
A Powerful Prolog to SQL Compiler

Christoph Draxler
CIS Centre for Information and Language Processing

Ludwig-Maximilians-Universit�at M�unchen
Wagm�ullerstr. 23
D - 80538 M�unchen

Tel: +49 +89 211 06 64 (-60 secretariat, -74 fax)
draxler@cis.uni-muenchen.de

August 16, 1993

Abstract

This report describes the implementation of a compiler for translating Prolog database goals
to SQL database queries. The implementation adheres to the guidelines of D.H.D. Warren [27]
for writing compilers in Prolog.

The compiler is invoked by calling the goal

?- translate(ProjectionTerm, DatabaseGoal, SQLQuery).

All arguments are standard Prolog terms. ProjectionTerm speci�es the attributes which are
to be retrieved from the database, DatabaseGoal de�nes the selection restrictions and join
conditions. SQLQuery is a term representing the SQL query. This term is transmitted to an
SQL DBMS in a suitable form, e.g. as ASCII text.

The compiler extends previous work (e.g. [15, 19, 10, 9] in that it allows negation, the expression
of arithmetic functions, and higher-order constructs such as grouping, sorting, and aggregate
functions. Furthermore, the compiler is written in standard Edinburgh Prolog, and great care
has been taken to write clean code. This not only makes the code readable, but also e�cient
and portable.

Benchmarks for di�erent Prolog implementations are given. The appendix contains a summary
of the improvements introduced by v. 1.1 of the compiler.

1 Introduction

A coupled system consists of a logic programming language connected to a relational database
management system. In physically loosely coupled systems, both the logic programming lan-
guage environment and the database management system run as separate processes communi-
cating with each other through some communication channel [3]

In physically loosely coupled systems there exist three languages: the logic programming lan-
guage, the data manipulation language of the database system, and the database access language
through which the database is accessed from the logic programming language. A translation
procedure may be necessary to translate database access requests into database queries.

Current physically loosely coupled systems consist of a Prolog environment connected to an
external SQL DBMS. Thus, Prolog is the logic programming language and SQL is the data
manipulation language. In general, the database access language a restricted sublanguage of
Prolog.

In early systems, e.g. PROSQL [7], the database access language consisted of a built-in predi-
cate the arguments of which contained an SQL query represented through a Prolog string. The
query string was directly transmitted to the database system. The advantage of this approach
is that it does not require any translation, and the full extent of SQL can be used. The big
disadvantages are that the current state of the Prolog evaluation cannot be exploited to restrict
queries, and application programmers are confronted with two distinct languages.

In more recent systems, the database access language consists of Prolog predicates which are
translated to appropriate SQL queries. Educe [3], Bermuda [14], CGW [6] and many commercial
Prolog systems (e.g. [1, 17]) feature single relation access, i.e. only one relation table can be
accessed at any one time. Translating such access requests is straightforward, but queries can
only be restricted through their argument values. In view access, as in [13, 9], or LogiQuel [18],
multiple relation tables can be accessed simultaneously, allowing for join selectivity to restrict
queries.

In all these systems, the database access language is de�ned through clauses in the program
code, and this de�nition is static. Furthermore, view access is not powerful enough to capture
the full range of SQL. Higher-order constructs such as grouping, aggregate functions, and
sorting cannot be expressed.

In database set predicates [11], the database access language is de�ned through a projection
term and a goal term. Both terms can be constructed at runtime, so that a fully dynamic query
formulation, leading to maximally restrictive queries, is possible. In addition, because database
set predicates are higher-order extensions of Prolog, the higher-order constructs of SQL can be
exploited naturally.

The translation from Prolog to SQL has been sketched in the literature [15, 9], and a more
detailed description, including the translation of negation, can be found in [19]. A compiler for
translating ProQuel to di�erent target languages, including SQL, POSTQUEL, and Prolog is
presented in [5].

The compiler presented here extends previous work with the translation of arithmetic expres-

1

sions, aggregate functions including grouping, and sorting. Great care has been taken to write
clean and readable code in standard Prolog. As a result, the compiler is e�cient and portable.

The report is organized as follows: A brief de�nition of the database access language is given
in section 2. Section 3 gives an overview over the compiler, which is then presented in more
detail in section 4. Section 5 contains benchmarks, and section 6 concludes the report with a
discussion of the compiler and an outlook towards future work.

2 Database access language

The database access language is a sublanguage of Edinburgh Prolog through which external
databases are accessed.

2.1 Prolog

The basic Prolog datastructure is a term. A term is either a constant, a variable, or a term
t(a1; :::; an) where t is the functor and the ai (called arguments) are terms. A literal is a term
of the form t(a1; :::; an). A literal preceded by the negation operator not/1 is called a negative
literal.

A Prolog program consists of an ordered set of program clauses. A program clause is either a

� unit clause: H:

� rule: H : �B1 � ::: �Bn:

� goal: : �B1 � ::: �Bn:

with H (the head of a clause) a positive literal, Bi (the body) positive or negative literals, and
� either the junctor "," (logical and) or ";" (logical or).

A fact is a ground unit clause, i.e. a unit clause the arguments of which do not contain variables.
A base goal consists of one positive literal only. The standard comparison operators for terms
are =, @ <, @ > with their usual meaning. The predicate is/2 takes as its input argument an
arithmetic expression, and uni�es the other argument with the result of the evaluation of the
arithmetic expression. An aggregate function term is a literal of the form agg(A;G;R) where
A is a variable, G a goal with A one of its arguments, and R the result of the computation of
the aggregate function agg for the variable A over the set of solutions of G.

The semantics of Prolog programs is de�ned through SLD resolution with negation as �nite
failure [8, 16]. The inference engine of Prolog evaluates goals from left to right. During the
evaluation of a goal variables may become instantiated, i.e. they are bound to a value. The
successful evaluation of a positive goal with variable arguments returns the bindings of these
variable arguments.

For a safe evaluation, all arguments to comparison operators and negated goals, and all input
arguments to the predicate is/2, must be bound [23, 16].

2

2.2 Database access language de�nition

A database goal is a base goal which is proved from data stored in external databases. A
database aggregate function term is an aggregate function term the goal argument of which is
a database goal.

A database access is de�ned through a projection term and a database goal term where

� projection term is a Prolog term

� database goal term is a sequence of literals L1; :::; Ln, n � 1, connected through the
junctors "," or ";" such that Li is a

{ database goal,

{ database aggregate function term,

{ comparison operation, or the

{ arithmetic predicate is/2.

Variables in the database goal term are existentially quanti�ed implicitly through the projec-
tion term, or explicitly through the quanti�cation operator /̂2. The bindings of existentially
quanti�ed variables are undone after the evaluation of a database access. Variables which are
not existentially quanti�ed are called free variables. Their bindings are returned as part of the
result of a database evaluation.

