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Abstract

Research in the field of sign language recognition has
not yet addressed the problem of interpersonal variance in
large vocabulary on the classification level. Current recog-
nition systems are designed for signer-dependent operation.
Applied to signer-independent tasks, they show poor perfor-
mance even when increasing the number of training signers.
Better results can be achieved with dedicated adaptation
methods. This paper describes a vision-based recognition
system that quickly adapts to unknown signers. A combina-
tion of Maximum Likelihood Linear Regression and Max-
imum A Posteriori estimation was implemented and mod-
ified to consider the specifics of sign languages, such as
one-handed signs. An extensive evaluation was performed
in supervised and unsupervised mode on a vocabulary of
153 isolated signs. The proposed adaptation approach sig-
nificantly increases accuracy even with a small amount of
adaptation data. Supervised adaptation with 80 adaptation
sequences yields a recognition accuracy of 78.6%, which is
a relative improvement of 41.6% compared to the signer-
independent baseline.

1. Introduction

The development of automatic recognition systems for
sign language has made significant advances in recent years.
Research efforts were mainly focused on the robust extrac-
tion of manual and non-manual features from the signer’s
articulation. Additional attention was paid to classification
methods. First implementations proved that using subunit
models has advantages over word models for each whole
sign when recognizing large vocabularies.

The present achievements are the basis for future appli-
cations with the objective of supporting the integration of
deaf people into hearing society. Translation systems, user
interfaces, and automatic indexing of signed videos are just
some examples. Further applications arise in the field of
human-computer interaction. Multimodal user interfaces
and the control of human avatars in virtual environments
could be realized via gesture and mimic recognition.

All mentioned applications have in common that they
must operate in a user-independent scenario. Current sys-
tems for sign language recognition achieve excellent per-
formance for signer-dependent operation. But their recog-
nition rates decrease significantly if the signer’s articulation
deviates from the training data.

Although signer-independence is an essential precondi-
tion for future applications, only little investigations have
been made in this field so far. This unexplored gap in sign
language recognition is the subject of this paper.

Sign language Deaf and hearing impaired people use sign
language for everyday communication. Information is con-
veyed through manual and non-manual means such as the
signer’s hands and facial expressions. The set of signs can
be subdivided into one-handed and two-handed signs. The
hand used for one-handed signs is called the dominant hand.

Interpersonal variability The performance drop in case
of signer-independent recognition results from the broad
interpersonal variability in production of sign languages.
Even within the same dialect, considerable variations are
commonly present. Fig. 1 shows different articulations of
an exemplary sign in British Sign Language.

Figure 1. The sign “tennis” performed five times by two different
native signers using the same dialect. Position of the handsare
visualized as motion traces for comparison.

Analysis of the hand motion reveals that the variation
between different signers are much higher than within one
signer. Other manual features such as hand shape, posture,
and location exhibit analogue variability.



2. Previous work

This section gives a short overview of existing sign lan-
guage recognition (SLR) systems. An in-depth introduction
to gesture and sign language recognition is found in [6].
Since there is no standardized benchmark the below recog-
nition rates cannot be compared directly.

Vision-based systems face the problem of noisy and am-
biguous input data. Most work focuses on this challenge
and does not consider interpersonal variance. For isolated
signs, recognition rates reach e.g. 98.9% on 229 signs [13]
or 92.5% on 439 signs [12]. Datagloves yield more reliable
and descriptive features, recognizing vocabularies as large
as 5119 signs with 92.8% accuracy [11].

Recognition of continuous signing poses the addi-
tional difficulties of temporal segmentation and transi-
tion/coarticulation effects, but allows to support classifica-
tion through the use of language models. Recognition rates
of 93.2% (97 signs) were published for a vision-based sys-
tem [1], while the glove-based method described in [2] at-
tains 92.1% with 208 signs.

All above values refer to a signer-dependent recognition
task. Only the following three publications specify signer-
independent performance.

