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Abstract 
Prosodic boundary strength (PBS) refers to the degree of 
disjuncture between two chunks of speech. It is affected by 
both linguistic and para-linguistic communicative intentions 
playing thus an important role in both speech generation and 
recognition tasks. Among several PBS signals, we focus in this 
paper on pitch-related discontinuities in boundaries conveying 
linguistically meaningful contrasts produced in increasing 
levels of ambient noise. We compare several measures of local 
and global pitch reset and use classifiers in an effort to better 
understand the relationship between the degree of ambient 
noise and F0 marking of PBS. Our results include a positive 
effect of some noise on boundary classification, better 
performance of local than global reset features, and more 
systematic behavior of F0 falls compared to rises.  

Index Terms: prosodic boundary, Lombard speech, 
Slovak 

1. Introduction 
Speech is structured in units of the prosodic hierarchy [7,10] 
and this chunking plays important role in coding and decoding 
communicative meanings. Prosodic units are delimited by 
prosodic boundaries that can be characterized by their strength 
and type. Strength refers to the degree of disjuncture between 
two units flanking the boundary, and type is commonly 
associated with its tonal realization such as falls, rises, or 
plateaus for higher level boundaries. Both strength and type 
vary as a function of multiple linguistic and paralinguistic 
meanings. For example, weaker boundaries convey tighter 
pragmatic alignment between chunks than stronger 
boundaries, rises imply that there is more to follow, or 
plateaus might signal boredom.  

Communicative meanings associated with prosodic 
boundaries are most commonly signaled with the degree of 
pre-boundary lengthening, duration of silence if present, pitch 
movement on the pre-boundary material, and pitch reset 
[13,14]. It has been shown that F0 discontinuity is a useful 
predictor of boundary strength both in relating observable 
features to theoretical frameworks [5] and in statistical 
modeling [8,12]. For example, a system with pitch 
discontinuity features in a corpus of Hungarian conversational 
speech [8] achieved good correlation with human judgments 
of boundary strength and turned out to be more robust when 
compared to the established fitting procedure of [6]. 
Furthermore, discontinuity features showed a higher 
correlation to perceived prosodic boundary strength when 
being derived from this stylization. In this work, we focus on a 
single boundary marker – pitch reset – and we test if the 

discontinuity parameterization proposed for Hungarian can be 
extended to classifying prosodic boundaries in other languages 
and different communicative domains. Particularly, we are 
interested in the role of both local F0 reset across a boundary 
as well as more global reset of declination trends [3] in cuing 
the strength and type of boundary.  

Finally, we believe that a useful approach to better 
understanding the underlying system of speech production in 
general, and prosodic boundary realization in particular, is to 
employ communicatively meaningful hyper-articulation while 
speaking. Our assumption is that communicatively salient 
features participating in cuing meaningful differences both at 
the linguistic and paralinguistic levels will be more prominent 
in hyper-articulation. Since most spoken interactions occur 
under some ambient noise, Lombard speech is an ecological 
way for inducing hyper-articulation in laboratory in a 
controlled, yet natural, way. Lombard effect on F0 is generally 
linked to increased range and mean, and specifically for 
boundaries, to the expanded pre-boundary F0 movements and 
cross-boundary resets [3,12]. 

The core question of this paper is thus whether assumed 
increase in boundary strength due to increased ambient noise 
can assist an automatic boundary classification system based 
on pitch reset features. We shall also asses the dependence of 
several reset measures on the ambient noise level and compare 
the results with automatic classification performance. 

2. Methodology 

2.1. Corpus 
Five native Slovak speakers (3F, 2M) read multiple repetitions 
of 12 prompt sentences with identical syllable counts (17) 
under 5 levels of ambient noise while both acoustic and 
articulatory data were collected [1,11]. Several controlled 
segmental manipulations of the pre-boundary rhyme and 2 
post-boundary syllables were balanced and will not be 
analyzed here. The crucial manipulation relevant for this study 
is the type of the prosodic boundary between the 13th and 14th 
syllable in the material comprising the last 7 syllables of the 
prompts that are separated from the previous material by a 
major silent break as shown in (1) below. 
  
