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ABSTRACT

By application of a common theory of fluid mechanics to
the convergent glottis the following equations for aerody-
manic quantities were established: velocity and pressure
distributions, pressure drop across the glottis. The effects
of the viscosity of the air and of the area change could
be described analytically due to the theoretical approach,
which is based on the Navier-Stokes equations and the con-
tinuity equation. The derivation of analogous equations for
the divergent glottis was not possible due to the general
instability of the flow in this glottal configuration.

1 INTRODUCTION

The phonatory process depends on tissue properties of the
vocal folds, interactions between glottal airflow and the
vocal folds, and the acoustic coupling of the glottis to the
sub- and supraglottal tract cavities. In order to sustain
vocal fold oscillations the natural damping of energy by
friction in the tissue has to be overcome, which is achieved
by a transfer of energy form the airflow to the vocal folds.
A necessary condition for this energy transfer is an asym-
metry of the driving pressure with respect to the opening
and the closing phase of a glottal cycle. This asymmetry
is mainly achieved by a periodic change of convergent and
divergent glottal configurations [Titze, 1993].

In this paper the mechanics of laminar flow in a conver-
gent glottis will be analyzed, which may be regarded as
one step towards the investigation of the above mentioned
interactions occuring in voice production. The divergent
glottis will only be considered for low Reynolds numbers
as otherwise the laminar flow would be unstable.

2 GEOMETRICAL REPRESENTA-
TION OF THE GLOTTAL CONFI-
GURATIONS

For the analysis of glottal flow mechanics a well-known
theory of laminar flow between nonparallel plane walls
[Jeffrey, 1915][Hamel, 1916][Landau and Lifshitz, 1991],
which is based on the stationary Navier-Stokes equations
and the continuity equation, is applied to the glottis. The-
reby the glottis is the space between two geometrical pla-

nes, which represent the rims of the vocal cords (see fig.
1). Two basically different cases of glottal geometries will
be considered:

1. The planes intersect (the vocal cords are in contact
at the beginning or at the end of the glottis). For the
divergent glottis there is a source (of flow) and for
the convergent glottis a sink at the intersection line
of the planes. The origin of the coordinate system
lies at one end of the intersection line. This is the
geometry used in the above mentioned theory.

2. During phonation the vocal cords are not always
in contact but have a minimal distance from each
other, which means that the planes do not inter-
sect. For the description of this case the origin of
the coordinate system lies at one end of the virtu-
al intersection line of the planes and two values rq
and ry are defined that represent the minimal radial
distances of the origin form the starting and ending
points of the glottis along the vocal cords (see fig.
1). This change of the geometry (with respect to the
first case) implies different boundary conditions of
pressure and velocity. The theory is only applicable
for small minimal distances of the vocal cords and
large glottal angles as otherwise the virtual intersec-
tion line would be too far away from the glottis.

The glottal flow will be analyzed in the two-dimensional
r-@-plane (polar coordinates are used to simplify the des-
cription) whereas it will be assumed homogeneous in the
z-direction (direction of the glottal length). From the ma-
thematical point of view the two configurations (conver-
gent and divergent) differ only with respect to the signs of
the radial distances and the velocities.

Due to the symmetry of the flow region with respect to
the bisector of the angle the laminar flow can be assumed
to be purely radial:

Ur = UT(Ta‘P): Vp = Vz = 0

Because of the independent investigation of these different
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Abbildung 1: Geometrical representation of the (conver-
gent) glottis as a space between two nonparallel planes
(rims of the vocal cords) with a glottal angle . 0: origin
of the coordinate system; di, d2: diameters at the begin-
ning and the end of the glottis; r1 und r3: radial distances
from the origin to the beginning and the end of the glottis

glottal forms the quasistatic approximation for the glot-
tal flow is required. The validity of this approximation has
been investigated theoretically [Flanagan, 1958] and expe-
rimentally [Mongeau et al., 1992]; the approximation is,
however, not applicable to all conditions of phonation.

3 VELOCITY DISTRIBUTIONS

Using the above mentioned theory, the velocity distribu-
tion of laminar flow in the convergent or divergent glottis
can be described in a general form by the following equa-
tions (for small Reynolds numbers) [Landau und Lifschitz,
1991] [Hamel, 1917]:

we(r ) = 4O, 1)
u(p) = uo + p(¢ — Yo, 92, g3) (2)

g: elliptic function of Weierstrass (for a definition see e.g.
[Abramowitz and Stegun, 1972])

Uo, Po, g2, g3: constants

v(= £): kinematic viscosity

The constants can be determined from the boundary con-
ditions.

