When ears collide: Mismatch and phonological development

Jan Edwards University of Maryland

What happens in phonological acquisition?

What happens in phonological acquisition?

- Children need to figure out how to come up with discrete categories from the continuous signal that they hear.
- We assume that there is a match between the child listener and the adult speaker.
- But what if there isn't?

Mismatch in phonological acquisition

- <u>Study 1</u>: Child and adult have different hearing systems
 - Child: electronic hearing (cochlear implant)
 - (Almost) everyone else: acoustic hearing

- <u>Study 2</u>: Child and adult (teacher) speak different dialects.
 - Impact on literacy

Study 1: Cochlear Implants

- Recommended for individuals with severe-to-profound hearing impairment.
- Replaces acoustic hearing with an electrical signal.
- <u>Pros</u>: Children who are prelingually deaf do much better with a cochlear implant than with hearing aids.
- <u>Cons</u>: Signal is severely degraded, especially for spectral information.

A soft breeze came across from the sea.

- <u>Purpose</u>: To compare acquisition of an early-acquired contrast (/t/ vs /k/) in children with cochlear implants and their age peers with normal hearing.
 - Accuracy
 - Error patterns
- /t/ vs /k/ in normal-hearing English-speaking children
 - /t/ produced correctly by about age 3.
 - /k/ produced correctly by about 3;6.
 - [t] for /k/ substitutions are common.
- Place of articulation is a spectral contrast.
 - Difficult for children with cochlear implants.

Prompt = cup

Study 1: Electronic vs. Acoustic Hearing

- 20 children with cochlear implants (CI)
 - 8 females, 12 males
- 20 children with normal hearing (NH)
- Matched for age, sex, and maternal education

Group	Age in months mean (SD) n = 32	Maternal Education n = 20	Vocabulary (EVT-2) mean (SD) Standard: 100 (15) n = 32
CI	51 (10) Range = 31-69	Some college/Associate's (2-year) degree = 4 College or Graduate degree = 16	102 (15) Range = 68 - 131
NH	51 (10) Range = 31-69	Some college/Associate's (2-year) degree = 4 College or Graduate degree = 16	119 (11) Range = 90 - 137

Study 1: Methods

- Repetition task
- 34 productions of word-initial /t/ and /k/
- Front- and back-vowel contexts

Study 1: Transcription/Coding

Word	Target consonant	Manner transcription	Place transcription	Phonemic accuracy
tongue	/t/	Stop	[t]	1
tape	/t/	Stop	other (1)	0
tooth	/t/	Affricate	N/A	0
tickle	/t/	Stop	[t:k] 🜔	1
kitty	/k/	Stop	[k] ()	1
kitty	/k/	Stop	[t] (1)	0
cousin	/k/	Stop	[t:k] ()	0

Study 1: Production Accuracy

Do children with cochlear implants produce /t/ and /k/ less accurately overall compared to their peers with normal hearing?

Accuracy ~ Group * Target Consonant + (1 + Target Consonant | ID)

Children with CIs

- 24% of productions were inaccurate
 - 54% of errors were on /k/
 - 46% of the errors were on /t/

Children with NH

- 9% of productions were inaccurate
 - 63% of errors were on /k/
 - 37% of the errors were on /t/

Study 1. Error patterns: Voicing errors

Study 1. Error patterns: Manner

% of total errors that contain manner errors

Study 1. Error patterns: Place

% of Place Errors

0

CI

- ~50% of all errors were place errors for both groups
- Children with NH had mostly intermediate productions
- Children with CIs had mostly clear substitutions

100 Farget /k/ Target /t/ 80 84% 80 64% 40 36% 20

Place Errors by Group and Consonant

Group

16%

NH

Study 1: Discussion

- Results for children with NH are consistent with previous literature.
 - Relatively few errors.
 - More errors on /k/ than on /t/.
- Error patterns for children with CIs are best explained by perceptual difficulties.
 - Relatively higher percentage of errors for /t/
 - Relatively lower percentage of voicing errors

Study 2: Dialect mismatch

- Mainstream vs. nonmainstream dialects
 - Social capital
 - Education
 - Prestige
 - Written form

Study 2: Linguistic consequences of poverty

- In the US
 - Speaking a non-mainstream dialect
 - African American English
 - Appalachian English
- What about in Germany?
 - High vs. Low German
 - Gemischtsprechen (*Mixed Talking*)
 - Türkendeutsch (*Turkish German*)
 - Ghettodeutsch (*Ghetto German*)
 - Kiezdeutsch (Hood German)

Study 2: Dialect mismatch

- Dialect mismatch:
 - Home dialect ≠ School dialect
- Example:
 - Dialect of instruction = Mainstream American English (MAE)
 - Home dialect = African American English (AAE)

Study 2: Dialect mismatch and academic achievement

- 1. Teacher expectations
- 2. Cognitive resources
- 3. Direct impact on decoding

Study 2: African American English

- Phonological differences
- Morphosyntactic differences

The students helped themselves to breakfast.

