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This study investigates rhythmic features based on the short-time energy function of speech signals

with the aim of finding robust, speaker-independent features that indicate speaker intoxication.

Data from the German Alcohol Language Corpus, which comprises read, spontaneous, and

command&control speech uttered by 162 speakers of both genders and various age groups when

sober and intoxicated, were analyzed. Energy contours are compared directly (Root Mean Squared

Error, statistical correlation, or the Euclidean distance in the spectral space of the contour) and

by parameterization of the contour using the Discrete Cosine Transform (DCT) and the first and

second moments of the lower DCT spectrum. Contours are also analyzed by Principal Components

Analysis aiming at fundamental “eigen contour” changes that might encode intoxication. Energy

contours differ significantly with intoxication in terms of distance measures, the second and fourth

DCT coefficients, and the first and second moments of the lower DCT spectrum. Principal

Components Analysis did not yield interpretable “eigen contours” that could be used in distinguish-

ing intoxicated from sober contours. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4870705]

PACS number(s): 43.70.Dn, 43.72.Ar [CHS] Pages: 2942–2951

I. INTRODUCTION

Intoxicated speech is assumed to be prone to a variety of

feature changes compared to sober speech (for an overview

see Chin and Pisoni, 1997). Statistically valid knowledge

about the nature of these feature changes under the influence

are of interest to forensic phoneticians and might form the

basis for automatic detection of intoxication in the speech of

a driver voice-controlling his vehicle. The latter approach

would require a combination of robust features that are as

follows:

(1) they are either speaker-independent or speaker-dependent

based solely on sober speech material of the speaker (see

our discussion in Schiel, 2011), since usually there is

plenty of opportunity to record the speaker’s voice in a

sober but not in an intoxicated state;

(2) they are language independent;

(3) they can be extracted automatically (i.e., requires no

manual segmentation or labeling) from the speech signal

recorded at a distance from the speaker’s lips, as would

occur for a microphone mounted on the dashboard of a

vehicle;

(4) they are not sensitive to other speaker states such as

pathological, emotional, or caused by stress; and

(5) they are not sensitive to background noise.

Previous studies about different linguistic and phonetic

features regarding intoxication often lack enough speakers

or deal with male speakers only and, therefore, are not likely

to yield statistically robust results (e.g., Aldermann et al.,

1995; Behne et al., 1991; Braun, 1991; Chin and Pisoni,

1997; Cooney et al., 1998; Cummings et al., 1995; Hollien

et al., 2001; Klingholz et al., 1988; K€unzel and Braun, 2003;

Levit et al., 2001; Martin and Yuchtman, 1986; Pisoni et al.,
1985; Sigmund and Zelinka, 2011; Sobell et al., 1982;

Trojan and Kryspin-Exner, 1968). Furthermore, the data on

which these studies are based are not available for other

researchers, so results cannot be replicated. Recently new

studies based on the publicly available German Alcohol

Language Corpus (ALC) (see Sec. III) provide statistically

firm findings regarding phonetic standard features

(Baumeister et al., 2012; Heinrich and Schiel, 2011; Schiel,

2011; Schiel and Heinrich, 2009; Schiel et al., 2010): in

short, the most prominent phonetic features that change

under the influence are a decreased speaking rate and raised

fundamental frequency (Heinrich and Schiel, 2011;

Baumeister et al., 2012). Unfortunately, the same features

are also prone to changes under stress (e.g., Hansen and

Patil, 2007), by the Lombard effect (e.g., Folk and Schiel,

2011), and when the speaker’s emotional state is one of an-

ger, joy, or sadness (e.g., Mathon and de Abreu, 2007;

Yildirim et al., 2004). It is therefore interesting to investigate

other features for changes caused by intoxication and possi-

bly in the long term combine multiple potential features for

a more robust and speaker-independent classification system

for intoxication.

The present study focuses on rhythmic properties based

on the short-time energy function of intoxicated and sober

speech, in order to clarify if there are measurable differences

between the two. This goal is pursued using three different

approaches:

(1) direct distance measures between two energy contours;

(2) interpretable parameterization of contour shapes; and
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(3) principal components analysis (PCA) of a set of energy

contours to identify dominant prosodic “eigen shapes”

whose PCA scores can then be treated as features.