2.3 Sample query

The database contains
ight connections and airplane types. All
ight connections are stored in
the relation table FLIGHT with the attributes FLIGHT NO, DEPARTURE, DESTINATION,
PLANE, and all planes are stored in the relation table PLANE with the attributes TYPE and
SEATS.

The following information is to be retrieved:

"Retrieve from the database the destinations, plane types, and seats of
ights leaving
Munich with large planes, i.e. planes which have more than the average number of
seats."

The projection term and database goal of the corresponding database access are

big_planes(munich,Dest,Type,Seats)

and

FNo^(

flight(FNo,munich,Dest,Type),

plane(Type,Seats),

Seats > avg(S, T^plane(T,S))).

3

The database goal consists of a conjunction of three base goals: two positive calls to the
database facts flight/4 and plane/2, and the arithmetic comparison operation >, the right
argument of which is an aggregate function term.

munich is a constant value. Dest, Type, and Seats are implicitly existentially quanti�ed vari-
ables because they occur in both projection term and database goal. FNo is existentially quan-
ti�ed explicitly through the /̂2 operator. S and T are local to the aggregate function term,
with S being the aggregate variable over which the aggregate function avg is to be computed
on the database fact plane/2.

3 Overview over the Prolog to SQL compiler

The Prolog to SQL compiler consists of a Prolog meta-programming part for the tokenizer and
the syntax analyzer, and a translator for the code generation and output.

The lexical analysis takes as input the Prolog terms ProjectionTerm and DatabaseGoal. Each
variable in both terms is uni�ed with a unique identi�er of the form var(VarId) with VarId

a positive integer. Constant values are placed in a term of the form const(ConstantValue).
These wrappers distinguish variables from constants and contribute to e�ciency because argu-
ment indexing can be exploited (In the real implementation 'var'/1 and '$const$'/1 are
used to reduce the risk of name clashes with user de�ned goal names).

The syntax analysis transforms the database goal argument into a disjunctive normalized form
in which the disjunction operators are moved to the front of the goal through applying the
distributivity laws of the conjunction and the disjunction operator.

The code generation maps Prolog to SQL. Basically, a Prolog database predicate corresponds
to an SQL relation table or view, with the predicate functor mapped to the table or view name,
and each argument position mapped to an attribute name. Database goals are translated
according to the following rules [19, 9, 11]:

� Disjunctive goals translate to distinct SQL queries connected through the UNION oper-
ator.

� Goal conjunctions translate to joins.

� Negated goals translate to negated EXISTS subqueries.

� Existentially quanti�ed variables with single occurrence are not translated.

� Free variables translate to grouping attributes.

� Shared variables in goals translate to equi-join conditions.

� Constants translate to equality comparisons of an attribute and the constant value.

Comparison operations, arithmetic expression terms, and aggregate function terms translate
to SQL comparison operations, arithmetic functions over attributes, and aggregate function

4

Prolog Database Access Request

?

Lexical Analysis

Tokenized Variable-free Form

?

Syntax Analysis

Disjunctive Normalized Form

?

Code Generation

Query Term

?

Output

SQL Query

Fig 1: Compilation phases

(sub-)queries respectively. The result of the code generation is a query term which is a Prolog
term representation of the SQL query corresponding to the projection term and database goal.

The output phase prints the query term in the correct SQL syntax format to an output device,
e.g. a terminal, a �le, or a communication channel.

Fig. 1: (adapted from D.H.D. Warren's paper on writing compilers in Prolog [27]) displays the
compilation phases and the output of each phase.

4 The compiler implementation

The top level predicate translate/3 re
ects the compilation phases, as shown in Fig. 1:

translate(ProjectionTerm,DatabaseGoal,SQLQueryTerm):-

init_gensym(var),

init_gensym(rel),

tokenize_term(DatabaseGoal,TokenDatabaseGoal),

tokenize_term(ProjectionTerm,TokenProjectionTerm),

disjunction(TokenDatabaseGoal,Disjunction),

query_generation(Disjunction,TokenProjectionTerm,SQLQueryTerm),

printqueries(SQLQueryTerm).

5

In the initialization, counters for the construction of unique identi�ers for variables and range
variables are initialized to 0. In LPA Mac Prolog init gensym/1 is a built-in predicate, in
other Prologs it can be implemented as

init_gensym(Root):-

nonvar(Root),

retract_all('$gensym$'(Root,_)),

assert('$gensym$'(Root,0)).

4.1 Lexical analysis

In the lexical analysis (or tokenization) phase each distinct variable in the database goal and
the projection term is instantiated with a unique identi�er, a term of the form var(VarId),
and constant values are wrapped into terms of the form const(Value) (Note that because of
the instantiation of variables it may be necessary to work with a copy of the original terms).

% --- tokenize_term(Term,TokenizedTerm) ----------------------

tokenize_term(var(VarId),var(VarId)):-

var(VarId),

% --- uninstantiated variable: instantiate with unique identifier

gensym(var,VarId).

tokenize_term(var(VarId),var(VarId)):-

nonvar(VarId).

tokenize_term(Constant,const(Constant)):-

nonvar(Constant),

functor(Constant,Constant,0).

tokenize_term(Term,TokenizedTerm):-

nonvar(Term),

Term \= var(_),

Term \= const(_),

Term =.. [Functor|Arguments],

Arguments \= [],

tokenize_arguments(Arguments,TokenArguments),

TokenizedTerm =.. [Functor|TokenArguments].

tokenize arguments/2 is called with the arguments of the current term in a list. This predicate
calls tokenize term/2 for each element of the list until the list of arguments is exhausted.

Example

In the sample query, the projection term and the database goal argument are tok-
enized to

6

big_planes(const(munich), var(var1), var(var2), var(var3))

and

var(var0)^

(flight(var(var0), const(munich), var(var1), var(var2)),

plane(var(var2), var(var3)),

var(var3)>avg(var(var4), var(var5)^plane(var(var5), var(var4))))

respectively. Every variable is instantiated, e.g. Dest to var(var1).

2

4.2 Syntax analysis

In the syntax analysis (or parsing) phase, a possibly complex database goal argument is trans-
formed into a list of disjunctive goal conjunctions.

The conjunctions are computed through the predicate linearize/2 which takes as input the
current database goal and returns a right-linear conjunction of goals in its second argument. If
the input argument contains a disjunction operator, more than one conjunction will result.

All conjunctions are collected in a list by calling findall with linearize(DatabaseGoal,

Conjunction) as the goal argument:

disjunction(Goal,Disjunction):-

findall(Conjunction,linearize(Goal,Conjunction),Disjunction).

The projection term is not subject to a syntax analysis.

Example

The result of the syntax analysis for the database goal of the sample query is a list
with the one element

[var(var0)^

(flight(var(var0), const(munich), var(var1), var(var2)),

plane(var(var2), var(var3)),

var(var3) > avg(var(var4), var(var5)^plane(var(var5), var(var4))))]

2

4.3 Code generation

The code generation requires that the mapping of Prolog predicates and operators to SQL
relation tables and operators be de�ned. With this de�nition, the disjunctive database goal
conjunctions are translated to query terms each representing one SQL query which are then
UNIONed.