[2] uses datagloves and reports 85.0% recognition rate
for sentences comprised of 208 signs. The authors employ
a language model; however, they do not specify the degree
of similarity between training and test sentences. Isolated
signs from the same vocabulary are classified with 88.2%
accuracy. No information is given on the composition of
the vocabulary. The fact that signer-dependent performance
is only 7.1% higher suggests low interpersonal variance.

[13] describes a vision-based system that achieves a
maximum performance of 44.1% on 221 signs. The accu-
racy varies with the constellation of the training/test signers.

In [9] a vocabulary of 20 conceived gestures is recog-
nized on the basis of visual features that reflect aspects of
sign language grammar. Bayesian networks and HMMs are
used for classification.

Supervised adaptation to one unknown signer with a set
of all 20 gestures yields 88.5% accuracy.

Feature normalization for signer-independence is only
described in [2, 13]. Except for [9], no publication listed
above or in recent reviews [10] addresses the problem of
interpersonal variance on the classification level.

3. System design

Fig. 2 shows a schematic of the vision-based adaptive
SLR system described in this paper. The feature extrac-
tion stage builds on [13] and is designed to process real-
world images. It uses a generic skin color model [5] to
detect hands and face. The segmentation threshold is au-
tomatically chosen so that the resulting face candidate best

matches the average face shape. For each pixel, the median
color computed from all input images (which are buffered
for this purpose) yields a reliable and parameter-free back-
ground model. This allows to eliminate static distractors.

Figure 2. Schematic of the adaptive SLR system.

The remaining hand candidates still allow many inter-
pretations. Therefore, multiple tracking hypotheses are pur-
sued in parallel. The winner hypothesis is determined only
at the end of the sign, using high level knowledge of the hu-
man body and the signing process to compute the likelihood
of all hypothesized configurations per frame and all transi-
tions between successive frames. This approach exploits all
available information for the computation of the final track-
ing result, yielding robustness and facilitating retrospective
error correction.

Features are computed from the hand candidate border as
shown in Fig. 3. During periods of overlap, template match-
ing is performed to accurately determine the center coor-
dinatesx, y using preceding or subsequent unoverlapped
views. All other features are linearly interpolated.

Figure 3. Shape-based features computed for each hand.

Hand center coordinatesx, y are specified relative to the
corresponding shoulder position, which is estimated from
the widthwF and position of the face. In addition,x, y are
normalized bywF , anda by w2

F . Sinceα ∈ [−90◦, 90◦), it
is split intoo1 = sin 2α ando2 = cosα to ensure stability
at the interval borders.r, c ande describe the shape’s axis
ratio, compactness, and eccentricity. The derivativesẋ, ẏ, ȧ

complete the 22-dimensional feature vector

xt = [ x ẋ y ẏ a ȧ o1 o2 r c e
︸ ︷︷ ︸

left hand

x ẋ y ẏ . . .
︸ ︷︷ ︸

right hand

] (1)



If the hand is not visible or remains static throughout the
sign, its features are set to zero.

The classification stage uses HMMs with an average
of 41 states in Bakis topology for the representation of
each sign. Emission probabilities are represented by Gaus-
sian mixture models. Training and classification apply the
Viterbi algorithm.

Corpus and baseline The test corpus consists of 153 iso-
lated signs from British Sign Language, performed by four
native signers five times each, totaling 3060 video clips of
approx. 50 frames. Resolution is 384 x 288 pixels at 25 fps.
The vocabulary comprises news items and navigation com-
mands and was not selected for discernability. To reduce
the amount of noise in the manual features, recordings were
conducted in a controlled environment with diffuse lighting
and a homogeneous background. The signers wear black
clothes with long sleeves.

Signer-dependent recognition rates average 97.9%. Most
information is carried byx, y and their derivatives, which
account for approx. 92%. Signer-independent performance
in a leaving-one-out test with no adaptation sets a baseline
of 55.5%.

4. Signer adaptation

Selected adaptation methods from speech recognition
are modified for the use in sign language recognition tasks
to improve the performance of the signer-independent rec-
ognizer.

