When ears collide: Mismatch and phonological development

Jan Edwards
University of Maryland
What happens in phonological acquisition?

- **Higher-level phonological knowledge**
 - onset: \([t] \)
 - stressed: \([i], [u] \)
 - trochee: back\([k] \)

- **Language-specific phonetic detail**
 - \([t] \) onset
 - stressed \([i] \)
 - back \([k] \) onset
 - stressed \([u] \)

- **Socio-indexical knowledge**
 - Buffalo
 - gay
 - male
 - child
 - NYC
 - female
 - people

- **Words**
 - \{key\}
 - \{tuna\}
 - \{cougar\}

- **Voices**
 - man's \{key\}
 - man's \{tuna\}
 - man's \{cougar\}
 - girls' \{cougar\}

- **People**
 - Ben
 - Marie
 - Aunt Jan
What happens in phonological acquisition?

• Children need to figure out how to come up with discrete categories from the continuous signal that they hear.
• We assume that there is a match between the child listener and the adult speaker.
• But what if there isn’t?
Mismatch in phonological acquisition

• **Study 1**: Child and adult have different hearing systems
 • Child: electronic hearing (cochlear implant)
 • (Almost) everyone else: acoustic hearing

• **Study 2**: Child and adult (teacher) speak different dialects.
 • Impact on literacy
Study 1: Cochlear Implants

- Recommended for individuals with severe-to-profound hearing impairment.
- Replaces acoustic hearing with an electrical signal.
- Pros: Children who are prelingually deaf do much better with a cochlear implant than with hearing aids.
- Cons: Signal is severely degraded, especially for spectral information.

A soft breeze came across from the sea.
Study 1: Electronic vs. Acoustic Hearing

- **Purpose**: To compare acquisition of an early-acquired contrast (/t/ vs /k/) in children with cochlear implants and their age peers with normal hearing.
 - Accuracy
 - Error patterns
- /t/ vs /k/ in normal-hearing English-speaking children
 - /t/ produced correctly by about age 3.
 - /k/ produced correctly by about 3;6.
 - [t] for /k/ substitutions are common.
- Place of articulation is a spectral contrast.
 - Difficult for children with cochlear implants.

Prompt = cup
Study 1: Electronic vs. Acoustic Hearing

- 20 children with cochlear implants (CI)
 - 8 females, 12 males
- 20 children with normal hearing (NH)
- Matched for age, sex, and maternal education

<table>
<thead>
<tr>
<th>Group</th>
<th>Age in months mean (SD) n = 32</th>
<th>Maternal Education n = 20</th>
<th>Vocabulary (EVT-2) mean (SD) Standard: 100 (15) n = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>51 (10) Range = 31-69</td>
<td>Some college/Associate’s (2-year) degree = 4 College or Graduate degree = 16</td>
<td>102 (15) Range = 68 - 131</td>
</tr>
<tr>
<td>NH</td>
<td>51 (10) Range = 31-69</td>
<td>Some college/Associate’s (2-year) degree = 4 College or Graduate degree = 16</td>
<td>119 (11) Range = 90 - 137</td>
</tr>
</tbody>
</table>
Study 1: Methods

• Repetition task
• 34 productions of word-initial /t/ and /k/
• Front- and back-vowel contexts
Study 1: Transcription/Coding

<table>
<thead>
<tr>
<th>Word</th>
<th>Target consonant</th>
<th>Manner transcription</th>
<th>Place transcription</th>
<th>Phonemic accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>tongue</td>
<td>/t/</td>
<td>Stop</td>
<td>[t]</td>
<td>1</td>
</tr>
<tr>
<td>tape</td>
<td>/t/</td>
<td>Stop</td>
<td>other</td>
<td>0</td>
</tr>
<tr>
<td>tooth</td>
<td>/t/</td>
<td>Affricate</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>tickle</td>
<td>/t/</td>
<td>Stop</td>
<td>[t:k]</td>
<td>1</td>
</tr>
<tr>
<td>kitty</td>
<td>/k/</td>
<td>Stop</td>
<td>[k]</td>
<td>1</td>
</tr>
<tr>
<td>kitty</td>
<td>/k/</td>
<td>Stop</td>
<td>[t]</td>
<td>0</td>
</tr>
<tr>
<td>cousin</td>
<td>/k/</td>
<td>Stop</td>
<td>[t:k]</td>
<td>0</td>
</tr>
</tbody>
</table>
Study 1: Production Accuracy

Do children with cochlear implants produce /t/ and /k/ less accurately overall compared to their peers with normal hearing?