(1)   #{a,ai}  xxx    C{i:,a:}{m,n} (#) {i,a}  {ba,bi}  xxx    xxx. 
          σ11    σ12    σ13              σ14    σ15       σ16    σ17 
 
Syllables σ12 and σ13 form a word with a lexical stress and 
likely also a pitch accent on the initial syllable σ12. Syllables 
σ14 and σ15 also form a word (iba ‘only’ and aby ‘so that’) 
that is typically not pitch-accented. 
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These two particles/conjunctions allow for a pragmatic 
manipulation of the prosodic boundary preceding them. 
Hence, using the sentence meaning and punctuation, we 
elicited three boundary types: B0 with no punctuation in the 
prompts inducing a weak disjuncture, B1 with a comma and 
inducing a major prosodic boundary realized with an F0 rise, 
and B2 with a full stop and inducing a major boundary 
realized with an F0 fall.  

In the reference “0” condition, subjects were instructed to 
speak normally and had no headphones. In other three 
conditions, subjects heard babble noise of 60, 70, 80 dB(A) 
through headphones in blocks. Finally, greatest hyper-
articulation was assumed to arise from 80dB noise when 
subjects were instructed to read sentences to a non-native 
speaker (present and visually interacting with the subject). We 
refer to this condition as “80nn”.  

Subjects S3 and S4 produced a full intended stimuli set 
with 5 repetitions of each prompt within a block and 2 sets of 
blocks with noise conditions, S5 had a decreased number of 
repetitions in some blocks, S1 produced only one set of noise 
blocks with 5 repetitions , and S2 only 1 set with 3 repetitions. 
The makeup of the corpus is summarized in Table 1. 

Table 1. Corpus tokens separately for subjects and 
boundary types. 

Subject B0 B1 B2 Total 
S1 128 122 112 362 
S2 51 57 55 163 
S3 202 193 209 604 
S4 195 199 200 594 
S5 171 169 176 516 

Total 747 740 752 2239 

2.2. Features 
The acoustic signal was automatically aligned with the 
transcription of the prompt sentences and the alignment of 
segments in syllables σ13-15 was hand corrected. F0 contours 
were extracted using an adjusted two-step pitch tracking 
procedure suggested in [4] and implemented in Praat.  

One approach to analyzing the effect of Lombard 
condition on the realization of boundary strength is to treat 
discrete noise conditions from the elicitation (0, 60, 70, 80, 
80nn) as independent variables. Additionally, we will employ 
a continuous proxy of the subject’s response to noise based on 
the discrete cosine transform of the F0 extracted from the pre-
boundary long vowel. This is because previous analyses of this 
corpus [1,11] showed that a) the order of the noise blocks 
significantly affected the degree of hyper-articulation (e.g. 
material in 60 block was more hyper-articulated when 
preceded by 80 than 0 block), and b) F0 mean operationalized 
with the first coefficient of the discrete cosine transform 
(dct1), that depicts the overall pitch level, offers a good 
approximation to the degree of hyper-articulation. Hence, dct1 
will serve as a continuous independent variable.  

Dependent variables come primarily from F0 stylization 
proposed in [8]. Briefly, in pre-processing, voiceless segments 
and F0 outliers were linearly interpolated. Outliers were 
defined as points deviating more than two standard deviations 
from the mean within an utterance. F0 was then smoothed by 
Savitzky-Golay [9] filtering with a 3rd order polynomial within 
a 5 sample window. For speaker normalization an F0 base b 
was defined as the median below the 5th percentile to be robust 

against non-identified outliers. F0 was then transformed to 
semitones (ST) relative to this base value as in (2).  

 )/0(log*120 2 bFF Hzst �  (2) 

For stylization itself and using only uncorrected 
automatically aligned information, pre-boundary seg1 spanned 
the interval between the onset of σ11 and offset of σ13 in (1), 
and the post-boundary seg2 spanning from the onset of σ14 and 
offset of σ17 were used. To capture F0 level and range trends 
within these segments and within a joint segment seg12 
spanning over seg1 and seg2 we fitted a base-, a mid- and a 
topline to the F0 contours of each segment.  Time was 
normalized for seg1 to the range [-1 0], for seg2 to [0 1], and 
consequently time of seg12 to [-1 1]. 

For the line fits in all three segments we 1) shifted a 
window of length 50 ms along the F0 contour with a step size 
of 10 ms, 2) calculated the F0 median within each window of 
the values below the 10th percentile for the baseline, above the 
90th percentile for the topline, and all values for the midline 
respectively, and 3) fitted linear polynomials for all three 
median sequences.  The motivation for using F0 medians 
relative to respective percentiles instead of local peaks and 
valleys is twofold: the stylization is less affected by prominent 
pitch accents and boundary tones, and errors resulting from 
incorrect local peak detection are circumvented. This method 
is illustrated in Fig. 1 that also shows the range stylization 
result (the rising double line), that is derived by fitting a linear 
regression line through the point-wise distances between the 
baseline and the topline. A negative slope means that baseline 
and topline converge, whereas the positive slope in the 
illustrated example reflects line divergence. 