It is not the aim of this study to predict the blood alcohol

concentration (BAC) from a single feature or a combination

of rhythmic features but rather to clarify which automatic

feature extraction techniques, i.e., without any manual anno-

tation of data, yield promising correlations to the (binary)

intoxication state of the speaker.

The paper is organized as follows: The following

section discusses existing studies regarding rhythmic fea-

tures and intoxication and presents the motivation to analyze

energy contours. Section III briefly describes the ALC data-

base on which the present study is based. Section IV

describes the methodology and results of the experiments

regarding RMS contours. Finally, in Sec. V, the findings are

summarized and discussed.

II. RHYTHM AND INTOXICATION

Schiel and Heinrich (2009) investigated rhythmic

properties of intoxicated speech using rhythm metrics (estab-

lished for the classification of languages into stress-timed,

syllable-timed, and mora-timed languages, see e.g., Ramus

et al., 1999; Grabe and Low, 2002; Dellwo, 2006; Wagner

and Dellwo, 2004). These metrics allow the analysis of the

time patterns of a speech signal based on a given segmenta-

tion of the speech into vocalic, consonantal, and silence

intervals. When read speech is used, almost all metrics show

significant differences between intoxicated and sober speech.

This holds for metrics that do not normalize for speech rate,

like the vocalic/consonantal delta metric (DV, DC) of Ramus

et al. (1999) or the raw Pairwise Variability Index (PVI)

metrics (Grabe and Low, 2002), and also holds for metrics

taking the varying speech rate into account, such as the vari-

ation coefficients of the delta metrics (e.g., VarcoDV,

VarcoDC; Dellwo, 2006), the normalized PVI metrics (e.g.,

nPVI-V; Grabe and Low, 2002), or other PVI based metrics

(e.g., YARD; Wagner and Dellwo, 2004).

However, the calculation of these rhythm metrics

depends on a given phonetic segmentation, which is usually

not available in practical applications (see also Levit et al.,
2001, p. 1). Preferably analysis should be based on features

that can be derived directly from the speech signal without

human intervention to allow the development of fully

automatic detection algorithms. Since rhythmic events are

expressed by changes of loudness (among other features

such as fundamental frequency), the energy function is a

promising basis for such features. Levit et al. (2001) pursued

this approach using very basic prosodic features (positions,

values, and regressions of fundamental frequency and energy

function) in a classification system to detect alcoholic intoxi-

cation. Feature vectors were calculated from automatically

segmented “phrasal units” (Levit et al., 2001, p. 2), which

basically resemble intonation phrases, although no attempt

was made to model the specific contour form. In Schiel et al.
(2010), the RMS signal was converted into a sequence of

local RMS minima and maxima, which provide a basis for

the calculation of RMS “rhythmicity” features. Although

showing significant differences between intoxicated and

sober speech, these features—like the rhythm metrics

described earlier—reduce the prosodic information inherent

in a speech signal (or the corresponding RMS signal) to only

a few parameters per recording, which cannot explain those

changes morphologically beyond a certain degree. For

instance, a parameter influenced by syllable rate will not

change, if syllable rate decreases in the first part of the sen-

tence and increases in the second half. On the other hand

prosodic features often are expressed in macroscopic move-

ments, e.g., the decline of fundamental frequency in a declar-

ative sentence.

For this study, the complete energy contour of declara-

tive sentences was analyzed instead. The hypothesis is that

changes in the rhythmic structure of speech caused by alco-

holic intoxication are reflected in changes in the characteris-

tic form of the RMS contours. To test this hypothesis, three

general approaches are pursued: Direct comparison of con-

tours to test several distance measures, the parameterization

of contour forms based on discrete cosine transform, and

principal components analysis (PCA) to learn more about

basic contour form changes caused by intoxication.

III. SPEECH DATA USED IN EXPERIMENTS

For all analyses presented in this study, speech material

from the Alcohol Language Corpus (ALC) was used. The

ALC is a collection of sober and intoxicated speech of 162

German speakers, 77 female and 85 male. The data has been

collected in southern parts of Germany and subsequently

annotated between 2007 and 2010 by trained phoneticians at

the Bavarian Archive for Speech Signals.