Children with CIs
- 24% of productions were inaccurate
 - 54% of errors were on /k/
 - 46% of the errors were on /t/

Children with NH
- 9% of productions were inaccurate
 - 63% of errors were on /k/
 - 37% of the errors were on /t/
Study 1. Error patterns: Voicing errors

Voicing Errors by Group

- CI: 27%
- NH: 58%

Voicing Errors by Group and Consonant

- CI:
 - Target /k/: 45%
 - Target /t/: 55%
- NH:
 - Target /k/: 42%
 - Target /t/: 58%
Study 1. Error patterns: Manner

Manner Errors by Group

- CI: 25%
- NH: 8%

Affricate Errors by Group

- CI: 44%
- NH: 43%

Affricate Errors by Group and Consonant

- Target /k/:
 - CI: 32%
 - NH: 75%

- Target /t/
Study 1. Error patterns: Place

~50% of all errors were place errors for both groups

- Children with NH had mostly intermediate productions
- Children with CIs had mostly clear substitutions
Study 1: Discussion

- Results for children with NH are consistent with previous literature.
 - Relatively few errors.
 - More errors on /k/ than on /t/.

- Error patterns for children with CIs are best explained by perceptual difficulties.
 - Relatively higher percentage of errors for /t/
 - Relatively lower percentage of voicing errors
Study 2: Dialect mismatch

- Mainstream vs. non-mainstream dialects
 - Social capital
 - Education
 - Prestige
 - Written form
Study 2: Linguistic consequences of poverty

- **In the US**
 - Speaking a non-mainstream dialect
 - African American English
 - Appalachian English

- **What about in Germany?**
 - High vs. Low German
 - Gemischtsprechen (*Mixed Talking*)
 - Türkendeutsch (*Turkish German*)
 - Ghettodeutsch (*Ghetto German*)
 - Kiezdeutsch (*Hood German*)
Study 2: Dialect mismatch

• Dialect mismatch:
 • Home dialect ≠ School dialect

• Example:
 • Dialect of instruction = Mainstream American English (MAE)
 • Home dialect = African American English (AAE)
Study 2: Dialect mismatch and academic achievement

1. Teacher expectations
2. Cognitive resources
3. Direct impact on decoding
Study 2: African American English

- Phonological differences
- Morphosyntactic differences

The students helped themselves to breakfast.

My sister and brother was at that concert.

The boy need more money.
Study 2: Dialect mismatch and academic achievement

- Children with higher dialect density have poorer language and literacy skills.
 - Kindergarten to first grade.
 - First grade to second grade.
- Children who are less able to dialect-shift from AAE to MAE have poorer language and literacy skills.
 - Kindergarten to third grade (spoken language)
 - Third to fifth grade (written language)
Study 2: Non-mainstream dialect use and comprehension of MAE

• Does speaking a non-mainstream dialect of English make it more difficult to understand MAE?
Study 2: Dialect mismatch and comprehension

• **Question**: How well do AAE-speaking children comprehend words that have endings that are contrastive in MAE but not in AAE? (Edwards et al., 2015)

• **Participants**
 • 105 African American children
 • 4- to 8-year-olds
 • from low-SES families (mostly)
Study 2: Methods

STIMULI

- **Phonological contrast:**
 - Final consonant cluster deletion
 - *goal* vs. *gold*
 - */gol/* is ambiguous in AAE, but not in MAE

- **Morphological contrast:**
 - Plural marking
 - Plural is optional in AAE (*Fifty cent*)
 - *cat* vs. *cats*

- Stimuli recorded in AAE and MAE

<table>
<thead>
<tr>
<th>AAE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal please</td>
<td>Gold please</td>
</tr>
<tr>
<td>(AAE)</td>
<td>(AAE)</td>
</tr>
<tr>
<td>Goal please</td>
<td>Gold please</td>
</tr>
<tr>
<td>(MAE)</td>
<td>(MAE)</td>
</tr>
</tbody>
</table>
PROCEDURE

• **Training phase:**
 • Each target picture first named in AAE.
 • Child asked to name each target picture (*say _____ please*).

