Speaker- and group-specific information in formant dynamics: a forensic perspective

Vincent Hughes Paul Foulkes

LabPhon 15 Satellite

Speech dynamics, social meaning, and phonological categories

13th July 2016

Outline

- 1. the forensic problem
- 2. formant dynamics in forensics
- 3. research questions
- 4. method
- 5. experiments:
 - speaker discrimination
 - group discrimination
- 6. discussion

1. The forensic problem

• forensic voice comparison (FVC):

1. The forensic problem

- properties of ideal features:
 - high between-speaker variability
 - low within-speaker variability
 - resistance to disguise
 - robustness in transmission
 - measurability
 - availability

from Nolan (1983)

1. The forensic problem

- properties of ideal features:
 - high between-speaker variability
 - low within-speaker variability
 - resistance to disguise
 - robustness in transmission
 - measurability
 - availability

from Nolan (1983)

2. Formant dynamics in forensics

- commonly used in forensics for last 20 years
 - starting with... Greisbach et al. (1995)
 - McDougall (2006)
 - value of parametric representations
 - polynomials better than raw Hz input
 - Morrison (2009)
 - comparison of different parametric representations

2. Formant dynamics in forensics

why dynamics?

- targets = learned by speech community
- transitions = "acquired ... by trial and error"
- "speakers' 'vocal signatures' lie in the rapid, transitional movements of the speech organs between sounds"

from Nolan (1997)/ McDougall (2004)

2. Formant dynamics in forensics

- but... inconsistent with e.g. usage-based models?
 - any element of phonetic/phonological structure can be learned & represented cognitively
 - thus potential for transitions to carry 'group' information
- formant dynamics increasingly used to explore group-patterns in sociophonetics

3. Research questions

- to what extent is speaker- and group-specific information encoded in the dynamics of formant trajectories?
 - implications for models of phonology
 - value of the forensic perspective

4. Method

variable

- PRICE /aɪ/
 - subject of considerable analysis in forensics
 - covers a wide range of the vowel space
 - potential for considerable formant movement across the duration of the vowel

4. Method: datasets

(1) <u>Standard Southern British</u> English (SSBE)

- DyViS corpus (Nolan et al. 2009)
- 97 male speakers
- 18-25 years
- mock police interview (map task)

4. Method: datasets

(2) <u>Newcastle</u> (Milroy et al. 1994-97)

(3) Manchester (Haddican et al. 2013)

(4) <u>Derby</u> (Milroy et al. 1994-97).

- 8 male speakers
- 18-31 years
- sociolinguistic interviews in peer-group pairs

4. Method

dynamics

- c. 10 tokens/ sp
- measurements at +10% steps
- pre-testing for optimal fit
 - cubic polynomials
- 4 coefficients/ formant

statics

+20% & +80% Hz
 values/ formant

5. Results: speaker discrimination

- SSBE speakers:
 - 20 test speakers
 - 57 reference speakers
- same- (SS) & different-speaker (DS) comps
- likelihood ratios (LRs) used for discrimination

$$\frac{p(\mathsf{E} | \mathsf{H}_{\mathsf{p}})}{p(\mathsf{E} | \mathsf{H}_{\mathsf{d}})}$$

p = probability
E = evidence
| = 'given'
H_p = prosecution hyp
H_d = defence hyp

5. Results: speaker discrimination

- output = \log_{10} LRs:
 - centered on 0 (no evidence)
 - > 0 = support for prosecution
 - < 0 = support for defence</p>
- error metrics:
 - equal error rate (EER)
 - $-\log LR \cos function (C_{IIr})$

5. Results: speaker discrimination

Static Dynamic 35 35 F2-only ◆ 30 F3-only 30 F1-only 25 -25 -F1-only (%) 15 (%) 20 83 15 F2-only 15 - \diamond F1, F2 and F3 10 10 F3-only 5 5 -F1, F2 and F3 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Log LR Cost (C_{IIr}) Log LR Cost (C_{llr})

5. Results: group discrimination

- predicting regional background
- cross-validated discriminant analysis:
 - each token assigned to 1 of 4 regional groups
 - models built on all data excluding target token
- generates classification rate based on posterior probability
- chance = 25% (1/4)

5. Results: group discrimination

6. Discussion

speaker discrimination

- formant dynamics contain considerable speaker-specific information:
 - better performance than static values
- higher formants = greater speakerdiscriminatory power
 - speech-speaker dichotomy (Mokhtari 1998)
 - F1~F2 responsible for contrast

6. Discussion

group discrimination

- group-specific information isn't all about targets
 - individual cubic coefficients capable of predicting regional background above chance
 - all coefficients in combination outperform any one in isolation
- so... fine-grained phonetics clearly shared across speech communities

6. Discussion

- results challenge underlying phonological model for formant dynamics
 - groups = not all about targets
 - Individuals = not all about transitions
- need to rethink the dichotomies:
 - speech-speaker (Mokhtari 1998)
 - group-individual (Garvin & Ladefoged 1963)
 - maybe it's about continua?

7. Conclusion

formant dynamics capable of encoding both speaker- and group-information

– consistent with usage-based approaches?

- focus on the individual may help us better understand acquisition of variation
 - therefore a role for forensics (methodological and theoretical) in understanding phonology

Thanks!

Questions?

LabPhon 15 Satellite

Speech dynamics, social meaning, and phonological categories

13th July 2016

