
ABSTRACT

In this paper we present an iterative automatic segmentation
system which does not require any domain dependent training
data. Input to the system is the canonical pronunciation and the
speech signal of an utterance to be segmented, as well as a set
of phonological pronunciation rules. The output is a string of
phonetic labels (SAM−PA[1]) and the corresponding segment
boundaries of the speech signal.

The system consists of three main parts:  
In a first stage a set of general phonological rules is applied

to the canonical pronunciation of an utterance yielding a graph
that contains the canonic form and presumed variations.

In a second HMM−based stage the speech signal of the
concerning utterance is time−aligned to this graph using a
Viterbi search. The outcome of this stage is the time−aligned
transcription of the input utterance.

Using this "raw" application of the phonological rules as the
baseline in a third stage, a new set of statistically weighted
rules is derived.

The procedure is repeated iteratively until the segmentation
is not changed anymore.  

1. INTRODUCTION
For many applications in speech processing, such as in ASR
and speech synthesis (e.g. PSOLA), reliable segmentation and
labeling of large speech databases is required. Also as ASR
increasingly uses pronunciation modeling [2], [3] the demand
for statistically based pronunciation models in different
languages is growing.

Manual segmentation, especially for today’s large speech
corpora, is extremely time−consuming and a uniquely correct
segmentation and labeling of an utterance does not exist
because no two human experts are likely to produce exactly
the same segmentation for the same utterance. Not even the
same trained person will come to exactly the same
transcription if asked to repeat the segmentation of the same
utterance [4].

In previous work it was shown that human labelers can
reach a correspondence of about 93.6% whereas the Munich
Automatic Segmentation system − MAUS([5]) using domain−
dependent pronunciation rules reaches 87.9% compared to
human labellers on the German PHONDAT II corpus (read
speech). A similar evaluation using spontaneous speech from
the German VERBMOBIL project [6] resulted in 80.4%
(human vs. human) and 78.5% (human vs. MAUS)
respectively.

To produce competitive results, automatic segmentation
methods like MAUS require a subset of manually labeled data
(at least 1 h) from the domain of the corpus.  

Since in most cases such data are not available we wish to

become independent of a specific domain in order to avoid
even partial manual segmentation of a corpus.

In this paper we present a system which is independent of a
specific domain, i.e. which can be used for no matter what
speech corpora as long as there exists a set of general phonetic
rules like [7] for the corresponding language.  

Section 2 describes the method of our iterative segmentation
system. Section 3 shows the evaluation of this system by
comparing data segmented manually and by MAUS.

Finally, results and future work are discussed in the last
section.

2. ITERATIVE SEGMENTATION SYSTEM
For the following experiments we used a subset of the

German part of the VERBMOBIL I corpus. The subset
(approx. 5h of speech) was manually transcribed by skilled
phoneticians and can be used as a reference for automatic
segmentation.

Former work [5], [6] with the MAUS−system has shown,
that the modeling of pronunciation variants represented by
SAM−PA units and weighted with a−posteriori probabilities
can be used successfully for the automatic segmentation and
labelling of spontaneous German. MAUS uses a constraint
search space derived from the canonical pronunciation of the
given utterance in standard Viterbi alignment to come up with
a broad phonetic transcript and a segmentation of the speech
wave form. To compute the constraints for the search MAUS
uses a set of statistical data−driven re−write rules that are
automatically learned from approx. 1h of hand segmented
data. In consequence, the rule−set is domain dependent and
cannot be used effectively for other corpora.

The following examples show the form of these
pronunciation rules:

I,n,#>I,# −5.565513 
l,@,n,#>l,# −3.000183 
n,Q,a>n,a −0.415490 
g,@,n,t>g,N,t −1.641282 
k,@,#>k,# −3.082453 
aI,n,m>aI,m,m −1.392558  
a:,Q,a:>a:,a: −0.020101 
p,@,n,#>p,m,# −1.406395 
P6,Q,O>P6,O −0.020101 
N,@,n,#>N,N,# −0.275463 
m,@,n,#>m,m,# −0.948678  

The first label gives the left context, the last label before the
‘‘>’’ the right one. Between left and right context are the
label(s) which change. On the right of the ‘‘>’’ the changed
label(s) in the given contexts are noted. The last item shows
the negative logarithmic probability of the occurrence of the
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rule noted before.  
In the work presented in this paper, we are integrating the

MAUS principle for the automatic segmentation together with
a learning algorithm for the rule set in an iterative process.  

To start the iteration we used a fixed set of approx. 1500
general phonological rules of German pronunciation ([7])
compiled by an expert where every rule was assumed to be
equally likely. It has been shown that such rules formulated a−
priori are not effective for automatic segmentation, because
too many unlikely pronunciation hypotheses are generated,
which massively inflates the search space[5].

This rule set was used in a MAUS segmentation in order to
obtain a first set M of pronunciation variants. M is compared
to the canonical transcription of the corpus in order to
statistically weight the applied rules during the segmentation.
For instance, if words containing the final syllable /b@n/ in
their citation form, e. g. »haben«, have been segmented in
80% of their occurances as [bm], then the rule b@n  > bm will
get a higher statistical weight than a rule that had never any
effect in the segmentation. A detailed description of the
algorithm to calculate rules and their a posteriori probability
can be found in [8].