A set of adaptation data consisting of isolated signs is
collected from the unknown signer, either supervised with
known transcription or unsupervised. In the latter case, the
signer-independent recognizer estimates a transcription, us-
ing a confidence measure to assess the quality of the recog-
nition result as shown in Fig. 2.

Based on the adaptation data, the adaptation process
reduces the mismatch between signer-independent models
and observations from the unknown signer.

4.1. Choice of adaptation methods

Various adaptation methods have already been investi-
gated in the context of speech recognition. Due to the obvi-
ous similarities between speech and sign language recogni-
tion, some are applicable for signer adaptation.

While feature-basedmethods such as Vocal Tract Length
Normalization require knowledge from the speech produc-
tion domain,model-basedapproaches are well suited for
adapting the recognition system.

Model-based adaptation alters the parameters of the un-
derlying HMMs based on the given adaptation data. Two
methods are evaluated: Maximum Likelihood Linear Re-
gression (MLLR) and Maximum A Posteriori (MAP) esti-

mation. Both are employed in current speech recognition
systems and have proven to perform excellent in the speech
domain.

The evaluated approaches are introduced below, along
with necessary modifications for signer adaptation.

4.2. Maximum Likelihood Linear Regression

The mixture components of the signer-independent
HMMs are clustered into a set of regression classesC =
1, . . . , R such that each Gaussian componentm belongs to
one classc ∈ C. A linear transformationWc for each classc
is then estimated from the adaptation data. Estimation of the
transformation matrices follows the Maximum-Likelihood
paradigm, so the transformed models best explain the adap-
tation sequences. Reestimation formulae forWc based on
the iterative Expectation-Maximization algorithm are given
in [3].

The Gaussian meanµm of each componentm from class
c is then transformed with the corresponding matrixWc,
yielding the adapted parameter

µ̃m = Wc · µ̄m (2)

whereµ̄m is the extended mean vector

µ̄T
m =

[
1 µT

m

]
(3)

A component from a model which has not been observed
in adaptation data can thus be transformed based on the ob-
served components from the same class.

As proposed in [3], a Regression Class Tree is used to
improve the clustering of the mixture components, where
the number of regression classes depends on the available
amount of adaptation data. Each nodec of the tree corre-
sponds to a regression class and a transformationWc is as-
sociated with the node. The root contains all mixture com-
ponents, yielding a global transformationW . The sons of
a node form a partition of the father class, so deeper nodes
yield more specialized transformations derived from fewer
components. As more adaptation sequences become avail-
able, deeper transformations can be robustly estimated.

If the direct estimation of a transformation for a certain
node is not possible for numerical reasons, computationally
expensive techniques as described in [3] can be used. Alter-
natively, the next node on the path to the root can be chosen,
yielding a more general but numerically stable transform.

The approach is adapted to sign language recognition us-
ing explicit handling of signs that are only performed with
one hand and a method for transforming models that have
not been observed the in the adaptation data.

One-hand transformations The corpus contains several
signs where only the dominant hand is active during the
whole sequence. It is presumed that the right hand is always



dominant, as features from left-handed signers are mirrored.
Thus the feature extraction yields a feature vector sequence
[x1, . . . , xT ], where for single-handed signs the entries of
the non-dominant hand of each feature vectorxt ∈

�
D+D

equal zero:

xt =
[
0 . . . 0 xt,1 . . . xt,D

]
(4)

Here, xt,d is the d-th feature of the dominant hand. If
HMMs are trained with such sequences, the mean vectors
of the resulting mixture components have the same special
form. As the adapted models should be of the same form,
dedicatedone-hand transformationsare introduced.

Each class of the Regression Class Tree containing only
one-hand mixture components is marked as a one-hand
class. The sons of such a class again represent one-hand
classes as they form a partition of the father node. Thus
each one-hand class defines aone-hand subtreecontaining
only one-hand classes.