 
Figure 1: Stylization of F0 contour; see text for details. 

From this stylization, 7 core parameters illustrated in Fig. 
2 were calculated. F0 discontinuity is measured 1) between 
seg1 and seg2, which reflects the pitch reset properties of 
prosodic boundaries and for feature f it is denoted f1_2, and 2) 
between each of these segments and the joint segment seg12, 
features denoted f1_12 and f2_12, capturing the deviation of the 
pre- and post boundary F0 from a common tendency. Features 
with ‘d’ refer to difference between endpoints of the lines and 
those with ‘s’ to difference between slopes. Hence, for 
example, d1_2 is the absolute F0 distance between the end point 
of the regression line in seg1 and the start point of the 
corresponding line in seg2; s1_12 is the absolute slope 
difference between the regression lines in seg1 and the joint 
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seg12. Using the midline and range fits as inputs the 7 
parameters yield 14 features plus two for median F0 from the 
500ms of the midlines before and after the boundary. 

 
Figure 2: Discontinuity parameters from stylization. 

For weak prosodic boundaries, seg1 and seg2 are expected 
to have similar declination slopes (i.e. low s1_2), low pitch 
reset values (i.e. low d1_2) and to show low deviations from a 
common declination tendency (low values for d1_12, d2_12, s1_12, 
s2_12, and rms).  

3. Results 

3.1. Local and global resets in Lombard speech 
We first look at the relationship between the continuous proxy 
of the Lombard effect in our data (dct1) and the reset features 
described above.  Table 2 lists means of adjusted R2 values for 
separate subjects from the regression models with dct1 as an 
independent variable, the stylized features as the dependent 
variables, and boundary type as predictor. 

Table 2. Mean adjusted R2 values from regression 
models, see text for details. 

input d1 2 d1 12 d2 12 s1 2 s1 12 s2 12 rms 
midline 0.63 0.4 0.48 0.51 0.38 0.4 0.44 
range 0.18 0.33 0.22 0.13 0.14 0.16 0.4 

  
We see that midline features provide consistently higher 

values than the range features, and thus offer a better feature 
set for capturing the relationship between raising pitch due to 
ambient noise and pitch reset in the three boundary types. In 
other words, resets in the pitch range across a boundary 
correlate only weakly with increasing F0 due to ambient noise.    

To compare these global pitch reset values with a more 
local measure, we calculated the absolute value of the 
difference between F0 means of the hand-corrected pre-
boundary nasal and post-boundary vowel (resetN#V) and from 
pre-boundary rhyme and first two post-boundary vowels 
(resetR#V1V2). The same models using these local pitch resets 
yield mean adjusted R2 of 0.64 and 0.66 respectively. Hence, 
local resets, requiring hand correction, offer only slightly 
better characterization of noise-induced F0 scaling than global 
reset feature d1_2 (R2 of 0.63) with no need for manual data-
processing.  

Fig. 3 shows the relationship between dct1 on the one 
hand and midline d1_2 as the best global reset feature and 

resetR#V1V2 as the best local feature on the other hand. 
Several observations can be made. First, both reset features 
provide good separation between B2 (falls) and the other two 
boundaries. However, the separation between B1 and B0 is 
weak, suggesting little difference in prosodic strength between 
a major (rising) boundary B1 and weak B0. Second, regarding 
the effect of Lombard noise, all lines with significant slopes in 
the right column have a positive relationship: increasing 
hyper-articulation increases local pitch reset. For subjects S1-
S2, B1 rises tend to show the strongest effect while for S3-S5 
it is the B2 falls. The situation with the global d1_2 feature is 
more complex and the slopes do not have a pre-dominant 
direction. Finally, comparing midline d1_2 with resetR#V1V2, 
some speakers get identical relationship with dct1 (e.g. S4) 
whereas others show qualitatively different patterns (e.g. S2, 
and partly S3 with relatively high R2 values in both plots).   

 
Figure 3: Linear regression separately for subjects 
and three boundary types; solid bold lines have slopes 
significant at p < 0.05. 

