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ABSTRACT
In this study three English grapheme-to-phoneme (G2P) conversion models are pre-
sented and comparatively evaluated with respect to phoneme output, syllabification,
and word stress location. The models are given by 1) artificial neural networks
(SIE), 2) C4.5 decision trees (IPS), and 3) an information gain tree (Pfitzinger).
Overall performance ranged from 27.25% to 33.4% word error rate. Model SIE
significantly outperformed the other two.

1 Introduction

Grapheme-to-phoneme (G2P) conversion approaches can roughly be divided into
rule-based [1] and data-driven procedures. While rule-based approaches profit
from the direct application of linguistic knowledge, data driven methods have the
advantage of inexpensive trainability as well as a low or zero degree of language
dependence. Data-driven approaches include amongst others neural networks [2],
instance based learning [3], tree classifiers [4] [5], and Hidden Markov models
[6].

The models described in this paper follow the data-driven tradition. While two
of them are purely data-driven (SIE, Pfitzinger), one also incorporates (automat-
ically derived) linguistic knowledge (IPS). In addition to the phoneme sequence
the models also predict word stress location and syllable boundaries.

2 Data

The data for training and testing was taken from a lexicon containing UK-Sampa
transcriptions of English words, that had been developed at Siemens AG, Corpo-
rate Technology, Munich. After the removal of non-standard and foreign language



words and the unification of transcription variants 48460 entries remained for this
study. Orthography and transcriptions were aligned separately for each model.

Corrections Potentially wrong reference transcriptions were identified by mis-
matches of at least two of this study’s models after an initial training pass. When-
ever needed (in about 400 cases) the references were corrected.

3 G2P Models

3.1 Model SIE

This approach uses two neural networks, the first for the generation of the
phoneme sequence including the syllable boundaries, and the second for the de-
termination of the word stress for this phoneme sequence (cf. Figure 1).
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Figure 1: Left: Network for G2P conversion and syllabification. Right: Network
for word stress location.

Phonemes and Syllable Boundaries Task for this network is to convert the
grapheme sequence of the word into a phoneme sequence including the syllable
boundaries. The input information is split into two parts, the grapheme input on
the left and the previous phoneme output on the right hand site.

The grapheme input window consists of the centre grapheme (c) as well as the
four preceding (l) and the four subsequent (r) graphemes. The input information
about the previous phoneme contains a flag whether the previous phoneme was



a syllable core or not (psc) and the values for grouping (lg), phoneme (lp) and
syllable (ls) of the previous phoneme. The grouping is the number of graphemes
that were used to generate the output phoneme. If for instance the graphemes
<tch> are converted to phoneme /tS/, then the grouping has the value three.
Input nodes with no value (left context and previous output in the beginning of the
word or right context at the end of the word) are set to zero.

There are two output nodes, one for the phoneme (phon) and one for the syl-
lable boundary (syll) which is a flag that marks whether there occurs a syllable
boundary behind the output phoneme or not. The phoneme node has as many
nodes as there exist phoneme-grouping combinations. For instance for phoneme
/tS/ there exist three output nodes /tS 1/ (generated by <t>, <c>), /tS 2/
(generated by <ch>, <cc>) and /tS 3/ (generated by <tch>, <che>).
The output node with the highest value determines the generated phoneme-
grouping combination.

Word Stress This network determines the position of the word stress for the
given phoneme sequence. The input layer contains the first ten phonemes of the
word, the nodes for the missing phonemes are again set to zero. The output layer
has the same number of nodes as there are phonemes in the input layer. The
output node with the highest value determines the position of the stress within the
phoneme sequence. If for instance the third node has the highest value, then the
third phoneme of the word carries the stress.

Network Architecture and Training Both networks have a special layer be-
tween input and hidden layer, which is called scaled input. The input layer and
this scaled input are connected by a diagonal matrix, which means that each in-
put node is connected by exactly one weight with it’s appropriate node of the
scaled input. On this connection the so called weight decay [7] is applied. By
this algorithm weights are driven to zero unless they are really necessary for the
solution. This is similar to a pruning of the input layer and makes the network
more insensitive to input noise [8].