My sister and brother was at that concert.

The boy <u>need</u> <u>more</u> money.

Study 2: Dialect mismatch and academic achievement

- Children with higher dialect density have poorer language and literacy skills.
 - Kindergarten to first grade.
 - First grade to second grade.
- Children who are less able to dialectshift from AAE to MAE have poorer language and literacy skills.
 - Kindergarten to third grade (spoken language)
 - Third to fifth grade (written language)

 Does speaking a non-mainstream dialect of English make it more difficult to understand MAE?

Study 2: Dialect mismatch and comprehension

- <u>Question</u>: How well do AAE-speaking children comprehend words that have endings that are contrastive in MAE but not in AAE? (Edwards et al., 2015)
- Participants
 - 105 African American children
 - 4- to 8-year-olds
 - from low-SES families (mostly)

Study 2: Methods

STIMULI

- Phonological contrast:
 - Final consonant cluster deletion
 - goal vs. gold
 - /gol/ is ambiguous in AAE, but not in MAE
- Morphological contrast:
 - Plural marking
 - Plural is optional in AAE (*Fifty cent*)
 - cat vs. cats
- Stimuli recorded in AAE and MAE

<u>Gold</u> please (AAE)

Goal please (MAE)

<u>Gold</u> please (MAE)

Study 2: Methods

PROCEDURE

- Training phase:
 - Each target picture first named in AAE.
 - Child asked to name each target picture (*say _____ please*).
- Test phase:
 - Point to _____ (in MAE).

"Point to goal please"

Study 2: Additional measures

- Vocabulary size:
 - Expressive vocabulary: EVT-2
 - Receptive vocabulary: PPVT-4
- Maternal education level
 - Multiple choice question on questionnaire
- Dialect density
 - Language sample
 - Frequency of non-mainstream dialect features

• Dialect density

- Measured from 50-utterance recorded language sample.
- Sample elicited in conversation with a native AAE speaker.
- Both morphosyntactic and phonological dialect features coded by a native AAE-speaking adult.

Study 2: Coding of AAE features

Where dem people fitna sit? <u>Gloss</u>: Where are those people going to sit?

Morphosyntactic Features	Explanation	Example from sentence
Zero copula	is, are, am, and other forms of the verb <i>to be</i> variably included	Where those (dem)
Undifferentiated pronoun case	Nominative, objective, and demonstrative cases of pronouns used interchangeably	Those (dem) people
Fitna/sposeta/bouta	Abbreviated forms coding imminent action	Fitna sit.
Phonological feature	Explanation	Examples
Substitutions for /ð/ and /θ/	/t/ and /d/ substitute for /ð/ and /θ/ in prevocalic position	/dɛm/ for <i>them</i>

Study 2: Dialect density

- Dialect density = number of dialect features/total number of words.
- Dialect density results:
 - range = 0 (3 children) to .28
 - mean = .06.
- Only 85 children (out of 105) produced analyzable language samples.

Study 2: Results

Mean percent correct by condition and contrast (SD in parentheses)

	Singleton Consonant (Ambiguous Condition)	Consonant Cluster
Phonological contrast	66 (14)	75 (15)
Morphological contrast	62 (31)	83 (16)

- Ambiguous (in AAE) conditions were the most difficult.
- Accuracy was predicted by:
 - Expressive vocabulary size
 - Dialect density

Study 2: MAE comprehension: Results

Study 2: Structural equation modeling

- What are the relationships among the measures that predict comprehension of MAE?
- Divided variables into:
 - Input variables
 - Mediating variables

Study 2: Structural equation model

Study 2: Discussion

- Non-mainstream dialect speakers *did* have difficulty understanding MAE.
- Both expressive vocabulary and dialect density *independently* predicted comprehension of MAE.
- Does it make sense to teach children how to dialect shift between the home and school dialect when they enter school?

Acknowledgements

Study 1:

- 1. Mary E. Beckman and Ben Munson (Multiple PI team)
- 2. Learning to Talk research team at UW-Madison and University of MN
- 3. Funding sources:
 - a. NIDCD RO1 DC02932 and NSF grant BCS 0729140 to Jan Edwards, Mary E. Beckman, and Ben Munson
 - b. NIH T32 Training Grant DC 05359-10 to Susan Ellis Weismer

Study 2:

- 1. Mark Seidenberg and Maryellen MacDonald (Multiple PI team)
- 2. WID research team at UW-Madison
- 3. Funding sources
 - 1. Wisconsin Institute for Discovery seed grant to Seidenberg, Edwards, & Washington
 - 2. NIDCD PP30 HD03352 to the Waisman Center

Both studies

- 1. The parents who gave their consent and the children who participated in the studies!!!
- 2. The clinics, schools, and community centers who helped us with recruitment!

Questions?

