How different motions affect lexical access and linguistic structure in a spontaneous speech task Susanne Fuchs (ZAS, Berlin), Uwe D. Reichel (HAS, Budapest), Amélie Rochet-Capellan (GIPSAlab, CNRS, Grenoble)

Background Results Experiment 2 Experiment 1 Physiology Multitasking, on the one hand: 1.0 • reduces performance (attention and reaction times) due to limited cognitive **Motion frequency:** resources • more or less constant • Capacity Sharing: split resources in parallel tasks (Kahnemann, 1973) SB. HS • Bottleneck Theory: sequential processing (Broadbent, 1959) Condition Condition **Respiratory rate:** ... on the other hand: • exp1: higher for effort conditions • moderate sport can enhance cognitive abilities • exp2: higher for legs; at low • lower picture naming latencies on moving belt (Meyer, 2016) effort determined by speech • improved vocabulary acquisition on treadmill (Schmidt-Kassow et al., 2014) Condition \rightarrow motion enhances lexical storage and access

Goals:

• influence of motion on linguistic performance • motion parameters: applied effort, modality (arm vs. leg), (right vs. left hand) • linguistic levels: phonetics, lexicon, syntax

Methods

Tasks

Measurements

Physical

Phonetics

Proportion of Speech

- exp1: decreasing (i.e. more pauses) with dual task and effort
- exp2: higher for arm movements

Speaking rate

• exp1,2: higher in dual tasks

ЧQ.

0.00

9.9

8

Lexicon and Syntax

- exp1: cumulative impact of dual task and effort
- higher proportion of content words

Experiment 1 0 8 ΞŌ. 0.06 ð Ō. 8 Ċ,

Cognitive

If you were to be stranded on a desert *island, what five out of ten things would* • speech proportion you take with you? Rank them and motivate why you would take these and not the others.

192748 16.192748 Physiology

- motion frequency (motion capture)
- respiration rate (plethysmography)

Phonetics:

- speaking rate

Lexicon and syntax:

- vocabulary size
- complexity

Experiment 1:

• leg motion on ergometer with low vs. high effort **Experiment 2**:

• arm vs. leg motion on mini treadmill

Conditions	Experiment 1	Experiment 2
(1) neither motion nor speaking	[<i>Q</i>]	
(2) speaking only 1	[<i>S</i>]	
(3) motion only	low [B] or high [Be] effort	arm [H] or leg [L]
(4) speaking and motion	[<i>SB</i>] or [<i>SBe</i>]	[<i>HS</i>] or [<i>LS</i>]
(5) motion only	complementary to (3)	
(6) speaking and motion	complementary to (4)	

• lower proportion of subordinate constructions

Discussion

Arms vs. legs

• higher proportion of speech with arm than with leg motion • arm motion is more strongly linked to speech

Impact of dual tasks on cognition

- increased speaking rate might indicate cognitive ease
- effect depends on linguistic level: increased lexical creativity but decreased syntactic complexity

Effort constraints on cognition

- high effort leg motion: - increases respiratory rate
- decreases the proportion of speech
- this might require:
- a higher speaking rate
- shorter syntactic units fitting into shorter breathing cycles
- a higher amount of content words to increase information density