Note that in Fig. 3, the regression lines in most cases (with an 
exception of speaker S2)  get progressively more separated as 
dct1 increases, i.e., with  rising noise level. This is true in 
particular for separation between B2 and the remaining two 
boundary types. Therefore, it is possible, that reset features 
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will act as better predictors of boundary type in Lombard 
speech recordings compared to those obtained in silence. 

3.2. Classification 
For boundary level prediction we employed support vector 
machines (SVM) [2] with a linear Kernel function. The 
separating hyperplane was derived by sequential minimal 
optimization and accuracy is taken as mean performance of 
SVMs after tenfold cross-validation on held-out data with all 
16 features from stylization described in Section 2.2. Table 3 
presents accuracy of SVMs in classifying the boundary type 
for the five levels of ambient noise in the leftmost column and 
the confusion matrices from the classification.  

The accuracy results suggest that ambient noise leading to 
hyper-articulation of F0 resets at prosodic boundaries is indeed 
beneficial for classifying the type of prosodic boundary with 
the stylization features, but that extreme hyper-articulation of 
80nn condition does not have this effect. 

Table3. Confusion matrices from SVM predictions. 

Noise-
cond 

 SVM prediction 
 B0 B1 B2 

0 B0 0.756 0.156 0.089 
 B1 0.405 0.481 0.115 

69.028 B2 0.073 0.058 0.869 
60 B0 0.804 0.104 0.092 

 B1 0.242 0.630 0.127 
74.624 B2 0.031 0.081 0.888 

70 B0 0.740 0.212 0.048 
 B1 0.277 0.622 0.101 

72.796 B2 0.074 0.034 0.892 
80 B0 0.841 0.123 0.037 

 B1 0.474 0.474 0.053 
75.002 B2 0.033 0.007 0.961 

80nn B0 0.559 0.386 0.055 
 B1 0.306 0.571 0.122 

69.709 B2 0.091 0.035 0.874 
 

The matrix shows the best classification for B2 
irrespective of the noise level and very little confusion with 
the other two types. On the contrary, B1 boundaries are 
classified the worst and commonly confused with B0, 
especially for “0” and “80” conditions. Lower accuracy for 0 
and 80nn can be attributed to B1 mis-classified as B0 in the 
former and B0 mis-classified as B1 in the latter. These results 
corroborate the results from the previous section in the 
similarity of B0 and B1 in their response to ambient noise. 

Although we focus here on F0 discontinuities, we ran a 
classification experiment including the pause duration between 
seg1 and seg2 among the feature set. While the accuracy 
increased significantly in each condition (peaking in 60 at 
82.3) improving the classification of B0 the most, the miss-
classification of B1 as B0 was not significantly improved. 

Finally, we tested the hypothesis that with increasing noise 
and subsequent speaking up, F0 range features become 
‘saturated’ in the sense that speaking up actually limits the 
range variability, which might explain the overall worse 
performance of range features compared to the midline level 
ones in previous section. We can infer the contribution of a 
feature toward boundary type identification with Silhouette 
measure defined for each data point i in (3) where dA(i) is the 
mean squared Euclidean distance of point i to all points of the 

same cluster and dB(i) is mean distance of point i to all points 
of the most i-similar cluster B not equal A. 

 ))(),(max(/))()(( idididid ABAB �  (3) 

For us, the clusters are given by the boundary types, and we 
calculate for each instance i of the discontinuity feature in 
question, how well this instance is assigned to its related 
boundary level. The silhouette measure, however, does not 
support the hypothesis and there is no trade-off for assumed 
worse-performing range and better-performing midline level 
features with increasing noise. 

4. Discussion & Conclusion 
We have analyzed F0 discontinuity as a marker of prosodic 
boundary strength in three boundary types (weak B0, strong-
rise B1, strong-fall B2) under increasing levels of ambient 
babble noise inducing hyper-articulation. The study offers 
several findings. First, reset features, both local and global, 
respond strongly to global F0 rising while this rise has smaller 
impact on weak boundaries. Boundaries B2 were minimally 
confused with other two boundary types irrespective of the 
noise level, but B1 and B0 showed considerable overlap. Also, 
within subjects, the response of reset to noise tended to be 
different for B2 and B1 with the latter being more similar to 
B0. This similar response of rises and weak boundaries to 
increasing noise might be due to 1) a salient difference in 
boundary strength between falls and rises, which might not be 
compatible with theoretical models suggesting identical 
strength for them, or, 2) the compensation of other markers of 
boundary strength for the differences in pitch discontinuities. 