It is important to note here that the original rule set is not
altered by its contents but the a−posteriori probabilities for
each observed rule are updated. Unseen rules remain equally
likely on a lower level to ensure that new rules may be
observed in a later iteration.

The whole process is repeated iteratively until we are sure
that no changes in transcript and segmentation will occur.

Figure 1 shows a detail from the MAUS pronunciation
graph after the tenth iteration for the utterance »ich will«.
Nodes represent SAM−PA segments [1], while arcs give the
transition probabilities between segments. Note that these
probabilities are not the a−posterioris of the underlying rule
set. For details on how to compute the graph from the rule set
refer to [5]. In this example the MAUS segmentation resulted
in the reduction of the last plosive [vI6] although this is not

the most likely path in the graph.

3. EVALUATION

3.1 Procedure
For the evaluation of these iteratively obtained data every
segmentation of our test data (spontaneous speech) was
compared to the hand segmented reference material. All labels
of the corresponding utterances were matched to the reference
labels by maximizing the number of identical label pairs. The
matching labels were additionally evaluated in terms of
segmentation boundaries. To simplify the evaluation we first
only look at the quality of transcription and then for the quality
of the corresponding segment boundaries.

3.2 Labeling correspondence
Table 2 shows the correspondence of the reference
transcriptions and the transcriptions computed in the different
iterations. Column one shows the phoneme error rate (PER)
after the MAUS segmentation using the non weighted
phonological rule set (called baseline). The PER is defined as

Figure 1. The MAUS  pronunciation graph (rule iteration number 10) of the German word ’wird’ (will be)

Initialze rule set to general phonological rules

for k = 1 ... 10
• MAUS segmentation yields transcript
• computation of  a−posteriori probabilities 

for each observed rule in the transcript
• update of the general phonological rules 

due to computated probabilities
• evaluation of the MAUS segmentations 

compared to reference transcript.  
end for

Table 1: Algorithm for rule iteration



the sum of replacements, deletions and insertions divided by
the total number of labels in the reference transcriptions
(2854). As we expected the PER is somewhere in the range of
27% (compared to earlier results by A. Kipp in [8]: 24.6%).
Column 2 shows the PER after the first iteration, columns 3
and 4 the PER after the second iteration and the rest of the
iterations respectively.

Baseline Iteration1 Iteration2 Iteration3−9

PER in % 26.80% 27.26% 23.72% 23.72%

Table 2: Percentage of the phoneme error rates among
manual transcriptions and iterative automatic transcriptions.

It can be seen that the iteration process converges after the
second iteration; no changes in terms of PER can be observed
in higher iterations. Although there are no changes concerning
the PER we found minor shifts in the segment boundaries
between iteration 2 and 3. We obtained best results after the
second iteration step (23.72%) compared to 21.5% using the
domain−dependent rule set [8]. The increase in the PER after
the first iteration (27.26%) was not expected. It is an open
question whether this effect was due to the data set used or can
be repeated on other corpora. We will verify this observation
in future work with the RVG corpus ([9]).

The most frequent errors concerned the sound class of stops.
Similar results were found in previous work [6].

 3.3 Segment boundaries
The correspondence of the reference segmentations and the
iterative automatic segmentations in terms of segment
boundaries can be seen in the figures 2 to 5 for the
corresponding cases of table 2. These show a histogram of the
deviation of the automatic segmentation compared to the
reference segmentation for matching transcripts. In this paper
only the left boundaries are taken into account. All deviations
bigger than |800| samples (G50 ms) were clustered in the bins
on the edges of the range. Note that the speech signal has a
sampling frequency of 16kHz. 

Figure 2: Distributions of relative frequencies of boundary
deviation between the reference data and  baseline

Figure 4: Distributions of relative frequencies of boundary
deviation after iteration step 2

Figure 5: Distributions of relative frequencies of boundary
deviation after iteration steps 3 − 9

Figure 3: Distributions of relative frequencies of boundary
deviation after iteration step 1



The majority of segment boundaries (approx. 68%) lie
within a window of G 20 ms. However, it has to be noted that
the distribution is not symmetric to the origin, but is shifted by
approx. 6 − 7 ms. This has previously been observed in earlier
MAUS experiments (e. g. [5]), and even by using a different
HMM algorithm at a different lab. Our hypothesis is that this
shift is due to an inherent processing problem within Hidden
Markov Modelling.

4.DISCUSSION AND FUTURE WORK
The results show that it is possible to obtain high quality
segmentation of speech signals by using iteratively weighted
pronunciation rules. Although the iterative approach is not as
good as the domain−dependent segmentation yet, we have non
the less every confidence that we will be able to improve our
results by using a bigger training set and by refining the
alignment stage concerning the segment boundaries. It should
also be taken into account that we may need a more detailed
set of general pronunciation rules to statistically prune them
down to the most relevant rules. The system is currently being
revised by developing an algorithm to improve segment
boundaries as well as by extending the rule contexts. As with
all statistically based methods it is to be expected that results
will improve proportionally to the amount of available data.
Therefore one of our main efforts will be the production of
MAUS segmented corpora.
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