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Abstract. We present a Markov part-of-speech tagger for which the
P (w|t) emission probabilities of word w given tag t are replaced by a
linear interpolation of tag emission probabilities given a list of represen-
tations of w. As word representations, string suffixes of w are cut off at
the local maxima of the Normalized Backward Successor Variety. This
procedure allows for the derivation of linguistically meaningful string suf-
fixes that may relate to certain POS labels. Since no linguistic knowledge
is needed, the procedure is language independent. Basic Markov model
part-of-speech taggers are significantly outperformed by our model.

1 Introduction

There are two main reasons why part-of-speech (POS) tagging cannot simply be
carried out by lexicon lookup:

– The same word can be related to different POS labels depending on its
context.

– During application the tagger most certainly will be confronted with words
not given in the lexicon (out-of-vocabulary, OOV cases).

To face these problems the following methods have already been established:

– Take some contextual information into account.
– Examine also substrings of unknown words that have been seen in the train-

ing data with a higher probability.

Contextual information can consist of the word environment (as in [12]) and
the preceding POS tags (as in all data-driven Markov taggers). For inflective lan-
guages where suffixes bear POS information, the extracted substrings generally
consist of string suffixes of several fixed lengths (c.f. [1], [10]).

In general, the available POS taggers can be divided into rule-based and data-
driven ones. Rule-based approaches like ENGTWOL [12] operate on a) dictio-
naries containing word forms together with the associated POS labels and mor-
phologic and syntactical features like sub-categorization frames and b) context
sensitive rules to choose the appropriate labels during application.



Their major drawbacks are:

– time consuming rule adjustment,
– lack of generalization capability, and
– missing transferability to other languages.

Among data-driven approaches there are Markov taggers [4], Maximum En-
tropy-based taggers [6], and hybrid models like the Tree Tagger [9] combining
the Markov framework and a decision tree classifier, and finally Transformation-
based taggers [2]. In Markov systems, generally the most probable tag sequence
given the observed word sequence is estimated (see Section 3). Maximum entropy
approaches are able to integrate influences on tagging from a variety of infor-
mation sources. However, also Markov approaches, as the one in this study, can
be satisfyingly enriched by additional influence factors. Transformation-based
tagging finally is a synergy of statistical and rule-based approaches; it derives
tagging disambiguation rules by statistical means from a set of rule templates.

2 Goal of this paper

As already mentioned, a possible way to cope with OOV cases is to find a linguis-
tically meaningful word representation that has been observed in the training
data with a high probability. For a language-independent data-driven approach
it is highly eligible to derive such representations solely by statistical means.

All approaches listed above show shortcomings in one or both of these re-
spects. Transformation-based taggers do not give specifications for this task, and
adding rule templates for linguistically motivated word representations anyway
would lead to a large increase of calculation costs accompanying the enlarge-
ment of the template set. The Tree Tagger approach [9] does not contain an
automatic retrieval of word representations, since the tagger must be provided
with a language dependent suffix inventory. The TnT-tagger [1] and Synther
[10] use string suffixes of some fixed lengths that are not appropriately related
to linguistic entities, since these approaches do not sufficiently take into account
the variable size of linguistically meaningful suffixes.

In this study we attempt to enhance POS tagging by providing it with lin-
guistically more meaningful entities derived in a purely data-driven manner.

In the following, classical Markov Part-of-Speech Tagging will be revised and
our extensions to this basic model will be presented. Further it will be shown,
how linguistically relevant word representations can be obtained in the form of
string suffixes of flexible length.

3 Markov Part-of-Speech Tagging

3.1 Basic Form of a Markov POS Tagger

The aim as formulated in [4] is to estimate the most probable tag sequence T̂
given word sequence W :



T̂ = arg max
T

[
P (T |W )

]
. (1)

To estimate P (T |W ), first, a reformulation is needed by applying the Bayes
Formula, which leads to:

T̂ = arg max
T

[
P (T )P (W |T )

]
, (2)

given that the denominator P (W ) is constant. Further, two simplifying as-
sumptions are to be made to get reliable counts for the probability estimations:

– The probability of word wi depends only on its tag ti
– The probability of tag ti depends only on a limited tag history t-history i

The resulting formula is thus:

T̂ = arg max
t1...tn

[ n∏

i=1

P (ti|t-historyi)P (wi|ti)
]
. (3)

T̂ is retrieved using the Viterbi algorithm [11].