Volunteers for a controlled intoxication experiment

were asked to drink up to a self-selected intoxication level

between 0.03 and 0.15 vol.% blood alcohol concentration

(BAC). After a waiting period of 30 min to stabilize the

BAC as well as the breath alcohol concentration (BrAC),

samples were taken by medical staff of the Institute of Legal

Medicine, LMU Munich, to monitor the actual intoxication

level (BAC and BrAC). Immediately after monitoring, par-

ticipants were asked to deliver a speech sample, which took

about 10–12 min. Intoxication levels are assumed to remain

constant during that recording session. After a period of at

least 14 days, the speaker delivered a second speech sample

in the same environment and with the same dialogue partner,

this time being sober. To cross-check for hidden factors that

could have an influence on measurements, 20 (10 female, 10

male) of 162 speakers were recorded a third time, again

being sober but otherwise under the same conditions as in

the intoxicated recording. In the present study, however, this

set of data functioned as reference points for relative dis-

tance measures (see Sec. IV). BAC levels for these 20 speak-

ers in the intoxicated recording all exceeded 0.05%.

The corpus comprises different speaking styles: Read

speech, spontaneous speech, and command and control

speech as typically used in an automotive environment. The

speech content covers simple digit strings (telephone/credit

card numbers), word lists, addresses, tongue twisters, picture

descriptions, read and elicited commands, interview style
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answers (mostly monologue), and free dialogue. Every

speaker delivered roughly 6 min of intoxicated and 12 min of

sober speech. Actual measured BAC levels (constant for

every speaker and intoxicated recording session) across

speakers ranged from 0.023% to 0.175%.

Recordings in the automotive environment were made

using close and distant microphones, at distances of approxi-

mately 4 and 40 cm from the speaker’s lips, respectively, in

two different car types. Car type and other meta data (age

group, dialectal origin, height, weight, BrAC, BAC, weather,

etc.) were documented for every recording session to allow

for statistical testing of influencing factors other than

intoxication. For a more detailed description of ALC, see

Schiel et al. (2012). A subset of ALC was used for the

INTERSPEECH 2011 Speaker State Challenge (Schuller

et al., 2012).

For the present study 150 speakers (68 female, 82 male)

were selected from the ALC. Their BAC levels while intoxi-

cated exceeded 0.05%, which is the legal limit for driving in

Germany. Every speaker read 19 utterances in both the

intoxicated and sober states. Of the 150 speakers, 20 read the

19 sentences a third time, when sober (control recordings).

The utterances were prompted in the same way for each

recording. A total of 6080 utterances¼ (150� 2þ 20)� 19

form the empirical data for this investigation.

IV. RMS CONTOURS—METHODOLOGY AND
RESULTS

The following section describes how the discrete-time

sampled raw RMS contour data were processed to form

comparable data sets. Then three approaches to the analysis

of RMS contours are presented: The direct comparison

(distance measures), the analysis of RMS contour parameters

as features (interpretable parameterization), and the analysis

of PCA scores of dominant prosodic “eigen shapes.”

A. RMS contour as a feature

The short-time RMS of a speech signal describes the

dynamics of the sound pressure energy which can be seen as

a sequence of relatively loud and quiet portions of the signal.

This energy function is not only a (smoothed) estimate of the

sound pressure level but also can be used to investigate

rhythm parameters like speaking rate (Morgan and

Fosler-Lussier, 1998; Pfau and Ruske, 1998; Dekens et al.,
2007; Heinrich and Schiel, 2011), syllable position (Xie and

Niyogi, 2006), or so-called Rhythmicity Parameters to

distinguish rhythmically different speech samples (Schiel

et al., 2010).

In this study, RMS values were calculated using the

standard RMS algorithm of the ASSP tool kit within the

Emu Speech Database System (Cassidy and Harrington,

2001). To ensure the capture of normal syllable rates (maxi-

mum ten syllables per second) while also smoothing out fine

grained suprasegmental energy movements (like bursts in

obstruents), signals were sampled using a Blackman window

of 100 ms length and a window shift of 20 ms. Before any

further processing, the logarithmically scaled RMS contours

were all normalized by subtracting the mean RMS level

from a given RMS contour. This results in an energy func-

tion alternating around 0 dB.

