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Abstract

Although facial features are considered to be essential

for humans to understand sign language, no prior research

work has yet examined their significance for automatic sign

language recognition or presented some evaluation results.

This paper describes a vision-based recognition system that

employs both manual and facial features, extracted from the

same input image. For facial feature extraction an active

appearance model is applied to identify areas of interest

such as the eyes and mouth region. Afterwards a numerical

description of facial expression and lip outline is computed.

An extensive evaluation was performed on a new sign lan-

guage corpus, which contains continuous articulations of

25 native signers. The obtained results proved the impor-

tance of integrating facial expressions into the classification

process. The recognition rates for isolated and continuous

signing increased in signer-dependent as well as in signer-

independent operation mode. Interestingly, roughly two of

ten signs were recognized just from the facial features.

1. Introduction

Sign language is the natural language of deaf and hard

of hearing people used for everyday communication among

themselves. Although different in form, it serves the same

functions as a spoken language. Spread all over the world, it

is not a universal language. Regionally different languages

have been evolved such as American Sign Language (ASL)

and German Sign Language (DGS).

As sign languages are non-verbal languages, information

is conveyed visually, using a combination of manual and

non-manual means of expression. Manual parameters are

hand shape, hand posture, hand location, and hand motion.

The non-manual parameters include head and body posture,

facial expression, gaze and lip patterns.

Non-manual parameters are essential in sign language,

since they carry grammatical and prosodic information.

Some signs can be distinguished by manual parameters

alone, while others remain ambiguous unless additional

non-manual information, in particular facial expression, is

made available. For instance, the German signs BRUDER

(BROTHER) and SCHWESTER (SISTER) are completely

identical with respect to gesturing and can only be differen-

tiated by making reference to their lip patterns (Fig. 1).

Figure 1. The signs BRUDER (a) and SCHWESTER (b) are iden-

tical with respect to manual gesturing but differ in lip patterns.

In the following, some important non-manual parameters

will be described in more detail.

Head pose The head pose supports the semantics of sign

language. Questions, affirmations, denials, and conditional

clauses are communicated, e.g., with the help of the signer’s

head pose. In addition, information concerning the amount

of elapsed time can be encoded as well.

Facial expression Facial expression does not only reflect

a person’s affect and emotions, but also constitutes a large

part of the grammar in sign languages. For example, a

change of head pose combined with the lifting of the eye

brows corresponds to a subjunctive.

Lip patterns Lip patterns represent the most distinctive

non-manual parameter. Certain lip patterns are particular

to sign languages whilst others have been borrowed from

spoken languages. They solve ambiguities between signs

(BROTHER vs. SISTER), specify expressions (MEAT vs.

HAMBURGER) and provide information redundant to ges-

turing to support differentiation of similar signs.
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2. Related Work

The current state in sign language recognition is roughly

30 years behind speech recognition, which corresponds to

a gradual transition from isolated to continuous recognition

for small vocabulary tasks. Research efforts were mainly

focused on robust extraction of manual features or statistical

modeling of signs. The reader interested in a detailed survey

in sign language recognition is directed to [7].

In general, existing recognition systems can be divided

by their means of data acquisition into two groups. Intrusive

systems employ data gloves, optical or magnetic markers to

determine the signer’s manual configuration. For the user,

however, this is unnatural and restrictive. In order to over-

come this drawback, non-intrusive recognition systems use

a video-based approach, which allows extraction of manual

and facial features from the same input image. Table 1 lists

several publications representing the current state in video-

based sign language recognition.

Table 1. Selected video-based sign language recognition systems

representing the current state of the art.

Author Year Features Language Language

Level

Vogler [10] 1999 manual sentence ASL

Hienz [5] 2000 manual sentence DGS

Yang [13] 2002 manual word ASL

Zahedi [14] 2007 manual sentence ASL

v. Agris [11] 2007 manual sentence DGS

Parashar [8] 2003 manual, sentence ASL
facial

The compilation reveals that most existing recognition

systems exploit manual features only; so far facial features

were rarely used. Different researchers have recently started

to tackle the issue of video-based feature extraction related

to non-manual features such as ’head motion’ [4] and facial

expression [9]. In 2003, Parashar [8] applied a sequential

integration approach where the facial information is used to

prune the list of word hypotheses generated by manual in-

formation. The additional use of information about facial

motion increased the accuracy of recognition of continuous

words from 88,0% to 92,0%. Furthermore, he was able to

detect ’negation’ in sentences by means of simple motion

trajectory based features 27 out of 30 times. For data acqui-

sition two cameras were used: one for recording the entire

signing space and another one focusing on the user’s face.

In summary, it can be stated that no publication known,

except for [8], has yet proposed combination strategies for

manual and non-manual information or proved the expected

impact of non-manual features on sign language recognition

by presenting evaluation results.

