

Aims

- potential neutralization of /ş/?
- articulatory properties of /s ş ø/?

Background

alveolopalatal /s/ only in one cue

e.g. /s ş/ neutralization attested for non-standard varieties of Polish (Nowak, 2006) and for Mandarin (Duanmu, 2002)

Articulatory Analysis

- Four Polish L1-speaker aged between 19 and 28 were recorded with AG501
- Participants produced symmetrical CVCV non-words (with C=/s s s / and V=/a e o/), which were embedded in the carrier phrase:
 - 'Ania woła CVCV aktualnie' ('Ania shouted CVCV currently')
- Speech material was produced at a low and a fast speech rate
- EMA

Only **tongue tip** (**TT**) sensor analyzed in this study

speech

This research was supported by ERC grant no. 295573 'Sound change and the acquisition of speech' to Jonathan Harrington. [1] Toda, M., Maeda, S., & Honda, (Ladefoged & Maddieson, 2008) K., "Formant-cavity affiliation in sibilant fricatives", in S. Fuchs, M. Toda, & M. Żygis, [Eds], Turbulent sounds-an interdisciplinary guide, Berlin, Difference in TT orientation between fast and slow New York: De Gruyter Mouton, 343–374, 2010. [2] Nowak, P. M., "The role of vowel transitions and frication noise in the perception of Polish sibilants", Journal of Phonetics, 34(2): 139 – 152, 2006. [3] Duanmu, S., "The phonology of standard Chinese", Oxford University Press, 2002. [4] Ladefoged, P. & Maddieson, I., "The Sounds of the World's Languages", Oxford: Blackwell Publishing, 2008. 15th Annual Conference of the International Speech Communication Association, Interspeech 2014, Singapore, 14th September 2014

Synchronic variation in the articulation and the acoustics of the Polish threeway place distinction in sibilants and its implications for diachronic change

Véronique Bukmaier¹, Jonathan Harrington¹, Ulrich Reubold¹, Felicitas Kleber¹ ¹Institute of Phonetics and Speech Processing, University of Munich, Germany [bukmaierljmhlreuboldlkleber]@phonetik.uni-muenchen.de

Quantification **articulatory** distance

TT ORIENTATION \times TT POSITION space

Upward and downward \rightarrow TT ORIENTATION

Discussion & Conclusion

- 3.

Acknowledgements and References

Three-way place contrast in /s s s/ maintained based on different tongue shapes and positions 2. $\frac{1}{s}$ shows acoustic similarities with both $\frac{1}{s}$ and $\frac{1}{s}$ Greater effect of **speech rate** on transition in /**s**/ than in /**s**/ and /**s**/ \rightarrow indicated by similar TT orientation for /s/ and /s/ in fast speech

Acoustic Analysis & Results

Mel-scaled DCT [2] Spectral curvature

Acoustic similarity between /s s/