Second, it is not necessarily the case that increased 
ambient noise increases pitch reset of the boundaries; here 
subjects tend to employ rather varied strategies in how hyper-
articulation affects the degree of discontinuity at the boundary. 

Third, presence of noise improves the classification of 
boundary types but additional hyper-articulation induced by 
“artificial” means alleviates this effect. This might be related 
to a non-linear change in signaling boundaries for this extreme 
condition, and differences between strategies used by different 
speakers for the task to speak to a non-native speaker. 

Fourth, concerning the applicability of the F0 
discontinuities approach to Slovak Lombard speech shows that 
the feature set extracted from midline stylization performs 
better than features capturing the range discontinuities in 
boundary type classification. Also, the model might benefit 
from including the local F0 reset extracted from vowel 
intervals in the vicinity of the boundary if these are available. 

 Finally, although the beneficial effect of hyper-articulated 
Lombard speech on boundary classification is not entirely 
surprising, it is not a trivial consequence of F0 scaling, as the 
reset measures were computed in semi-tone scale. Rather, this 
phenomenon suggests that speakers do indeed amplify 
communicatively relevant features, in this case boundary reset 
characteristics, in presence of ambient noise, and that these 
adjustments are made in a predictable way. 

5. Acknowledgements 
This material is based upon work supported by the Air Force 
Office of Scientific Research, Air Force Material Command, 
USAF under Award No. FA9550-15-1-0055, and was also 
supported in part by VEGA grant 2/0197/15. 

956



6. References 
[1] Š. Beňuš and J. Šimko, “Stability and variability in Slovak 

prosodic boundaries,“ Phonetica, under review.  
[2] C. Cortes and V.N. Vapnik, “Support-Vector Networks,” 

Machine Learning, vol. 20, 1995. 
[3] J. de Pijper and A.Sandermann, “On the perceptual strength of 

prosodic boundaries and its relation to suprasegmental cues,” J. 
Acoust. Soc. Am., vol. 96, pp. 2037–2047, 1994. 

[4] D. Hirst, “A Praat plugin for Momel and INTSINT with 
improved algorithms for modelling and coding intonation,” Proc. 
17the ICPhS, pp. 1233-1236, 2007. 

[5] S.-A. Jun and J. Fletcher, “Methodology of studying intonation: 
From data collection to data analysis,” in Prosodic Typology II: 
The phonology of intonation and phrasing, S.-A. Jun, Ed. 
Oxford: Oxford University Press, 2014, pp. 520–539. 

[6] P. Liebermann, W. Katz, A. Jongman, R. Zimmerman, and M. 
Miller, “Measures of the sentence intonation of read and 
spontaneous speech in American English,” J. Acoust. Soc. Am., 
vol. 77, no. 2, pp. 649–657, 1985. 

[7] M. Nespor and I. Vogel, Prosodic Phonology. Foris, Dordrecht. 
[8] U. D. Reichel and K. Mády, “Comparing parameterizations of 

pitch register and its discontinuities at prosodic boundaries for 
Hungarian,“ in Proc. Interspeech 2014, pp. 111—115. 

[9] A. Savitsky and M.J.E.Golay, “Smoothing and differentiation of 
data by simplified least squares procedures,” Analytical 
Chemistry, vol. 36, no. 8, pp. 1627—1639, 1964. 

[10] E. O. Selkirk, “On derived domains in sentence phonology,“ 
Phonology Yearbook, vol. 3, pp. 371-405, 1986. 

[11] J. Šimko, M. Vainio and Š. Beňuš, “Hyperarticulation in 
Lombard speech: Global coordination of the jaw, lips and the 
tongue,“ J. Acoust. Soc. Am., under review. 

[12] M. Swerts, “Prosodic features at discourse boundaries of 
different strength,” J. Acoust. Soc. Am., vol.  101, pp. 514–621, 
1997. 

[13] M. Wagner and D. Watson, “Experimental and theoretical 
advances in prosody: A review,“ Language and Cognitive 
Processes, vol. 25, pp. 905–945, 2010. 

[14] C. Wightman, S. Shattuck-Hufnagel, M. Ostendorf, P. Price, 
“Segmental durations in the vicinity of prosodic phrase 
boundaries,“ J. Acoust. Soc. Am., vol. 91, pp. 1707–1717, 1992. 

 

957


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Stefan Benus
	Also by Uwe D. Reichel
	Also by Juraj Simko
	----------