These profiles change for higher Reynolds numbers (e.g.
those relevant for phonation). It has been proved that the
divergent flow becomes unstable whereas the convergent
flow remains stable even for values of the glottal angle up
to 180° and unlimited Reynolds numbers [Hamel, 1916].

The divergent flow separates from the wall, whereby the
point of separation can be calculated [Pohlhausen, 1921].

As the divergent flow is not stable for all Reynolds num-
bers only the convergent flow will be considered in the
following calculations.

4 PRESSURE DISTRIBUTION

The pressure distribution in a convergent glottis is given
by the following equation [Landau and Lifshitz, 1991]:

pirp) = 9 Qule) Z )

o 3 + C» (3)

p: density
7n: viscosity

The radial pressure distribution at the vocal cords can be
derived from this equation as u (:l:%) =0:

602 C
P(’")ZPO—TT—; (4)

Po: subglottal pressure

In order to consider the influence of the supraglottal space
the variable r may be replaced by r —r, so that the curve
(or rather of the pole of the curve) p(r) is shifted with re-
spect to the theoretical origin (see fig. 1) with the help of
the empirically determinable distance r,. The upper limit
of validity of eq. refeq:pdisrtph) and (4) is the coordina-
te rnq where the value of the pressure becomes zero (de-
fined value of the supraglottal pressure) because beyond
this point pressure fluctuations may take place until the
pressure has stabilized; these possible fluctuations are not
described here. The total pressure acting upon the vocal
folds can be calculated by integrating eq. (4).

5 PRESSURE DROP ACROSS THE
GLOTTIS

The pressure drop across the convergent glottis can be de-
scribed by the following equation (see appendix for the
derivation):

AP = AP, + AP,
_ G (5-5)
o p ri2  re?
1 1
—9 _
" (T1A1 7"2142) U+ Cz

AP,: pressure drop due to the purely radial distribution
of the pressure
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AP,: pressure drop due to the angular distribution of the
pressure

ri,72: s. fig. 2

A1, As: glottal areas at the beginning and at the end of
the glottis

C1, C>: constants

This equation can be interpreted as a generalization of
the well-known formula for the same relationship in a rec-
tangular glottis:

_12qL°T 12T

T': glottal thickness

d: glottal diameter

L: glottal length

A: glottal cross-sectional area

The pressure drop is described by two terms because it
not only depends on the volume velocity but also on the
change of the cross-sectional area. The two terms in eq.
(5) and (6) depending on the volume velocity are similar.

The relationship between the pressure drop and the vo-
lume velicity can be obtained by inserting eq. (5) into the
Bernoulli equation:

1 1 1
AP = = (———)U2
2P 2.2~ 4?2
_ G (5-5)
- p ry2 ro2
—9 ( ! —L)U+c )
g riA; r2d» 2
=
1 1
AP, = 2 ( _ )
n 7"1141 T2A2

p

6 DISCUSSION

Apart from several equations describing pressure-flow re-
lationships in the glottal region with a rectangular glottis
([Wegel, 1930][van den Berg et al., 1957][Ishizaka and Fla-
nagan, 1972|[Ishizaka and Matsudaira, 1972]) there have
been developed some equations where the same relations
were described for convergent and divergent glottal geo-
metries. Ishizaka and Matsudaira [1972] approximated the
convergent and the divergent glottis with two rectangluar
ducts of different diameters and considered the pressure
drop due to the sudden cross-sectional change with the
Bernoulli equation:

12nL2T,  129L°T,
AP = U
( A13 + A23

(9)

This equation is only valid for small angles but it has be-
en complemented to be also adjustable to experimental
data for big angles [Ishizaka, 1985]. Thereby the Bernoulli
equation was generalized in such a way that changes of the
pressure drop due to area changes and the viscosity could
be considered using empirical factors (here the equation
for the convergent glottis is given):

