Spoken language processing across the adult life span

Esther Janse

Radboud University Nijmegen, The Netherlands

Why study aging?

Demographic changes (> 20% above 65 yrs in Europe) Diversity and individual differences Baseline for clinical studies

Advancing adult age

Sensory decline

Advancing adult age

Sensory decline

Cognitive decline

- Brain structure
- White matter integrity

Advancing adult age

Cognitive decline

Sensory decline

Crystallized knowledge increases

Consequences of aging for spoken communication

Perceptual adaptation for speech comprehension

Statistical learning from auditory input for comprehension

Probabilistic reduction in speech production

Conny Moers

Thordis Neger

Perceptual adaptation (Neger, Rietveld & Janse, 2014)

- "relatively long-lasting changes to an organism's perceptual system that improve its ability to respond to its environment"(Goldstone, 1998)
- Implicit learning stable across adult life span?
- Noise-vocoded speech
- Age group differences in perceptual adaptation?

Task and participant sample

- Sentence identification (# keywords correct)
- Improvement over (blocks of) trials (no feedback)
- 5 band vocoding for older adults; 4 bands for younger adults

Task and participant sample

- Sentence identification (# keywords correct)
- Improvement over (blocks of) trials
- 5 band vocoding for older adults; 4 bands for younger adults

60 younger adults (18-29 yrs) 73 older adults (60 - 84 yrs)

Working memory	YA >> OA
Processing speed	YA >> OA
Hearing	YA >> OA
Vocab	YA << OA

Perceptual adaptation results

Sentence identification (# keywords correct; 4 keywords per sentence)

Perceptual adaptation results

Sentence identification (# keywords correct; 4 keywords per sentence)

Same amount of learning for OA given better starting level intelligibility

Perceptual adaptation (Neger, Rietveld & Janse, 2014)

- Age group differences in perceptual adaptation?
- Not really
- In line with earlier findings of equal adaptation across age groups

Perceptual adaptation (Neger, Rietveld & Janse, 2014)

Age group differences in perceptual adaptation?

Not really

In line with earlier findings of equal adaptation across age groups

► BUT...

- OA had higher starting level than YA
- Among OA: less adaptation with older age
- Vocabulary knowledge differences
- Statistical learning differences

Perceptual adaptation

Statistical learning

Age group differences in statistical learning?

Noise-vocoding study

- Visual artificial language learning paradigm
- Statistical learning for YA, but not for OA

Statistical learning (Neger et al., 2015)

Sensitivity to co-occurrence statistics generally impaired in OA?

- Artificial language learning paradigm
- Auditory nonword combinations (e.g., "jom-pes" / "jom-vun")

Statistical learning (Neger et al., 2015)

- Age differences in auditory statistical learning?
- Statistical learning predicted by hearing and attentional ability?

Statistical learning (Neger et al., 2015)

- Age differences in auditory statistical learning?
- Statistical learning predicted by hearing and attentional ability?

Age groups show

- similar improvement over exposu
- similar drop in performance at te
- similar recovery

No role for hearing/attention

Different pattern of results due to modality (not syllable vs. symbol)

Age group differences or not?

Perceptual adaptation to NV speechY / NTemporal regularities in visual inputYTemporal regularities in auditory inputN

Age group differences or not?

Perceptual adaptation to NV speechY / NTemporal regularities in visual inputYTemporal regularities in auditory inputN

Modality-specific deficit in aging

Auditory modality Visual modality

temporal regularities

spatial regularities (Conway & Christiansen, 2005)

OA experience deficit in modality less specialised for sequential info

Ideal adapter framework (Kleinschmidt & Jaeger, 2015)

- Sensitivity to statistical distributions indispensible for accommodating to novel speech input
- \blacktriangleright Update beliefs / representations \rightarrow better prediction

Age group differences in prediction?

Age-related declines in WM may account for age differences in prediction (Janse & Jesse, 2014; Janse & Huettig, 2016)

Probabilistic reduction in speech production

Probabilistic Reduction

More probable items (e.g., words, phrases, and syntactic constructions) are acoustically reduced

Probability quantified as Transitional Probability (word pairs):
Increase/decrease over the adult life span?

TP: likelihood of a word given preceding/following word

Probabilistic Effects on Reading

- Eye-tracking while subjects read full sentences
- Two conditions: silent reading & reading aloud

Dataset:

- 1) 240 noun-verb combinations varying in TP (Fw & Bw)
- 2) Lexical statistics based on SUBTLEX

Results of spoken word durations

Speech rate (sentence reading)

YA: 5.9 syll/sec OA: 5.1 syll/sec

Noun duration predicted by

- Speech rate
- Noun frequency
- Bw-TP (from upcoming verb)

Age

But no interactions of frequency/TP with Age Same story for eye-tracking data (silent and oral reading)

Probabilistic reduction

Frequency and TP effects on speech production

- coordination mechanism linking lexical access to articulation
- progress of lexical retrieval is synchronized with speed of articulation

This coordination is well maintained in older adulthood

Age group differences or not?

Perceptual adaptation to NV speechY / NTemporal regularities in visual inputYTemporal regularities in auditory inputN

TP effects on reading (aloud) N (Rapid semantic prediction in comprehension) Y

Age group differences or not?

Depending on task, modality, time pressure

Dynamic changes over the life span

- Stability with older age across many (not all) communicative tasks
- Susceptibility to aging effects depends on multiple factors
- Language experience (vocab) as 'protective' factor

