Speech perception: As abstract as it needs to be

James M. McQueen
Radboud University, Nijmegen
Donders Institute for Brain, Cognition & Behaviour, Centre for Cognition & Max Planck Institute for Psycholinguistics

j.mcqueen@donders.ru.nl

Phonetic diversity

Each utterance we hear is unique
- Different words, talkers, contexts

But listeners can cope
- Immediate recognition of novel utterances

"Kartoffelpüree mit Bratwurst und Sauerkraut"
Hybrid model:
1. Storage of abstract representations of:
 - Segments
 - Suprasegmental structures
 - Words
2. Storage of episodic memories
 - Talker-specific, indexical and situational details
 - So (groups of) talkers can be understood better in the future

Perception is as abstract as it needs to be

Lexical memory vs. episodic memory

Voice-specificity effects (repetition priming) in recognition memory task

But no voice effects in lexical decision

Voice-specific detail is stored in long-term episodic memory, but not in the mental lexicon

Luce & Lyons (1998)
Complementary Learning Systems model

Episodic memory
- Fast, initial hippocampal (and medial-temporal) learning

Semantic memory
- Slower, later neocortical learning through consolidation

McClelland et al. (1995)

Sleep and memory consolidation in word learning

A word has become lexicalized when it starts to compete with other words (Gaskell & Dumay, 2003)
Competition with new words emerges after (sleep-enhanced) consolidation (Dumay & Gaskell, 2007)
Testing consolidation in word learning

Training: Phoneme monitoring
- n
- cathedruke
- alcohin

x 36 blocks

Test: Pause detection
- cathedral
- parach...ute

Competition effect

Gaskell & Dumay (2003)

Cross-modal generalization

training ‘cathedruke’
Phoneme monitoring

Letter monitoring
test ‘Cathedral’
Pause detection

Semantic decision

day 1 | day 2 | day 8

- training
- competition task
- free recall
- recognition
- training

Bakker, Takashima, van Hell, Janzen & McQueen (2014)
Abstraction beyond episodic experience:
Competition in print from words never seen before, and in speech from words never heard before

Bakker, Takashima, van Hell, Janzen & McQueen (2014)

Coping with variability

Hybrid storage
1. Abstract linguistic representations
2. Episodic memories

Abstraction
• Linking variable forms to meanings

Adaptation
• Tuning in to variability
Lexical retuning of phonetic categories

- Part 1: Lexical decision
 - Gp 1: 20 ambiguous [f]-final & 20 natural [s]-final words (e.g. kara? & karkas)
 - Gp 2: 20 ambiguous [s]-final & 20 natural [f]-final words (e.g. karka? & karaf)

- Part 2: Phonetic categorisation

![Graph showing % [f] responses vs. % [s] responses for Gp 1 and Gp 2 words.]

Norris, McQueen & Cutler (2003)

Generalization to new words

Cross-modal identity priming with minimal pairs such as doof/doos (“deaf”/“box”)

Responses were faster after related than after unrelated primes, but only when the target's final sound was consistent with the lexically-biased training

Gp1: [do:ʔ]-doof << [krop]-doof
Gp2: [do:ʔ]-doos << [krop]-doos

Gp1 hear [do:ʔ] as doof,
Gp2 hear [do:ʔ] as doos

McQueen, Cutler & Norris (2006)
Sjerps & McQueen (2010)
Lexically-guided retuning of segment perception

Retuning helps listeners cope with speech variability
- It generalizes to other words, and:
 - Can be talker specific (Eisner & McQueen, 2005)
 - Is stable over time (Eisner & McQueen, 2006)
 - Is possible in a second language (Mitterer & McQueen, 2009)
 - Is transferable across positions (Jesse & McQueen, 2011)

Generalization of learning across the vocabulary depends on prelexical abstraction about segments

These abstractions play a functional role
- So learning paradigms can reveal the units of perception

What are the prelexical units of perception?

Position-invariant phonemes or position-specific allophones?
Test with allophonically variable Dutch liquids:
\(/r/ \) is approximant or trill; \(/l/ \) is light or dark

Part 1: auditory lexical decision:
- \([?]\) midway between approximant \([\lambda]\) and dark \([l]\)
 - \(\text{Go1}\): learning \([?]\) is \(/r/ \) or approximant \([\lambda]? \) (bakke? + appel)
 - \(\text{Go2}\): learning \([?]\) is \(/l/ \) or dark \([l]? \) (bakker + appe?)