3.2 Model IPS

The model IPS consists of four C4.5 decision trees [9] for for orthographic and
phonological syllabification, for G2P conversion, and for word stress assignment.
Some of the features used by these trees are provided by a Viterbi part-of-speech
tagger and an automatic morphologic segmentation [10]. Figure 2 shows the in-
formation flow between the modules.
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Figure 1: Information flow within the IPS model.

Figure 2: Information flow within the IPS model.

The modules for G2P conversion and syllabification are described in greater
detail in [10].

Syllable segmentation In orthographic syllabification for each letter li is de-
cided whether a syllable boundary follows or not by taking into account a letter
window of length 7 centered on li. This information is used for subsequent G2P
conversion.

In phonological syllabification for each phoneme pi derived by the G2P mod-
ule (see below) the decision whether or not to let it be followed by a boundary
depends on the phonemes in a window of length 7 centered on pi, the sonority re-
lation between pi, pi−1, and pi+1, as well as on the place and mode of articulation
of pi, pi−1, and pi+1.

G2P conversion For conversion of letter li to phoneme pi, which can also be
the “empty phoneme” or a phoneme cluster to permit n-to-n-mappings, the fol-
lowing features are used, which are partly based on the output of the orthographic
syllabification:

• Current letter gi and surrounding letters gi−n . . . gi+n (n from 1 to 4)

• Syllable boundary +/– following

• Position within the syllable (head, nucleus, coda)

• Type of the current syllable (onset/null onset, open/closed)

• Relative position of gi within the word

• Phoneme history of length 3



Word stress assignment The position of the stressed syllable (one stress loca-
tion per simplex word or per compound part) is identified relatively to the word
end. Following features based on the outputs of all the other modules are used:

• Part of speech

• Prefix and suffix string

• Number of syllables

• Weight of the last 4 syllables: reduced, light, heavy

• Reverse position of the syllable within the word

3.3 Model Pfitzinger

The basic principle of the Pfitzinger grapheme-to-phoneme converter is 1) to align
the training lexicon, i.e. assigning all letters of each word to the corresponding
phonemes of the transcriptions, 2) to transform it into an IG-tree (information gain
tree) which finally is compressed without loss, optionally pruned, and extended
with best-guess leaves, and 3) to use the reduced IG-tree to transduce orthography
into its phonemic transcription.

It is mainly inspired by the description of a language-independent and data-
oriented approach of Daelemans and van den Bosch [5]. The main components
and improvements which characterise the present system will be described as fol-
lows.

The Aligner uses two DP-passes: 1) for each phoneme of a word a triangular
window with a width of 5 letters is centered at that letter whose relative position in
the word corresponds to the relative position of the phoneme in the transcription
in order to spread the probability of co-occurrence also to adjacent letters. 2)
The resulting co-occurrence matrix is converted into probabilities and used by
a Dynamic Programming algorithm to find the most likely alignment for each
lexicon entry. 3) A corrected co-occurrence matrix is estimated which contains
only little noise and probable two- or three-phoneme-symbols. 4) It is used by a
second DP-step to estimate the final alignments.

The Generator 1) creates a tree for each letter containing letters (alternately
from the right and the left context) as nodes, and phonemes or multi-phoneme-
symbols as leaves. All letters of all words in the training lexicon are added to the
trees. 2) The trees are minimised by replacing all branches with only one type of
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Figure 3: IG-tree of the letter m. The case of m becoming an /m+p/ is because
the word comfortable is transcribed as /k ”V m - f @ - t @ - b @ l/ in the training
lexicon while mistakenly comfortably as /k ”V m p - f @ - t @ - b l I/.

leaf by this leaf. 3) Optionally, branches with a very small number of visits during
the construction are pruned followed by a second minimisation step. 4) For each
branch which does not comprise the whole set of possible letters a best-guess leaf
is added to achieve generalisability. The leaf gets the most frequent phoneme of
all sibling branches. As an example Fig. 3 shows the tree for the letter m.