A sample Regression Class Tree is shown in Fig. 4. The
root node contains all components, represented by their
mean vectors. These are either collected from one-hand or
two-hand models. If a created node contains only one-hand
means during tree construction, the whole subtree defined
by that node will contain only one-hand classes. Such one-
hand subtrees can make up a large part of the whole Regres-
sion Class Tree.
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Figure 4. One-hand classes as part of the Regression Class Tree.

The first half of a Gaussian parameter corresponding to a
one-hand mixture component contains only zero entries and
is therefore ignored during the adaptation process. Trans-
formations for classes that are part of a one-hand subtree are
estimated from the one-hand versions of the corresponding
Gaussian parameters, consisting only of the second half of
mean and variance.

The use of one-hand transformations guarantees that the
features for the passive hand remain passive after the trans-
formation. Complexity of the estimation process is halved
in the one-hand case due to the dimensionality reduction.

Handling of unseen signs Sign models are calledseenor
unseen, depending on whether they are observed in adap-
tation data or not. The mixture components of an unseen
HMM are transformed based on the seen components of
the regression class they belong to. Although this works
for large and general regression classes near the root of the
tree, specialized transformations for small classes towards
the tree leaves tend to produce unsatisfying results. As the
transformations are highly optimized for the seen compo-
nents, the unseen components are not adapted well.

Reducing the tree size would result in broader regres-
sion classes at the tree leaves and the most special possible
transformations would still be applied to a large amount of
mixture components. If these general transformations are
used even if more adaptation sequences become available,
the effect of MLLR saturates after a certain amount of data.
Thus a special handling of the unseen components is pro-
posed.

Not updating the unseen components at all degrades the
quality of the adapted models in terms of recognition ac-
curacy. After the transformation, the mean parameters of
seen components are much closer to the range of the ob-
servations from the unknown signer than the parameters of
unseen components. Thus the Viterbi score of a model cor-
responding to a seen sign is likely to be higher than the score
of an unseen model, so the recognizer prefers seen models
in general.

This can be solved by using general transformations only
for unseen components. The seen components are adapted
using the most special transformation that can be robustly
estimated using the Regression Class Tree, while unseen
components are adapted using a global transformation es-
timated at the root node of the tree.

4.3. Maximum A Posteriori estimation

The Maximum A Posteriori estimatẽµMAP for the Gaus-
sian meanµm of a mixture componentm is a linear interpo-
lation between a-priori knowledge derived from the signer-
independent model and the observations from the adapta-
tion sequences. During Viterbi alignment of an adaptation
sequence with its corresponding model, the feature vectors
mapped to a certain component can be recorded, yielding
the empirical mean̄xm of the mapped vectors. According
to [7], the MAP estimate is

µ̃MAP =
τ

τ + N
· µm +

(

1 −
τ

τ + N

)

· x̄m (5)

whereN is the number of feature vectors aligned to com-
ponentm andτ is a weight for the influence of the a-priori
knowledge. IfN approaches infinity, the influence of the
signer-independent model approaches zero and the adapted
parameter equals the empirical mean. Thus MAP performs
well on large sets of adaptation data, but its pure form can



only be used to update seen components. This can be solved
by using the MLLR-adapted model as prior knowledge, re-
placing the signer-independent mean by the already trans-
formed mean.

5. Experimental results

The adaptation experiments were carried out on the cor-
pus described in section 3. Three signers are used for train-
ing the signer-independent model, one signer is used for
testing. All results given are average values from the four
possible combinations.

Only the Gaussian means were updated by MAP and
MLLR, variances and mixture weights remain unchanged
as the mean covers most of the variability between the
speakers [8]. The results below are derived using Gaussian
single densities, experiments with Gaussian mixtures show
the same behavior due to the small training population.

Explicit one-hand transformations were used in all
MLLR experiments. The conventional full-dimensional
approach cannot estimate transformations for one-hand
classes without using computationally expensive pseudo-
inverses. Moreover, full-dimensional transformation of a
one-hand parameter would yield a two-hand mean due to
the translation of the whole vector.