7

4.3.1 Mapping function from Prolog to SQL

The schema information of the database to be accessed is represented through the predicates

relation(PrologFunctor,Arity,SQLTableName).

attribute(ArgumentPosition,SQLTableName,SQLAttributeName).

Example

In the sample database, the schema information is represented by the clauses

relation(flight,4,'FLIGHT').

relation(plane,2,'PLANE').

attribute(1,'FLIGHT','FLIGHT_NO').

attribute(2,'FLIGHT','DEPARTURE').

attribute(3,'FLIGHT','DESTINATION').

attribute(4,'FLIGHT','PLANE').

attribute(1,'PLANE','TYPE').

attribute(2,'PLANE','SEATS').

2

The mapping of Prolog operators that can be translated to SQL operators is de�ned through

comparison(PrologOperator,SQLOperator).

negated_comparison(PrologOperator,SQLOperator).

aggregate_functor(PrologFunctor,SQLFunctionName).

It is assumed that the Prolog arithmetic operators are the same as in SQL. If this were not the
case, an additional mapping predicate would have to be de�ned for arithmetic operators.

4.3.2 Code generation organization

The list of disjunctive database goal conjunctions is traversed recursively until the empty list
is reached. Each conjunction is translated to a query term of its own, and the individual query
terms are collected in a list.

query_generation([],_,[]).

query_generation([Conj|Conjunctions],ProjectionTerm,[Query|Queries]):-

projection_term_variables(ProjectionTerm,InitDict),

translate_conjunction(Conj,FROM,WHERE,InitDict,Dict),

translate_projection(ProjectionTerm,Dict,SELECT),

Query = query(SELECT,FROM,WHERE),

query_generation(Conjunctions,ProjectionTerm,Queries).

8

Any variable in the projection term is implicitly existentially quanti�ed by de�nition. The
subgoal projection term variables/2 returns an initial dictionary, which is a list of vari-
able identi�ers together with the information that the corresponding variable is existentially
quanti�ed. 1

translate conjunction/5 takes as input the current goal conjunction and initial dictionary.
This predicate computes the FROM and the WHERE clause of an SQL query. It returns a
dictionary which contains for each variable identi�er its mapping to a quali�ed attribute name
and its type of quanti�cation.

translate projection/3 takes as input the original projection term and the dictionary to
return the SELECT clause of an SQL query. Note that wrappers are needed if the projection
term consists of more than one variable or constant, but that these wrappers are not considered
in the translation.

The query term corresponding to the current conjunction is then assembled by the subgoal
Query = query(SELECT,FROM,WHERE), and query generation/5 is called recursively with the
rest of the disjunctive conjunctions.

4.3.3 Goal translation

In translate conjunction/5 a conjunction is broken down into a simple goal and the rest of
the conjunction. A simple goal is either a(n)

� simple database goal,

� arithmetic expression,

� comparison operation,

� negated goal conjunction, or

� aggregate function term.

translate goal/5 translates simple goals. Two cases must be considered: database goals and
arithmetic expressions which may bind variables, and comparisons and negated conjunctions
which require all arguments to be bound.

Translation of simple database goals

The �rst clause of translate goal/5 takes as input the current goal and dictionary. It returns
items for the FROM and the WHERE clause of the �nal query, and a new dictionary with the
mapping information of the variables bound by the current goal.

1Note that for e�ciency reasons projection term variables/2 could be evaluated once prior to the gen-

eration of queries.

9

translate_goal(SimpleGoal,[From],Where,Dict,NewDict):-

% --- positive goal binds variables ------

functor(SimpleGoal,Functor,Arity),

translate_functor(Functor,Arity,From),

SimpleGoal =.. [Functor|Arguments],

translate_arguments(Arguments,From,1,Where,Dict,NewDict).

The functor of the current goal is extracted. translate functor/3 tests whether this functor
can be mapped to an SQL relation table and generates, via gensym/2, a new unique identi�er,
a range variable or alias, for the current relation table.

translate_functor(Functor,Arity,rel(RelationName,Alias)):-

relation(Functor,Arity,RelationName),

gensym(rel,Alias).

The arguments of the current goal are collected in a list. This list is traversed by translate argu-

ments/6 and the mapping of each argument to a quali�ed attribute is computed by translate ar-

gument/4 for the three possible cases: the current argument is a constant, it is the �rst occur-
rence of a variable, or it is a variable which has occurred previously.

Constant arguments translate to equality comparisons of the attribute corresponding to the
current argument position and the constant value.

translate_argument(const(C),rel(Table,Alias),Pos,Comp,Dict,Dict):-

attribute(Pos,Table,Attribute),

Comp = [comp(att(Alias,Attribute),=,const(C))].

If the current argument is a variable which has not occurred previously, then this variable,
together with the information that it is universally quanti�ed and the mapping to a quali�ed
attribute, is added to the dictionary.

translate_argument(var(VarId),rel(Table,Alias),Pos,[],Dict,NewDict):-

attribute(Pos,Table,Attribute),

add_to_dictionary(VarId,Alias,Attribute,all,Dict,NewDict).

Otherwise, if the current argument is a variable which has occurred in a previous database goal
already lookup/4 succeeds then an equality expression of the mapping of the �rst occurrence
of the variable and its current mapping is constructed.

translate_argument(var(VarId),rel(Table,Alias),Pos,Comp,Dict,Dict):-

lookup(VarId,Dict,PrevAlias,PrevAtt), attribute(Pos,Table,Attribute),

Comp = [comp(att(Alias,Attribute),=,att(PrevAlias,PrevAtt).

10

Example

translate simple goal/5 of the �rst subgoal ?- flight(FNo,munich,Dest,Type)

of the sample query returns

FROM = [rel(FLIGHT,rel0)]

WHERE = [comp(att(rel0,DEPARTURE,=,const(munich))]

translate simple goal/5 of the second subgoal ?- plane(Type,Seats) where
Type has occurred in the previous goal returns

FROM = [rel(PLANE,rel1)]

WHERE = [comp(att(rel1,TYPE),=,att(rel0,PLANE))]

2

Translation of arithmetic expressions

The second clause of translate goal/5 deals with arithmetic expressions.

translate_goal(Result is Expression,[],WHERE,Dict,NewDict):-

translate_arithmetic_function(Result,Expression,WHERE,Dict,NewDict).

The Prolog operator is/2 may be called to test whether both instantiated arguments evaluate
to the same value, or it instantiates the left argument with the value of the evaluation of the
right argument. In the second case, the left argument is added to the dictionary, together with
the arithmetic expression in the right argument.

translate arithmetic function/5 calls evaluable expression/3 for the translation of the
arithmetic expression in the right argument of is/2. evaluable expression/3 does not mod-
ify the dictionary, and it returns the arithmetic expression in SQL notation with quali�ed
attributes.