B. Distances measures

1. Distance measures—Method

Various distance measures can be calculated between two

RMS contours; the measures described below have already

been applied to f0 contours in Baumeister et al. (2012).

The first two distance measures, root mean squared error

and correlation distance, described below, both require that

the contours to be compared have the same number of sam-

ples. The non-sober or sober control contour was re-sampled

to the number of samples in the sober contour, respectively

(the third distance measure, Euclidean Distance of Discrete

Cosine Transform, was applied to the non-time-normalized

contours). Linear normalization was applied instead of non-

linear normalization techniques like dynamic-time-warping

since the timing of the inherent dynamics should not be dis-

torted. According to the hypothesis this timing is assumed to

carry information about the speaker’s intoxication state and

should therefore not be altered before the contour analysis.

Figure 1 illustrates the Euclidean distance between two

time-normalized RMS contours. Distances are hypothesized

to be larger between intoxicated and sober contours (hence-

forth referred to as “intoxicated distances”) than between

sober and sober control contours (henceforth referred to as

“sober distances”):

DðintoxicatedÞ > DðsoberÞ: (1)

It follows that direct distance measures cannot be applied in

a speaker-independent classification system but require the

same sentences as the recording in question of the same

speaker recorded in a sober state. For instance, a voice-

controlled navigation system might store recurring control

statements of the speaker over a longer time-span and com-

pare these with the current recorded input.

The following distance measures were investigated:

(1) The root mean squared error (RMSE), which is equal to

the Euclidean distance between two vectors of the same

FIG. 1. Example for two time- and RMS-normalized contours and the raw

distance between them.
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length. Here it reflects the physical distance between two

time-normalized contours x and y along the time line. A

larger value indicates a greater distance between the con-

tours and a smaller value a smaller distance,

Drmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1

ðxðtÞ � yðtÞÞ2

N

vuuuut
: (2)

(2) The second measure is based on the correlation coefficient

which here describes the synchronicity of up and down

movements of the two contours. The correlation distance

is calculated as 1 minus the correlation coefficient, where

x and y are time-normalized contours, �x and �y their mean

values, and sdx and sdy their standard deviations,

Dcorr ¼ 1� 1

N � 1

XN

t¼1

xðtÞ � �x

sdx

� �
yðtÞ � �y

sdy

 ! !
: (3)

(3) The third measure is the distance in a low-dimensional

spectral parameterization space. Both contours are trans-

formed into a fixed-dimensional spectral space, and then,

the Euclidean distance between the contours within this

space is calculated.

The Discrete Cosine Transform (DCT) decomposes a

waveform x into factors of its inherent cosine waves wx(�)

(referred to as “DCT coefficients” henceforth, e.g.,

Harrington, 2010). DCT coefficients wx(�) with lower indi-

ces � represent low-frequency movements (ripples) in the

transformed waveform, while coefficients with higher indi-

ces represent ripples of high frequency. The first coefficient

of the DCT, wx(�¼ 1), is the same for all contours due to the

preceding normalization and is therefore not considered in

the analysis (Baumeister et al., 2012).

Varying the number of lower DCT coefficients showed

that ripple frequency indices 2 to 7 yielded the best distinc-

tion between intoxicated and sober RMS contours,

Ddct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX7

i¼2

ðWxðiÞ �WyðiÞÞ2
vuut : (4)

2. Distance measures—Results

Sober and intoxicated distances Drmse, Dcorr, and Ddct

were calculated for contour pairs for the 20 speakers with

control recordings. Results were tested by Mixed Effect

Model analysis (MEM; Baayen, 2008) with intoxication,

gender as fixed factors and speaker and utterance as random

factors. The binary factor intoxication here refers to intoxi-

cated and sober distance. MEM analysis compared to tradi-

tional test methods (e.g., MANOVA) has the advantage that

data do not have to be averaged across a single strata before

analysis. So, in this case the subject and the utterance can be

used as a random factor to avoid test errors caused by the

statistical dependencies of data points within a subject or

sentence category.