The Translator consists of a linking of the reduced IG-tree and an efficient
tree traversing algorithm that traces along the IG-tree nodes and leaves to convert
words into their corresponding phonemic transcriptions.

Features When pruning is skipped, all training data ambiguity is resolved and
unambiguous training data is predicted correctly by 100%. The full 10-fold train-
ing and evaluation procedure is finished in 70 seconds on a 3 GHz Core2Duo
CPU, and 1,5 Mio. letters per second are transduced with 87,000 internal nodes
representing an English lexicon of 48,500 entries.



4 Evaluation

4.1 Procedure

A 10-fold cross validation was carried out. As standard evaluation measures the
word error rates were calculated for the complete transcriptions WER, for the
transcriptions without word stress WER(–stress), without syllabification WER(–
syl), and without both WER(–stress,–syl).

4.2 Results

The word error rates introduced above are presented in table 1 and Figure 4.
Model Pfitzinger is not yet capable of predicting syllable boundaries, therefore
no performance is reported in the corresponding cells.

Table 1: Word error rates (medians).

SIE IPS Pfitzinger
train test train test train test

WER 13.33 27.25 18.68 33.4 – –
WER (-stress) 12.08 24.07 11.13 26.74 – –
WER (-syl) 12.51 26.17 16.46 31.34 0 34.63
WER (-stress,-syl) 11.25 22.93 8.36 24.23 0 23.53

Applied on the test data model SIE performs significantly better than the other
models in all considered word error rates (Wilcoxon test of paired samples, p <
0.01). Model Pfitzinger significantly outperforms model IPS in raw grapheme-
to-phoneme conversion, while it is significantly outperformed by model IPS in
predicting also word stress location (Wilcoxon test of paired samples, p < 0.05).

5 Discussion
Adaptation to training data As can be seen in Table 1 all models show highly
different performances on training and test data. Since up to now the Pfitzinger
IG-trees are not pruned, they are capable to achieve 100% accuracy for the training
data as long as no homographs are contained.

The high performance differences of the other models could be partly ex-
plained by the fact that while in training they are provided by clean data, in appli-
cation they face the problem of error accumulation (see below).
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Figure 4: Median model performances on training (left) and test data (right)).
Bars from left to right: a) Overall performance, b) without word stress, c) without
syllabification, d) without stress and syllabification. Zero training data word error
for model Pfitzinger due to lack of pruning.

Error accumulation Model Pfitzinger follows a “predicting all at once”-
strategy for phonemes and word stress and therefore is not confronted with the
problem of error accumulation. In contrast, the other models partly distribute
these tasks over several modules, some of which operating on other module’s
sometimes defective outputs. This circumstance might explain why the perfor-
mance differences on training and test data are especially high for SIE and IPS,
when word stress localisation is concerned, which is carried out by the final mod-
ule.

Feature selection A comparison of the differences between WER and WER(-
stress) for models SIE and IPS shows that linguistically motivated higher-level
features (e.g. syllable weight, morpheme class) as been used within IPS do not
guarantee a better performance compared to the low-level features (e.g. letters,
phonemes) used by SIE. In this study they even lead to poorer performances.



This finding might be partly caused by the following factors:

• The automatic extraction of higher-level features is error-prone.

• Extracting higher-level features is more generally affected by error accu-
mulation than extracting low-level features.

• Relying on few high-level features instead of many low-level features is
more vulnerable to noise, since in the former setting a wrongly extracted
feature has higher fatal impact on the classification result, than in the latter.

Byproducts The Pfitzinger IG-tree could be used to identify idiosyncrasies and
therefore potential errors in the lexicon, which are represented by long branches.
This capability qualifies this model as a tool for lexicon corrections.
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