• **Test phase:**
 • Point to _______ (in MAE).

“Point to goal please”

Distracter Filler Target
Study 2: Additional measures

- Vocabulary size:
 - Expressive vocabulary: EVT-2
 - Receptive vocabulary: PPVT-4
- Maternal education level
 - Multiple choice question on questionnaire
- Dialect density
 - Language sample
 - Frequency of non-mainstream dialect features
Study 2: Dialect density

• Dialect density
 • Measured from 50-utterance recorded language sample.
 • Sample elicited in conversation with a native AAE speaker.
 • Both morphosyntactic and phonological dialect features coded by a native AAE-speaking adult.
Study 2: Coding of AAE features

where dem people finna sit?

tense copula/“dem” for “them”/“finaa”/
“them” for “those”
Where dem people fitna sit?

Gloss: *Where are those people going to sit?*

<table>
<thead>
<tr>
<th>Morphosyntactic Features</th>
<th>Explanation</th>
<th>Example from sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero copula</td>
<td>is, are, am, and other forms of the verb to be variably included</td>
<td>Where ___ those (dem)</td>
</tr>
<tr>
<td>Undifferentiated pronoun case</td>
<td>Nominative, objective, and demonstrative cases of pronouns used interchangeably</td>
<td>Those (dem) people</td>
</tr>
<tr>
<td>Fitna/sposeta/bouta</td>
<td>Abbreviated forms coding imminent action</td>
<td>Fitna sit.</td>
</tr>
</tbody>
</table>

Phonological feature

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>/t/ and /d/ substitute for /ð/ and /θ/ in prevocalic position</td>
<td>/dɛm/ for them</td>
</tr>
</tbody>
</table>
Study 2: Dialect density

• Dialect density = number of dialect features/total number of words.

• Dialect density results:
 • range = 0 (3 children) to .28
 • mean = .06.

• Only 85 children (out of 105) produced analyzable language samples.
Study 2: Results

Mean percent correct by condition and contrast (SD in parentheses)

<table>
<thead>
<tr>
<th></th>
<th>Singleton Consonant (Ambiguous Condition)</th>
<th>Consonant Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonological contrast</td>
<td>66 (14)</td>
<td>75 (15)</td>
</tr>
<tr>
<td>Morphological contrast</td>
<td>62 (31)</td>
<td>83 (16)</td>
</tr>
</tbody>
</table>

- Ambiguous (in AAE) conditions were the most difficult.
- Accuracy was predicted by:
 - Expressive vocabulary size
 - Dialect density
Study 2: MAE comprehension: Results

\[R^2 = .27 \]

\[R^2 = .28 \]
Study 2: Structural equation modeling

- What are the relationships among the measures that predict comprehension of MAE?

- Divided variables into:
 - Input variables
 - Mediating variables
Study 2: Structural equation model

Age

Receptive vocabulary

Expressive vocabulary

MAE lexical comprehension

Dialect density

SES
Study 2: Discussion

• Non-mainstream dialect speakers did have difficulty understanding MAE.
• Both expressive vocabulary and dialect density independently predicted comprehension of MAE.
• Does it make sense to teach children how to dialect shift between the home and school dialect when they enter school?
Acknowledgements

Study 1:
1. Mary E. Beckman and Ben Munson (Multiple PI team)
2. Learning to Talk research team at UW-Madison and University of MN
3. Funding sources:
 a. NIDCD RO1 DC02932 and NSF grant BCS 0729140 to Jan Edwards, Mary E. Beckman, and Ben Munson
 b. NIH T32 Training Grant DC 05359-10 to Susan Ellis Weismer

Study 2:
1. Mark Seidenberg and Maryellen MacDonald (Multiple PI team)
2. WID research team at UW-Madison
3. Funding sources
 1. Wisconsin Institute for Discovery seed grant to Seidenberg, Edwards, & Washington
 2. NIDCD PP30 HD03352 to the Waisman Center

Both studies
1. The parents who gave their consent and the children who participated in the studies!!!
2. The clinics, schools, and community centers who helped us with recruitment!