Aggregate function terms are considered to be evaluable expressions.

evaluable_expression(AggregateTerm,Dictionary,AggregateQuery):-

aggregate_function(AggregateTerm,Dictionary,AggregateQuery).

An aggregate function term consists of an aggregate functor, an aggregate variable indicating
over which attribute the function is to be computed, and a goal conjunction which must have
in at least one argument position the aggregate variable.

aggregate_function(AggregateTerm,Dict,AggQuery):-

AggregateTerm =..[AggFunctor,AggVar,AggGoal],

aggregate_functor(AggFunctor,SQLAgg), conjunction(AggGoal,AggConj),

aggregate_query_generation(SQLAgg,AggVar,AggConj,Dict,AggQuery).

11

The translation of an aggregate function term is similar to the translation of a regular database
goal and projection term with the notable exception being the treatment of the universally
quanti�ed variables. translate grouping/3 extracts from the current dictionary all variables
occurring in the aggregate function term which are not existentially quanti�ed and collects them
in an attribute list which becomes the GROUP BY clause of the aggregate function query.

aggregate_query_generation(Function,FunctVar,AggGoal,Dict,AggQuery):-

translate_conjunction(AggGoal,FROM,WHERE,Dict,TmpDict),

set_difference(TmpDict,Dict,AggDict),

translate_projection(FunctVar,AggDict,SELECT),

translate_grouping(FunctVar,AggDict,GROUP),

AggQuery = agg_query(Function,SELECT,FROM,WHERE,GROUP).

Example

The aggregate function term avg(S,T^plane(T,S)) in the comparison operation
translates to the aggregate function subquery term (with empty WHERE and
GROUP BY clauses):

agg_query('AVG',[att(rel2, 'SEATS')],[rel('PLANE', rel2)],[],[])

2

Translation of goals which do not bind variables

Database goals that do not bind variables are negated conjunctions and comparison operations.
This is expressed by having the same variable Dict in the fourth and �fth argument position
of the appropriate clauses of translate goal/5.

Negated database goal conjunctions translate to negated existential subqueries in the WHERE
clause of a query, whereas the translation of comparisons simply replaces variables with quali�ed
attributes. Negated comparison operations are rewritten as positive comparisons with the
inverse comparison operator.

Negated goals may be conjunctions themselves, and they do not return variable bindings.
Hence, if the negated goal is not a comparison operation, translate conjunction/5 is called
for the translation of the goal within the scope of the negation operator not/1, and the dictio-
nary is returned unchanged.

translate_goal(not NegatedGoals,[],NegatedSubquery,Dict,Dict):-

functor(NegatedGoals,Functor,2),

not comparison(Functor,_),

translate_conjunction(NegatedGoals,From,Where,Dict,_),

NegatedSubquery = [negated_existential_subquery([*],From,Where)].

12

If the goal is a comparison operation, then the SQL comparison operator corresponding to the
Prolog comparison operator is retrieved, and the left and right arguments of the comparison
are translated.

translate_goal(not CompGoal,[],CompOp,Dict,Dict):-

CompGoal =.. [CompOperator,LeftArg,RightArg],

comparison(CompOperator,SQLOperator),

negated_comparison(SQLOperator,NegOperator),

translate_comparison(LeftArg,RightArg,NegOperator,Dict,CompOp).

translate_goal(CompGoal,[],CompOp,Dict,Dict):-

CompGoal =.. [ComparisonOperator,LeftArg,RightArg],

comparison(ComparisonOperator,SQLOperator),

translate_comparison(LeftArg,RightArg,SQLOperator,Dict,CompOp).

Arithmetic expressions and aggregate function expressions may both appear as arguments of
comparison operations.

Sample query

The evaluation of code generation/3 returns the following query term which consist of a single
query with a SELECT, FROM, and WHERE clause represented as lists. The WHERE clause
consists of a comparison with a constant value, a join condition, and a comparison with the
AVG aggregate function subquery with empty conditions and no grouping attributes.

[query(

[const(munich),

att(rel0, 'DESTINATION'),

att(rel0, 'PLANE'),

att(rel1, 'SEATS')],

[rel('FLIGHT', rel0), rel('PLANE', rel1)],

[comp(att(rel0, 'DEPARTURE'), =, const(munich)),

comp(att(rel1, 'TYPE'), =, att(rel0, 'PLANE')),

comp(att(rel1, 'SEATS'), >, agg_query(

'AVG',[att(rel2, 'SEATS')],

[rel('PLANE', rel2)],

[],

[]))

])

]

After the translation of the goal conjunction the dictionary contains the following entries:

[dict(var0, rel0, 'FLIGHT_NO', existential),

dict(var1, rel0, 'DESTINATION', existential),

13

dict(var2, rel0, 'PLANE', existential),

dict(var3, rel1, 'SEATS', existential)])

During the translation of the aggregate function term the dictionary contains entries for the
aggregate function goal, but these entries are released after this translation has terminated.

4.4 Output

The output predicates print the query term in correct SQL notation to the standard output
device. print queries/1 calls print query/1 to print each query in the list of disjunctive
queries. The keyword UNION is printed in between two disjunctive queries, and a semicolon
";" ends a query. For non-empty clauses, print clause/3 prints the clause keyword, (i.e.
one of SELECT, FROM, WHERE, and GROUP BY), the corresponding column list sepa-
rated by the appropriate separator, and prints a new line character at the end of each clause.
print column/2 simply prints one column in the appropriate format to the screen. Some
sample clauses are shown here (Note that little care is taken to avoid empty lines):

printqueries([Query|Queries]):-

Queries \= [],

print_query(Query),

nl,

write('UNION'),

nl,

printqueries(Queries).

print_query(query(Select,From,Where)):-

print_clause('SELECT',Select,','),

nl,

print_clause('FROM',From,','),

nl,

print_clause('WHERE',Where,'AND'),

nl.

...

print_clause(Keyword,[Column|RestColumns],Separator):-

write(Keyword),

write(' '),

print_clause([Column|RestColumns],Separator).

print_clause([Item,NextItem|RestItems],Separator):-

print_column(Item),

write(' '),

write(Separator),

write(' '),

print_clause([NextItem|RestItems],Separator).

...

14

print_column('*'):-

write('*').

print_column(att(Alias,Attribute)):-

write(Alias),

write('.'),

write(Attribute).

...

Example

For the sample query, the output (with empty lines deleted manually) is

SELECT munich, rel0.DESTINATION, rel0.PLANE, rel1.SEATS

FROM FLIGHT rel0, PLANE rel1

WHERE rel0.DEPARTURE = munich AND rel1.TYPE = rel0.PLANE AND rel1.SEATS >

(SELECT AVG(rel2.SEATS)

FROM PLANE rel2);

2

4.5 Problems and restrictions

The compiler described in this report su�ers from some de�ciencies. The �rst one is inherent
to any compiler which translates fragments of a more expressive language to a less expressive
language:

� Although the de�nition of a database access is formulated entirely in Prolog, SQL shows
through in some places.