+lv2 +11)2
P1 2p1 p2 2p2
AN21
c]-__ N hv
+"( Al) P2t
(10)

h,: pressure drop due to viscosity
7ne: empirically determinable factor

With these equations experimental and numerical data
of pressure-flow relationships can be quite well described
[Scherer und Titze, 1983][Gou und Scherer, 1993]. These
equations are complemented by eq. (8) as the pressure drop
is entirely derived from the Navier-Stokes equations and
the continuity equation and therefore the changes of the
pressure drop due to the glottal geometry and the viscosity
are expressed analytically considering the exact geometry
(A; and A, are exchanged due to the different relative
position of the origin of the coordinate system). However
it is only applicable to the convergent glottis whereas eq.
(9) and (10) can also be applied to the divergent glottis.
The main advantage of these new equations (5) and (8)
is that additionally to the pressure-flow relationship the
distributions of velocity and pressure can also be compu-
ted. Thereby data of aerodynamic quantities obtained with
different experimental or theoretical methods (e.g. experi-
ments with static glottal models or numerical simulations)
can be analyzed with one analytical approach. With these
data the validity of the new equations can be examined.

Literatur

[1] Abramowitz, M. und Stegun, A. (ed.) (1972): Hand-
book of mathematical functions, Dover Publications
Inc., New York, 10. edition

[2] Berg, W. van den, Zantema, J. T. und Doornenbal,
P. Jr. (1957): On the air resistance and the bernoulli
effect of the human larynz, JASA 29: 626-631

[3] Gou, C.- G. und Scherer, R. C. (1993): Finite element
simulation of glottal flow and pressure, JASA 94: 688-
700

[4] Hamel, G. (1916): Spiralférmige  Bewegun-
gen ziher Fliissigkeiten, Jahresbericht der deutschen
Mathematiker-Vereinigung 25,10: 34-60

[6] Ishizaka, K. (1985): Air resistance and intraglottal
pressure in a model of the larynz, Vocal Fold Phy-

147



stology: Biomechanics, Acoustics and Phonatory Con-
trol, ed.: I. R. Titze and R. C. Scherer: 414-424

[6] Ishizaka, K. und Flanagan, J. L. (1972): Synthesis
of voiced sounds from a two-mass model of the vocal
cords, Bell Syst. Techn. J. 51: 1233-1268

[7] Ishizaka, K. and Matsudaira, M. (1972): Fluid me-
chanical considerations of vocal cord vibration, SCRL
Monograph 8, Santa Barbara, California

[8] Jeffrey, G. B. (1915): Steady motion of a viscous fluid,
Phil. Mag., Ser. 6, Vol. 29: 455

[9] Landau, D. und Lifshitz, L. (1991): Lehrbuch der theo-
retischen Physik, vol. 6: Hydrodynamik

[10] Pohlhausen, K. (1921): Zur Integration der Differenti-
algleichung der laminaren Reibungsschicht, Zeitschrift
fiir angewandte Mathematik und Mechanik 1: 252-268

[11] Scherer, R. C. und Titze, I. R. (1983): Pressure-flow
relationships in a model of the laryngeal airway with
a diverging glottis, Vocal Fold Physiology, ed.: D.M.
Bless und J.H. Abbs: 179-193

[12] Titze, I. R. (1993): Current topics in voice production
mechanisms, Acta Otolaryngol. (Stockholm) 113: 421-
427

[13] Wegel, R. L. (1930): Theory of vibration of the larynz,
Bell Syst. Tech. J. 9: 201-207

A CALCULATION OF THE PRES-
SURE DROP ACROSS A CON-
VERGENT GLOTTIS

First the volume velocity is calculated (¥ is oriented from
r2 to 71 (see fig. 1)) which is then inserted into the equa-
tion describing the pressure drop. The volume velocity is
obtained by integrating equation (1) (radial component of
the velocity) over p and z and averaging over r (this means
integration over r and division by f dr =ri —r2).

‘3
/ ul(p) dp = (11)

To calculate the pressure drop the function p(r) is deter-
mined by averaging p(r, p) over the area (r dy) dz with the
variable r kept constant and inserting equation (11):

foL fj%% (%(2“(¢) -Ci)+ Cz) rdedz

p(””) = L +<
fo f_%Z rdpdz
- L —127’2 o u(p) dp — 6n°Cra + Cora
T oora\ pr | o ey pr ?
2
_ 12002 U 69°C
T r2a L6v pr? + 0
2 6n°C1 1
= —U- = +C
rA p te
A=(ra)L

The pressure drop AP is obtained by determining the pres-
sure difference of p(r) at r» and 7y :

AP = p(r2) —p(r1)
_ 6p°Cy ( 1 1 )

p ri2  re?

1 1
_27) (T1A1 B 7"2142) U+ 02
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