4 Generalizations of the basic model

In equation [3] first P (ti|t-historyi) is replaced by a linearly interpolated trigram
model

∑

j

ujP (ti|t-historyij),

j ranging from unigram to trigram tag history. Further, wi is replaced by a
list of word representations leading to a reformulation of P (wi|ti) by

P (wi)

P (ti)

∑

k

vkP (ti|w-representationik),

again applying Bayes formula and linear interpolation. Our model is thus
given by:

T̂ = arg max
t1...tn

[ n∏

i=1

1

P (ti)

∑

j

ujP (ti|t-historyij)
∑

k

vkP (ti|w-representationik)
]

(4)

omitting again constant P (W ). The interpolation weights uj and vk in equa-
tion [4] are calculated via the EM algorithm [3]. The probability distributions
are smoothed by absolute discounting.

In order to reduce calculation effort in application, solely for unknown words
the probabilities are calculated for all POS tags. For known words, only the POS
tags co-occurring with them in the training corpus are taken into consideration.



5 Word representations

The representation of words seen in the training data is simply the word form. For
OOV cases the representation is given by string suffixes which are determined by
Normalized Backward Successor Variety (NBSV). The Successor Variety (SV) of
a string is defined as the number of different characters that follow it in a given
lexicon. This concept is adopted from stemming procedures like the Peak and
Plateau algorithm of [5]. Backward SV means that the SVs are calculated from
reversed strings in order to increase the probability to separate linguistically
meaningful suffixes. In our approach the SVs are weighted with respect to the
mean SV at the corresponding string position to eliminate positional effects. The
mean SV is highest in the beginning and declines continuously while moving
forward in the word string as can be seen in Figure 1.
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Fig. 1. Mean Backward Successor Variety declining in dependence of the in-word po-
sition.

The lexicon of reversed words is represented in the form of a trie (cf. Figure 2),
in which the SV at a given state is the number of all outgoing transitions. NBSV
peaks are treated as morpheme boundaries. Since this method is knowledge-free,
of course not all of the obtained segments necessarily correspond to linguistic
meaningful entities as might be suggested by Figure 2.

The two suffixes derived by the first two NBSV maxima are used as word
representations. An example is given in Table 1. Here for Aktivierungen (acti-
vations) the word representations en, ungen (inflectional plural ending and a
derivational noun suffix + ending respectively) are derived.



?>=<89:;/.-,()*+8 '&%$ !"#7
Eoo '&%$ !"#6

ioo '&%$ !"#5

zkk

nss '&%$ !"#4
ioo?>=<89:;7654012313 /.-,()*+12

Koo /.-,()*+11
roo /.-,()*+10

eoo '&%$ !"#9
uoo '&%$ !"#3

n
nn

grr '&%$ !"#2
uoo '&%$ !"#1

noo /.-,()*+Sgoo?>=<89:;7654012317 /.-,()*+16
Eoo /.-,()*+15

ioo /.-,()*+14
goo

Fig. 2. Lexicon trie reversely storing the entries Einigung (agreement), Kreuzigung
(crucifixion) and Eignung (adequacy). The SV peaks at nodes 3 and 5 correspond to the
boundaries of the morphemes ung (noun suffix) and ig (adjective suffix), respectively.

Table 1. Derivation of word representations for the word Aktivierungen (activations)
from Normalized Backward Successor Variety (NBSV) peaks.

reversal: Aktivierungen −→ negnureivitkA

letters n e g n u r e . . .

NBSV 0.9 1.5 1.3 0.7 4.3 2.4 5.0 . . .

word representations: en, ungen

6 Data

The data comprised 382400 tokens taken from German connected text mostly
from the “European Corpus Initiative Multilingual Corpus 1” CD-ROM, pre-
tagged by the IMS Tree Tagger [9] and partially hand corrected. 85% were used
for training, and 15% as test set. The percentage of OOVs in the test data was
38.12% for word types and 11.52% for word tokens. The Stuttgart Tübingen
tagset [8] was used which comprised 54 tags for our data.

7 Results

In Table 2 the results are given in the form of tagging accuracy as well as the
κ score and the Conditional Relative Entropy (CRE) of the reference test data
and the tagger output.

κ score. κ is defined the following way:

κ =
P (A) − P (E)

1− P (E)
, (5)

P (A) being the proportion of correctly classified words and P (E) the expected
proportion of words correctly classified by chance. Thus, κ corrects accuracy
with respect to the tagset size, accounting for the fact that the tagging task
becomes more difficult with increasing size.



