• lexicon expansion by input data, applying
 – stemming by pattern matching and distributional analysis
 – allomorph generation: e.g. by applying ablaut paradigms
Segmentation Algorithm

- divide each type w recursively into string prefixes and suffixes from left to right until a permitted segmentation is achieved or until the end of w is reached.

- in the course of the recursion, a boundary dividing the current string in prefix and suffix is accepted if (i) the prefix is found in the lexicon, (ii) there exists a permitted segmentation for the suffix or (if not) the suffix is found in the lexicon, (iii) the sequence ‘prefix class + class of first suffix segment’ is not in conflict with German morphotactics and (iv) the class of the last suffix is in correspondence with w’s POS.
Morphological Segmentation: Evaluation

Evaluation

- random sample: 2000 word types
- average number of morphemes: 2.63
- counting omissions and false insertions; displacement punished by one omission and one insertion
- **Recall**: 95.05 %
- **Precision**: 97.75 %
- **Word accuracy**: 91.60 %
Orthographic Syllable Segmentation

- done by C4.5 decision tree (Quinlan, 1993)

- 3 predicted classes: boundary following (y)/ not following (n)/ ambisyllabicity (a)

- **Features** (within 7-grapheme window): grapheme, morph. boundary relevant for syllabification, etc.

- **Evaluation** (12073 word types; 65 % train, 22 % develop, 13 % test):

<table>
<thead>
<tr>
<th>class</th>
<th>classified as</th>
<th>accuracies</th>
<th>precision</th>
<th>recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>a</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>6729</td>
<td>–</td>
<td>130</td>
<td>98.10</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>443</td>
<td>19</td>
<td>95.68</td>
</tr>
<tr>
<td>n</td>
<td>117</td>
<td>13</td>
<td>15118</td>
<td>99.15</td>
</tr>
</tbody>
</table>
Grapheme to Phoneme Conversion

• done by C4.5 decision tree

• **Data:** 18430 word types from Phonolex; 65 % training, 22 % development, 13 % test

• **Features** (within 7-grapheme window): as in syllable module + position within syllable, within lexical/functional morpheme etc.

• **Evaluation:**
 - **Word accuracy:** 84.88 %
 - **Normalized Mean Levenshtein distance:** 0.026

• significantly better than rule based P-TRA (76.36 %, 0.038) and data driven model of Daelemans and van den Bosch (79.28 %, 0.033)
Phonologic Syllable Segmentation

- **Algorithm:**
 1. split phone string at local sonority minima
 2. fine adjustment of boundaries on the basis of syllable phonotactics (Kohler, 1995) and morpheme boundaries relevant for syllabification

- **Example:** fE6hEltnIs \rightarrow^1 fE6.hEl.tnIs \rightarrow^2 fE6.hEl.tnIs

- **Evaluation:**
 - random sample: 2000 phoneme string types
 - **Precision:** 97.3 %; **Recall:** 97.4 %; **String accuracy:** 94.5 %
 - errors partly result from mistakes of other modules
Word Stress Assignment

• done by C4.5 decision tree for simplex forms

• **Features**: syllable weight, position wrt landmark syllables, length of head and coda, nucleus characteristics, within lexical/ functional morpheme etc.

• **Evaluation** (for 13341 simplex word types; 65 % train, 22 % develop, 13 % test):

 • **accuracies**: 94.85 % (syllables) 89.50 % (words)

 stress recall: 95.86 %

 stress precision: 96.32 %

• distribution of primary and secondary stress within compounds: 2 part compounds and 3 part compounds with lexicalized pair (retrieved via cooccurrence counts) get primary stress on first part.