3. System Overview

The following sign language recognition system consti-

tutes the basis for our ongoing research work. A thorough

description is given in [6, 12]. Fig. 2 shows a schematic of

the underlying concept. The system utilizes a single video

camera for data aquisition to ensure user-friendliness. Since

sign languages make use of manual and facial means of ex-

pression both channels are employed for recognition.

Figure 2. Schematic of the developed sign language recognition

system, combining manual and facial features.

For mobile operation in uncontrolled environments so-

phisticated algorithms were developed that robustly extract

manual and facial features. Extraction of manual features

relies on a multiple hypotheses tracking approach to resolve

ambiguities of hand positions [15]. For facial feature ex-

traction an active appearance model is applied to identify

areas of interest such as the eyes and mouth region. After-

wards a numerical description of facial expression and lip

outline is computed [2]. Furthermore, the feature extraction

stage employs a resolution strategy for dealing with mutual

overlapping of the signer’s hands and face.

Classification is based on hidden Markov models which

are able to compensate time variances in the articulation of

a sign. The classification stage is designed for recognition

of isolated signs as well as of continuous sign language.

For statistical modeling of reference models each sign is

represented either as a whole or as a composition of smaller

subunits – similar to phonemes in spoken languages [1].

4. Extraction of Manual Features

The feature extraction stage builds on [15] and is de-

signed to process real-world images. It uses a generic skin

color model to detect hands and face. The segmentation

threshold is automatically chosen so that the resulting face

candidate best matches the average face shape. For each

pixel, the median color computed from all input images

(which are buffered for this purpose) yields a reliable and

parameter-free background model. This allows to eliminate

static distractors.



The remaining hand candidates still allow many inter-

pretations. Therefore, multiple tracking hypotheses are pur-

sued in parallel. The winner hypothesis is determined only

at the end of the sign, using high level knowledge of the hu-

man body and the signing process to compute the likelihood

of all hypothesized configurations per frame and all transi-

tions between successive frames. This approach exploits all

available information for the computation of the final track-

ing result, yielding robustness and facilitating retrospective

error correction.

4.1. Feature Computation

Features are computed from the hand candidate border as

shown in Fig. 3. During periods of overlap, template match-

ing is performed to accurately determine the center coor-

dinates x, y using preceding or subsequent unoverlapped

views. All other features are linearly interpolated.

Figure 3. Shape-based features computed for each hand.

Hand center coordinates x, y are specified relative to the

corresponding shoulder position, which is estimated from

the width wF and position of the face. For feature normal-

ization all coordinates are divided by wF , and the area a by

its squared value w2
F . Since α ∈ [−90◦, 90◦), it is split into

o1 = sin 2α and o2 = cosα to ensure stability at the inter-

val borders. The features r, c and e describe the shape’s axis

ratio, compactness, and eccentricity. The derivatives ẋ, ẏ, ȧ

complete the 22-dimensional feature vector

xt = [ x ẋ y ẏ a ȧ o1 o2 r c e
︸ ︷︷ ︸

left hand

x ẋ y ẏ . . .
︸ ︷︷ ︸

right hand

] (1)

If the hand is not visible or remains static throughout the

sign, its features are set to zero.

5. Extraction of Facial Features

Facial expression analysis and interpretation require that

areas of interest, such as the eyes, eyebrows, and mouth

(in particular the lips) as well as their spatial relation to

each other, have to be extracted from the images first. For

this purpose, the face is modeled by an active appearance

model (AAM), a statistical model which combines shape

and texture information about human faces. Based on an

eigenvalue approach the amount of data needed is reduced,

hereby enabling real-time processing.

The active appearance model approach is described be-

low in more detail. With regard to the introduced schematic

system overview, the localized face region is first cropped

and upscaled (Fig. 4, top). Afterwards, AAMs are utilized

to match the face graph serving the extraction of facial pa-

rameters, such as lip outline, eyes, and brows.

Figure 4. Processing scheme of the face region cropping and the

matching of an adaptive face graph.

5.1. Active Appearance Models

Active appearance models contain two main compo-

nents: a statistical model describing the appearance of an

object and an algorithm for matching this model to an ex-

ample of the object in a new image [3]. In the context of

facial analysis, the human face is the object and the AAM

can be visualized as a face graph that is iteratively matched

to a new face image (Fig. 4, bottom). The statistical models

were generated by combining a model of face shape varia-

tion with a model of texture variation of a shape-normalised

face. Texture denotes the pattern of intensities or colors

across an image patch.

Shape model The training set consists of annotated face

images where corresponding landmark points have been

marked manually on each example. In this framework, the

appearance models were trained on face images, each la-

belled with 50 landmark points at key positions (Fig. 5).

For statistical analysis all shapes must be aligned to the

same pose, i.e., the same position, scaling, and rotation.