Conditional relative entropy. In order to compare the syntactic divergence be-
tween the reference data and the tagger output, we employed the CRE measure,
which we had already used to quantify the adjustment of reference phonotactics
in grapheme-to-phoneme conversion systems in [7]. For syntactic comparison by
means of CRE, syntax has been directly and crudely represented by the POS
sequences. CRE is given by the following equation:

CRE = D(p(y|x)‖q(y|x))

=
∑

x

p(x)
∑

y

p(y|x) log
p(y|x)

q(y|x)
. (6)

In equation [6] p and q are the conditional probabilities of the POS tag y
given the tag history x. p is derived from the original data and q from the output
of our POS tagger. The relative entropy D(p‖q) is a measure of the divergence
of the probability distributions p and q expressed in the average number of extra
bits needed to encode events from p taking a code based on q. Thus, the lower
the entropy values, the more similar the two POS sequences.

A POS device designed to approach the originally observed syntax as close as
possible should produce an output with a low CRE value when being compared
with the original data.

Table 2. Results for baseline taggers and our tagger; Unigram tagger: assigns for each
word its most probable tag and in OOV cases the overall most probable tag; Trigram:
Markov tagger with linearly interpolated trigram tag history; for explanations of κ and
CRE (conditional relative entropy), see text.

accuracy κ CRE

Baseline Taggers:
Unigram 89.61% 0.89 1.33
lin. interpolated Trigram 93.22% 0.93 0.61

New Tagger:
Trigram, word repr. 96.02% 0.96 0.43

This study’s tagger significantly outperforms the baseline taggers in learning
the given POS patterns (two tailed McNemar test, p = 0.001). This improvement
is also reflected in higher κ and lower CRE scores.

8 Discussion

In this paper a Markov POS tagger was introduced which benefits from auto-
matically derived morphologic knowledge. It would be interesting to compare
our approach with the ones described in the introduction, but since our train-
ing and test material is itself the output of a POS tagger, the results would



just show which tagger mimics the reference tagger best. This does not neces-
sarily correspond to quality differences. We are aware that the same problem
arises comparing our tagger with the baseline taggers above, but at least it can
be noticed that our tagger learns given POS patterns better than the baseline
taggers.

Furthermore, the suboptimality of training and test data may have inhibited
better results. Accuracy is with high probability affected by tagging errors in
the available data and is expected to increase, when cleaner data is on-hand.

References

1. Brants, T. (2000). TnT – A Statistical Part-of-Speech Tagger. In: Proc. ANLP-2000,
224–231, Seattle, WA.

2. Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Lan-
guage Processing: A Case Study in Part of Speech Tagging. Computational Linguis-
tics, 21(4):543–566.

3. Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. J. of the Royal Statistical Society, 39(1):1–21.

4. Jelinek, F. (1985). Markov source modeling of text generation. In Skwirzynski, J.K.,
editor. The Impact of Processing Techniques on Communications, volume E91 of
NATO ASI series, 569–598. Dordrecht: M. Nijhoff.

5. Nascimento, M.A., da Cunha, A.C.R. (1998). An Experiment Stemming Non-
Traditional Text. In Proc. SPIRE’98, 74–80, Santa Cruz de La Sierra, Bolivia.

6. Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In:
Proc. Conference on Empirical Methods in Natural Language Processing, 133–142,
Pennsylvania.

7. Reichel, U.D., Schiel, F. (2005). Using Morphology and Phoneme History to im-
prove Grapheme-to-Phoneme Conversion. In Proc. Eurospeech, 1937–1940, Lisbon,
Portugal.

8. Schiller, A., Teufel, S. (1995). Guidelines für das Tagging deutscher Textcorpora,
<http://www.sfs.uni-tuebingen.de/Elwis/stts/stts-guide.ps.gz> (19.11.2004).

9. Schmid, H. (1995). Improvements in Part-of-Speech Tagging with an Application
to German. In EACL SIGDAT Workshop, Dublin, Ireland. In Feldweg, Hinrichs,
editors. Lexikon und Text, 47–50.

10. Suendermann, D., Ney, H. (2003). Synther – a New M-gram POS Tagger. In Proc.
NLP-KE, 628–633, Bejing, China.

11. Viterbi, A.J. (1967). Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm. IEEE Transactions on Information Theory,
13(2):260–269.

12. Voutilainen, A. (1995). A syntax-based part of speech analyser. In Proc. of the
Seventh Conference of the European Chapter of the Association for Computational
Linguistics, 157–164, Dublin, Ireland.