For example, complex datastructure cannot be used in database access requests because
SQL does not allow data with a complex structure (except strings). Furthermore, for any
SQL predicate or function to be available, a suitable mapping from Prolog to SQL has
to be de�ned. Finally, the validity of certain SQL queries can be determined during the
database evaluation only, and not at compile time; the GROUP BY clause is an example.

The other de�ciencies are restrictions of this particular implementation:

� The compiler does not implement the full SQL query language. A number of arithmetic
functions and other predicates are missing. Furthermore, the compiler does not produce
HAVING clauses nor ORDER BY clauses. However, these can be added easily:

{ comparisons involving free variables translate to comparisons in the HAVING clause,
and

{ the projection term can be used to generate the ORDER BY clause.

15

� In its present form the compiler does not provide any support for the user. There are
no error messages, no help is available, nor is there an indication of the location where
an error was found. This is not acceptable for interactive use, but for the compilation of
database access requests during the evaluation of an application program these features
are of limited value.

Restrictions

The following restrictions hold for the input arguments of the compiler. However, these restric-
tions do not reduce the expressive power of the database access language.

� The functors var/1 and const/1 must not be used as functors of database goals.

These functors are used to distinguish variable identi�ers and constant values in the
compiler for an e�cient clause selection.

� All projection term variables must be bound through the database goal.

The projection term determines the SELECT clause which can only contain quali�ed
attributes or constant values. Only instantiated variables can be translated to quali�ed
attributes.

� All explicit variable quanti�cations (through the /̂2 operator) must precede the database
goal.

Existentially quanti�ed variables must be in the dictionary before the database goal is
translated because during the translation variables are considered to be universally quan-
ti�ed if they are not in the dictionary already.

� The goal argument of an aggregate function term can only be a conjunction of database
goals.

The SQL aggregate functions are not de�ned for a UNION of queries.

� Negation operators must precede comparison operations directly.

The translation of negated conjunctions of comparisons is not implemented correctly in
the current version of the compiler (see section A3. for details).

In SQL queries can in general be expressed in many ways, and it is left to the database query
optimizer to �nd an optimal evaluation of the query. However, two optimizations could be
added to the compiler rather easily:

� Disjunctive comparisons translate to ORed comparisons in the WHERE clause instead of
UNIONed queries.

For this, the greatest conjunction common to all disjunctive database goal conjunctions
is extracted from the disjunctive database goal and translated. If what is left of the
database goal consists of comparisons only, then these comparisons are translated to SQL
comparisons and are collected into the WHERE clause joined by the junctor OR.

16

Clock Memory
Prolog Version Type Machine CPU

(MHz) (MB)

LPA MacProlog 4.0 Compiler
OpenProlog 1.0d36 Interpreter Macintosh PB 170 68030 25 4
Prolog II+ 2.3m4 Compiler
C Prolog 1.5 Interpreter
SEPIA 3.0.7 Compiler

SUN 3/50 68020 16.7 4

SUN SparcStation 1 12
Quintus Prolog 3.0 Compiler

SUN Sparc 4/290
Sparc 33

32
Prolog-2 2.36 Interpreter 486 DOS 80486 40 16

Table 1: Prolog environments and machines

� Type information in the database schema representation is exploited for consistency
checks during the translation, e.g. type compatibility between a constant value and
an attribute type.

For this, the representation of schema information in the compiler must be extended to
contain type information (cf. Appendix D)

5 Benchmarks

5.1 Implementations

The Prolog to SQL compiler was developed under LPA MacProlog on a Macintosh. It has been
ported successfully with the full range of features to Prolog-2 on a DOS PC, SEPIA Prolog of
ECRC and C-Prolog on a SUN 3/50, Quintus Prolog on a SparcStation and a SUN 4/290, and
OpenProlog of Trinity College Dublin and Marseille Prolog II+ on a Macintosh.

The Prolog environments and the machines used are given in table 1.

5.2 Porting problems

The compiler code is about 42 KB long. Great care has been taken to rely as little as possible on
features speci�c to a particular Prolog implementation. Porting the code is easy: any standard
Edinburgh Prolog should be able to consult and run the compiler.

Furthermore, the compiler was written according to (my understanding of) R. O�Keefe�s Prolog
programming style guidelines [21]. This has made the code at the same time readable and
e�cient.

17

Compiler

For the compiler itself only minor modi�cations were necessary for the di�erent Prolog envi-
ronments.

� In the third clause of tokenize term/2 the subgoal functor(Const,Const,0) tests
whether the �rst argument is in fact a constant with the functor Constant and the
arity 0. In SEPIA Prolog and Quintus Prolog this subgoal causes a runtime error if it
is called with a complex term in its �rst and second argument. In LPA MacProlog and
OpenProlog this call simply fails.

� Quintus Prolog requires n+/1 to denote negation (other Prologs allow it for compatibility
reasons). Hence, all occurrences of not/1 in the bodies of rules must be replaced through
n+/1.

� OpenProlog does not have the operator n=/2. All calls to A n= B have to be replaced by
not (A = B).

� The Marseille Prolog II+ requires switching to Edinburgh syntax and an explicit de�nition
of the /̂2 operator.

Auxiliary predicates

A signi�cant di�erence between the di�erent Prolog environments is their set of built-in predi-
cates. In the compiler, this concerns only auxiliary predicates for counters and benchmarks.

In LPA MacProlog and Quintus Prolog findall/3, gensym/2 and init gensym/1 are built-in
predicates. In OpenProlog, Prolog-2, C-Prolog, and SEPIA Prolog they had to be implemented
manually using assert/1 and retract/1 or global variables (through setval(Id,Value) and
getval(Id,Value) respectively).

Another di�erence between Prolog implementations is the treatment of atoms, numbers, and
strings respectively. In standard Prolog, strings are not distinguished from atoms (the built-in
predicate name(Atom,ASCIIList) returns the ASCII codes of the characters of Atom in a list),
and numbers are atoms. In some Prologs, e.g. SEPIA, MegaLog, and Prolog-2, strings and
numbers are not considered as atoms, but they may be converted to atoms through specialized
reformatting predicates. This problem concerns only the implementation of gensym/2 and
init gensym/1.

Benchmarks require access to the system clock. In standard Prolog there exists a predicate
cputime/1which returns the system time since some de�ned point in time (system boot, session
begin etc.). However, in LPA MacProlog the predicate ticks/1 with an unbound argument
must be used for this, and in OpenProlog cputime is an arithmetic function so that Time is

cputime must be called.

18

Sample queries benchmarks

The benchmark suite consists of �ve queries of di�erent complexity. For each query, the code
generated by the compiler is also given (with blank lines removed manually).