This is performed by a Procrustes analysis which considers

the shape in a training set and minimizes the sum of dis-

tances with respect to the average shape. After alignment,

the shape point sets are adjusted to a common coordinate

system.



Figure 5. Face graph with 50 landmark points (left) and its appli-

cation to a specific signer (right).

For dealing with redundancy in high dimensional point

sets, AAMs employ a principal component analysis (PCA),

a means for dimensionality reduction by first identifying the

main axes of a cluster. With the calculated principal compo-

nents it is possible to reconstruct each sample of the training

data. New shape instances can be approximated by deform-

ing the mean shape x using a linear combination ps of the

eigenvectors of the covariance matrix Φs as follows

x = x + Φs · ps (2)

Essentially, the points of the shape are transformed into

a modal representation where modes are ordered according

to the percentage of variation that they explain. By varying

the elements of the shape parameters ps the shape x may

be varied as well.

The eigenvalue λi is the variance of the i-th parameter

psi over all examples in the training set. Limits are set in

order to make sure that a newly generated shape is similar to

the training patterns. Empirically, it was found that a max-

imum deviation for the parameter psi should be no more

than ±3
√

λi.

Texture model Data acquisition for shape models is

straightforward, since the landmarks in the shape vector

constitute the data itself. In the case of texture analysis,

one needs a consistent method for collecting the texture in-

formation between the landmarks, i.e., an image sampling

function needs to be established. Here, a piece-wise affine

warp based on the Delaunay triangulation of the mean shape

is applied.

Following the warp from an actual shape to the mean

shape, a normalization of the texture vector set is performed

to avoid the influence from global linear changes in pixel

intensities. Hereafter, the analysis is identical to that of the

shapes. By applying PCA, a compact representation is de-

rived to deform the texture in a manner similar to what is

observed in the training set

g = g + Φt · pt (3)

where g is the mean texture, Φt denotes the eigenvectors

of the covariance matrix and finally pt is the set of texture

deformation parameters.

Appearance model The appearance of any example face

can thus be summarised by the shape and texture model pa-

rameters ps and pt. In order to remove correlation between

both parameters (and to make the model representation even

more compact) a further PCA is performed. The combined

model obtains the form

x = x + Qs · c (4)

g = g + Qt · c (5)

where c is a vector of appearance parameters controlling

both shape and texture of the model, and Qs and Qt are ma-

trices describing the modes of combined appearance varia-

tions in the training set. Fig. 6 presents example appearance

models for variations of the first five eigenvectors between

3
√

λ, 0,−3
√

λ.

Figure 6. Appearance for variations of the first five eigenvectors

c1, c2, c3, c4, and c5 between 3
√

λ, 0,−3
√

λ.

A face can now be synthesized for a given c by gener-

ating the shape-free intensity image from the vector g and

warping it using the control points described by x.

5.2. Feature Computation

After matching the face graph to the signer’s face in the

input image, areas of interest such as his eyes, eyebrows,

and mouth (in particular the lips), as well as their spatial

relation to each other, can be easily extracted. Geometric

features describing forms and distances serve for encoding

the facial expression and the lip outline. They are computed

directly from the matched face graph and are divided into

three groups (Fig. 7).



Figure 7. Facial features computed from the matched face graph.

The first group describes the head pose px, py, pz in the

three dimensional space, while the second group contains

the distances dl, dr between one eye and its respective eye-

brow. In the third group, the lip outline is described by the

area a, height h, width w, orientation split into o1 = sin 2α

and o2 = cosα, and the shape’s axis ratio r as well as the

form-features compactness c and eccentricity e. For feature

normalization the distances dl, dr, h and w are divided by

the distance de between both eye centers, and the area a by

its squared value d2
e . Finally, the derivatives ȧ, ḣ, ẇ com-

plete the 16-dimensional feature vector

yt = [ px py pz
︸ ︷︷ ︸

pose

dl dr
︸︷︷︸

eyebrows

a ȧ h ḣ w ẇ o1 o2 r c e
︸ ︷︷ ︸

lip outline

] (6)

If the face graph cannot be reliably matched, e.g., due to

overlapping hands, all facial features are interpolated.

6. Sign Language Corpus

Since we use a vision-based approach for sign language

recognition the corpus was recorded on video [11]. In order

to facilitate feature extraction recordings are conducted un-

der laboratory conditions, i.e. controlled environment with

diffuse lighting and a unicolored blue background. The

signers wear dark clothes with long sleeves and perform

from a standing position (Fig. 8). A high video resolution

of 780 × 580 pixels at 30 fps ensures reliable extraction of

manual and facial features from the same input image.

Figure 8. Example frames taken from the sign language corpus,

showing two native signers of different sexes and ages.