Part 2: categorization of nonword-nonword continuum:
- A. \(\text{kwipter-kwiptel}\): in coda, approximant \([\lambda]\) to dark \([l]\)
- B. \(\text{kwipter-kwiptel}\): in coda, trill \([r]\) to dark \([l]\)
- C. \(\text{repaas-lepaas}\): in onset, trill \([r]\) to light \([l]\)

- If retuning is phonemic, effect should be seen on all 3 continua
- If retuning is allophonic, effect only when there is full match between exposure and test sounds
Retuning is about allophones, not phonemes

Retuning in the exposure phase on approximant [ɹ] and dark [l] applied at test only to these allophones, not to all /r/ and all /l/.

Mitterer, Scharenborg & McQueen (2013)

Selectivity adaptation
Allophonically variable English stops

Adaptation: 25 words with unambiguous /b/ (e.g. “bail”) or /d/ (e.g. “desk”)

Test: categorise “?ump” (bump or dump)

Adaptors in initial, medial or final position

Test stimuli always in initial position

6 cycles of pairs of adaptation+test sessions

- Adaptation generalized across positions
- “Spoken word identification involves accessing position invariant phoneme representations”

Bowers, Kazanina & Andermane (2016)
Some problems with Bowers et al. (2016)

- If units are phonemes, why the interaction with position?
- Were the stops acoustically very different across position?
 - 11/25 final /b/’s and 25/25 final /d/’s had release bursts

Stronger tests:

- Dutch liquids
- German fricatives

Selective adaptation

Adaptation:

Offset [ɦ]: e.g. appel Offset [ʊ]: e.g. bakker
Onset [ɬ]: e.g. leiding Onset trill [ɹ]: e.g. rente

Test: Offset [wɪmpəɬ] – [wɪmpəɹ] (wimpel – wimper) continuum

Evidence of adaptation only if adaptors and test stimuli shared allophones

Mitterer, Reinisch & McQueen (subm.)
German fricatives

Adaptation:

<table>
<thead>
<tr>
<th>Adaptor overlap</th>
<th>Orthography</th>
<th>Underlying</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>+phonemic, +allophonic</td>
<td>friedlich /frïdç/</td>
<td>[frïdç]</td>
<td></td>
</tr>
<tr>
<td>+phonemic, -allophonic</td>
<td>flach /flåç/</td>
<td>[flåx]</td>
<td></td>
</tr>
<tr>
<td>-phonemic, +allophonic</td>
<td>König /kø:nɪç/</td>
<td>[kø:nɪç]</td>
<td></td>
</tr>
<tr>
<td>-phonemic, -allophonic</td>
<td>Auge /augã/</td>
<td>[augã]</td>
<td></td>
</tr>
</tbody>
</table>

Test: [kɪɛça] – [kɪɛʃa] (Kirche – Kirsche) continuum

Evidence of adaptation only with allophonic overlap
Even when the phonemes are different

Mitterer, Reinisch & McQueen (subm.)

Lexically-guided retuning
- Position-specific allophones

Selective adaptation
- Position-specific allophones
- Bowers et al.: Apparent phonemic effects due to acoustic overlap
- Mitterer et al.: Evidence for the null hypothesis for phonemes:
 - Dutch liquids: Bayes Factor = 0.21
 - German fricatives: Bayes Factor = 0.13

Why allophones?
- Tuning in to speech allophonically helps the listener; tuning in phonemically does not
With thanks to:
Iske Bakker, Anne Cutler, Frank Eisner, Janet van Hell, Gabriele Janzen, Alexandra Jesse, Holger Mitterer, Dennis Norris, Eva Reinisch, Odette Scharenborg, Matthias Sjerps & Atsuko Takashima

Conclusions
Hybrid storage
– Abstract linguistic representations
– Episodic memories
Abstraction
– Prelexical and lexical
– Segmental (and suprasegmental)
Adaptation
– Tuning in to variability about allophones helps listener cope with phonetic diversity
– Perception is as abstract as it needs to be