1. Single relation access:

translate(flight(No,Dep,Dest,Type),

flight(No,Dep,Dest,Type),

SQLQueryTerm).

is translated to the SQL query

SELECT rel0.FLIGHT_NO, rel0.DEPARTURE, rel0.DESTINATION,

rel0.PLANE_TYPE

FROM FLIGHT rel0;

2. View access with a selection condition through comparison operations over an attribute
and a constant value:

translate(capacity(No,Dep,Dest,Type,Seats),

(flight(No,Dep,Dest,Type),

plane(Type,Seats),

Type='b-737'),

SQLQueryTerm).

is translated to the SQL query

SELECT rel0.FLIGHT_NO, rel0.DEPARTURE, rel0.DESTINATION,

rel0.PLANE_TYPE, rel1.SEATS

FROM FLIGHT rel0, PLANE rel1

WHERE rel1.TYPE = rel0.PLANE_TYPE AND rel0.PLANE_TYPE = b-737;

3. View access with a negated goal:

translate(no_planes(No,Dep,Dest,Type),

(flight(No,Dep,Dest,Type),

not plane(Type,Seats)),

SQLQueryTerm).

is translated to the SQL query

SELECT rel0.FLIGHT_NO, rel0.DEPARTURE, rel0.DESTINATION,

rel0.PLANE_TYPE

FROM FLIGHT rel0

WHERE NOT EXISTS

(SELECT *

FROM PLANE rel1

WHERE rel1.TYPE = rel0.PLANE_TYPE);

19

Prolog Machine Query 1 Query 2 Query 3 Query 4 Query 5

LPA MacProlog 67 108 95 65 148
OpenProlog Macintosh PB 170 100 150 138 143 254
Prolog II+ 207 333 303 282 500
C-Prolog 188 335 293 208 483
SEPIA

SUN 3/50
30 48 42 23 71

SUN SparcStation 1 13.4 18.3 23.3 15.0 35.0
Quintus Prolog

SUN Sparc 4/290 6.7 10.0 10.0 6.6 15.0
Prolog-2 486 DOS 3.3 4.3 4.4 3.3 8.7

Table 2: Benchmark results in milliseconds for compilation only

4. Simple aggregate function:

translate(X,X is count(S,plane(P,S)),SQLQueryTerm).

is translated to the SQL query

SELECT COUNT(rel0.SEATS)

FROM PLANE rel0

GROUP BY rel0.TYPE;

5. View access with a comparison operation over an aggregate function:

translate(big_planes(munich,Dest,Type,Seats),No^

(flight(No,munich,Dest,Type),

plane(Type,Seats),

Seats > avg(S, T^plane(T,S))),

SQLQueryTerm).

is translated to the SQL query

SELECT munich, rel0.DESTINATION, rel0.PLANE_TYPE, rel1.SEATS

FROM FLIGHT rel0, PLANE rel1

WHERE rel0.DEPARTURE = munich AND

rel1.TYPE = rel0.PLANE_TYPE AND

rel1.SEATS > (SELECT AVG(rel2.SEATS) FROM PLANE rel2);

The predicate cpu time(N,Goal,Duration) to measure the time Duration required for N eval-
uations of the goal Goal is adapted from R. O�Keefe�s book, pages 81 - 84 [21]. The benchmark
times are given in ms. They are the average execution times of 10 compilations only (table 2)

respectively 10 compilations with output of the SQL query to the screen or a screen-size window
in a graphical interface (table 3).

20

Prolog Machine Query 1 Query 2 Query 3 Query 4 Query 5

LPA MacProlog 373 855 818 358 1248
OpenProlog Macintosh PB 170 390 620 831 570 1077
Prolog II+ 327 407 370 290 710
C-Prolog 217 375 335 220 561
SEPIA

SUN 3/50
36 58 60 41 91

SUN SparcStation 1 13.3 26.7 26.7 16.7 40.0
Quintus Prolog

SUN Sparc 4/290 6.6 13.3 11.7 6.7 21.6
Prolog-2 486 DOS 12.6 15.4 19.8 10.53 8.7

Table 3: Benchmark results in milliseconds for compilation and output to screen

6 Related Work and Outlook

A query generated by the Prolog to SQL compiler is transmitted to an SQL database manage-
ment system where it is evaluated. In current physically loosely coupled systems, the result
relation is made available to the Prolog environment either by asserting it as a whole into the
Prolog workspace, or returning one tuple at a time through database cursors or pointers to ex-
ternal bu�ers. Two major problems are inherent to these systems: First, assertion is expensive
both in terms of execution time and of space requirements. Second, view access itself is not
su�ciently expressive for higher-order queries ([11] discusses these problems in detail).

6.1 Database Set Predicates

Set predicates, also called all solutions predicates, are higher-order constructs which extend the
expressive power of Prolog by computing the set (or bag) of solutions of a goal and collect the
solutions in a Prolog datastructure [28, 20]. Database set predicates [11] extend the Prolog all
solutions predicates with access to external databases. The template and the goal argument
of a database set predicate are translated to the appropriate database query, and the result
relation is captured in a Prolog list (Fig. 2:).

db set predicate(ProjectionTerm,DatabaseGoal,ResultList)

Database system

?

Q
Q
Q
Q
QQ

�
�
�
�
��

6

Database
query

Result
relation

21

With database set predicates the higher order features of SQL, namely sorting and aggregate
functions (including grouping) can be expressed naturally, resulting in maximally restrictive
and highly expressive database queries.

Database set predicates have been implemented in Quintus Prolog and an Oracle database
management system under UNIX. Both system components communicate via inter-process
communication through sockets which allows the components to be running on di�erent ma-
chines in a local area network [4].

6.2 Increasing the expressive power of the database access lan-

guage

Currently the expressive power of the database access language is restricted to the expressive
power of the underlying data manipulation language, i.e. relational algebra with higher-order
extensions.

Non-�rst Normal Form Databases

NF2 databases [2], which extend relational databases through structured attributes, e.g. tuple-,
list-, or set-valued attributes, can also be accessed through database set predicates. Basically,
the representation of the schema information in the compiler has to be modi�ed to allow
table names as arguments of the attribute/3 predicate, and in the compilation free variables
translate to nesting attributes, and the remaining variables translate to nested attributes.

Example

FLIGHT is an NF2 relation with the simple attribute DEPARTURE and a relation
valued attribute CONNECTION which itself has the simple attributes DESTINA-
TION and TYPE.

translate(connects_to(Dest,Type), Connection^ (flight(Dep,Connection),

member(connection(Dest,Type),Connection)),

SQL_NF).

would then return the SQL/NF [22] query

SELECT DEPARTURE,

SELECT DESTINATION, TYPE

FROM CONNECTION

FROM FLIGHT;

2

22

6.3 Datalog

Datalog, a function-free sublanguage of Horn clause logic allows the formulation of recursive
queries [25]. Recursive Datalog programs are evaluated bottom-up from the base relation by
repeatedly joining the base relation with itself until the �x-point is reached [12]. Generally, a
cyclic query evaluation graph is constructed from the Datalog program to control the evaluation
of the query (e.g. as in DedGin* [26], LDL [24], or LogiQuel [18]).