Figure 2 shows boxplots of the sober and intoxicated

contour distances for all utterances across the 20 speakers.

There is a tendency toward larger distances for intoxicated

than sober in all three measures Drmse, Dcorr, and Ddct.

MEM analysis only reports F statistics, and the classical

estimation of levels of significance using the number of sam-

ples (760) as the degree of freedom would lead to unrealistic

low values. Therefore, following Reubold et al. (2010)

throughout this study, p-levels are estimated conservatively

from F values using a fixed value of 60 for the degree of

freedom because that is roughly the point in the F statistics

where the gain in p-level becomes flat.

For Drmse the MEM reports a highly significant increase

of the intoxicated against the sober distance (F¼ 27.3,

p< 0.001). Therefore, the hypothesis is confirmed, that con-

tours of intoxicated speech physically differ more from those

of sober speech than do contours from the sober control

recording.

The correlation distance Dcorr also exhibits a highly

significant increase (F¼ 14.6, p< 0.001) for intoxication.

Hence, the movements of sober and corresponding sober

control contours are more synchronous than those of sober

and corresponding intoxicated contours.

The Euclidean Distance in the 6-dimensional DCT space,

Ddct, also shows a highly significant increase (F¼ 12.4,

p< 0.001) for intoxication.

There is no significant interaction with speaker gender

for any of the three distance measures.

C. Parameterization of RMS contours

In contrast to distance measures, the direct parameter-

ization allows calculating potential features for each contour,

testing the features for the factor speaker intoxication, and

correlating to the measured BAC values. In other words,

parameterizations are not relative like distances, do not

FIG. 2. Sober (s) and intoxicated (i) contour distances across 20 speakers

and all utterances
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require control recordings as a reference measure, and can

be treated as speaker-independent features in classification.

Hence, the following analysis can be carried out not only for

the 20 speakers with control recordings but for all 150 speak-

ers of the selected sub-corpus of ALC.

1. DCT and moments of DCT—Method

DCT coefficients wx(�) with �¼ 2…7 were calculated

as features for every sober and intoxicated RMS contour as

described in Sec. IV B.

As a further parameterization of the DCT spectrum the

first and second moments of the DCT coefficients were cal-

culated (Baumeister et al., 2012). The first two moments

encode basic properties of the DCT spectral shape, i.e., the

center of gravity (m1) and the variance across the DCT fre-

quency range (m2). Considering the absolute value of the

DCT spectrum |w(�)| at the ripple frequency � as an analog

to the probability that the contour contains this specific rip-

ple with frequency index �, the statistical moments m1,2 on

this probability distribution can be calculated as (e.g.,

Harrington, 2010, p. 298):

mk ¼

X
�

jWð� � mk�1ÞjkX
�

Wð�Þ
; (5)

with m0¼ 0 and k¼ 1, 2.

A low value in the first moment m1, which corresponds

to a low center of gravity, is expected for contours with dom-

inant long-term and fewer short-term movements, i.e., a

more flattened contour. A more dynamic contour should

result in higher m1 values.

The second moment m2 is determined by the variance

within the DCT spectrum: RMS contours exhibit a low

variance in DCT across ripple frequencies, if they are of a

regular form, e.g., a uniform sequence of RMS peaks. In

contrast, irregular or random contours should have a higher

m2 (Baumeister et al., 2012).

To calculate m1,2, the DCT spectrum over ripple fre-

quency indices �¼ 2…51 was used; the smallest wavelength

of RMS movement considered is therefore

4

51
L ¼ 0:078L; (6)

where L is the total length of the recording in seconds. Since

the average syllable number of the test sentences was 12.3

(which equals a wave length of 0.081 L), the DCT range

�¼ 2…51 should roughly cover all RMS movements up to

the syllable rate (Baumeister et al., 2012).

2. DCT and moments of DCT—Results

Tests of significance were performed on DCT coeffi-

cients 2 to 7 and first and second DCT moments applying

MEM analysis (Baayen, 2008) with intoxication and gender

as fixed factors, and utterance and speaker as random factors.