5.1. Supervised adaptation

For the supervised experiments, variations 1 to 4 were
used for static adaptation with different amounts of adapta-
tion data while variation 0 was reserved for testing.

Fig. 5 illustrates the effect of the proposed methods for
handling mixture components from unseen signs. Seen
components were adapted with the most special transform
from the Regression Class Tree in all three experiments.
As described, transforming the unseen components with
a global transformation outperforms the conventional ap-
proach and is superior to ignoring the unseen components
during adaptation. Thus the MLLR approach is suited for
rapid signer adaptation using only a small amount of adap-
tation data.

The combination of modified MLLR and standard MAP
as shown in Fig. 6 results in the same effect which has been
observed in speech recognition: the rapid adaptation using
MLLR is preserved, while its saturation is compensated by
MAP.

Table 1 summarizes the supervised adaptation exper-
iments, showing the recognition performance of adapted
models using the different methods. MLLR followed by
MAP yields the best models, regardless of the number
of adaptation sequences. Using class-based MLLR, rapid
adaptation to an unknown signer is possible without cov-
ering the whole vocabulary during adaptation as described
in [9], which only applies MAP adaptation.
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Figure 5. Handling of unseen signs, supervised MLLR adaptation.
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Figure 6. Supervised MAP: Signer-independent vs. MLLR-
adapted model as prior.

Method
Recognition rate / % on 153 signs
Number of adaptation utterances

80 160 320
Signer-Dep. 97.9 97.9 97.9
Signer-Indep. 55.5 55.5 55.5
MAP 70.1 93.8 95.9
MLLR 77.8 89.5 91.7
MLLR→MAP 78.6 94.6 96.9

Table 1. Supervised adaptation.

5.2. Unsupervised adaptation

Unsupervised experiments were carried out using all five
variations from the testing signer as both adaptation and
testing data. Each recognized transcription was stored for
adaptation together with the input feature sequence. The in-
cremental adaptation of the models was then performed at



an interval of 20 collected signs, yielding updated models
for the recognition of the next input signs. Table 2 shows
the overall performance using different adaptation setups.

Only the correctly recognized signs should contribute
to the actual adaptation. The output of the current signer-
independent recognizer is wrong in almost half of the cases.
Even if we knew exactly which signs were recognized cor-
rectly and which were not, the amount of available adapta-
tion sequences would be halved, and some signs will never
be recognized correctly. Therefore the recognition rate re-
mains at a level of about73%, even in the case of an ideal
confidence measure.

If no confidence measure is applied at all, then all 765
signs are used for adaptation. Hence a huge amount of signs
is supplied with a wrong transcription, disturbing the adap-
tation process. Fortunately, MLLR can cope with this effect
to some extent, as the components of the correct model of-
ten fall in the same regression class as the components of
the recognized model.

A simple confidence measure for isolated word recogni-
tion as described in [4] was applied to reject unlikely recog-
nition results. Using this confidence measure, results im-
prove towards the ideal value.

Method
Confidence Recognition rate / %
measure on 765 signs

Signer-Indep. N/A 53.5
MLLR→MAP Ideal 72.9
MLLR→MAP No 58.3
MLLR→MAP N-Best-based 61.6

Table 2. Unsupervised adaptation.

6. Conclusion

Applying adaptation methods from speech recognition
in a sign language context yields significant performance
improvements. The proposed modified MLLR approach al-
lows rapid adaptation of a signer-independent system, pre-
serving the structure of one-hand models. The combination
with MAP results in high accuracy for larger sets of adap-
tation data. Supervised adaptation with 80 adaptation se-
quences yields a recognition accuracy of 78.6%, which is
a relative improvement of 41.6% compared to the signer-
independent baseline. In the unsupervised case, a relative
improvement of 15.6% is obtained without requiring an ex-
plicit enrollment session from each new signer.

The most crucial problem for unsupervised adaptation is
the performance of the signer-independent models. More
training speakers are required to improve the baseline, and
other confidence measures have to be evaluated to robustly
reject incorrect recognition results.
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