Database set predicates can be extended to Datalog queries by considering the projection term
as the head of rules, and the goal argument as a disjunction of rule bodies.

Example

The transitive closure of the
ight connections could be expressed through the
projection term

connect(Dep,Dest)

and the database goal

Transit^(flight(Dep, Dest); flight(Dep, Transit),connect(Transit,Dest))

with a flight/2 database fact.

Such a query could be translated to a Prolog program which repeatedly computes
the join over the relations
ight and connect and eventually returns as a result the
relation connect. 2

7 Acknowledgments

I thank Martin Emms and Franz Guenthner for their comments on early versions of the report,
Hans Lei� for his help with LaTeX, Norbert Fuchs for his Prolog evaluation pro�ler, and Paul
Singleton for reporting errors in the compiler implementation.

References

[1] Quintus Prolog DB Interface User Manual, 1987.

[2] S. Abiteboul and N. Bidoit. Non �rst normal form relations to represent hierarchically
organized data. In Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Prin-

ciples of Database Systems, Waterloo, April 1984.

[3] J. Bocca. EDUCE { a marriage of convenience: Prolog and a relational DBS. In Proceedings
Third Symposium on Logic Programming, Salt Lake City, 1986.

23

[4] B. Britsch. Implementierung einer Datenbank-Mengenschnittstelle in Prolog. Diplomar-
beit, Institut f�ur Informatik, Universit�at Z�urich, 1991.

[5] J. Burse. ProQuel: Using Prolog to implement a deductive database system. Technical
Report TR 177, Dept. Informatik, ETH Zurich, 1992.

[6] S. Ceri, G. Gottlob, and G. Wiederhold. Interfacing relational databases and Prolog
e�ciently. In L. Kershberg, editor, Proceedings First Intl. Conference on Expert Database

Systems, Charleston, 1986. Benjamin-Cummings.

[7] C.L. Chang and A. Walker. PROSQL: A Prolog programming interface with SQL/DS.
In L. Kershberg, editor, Proceedings First Intl. Conference on Expert Database Systems,
Charleston, 1986. Benjamin-Cummings.

[8] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases.
Plenum Press, 1978.

[9] M. Danielsson and J. Barklund. Persistent data storage for Prolog. In Proceedings of

DEXA 90, Vienna, 1990. Springer Verlag.

[10] C. Draxler. Logic programming and databases { an overview over coupled systems and
a new approach based on set predicates. Technical Report 90.09, Institut f�ur Informatik,
Universit�at Z�urich, 1990.

[11] C. Draxler. Accessing Relational and Higher Databases Through Database Set Predicates

From Logic Programming Languages. PhD thesis, University of Zurich, 1991.

[12] F.Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query process-
ing. In ACM SIGMOD86, 1986.

[13] F. Gozzi, M. Lugli, and S. Ceri. An overview of PRIMO: a portable interface to Prolog
and relational databases. Information Systems, 15(5), 1990.

[14] Y. Ioannides, J. Chen, M. Friedman, and M. Tsangaris. BERMUDA { an architectural
perspective on interfacing Prolog to a database machine. In L. Kershberg, editor, Second
Intl. Conference on Expert Database Systems. Benjamin-Cummings, 1988.

[15] M. Jarke, J. Cli�ord, and Y. Vassiliou. An optimizing Prolog front-end to a relational
query system. In Proceedings SIGMOD, Boston, 1984.

[16] J. Lloyd. Foundations of Logic Programming. Springer Verlag, 2 edition, 1987.

[17] R. Lucas. private communication, 1991.

[18] R. Marti. Research in Deductive Databases at ETH: The LogiQuel project. In S. Spac-
capietra, editor, SI DBTA Proc. Database Research in Switzerland, 1991.

[19] R. Marti, C. Wieland, and B. W�uthrich. Adding inferencing to a relational database
management system. In Proceedings of BTW 89, Zurich, Berlin, 1989. Springer Verlag.

[20] L. Naish. Negation and Control in Prolog. Springer Verlag, 1986.

24

[21] R. O'Keefe. The Craft of Prolog. MIT Press, 1990.

[22] M. Roth. Theory of Non-First Normal Form Relational Databases. PhD thesis, University
of Austin, 1986.

[23] J. Shepherdson. Negation in logic programming. In J. Minker, editor, Foundations of

Deductive Databases and Logic Programming. Morgan Kaufman, 1988.

[24] S. Tsur. LDL { a technology for the realization of tightly coupled expert database systems.
IEEE Expert, Fall 1988.

[25] J. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Computer
Science Press, 1988.

[26] L. Vieille and A. Lefêbvre. Deductive Database Systems and the DedGin* query evaluator.
In 7th British National Conference on Databases, Edinburgh, 1990.

[27] D.H.D. Warren. Logic programming and compiler writing. Software Practice and Experi-

ence, 10(11), 1980.

[28] D.H.D.Warren. Higher-order extensions to Prolog: are they needed? Machine Intelligence,
10, 1982.

A Evaluation pro�le

A pro�le of the translation of the query number 5) may be used to analyze the translation
procedure (Table 4). Clearly, for more complex queries it would pay out to organize the
dictionary as a balanced tree (e.g. AVL tree) instead of a simple list to speed up dictionary
lookup. Furthermore, if then else could be used in the tokenization predicates instead of having
calls to var/1 and nonvar/1 respectively.

A.1 Negated subgoals

The position of the negation operator determines the form of the �nal SQL query. The three
following database access requests evaluate to the same result relation, but are translated to
di�erent queries.

:- translate(p(T, S), (plane(T, S),not plane('b-737', 200)), Code)

SELECT rel0.TYPE, rel0.SEATS

FROM PLANE rel0

WHERE NOT EXISTS

(SELECT *

FROM PLANE rel1

WHERE rel1.TYPE = b-737 AND rel1.SEATS = 200);

25

Goal call exit redo fail

print clause/3 6 6 0 0
print column/1 17 17 0 0
print clause/2 11 11 0 0
print clause/4 1 1 0 0
print query/1 2 2 0 0
printqueries/1 1 1 0 0
query generation/3 2 2 0 0
projection arguments/3 7 7 0 0
member/2 37 27 0 10
lookup/4 6 6 0 0
retrieve argument/3 5 5 0 0
translate projection/3 2 2 0 0
translate free vars/2 1 1 0 0
projection term variables/2 2 2 0 0
free vars/3 1 1 0 0
translate grouping/3 1 1 0 0
set difference/3 7 7 0 0
translate arguments/6 11 11 0 0
add to dictionary/6 10 8 0 2
attribute/3 10 10 2 2
translate argument/6 8 8 0 0
relation/3 9 3 0 6
translate functor/3 6 3 0 3
translate goal/5 4 4 0 0
translate conjunction/5 6 6 0 0
aggregate query generation/5 1 1 0 0
disjunction/2 2 2 0 0
conjunction/2 1 1 0 0
aggregate functor/2 1 1 0 0
aggregate function/3 2 1 0 1
evaluable expression/3 2 2 0 0
translate comparison/5 1 1 0 0
comparison/2 1 1 0 0
projection list vars/2 5 5 0 0
tokenize arguments/2 34 34 0 0
tokenize term/2 26 26 0 0
translate/3 1 1 0 0