Here intoxication refers to the (binary) intoxication state of

the speaker.

The DCT coefficients wx(�) with �¼ 2 and �¼ 4 are

lowered significantly with intoxication (F¼ 9.1/25.0,

p< 0.01/0.001); all other DCT coefficients yield no signifi-

cant effect for intoxication. The ascertained significant

global distance shift in the 6-dimensional DCT space [see

Eq. (4)] can therefore be attributed mainly to a decrease of

the energy of the ripple frequencies 0.5 cosine waves (often

associated with “slope”, e.g., Harrington, 2010, pp. 305) and

1.5 cosine waves within the energy contours (sometimes

associated with “skewness” of the contour).

Figures 3 and 4 show the changes (intoxicated minus

sober) of the mean DCT coefficients 2 and 4 (of 19 utteran-

ces) from sober to intoxicated speech sorted across the 150

speakers.

The MEM tests also reveal a weak but significant

decrease of the first DCT moment m1 (F¼ 8.8, p< 0.05) for

intoxication, and a significant increase (F¼ 9.7, p< 0.01)

for the second DCT moment m2.

Figures 5 and 6 show the changes (intoxicated minus

sober) of the mean DCT moments (of 19 utterances) from

sober to intoxicated speech sorted across the 150 speakers.

A decrease in the first DCT moment, i.e., a shift in the

center of gravity to smaller values, indicates slower move-

ments in the intoxicated than in the sober RMS contours.

This seems to be a reasonable result since it has been

reported that most individuals reduce their rate of speech

when intoxicated (Heinrich and Schiel, 2011).

An increase of the second DCT moment, i.e., a larger

variance, indicates that energy contours of intoxicated

speech are more irregular than those of sober speech. This

result is in line with the previous results about the correlation

distance.

Table I shows the Pearson’s product-moment correla-

tions between the four significant features across speakers.

The only significant correlation found is between the DCT

coefficients 2 and 4 (t¼ 5.3, Df¼ 158, p< 0.001). DCT

moments m1/2 and either DCT coefficient 2 or 4 can there-

fore be considered as prospective independent feature candi-

dates for intoxication detection.

FIG. 3. Change of DCT coefficient 2 from sober to intoxicated sorted across

150 speakers.
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3. Correlation to BAC level

Linear regression models were fitted for BAC depending

on the mean change of the significant DCT coefficients 2

and 4, and first and second DCT moments for all speakers of

the ALC (including those with a BAC lower than 0.05%).

Figure 7 shows the corresponding scatterplots (top left: first

DCT moment, top right: second DCT moment, bottom left:

DCT coefficient 2, bottom right: DCT coefficient 4). No sig-

nificant linear dependencies were found for the significant

features. Also, there is no indication of any non-linear

behavior. The best regression coefficient is �0.15 (first DCT

moment). Therefore, the BAC level of a speaker cannot be

predicted from the average change of a single feature by a

linear model.

D. Principal components analysis of RMS contours

A further step in the analysis of the RMS energy func-

tion is to consider the contour as a whole rather than calcu-

lating parameters to represent the contour or a distance

between contours.

All 19 sentences investigated for the present study are

simple declarative sentences without subordinate clauses.

The voice onset and offset of each sentence can therefore be

assumed to correlate with a major prosodic boundary. The

energy contour between these major boundaries is expected

to consist of varying rhythmic forms caused by the (varying)

syllable structure and accent pattern but also by varying

global forms that cover the complete utterance such as the

(physiologically caused) energy decline toward the final

boundary which can be steep or flat depending on the sen-

tence type. Based on this, two hypotheses can be formulated:

(1) basic varying energy contour forms common to all

declarative sentences in German exist; and

(2) if such basic common energy contour forms exist,

their individual contribution to the overall contour varies

with intoxication.

If the assumed basic varying energy contours are line-

arly independent, i.e., encode independent information, then

one possible way to falsify these hypotheses is the applica-

tion of a principal components analysis (PCA; Pearson,

1901) to a large set of energy contours.