The corpus contains videos of isolated signs as well as of

continuous sentences. Its vocabulary comprises 450 signs in

German Sign Language representing different word types

such as nouns, verbs, adjectives, and numbers. Those signs

were selected which occur most frequently in everyday con-

versation and are not dividable into smaller signs. Thus,

they are called basic signs in the following.

All basic signs differ in their manual parameters. Many

of them, however, change their specific meaning when the

manual performance is recombined with a different facial

expression. For example, the signs POLITIK (POLITICS)

and TECHNIK (ENGINEERING) are identical with respect

to gesturing and can only be distinguished by the signer’s lip

movements. In this case only the former sign is regarded as

basic sign, whereas both signs appear in the continuous sen-

tences of the corpus. In total 135 additional signs, derived

from the basic signs, were integrated into the database.

Based on this extended vocabulary, overall 780 sentences

were constructed (603 for training, 177 for testing). Each

sentence ranges from two to eleven signs in length. No in-

tentional pauses are placed between signs within a sentence,

but the sentences themselves are separated. All sentences

are meaningful and grammatically well-formed. There are

no constraints regarding a specific sentence structure.

In order to model interpersonal variance in articulation

all 450 basic signs and 780 sentences were performed once

by 25 native signers of different sexes and ages. One signer

was chosen to be the so-called reference signer. His articu-

lations were recorded not once but even three times.

The corpus will be made available soon for interested

researchers in order to establish the first benchmark for

signer-independent continuous sign language recognition.

7. Experimental Results

The following experiments were carried out on the sign

language corpus described above. Recognition performance

for isolated signs was evaluated using the basic signs and for

continuous sign language using the sentences. In both cases

the evaluation of the signer-dependent (SD) performance

is based on the three variations of the reference signer,

whereas the signer-independent (SI) recognition rates were

determined in a leave-one-out test on all 25 signers. In order

to evaluate the performance for different vocabulary sizes,

the corpus is divided into three subcorpora simulating a vo-

cabulary of 150, 300, and 450 signs respectively. Table 2

summarizes the experimental results.

All experiments were conducted with three different sets

of feature vectors containing: a) only manual features xt,

b) only facial features yt, or finally c) a combination of both

manual and facial features. In the last case, all features are

merged into one feature vector zt = [xt, yt]. The obtained

results for a) thus represents baselines for c), the additional

use of facial features. In all experiments, the classification

stage was configured to employ neither subunit models nor

any stochastic language model.



Table 2. Signer-independent (SI) recognition of isolated signs and

continuous sign language. Recognition rates for signer-dependent

(SD) operation are given for comparison.

Features Vocabulary Size

150 300 450 �

manual 86.7% 83.0% 78.7% 82.8%

facial 12.2% 10.6% 10.0% 10.9%S
I

combined 88.3% 84.5% 80.2% 84.3%

manual 95.3% 95.0% 94.4% 94.9%

facial 48.0% 40.3% 37.1% 41.8%

Is
o

la
te

d

S
D

combined 96.0% 96.3% 96.9% 96.4%

manual 62.0% 64.2% 60.6% 62.3%

facial 8.6% 6.3% 5.4% 6.8%S
I

combined 69.0% 68.4% 65.1% 67.5%

manual 80.4% 80.6% 80.8% 80.6%

facial 33.2% 18.5% 12.3% 21.3%C
o

n
ti

n
u

o
u

s

S
D

combined 87.5% 87.4% 87.3% 87.4%

When employing manual features only, the recognition

rates achieved on the vocabularies presented in Tab. 2 varied

between 78.7% and 95.3% for isolated signs and between

60.6% and 80.8% for continous signing. As the production

of sign language is subject to high interpersonal variance,

signer-independent rates are much lower.

When ignoring manual and using solely facial features,

average recognition rates are 26.4% and 14.1% respectively.

Hence roughly two of ten signs were recognized just from

the signer’s face, a result that emphasizes the importance of

facial expressions for sign language recognition.

Finally, combining manual and facial features permits to

exploit all available information. The recognition rates now

ranges from 80.2% to 96.9% in case of isolated signing and

from 65.1% to 87.5% in case of continous signing, which

is an average improvement of 1.5% and 6.0% respectively

compared to using manual features only.

8. Conclusions

In this paper, we described a vision-based sign language

recognition system which employs both manual and facial

features, extracted from the same input image. For facial

feature extraction an active appearance model is applied to

identify areas of interest such as the eyes and mouth region.

Afterwards a numerical description of facial expression and

lip outline is computed. An extensive evaluation proved the

importance of integrating facial expressions into automatic

sign language recognition. The recognition rates for iso-

lated and continuous signing increased in signer-dependent

as well as in signer-independent operation mode. Interest-

ingly, roughly two of ten signs were recognized just from

the computed facial features.
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