Table 4: Evaluation Pro�le of query

26

:- translate(p(T, S), (plane(T, S),not (T='b-737'),not (S=200)), Code)

SELECT rel0.TYPE, rel0.SEATS

FROM PLANE rel0

WHERE rel0.TYPE \= b-737 AND rel0.SEATS \= 200;

:- translate(p(T, S), (plane(T, S),not (T='b-737';S=200)), Code)

SELECT rel0.TYPE, rel0.SEATS

FROM PLANE rel0

WHERE rel0.TYPE \= b-737

UNION

SELECT rel1.TYPE, rel1.SEATS

FROM PLANE rel1

WHERE rel1.SEATS \= 200;

The reason for these di�erent translations is that negated comparison operations are translated
directly into their negative counterpart.

A.2 Incorrect translation of negated comparison conjunctions

Note that it is important that each variable in a negated database goal conjunction occur in
a positive database goal. In the following database access request, the variables T and S are
bound by subgoal plane(T,S), but inside the negated goal conjunction they occur only in
comparisons. Hence, the negated goal conjunction does not constitute a legal database goal.

The current version of the compiler does not recognize this situation and produces an ill-formed
SQL query: there is no FROM clause in the negated subquery.

:- translate(p(T,S), (plane(T, S),not (T='b-737',S=200)), Code)

SELECT rel0.TYPE, rel0.SEATS FROM

PLANE rel0 WHERE NOT EXISTS (SELECT *

WHERE rel0.TYPE = b-737 AND rel0.SEATS = 200);

However, such queries can easily be avoided by placing the negation operator directly before a
comparison operation as in the examples above.

B New compiler release and new benchmarks

The current version of the Prolog to SQL compiler is v. 1.1. The main improvements are a
simple type system, and optional output in the form of Prolog atoms.

27

B.1 Type system

The Prolog to SQL compiler type system

� correctly quotes string constants in the SQL query output, and

� restricts the use of the arithmetics predicate is/2 to numerical expressions

For this, the following changes were necessary:

� the Prolog representation of database attribute types now has a type argument

% --- attribute(PrologArgPosition,SQLTableName,SQLAttributeName,Type) ----

attribute(1,'FLIGHT','FLIGHT_NO',string).

attribute(2,'FLIGHT','DEPARTURE',string).

...

(1,'PLANE','TYPE',string).

attribute(2,'PLANE','SEATS',integer).

� and a rudimentary type system has been included

% --- is_type(Type) ---

is_type(number).

is_type(integer).

is_type(real).

is_type(string).

is_type(natural).

% --- is_subtype(SubType,SuperType), subtype(SubType,SuperType) -----------

%

% Simple type hierarchy for numeric types

%

% ---

is_subtype(integer,number).

is_subtype(real,number).

is_subtype(natural,integer).

subtype(SubType,SuperType):-

is_subtype(SubType,SuperType).

subtype(SubType,SuperType):-

28

is_subtype(SubType,InterType),

subtype(InterType,SuperType).

% --- type_compatible(Type1,Type2) --

%

% Type1 is compatible with Type2 if both are the same types, or if one is

% the subtype of the other

%

% ---

type_compatible(Type,Type):-

is_type(Type).

type_compatible(SubType,Type):-

subtype(SubType,Type).

type_compatible(Type,SubType):-

subtype(SubType,Type).

% --- get_type(Constant,Type) ---

%

% Prolog implementation specific definition of type retrieval

% sepia Prolog version given here

%

% ---

get_type('$const$'(Constant),integer):-

number(Constant).

get_type('$const$'(Constant),string):-

atom(Constant).

� the arithmetic expression clauses were augmented by a type argument

Note that the type system depends on the basic Prolog system type-checking predicates. In
Eclipse, the numeric types include integer, number, and real; the type natural is a type
provided by the Prolog to SQL compiler and is a subtype of number and integer.

B.2 Atom Output

A second output format is now possible: instead of writing the output to the screen, the SQL
query is now put into a Prolog atom. This allows passing on the SQL query to other Prolog
predicates, e.g. to the ProDBI interface of Quintus and other Prologs.

Note, however, that this form of output will cause problems if the length of an SQL query is
greater than the maximum length of a Prolog atom (which di�ers from one Prolog system to

29

Prolog Machine Output 1 2 3 4 5 6 7

yes 4.9 6.7 6.7 4.9 11.6 11.6 18.3
Eclipse Sparc 10

no 3.3 6.7 4.9 5.0 10 8.3 8.3
yes 230 783 750 417 1033 1033 716

LPA MacProlog PB 180
no 65 101 92 65 142 150 150
yes 188 385 380 172 636 690 386

LPA MacProlog Mac IIfx
no 30 53 46 32 73 78 78

Table 5: Benchmarks in milliseconds for compilation

the other). 2

In the benchmark suite, the benchmark number 7 produces a Prolog atom holding the SQL
query (manual layout to improve readability):

query_atom(

'SELECT "munich" , rel1.DESTINATION , rel1.PLANE_TYPE , rel2.SEATS

FROM FLIGHT rel1 , PLANE rel2

WHERE rel1.DEPARTURE = "munich" AND

rel2.TYPE = rel1.PLANE_TYPE AND

rel2.SEATS >

(SELECT AVG(rel3.SEATS) FROM PLANE rel3) ')

B.3 New benchmarks

The performance of the Prolog to SQL compiler has been measured for Eclipse (v.3.3.6) 3 on a
Sun Sparc 10 workstation with 32 MB, and LPA MacProlog (v.4.5) on a Macintosh PowerBook
180 (33 MHz, 8 MB memory, 2 MB allocated to LPA MacProlog) and a Mac IIfx (40 MHz).
The benchmark suite is started through the goal

?- benchmark(N,No,D).

where N is the number of benchmark runs, No the number of the benchmark compilation (cur-
rently, No is one of 1; : : : ; 7), and D the duration in milliseconds.

The times given in table 5 are the average of 10 compilations with and without output to the
screen.

2The Prolog to SQL compiler is now also being distributed as part of the ProDBI database access software

of Keylink Computers Ltd. This software allows accessing a variety of Prolog systems, e.g. Quintus, Sicstus,

LPA MacProlog, etc. to commercial relational database systems, e.g. Oracle, Sybase, Ingres, etc.
3Eclipse is the name of the Logic Programming environment of the ECRC { SEPIA Prolog is part of this

environment.

30