1. Principal components analysis—Method

The PCA decomposes a value of a multidimensional

data set with size N into weighted sums of principal compo-

nents (of the same dimensionality as the value). The N
principal components (PCs) derived from the data set are

under certain assumptions linearly independent and ranked

FIG. 4. Change of DCT coefficient 4 from sober to intoxicated sorted across

150 speakers

FIG. 5. Change of first DCT moment from sober to intoxicated sorted across

150 speakers

FIG. 6. Change of second DCT moment from sober to intoxicated sorted

across 150 speakers.

TABLE I. Pearson’s correlation coefficients between mean changes of sig-

nificant features across 150 speakers.

Wx (�¼ 4) Dm1 Dm2

Wx(�¼ 2) r¼ 0.40 r¼ 0.06 r¼ 0.10

Wx(�¼ 4) - r¼ 0.18 r¼ 0.02

Dm1 - - r¼ 0.08
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according to their explained variance in the analyzed data

set. Without loss of generality a time series xi(t) of fixed

length t¼ 1… T can be treated as a data point of dimension-

ality T, and can thus be approximated by the sum of C PCs

/c(t) weighted by their corresponding PC scores dc,i with

C<¼ N where l(t) is the mean of all time series,

xiðtÞ � lðtÞ þ
XC

c¼1

/cðtÞ dc;i

� �
: (7)

Applied to energy contours this means that the PCs

resemble orthogonal “eigen contours” so that the first-

ranking PCs represent basic contour forms that vary most in

the analyzed data set. The aforementioned weights or

“scores” of the PCs then express for each individual contour

xi(t) how much (and with which sign) the PC’s “eigen con-

tour” /c(t) contributes to this specific energy contour xi(t),
and can therefore be thought of as features regarding basic

contour forms in the same sense as the DCT coefficients in

Sec. IV C represent the proportion of basic cosine functions

within the contour. If the analyzed data set contains data

points, i.e., energy contours from different sources (here so-

ber and intoxicated speakers), and if the differences of these

sources manifest themselves in varying basic forms, then the

PCA should yield PCs that depict these basic contour forms,

and the percentage of explained variance in the analyzed

data for the first PCs should be quite large.

The intoxicated and sober contours of the 19 read utter-

ances of 150 speakers were re-sampled to T¼ 200 samples

each, since the PCA expects all data points to have the same

dimensionality. This normalization across time is justified

since the hypothesis assumes the existence of basic contour

forms within the prosodic structure of a declarative sen-

tence; therefore, the absolute length of the utterance is not

relevant. Because of the fact that principal component

scores can be treated like features, the control recordings

were not considered here. The complete set of N¼ 5700

contours (sober and intoxicated) were then analyzed using

the R function FPCAdecomp provided by Fabian Scheipl of

the Computational Statistics group at the University of

Munich. The analysis yields N PCs and for each input con-

tour the set of N PC scores. PC scores associated with the

first 9 PCs were then analyzed for their correlation to

intoxication.

2. Principal components analysis—Results

Figure 8 depicts the first nine PCs based on N¼ 5700

input contours (50% sober, 50% intoxicated). The low ratios

of explained variance Ûc¼ 0.06, 0.05, 0.05, 0.04, 0.04, 0.04,

0.04, 0.03, 0.03 suggest input data that cannot be clustered

easily. A visual inspection of the contour forms does not

reveal any typical prosodic processes such as a decline of

energy with time etc.

FIG. 7. Correlation between BAC level and the mean change per speaker of (top left) first DCT moment, (top right) second DCT moment, (bottom left) DCT

coefficient 2, and (bottom right)DCT coefficient 4.
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Hypothesis 1, that fundamental contour patterns can be

determined by the PCA which explain larger parts of the var-

iance caused by intoxication, has therefore to be rejected.

Tests of significance were performed on PC scores

dc,c¼ 1… 9 applying MEM analysis as described in Sec.

IV B 2 with intoxication and gender as fixed factors, and

utterance and speaker as random factors. Here intoxication

refers to the (binary) intoxication state of the speaker.

Only the score of the first PC d1 is significantly

increased with intoxication (F¼ 19.9, p< 0.001); the

remaining PC scores dc,c¼ 2… 9 yield no significant effect

for intoxication (p> 0.01). As in previous analyses, there is

no significant interaction with the speaker’s gender. Figure 9

shows a boxplot of the first PC score for sober and intoxi-

cated speech; in Fig. 10 the sorted mean score difference

between sober and intoxicated speech across the 150 speak-

ers is plotted. For 88 speakers, the score d1 increases with

intoxication, while for 62 speaker, the score decreases.

V. DISCUSSION

Based on recordings of read speech from the ALC, the

findings suggest that there is a significant difference in the

short-time RMS energy function between the intoxicated

and the sober speech signal of a speaker. In a speaker-

FIG. 8. Principal components 1–9 based on 5700 sober and intoxicated contours; Ûc is the ratio of explained variance in the data set.

FIG. 9. Sober (s) and intoxicated (i) scores of PC 1 across 150 speakers and

all utterances.

FIG. 10. Change of scores of PC 1 from sober to intoxicated sorted across

150 speakers. 22
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dependent classification system, the energy function, which

is robust against noise and easily provided, could be used

among others as a feature to detect intoxication.

Global measures like the Euclidean distance between

pairs of contours, the correlation based distance and the dis-

tance in the DCT parameter space are significantly larger

between sober and intoxicated contours than between sober

and sober control contours. This confirms the hypothesis that

RMS contours of intoxicated speech deviate in some way

from those of sober speech. However, it does not answer the

question in which way these differences are expressed.

For instance, there may be more or longer pauses and

therefore a shifting of words, a faster decline of the energy

function across the phrase, or a prolongation or shortening of

linguistic units. If the main factors responsible could be iso-

lated, the intoxication classification solely based on these

factors might be improved.

In order to address this question, contours were parame-

terized into interpretable DCT coefficients as well as the first

and second moments of the lower DCT spectrum. The sec-

ond and fourth DCT coefficients were lowered significantly

with intoxication, which can be interpreted as a weaker

decline and weaker skewness within the energy contours.

The first and second DCT moments were found to be signifi-

cantly lowered and raised, respectively, which indicates

slower movements and more variation in the energy contours

of intoxicated speech compared to sober speech. This con-

firms earlier findings that intoxication is often correlated

with a reduction of speech rate (Heinrich and Schiel, 2011).

However, DCT coefficients have the disadvantage that

the base functions of the transform are fixed cosinoidals and

not data driven per se. To determine sentence-independent

prosodic contour forms and thus examine the differences

between intoxicated and sober contours, PCA was applied to

the contour data. But the resulting principal components or

“eigen contours” do not have the desired effect of reflecting

any such differences. The explained variance of the first

“eigen contour” did not exceed 6% which indicates that the

input data across 19 different sentences are too noisy for

PCA. A PCA applied to the data comprising only one kind

of sentence would possibly yield better “eigen contours”; but

this design would not be useful in real-world applications

(because then the analyzed speaker would be required to

speak a predefined sentence) and was therefore not pursued

in this study. Nevertheless, the PCA score of the first princi-

pal component yielded a significant correlation with intoxi-

cation, comparable to the DCT moments.

The rhythm-based features found to be significantly dif-

ferent for intoxication in this study can be considered as

potential features in a classification system. However, there

are some caveats.

(1) Simple distance measures (Sec. IV B) require a fair

amount of sober reference data, which would only be

available in speaker-dependent classification. Also, it is

still to be tested how strong the correlations are between

the three distance features analyzed (the data for 20

speakers in this study are not sufficient to calculate reli-

able correlations).

(2) The first principal component of the PCA (Sec. IV D) is

data-dependent. It remains to be tested whether the num-

ber of speakers in the ALC is sufficient to estimate

“eigen contours” that can be used in a speaker independ-

ent classification system.

(3) All analyzed features exhibit a considerable proportion

of speakers that “behave in the opposite direction” (see

Figs. 3, 4, 5, 6, and 10). Although some of these features

are decorrelated (see Sec. IV C 2), the general impression

is that the effects on speech under the influence of alco-

hol are highly speaker-dependent and, therefore, require

a speaker-dependent classification system.
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