Unit-Selection-Synthese

Uwe Reichel
Institut für Phonetik und Sprachverarbeitung
Ludwig-Maximilians-Universität München
reichelu@phonetik.uni-muenchen.de

9. Januar 2017

Inhalt

- Datengetriebenes Vorgehen vs. Signalmanipulation
- Klassische Diphon-Synthese
 - Korpuserstellung
 - Synthese
 - Erweiterungen
- Unit-Selection-Synthese
 - Datenbank
 - Synthese
- Evaluierung
 - Verständlichkeit
 - Natürlichkeit

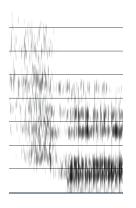
Datengetriebenes Vorgehen vs. Signalmanipulation

Datengetrieben: Unit-Selection-Ansatz

- Speicherung großer Mengen an Sprachsignalen
- keine oder sehr wenig Manipulation der Signale bei ihrer Verknüpfung
- Pro: höhere Natürlichkeit der Synthese
- Kontra: großer Aufwand zur Gewinnung des akustischen Materials

Datengetriebenes Vorgehen vs. Signalmanipulation

Signalmanipulation: klassischer Diphon-Ansatz


- Speicherung einer geringen Menge an Sprachsignalen
- Manipulation der Sprachsignale bei ihrer Verknüpfung
- Pro: höhere Flexibilität, weniger Aufwand bei der Datengewinnung
- Kontra: geringere Natürlichkeit der Synthese

Klassische Diphonsynthese

Einheit: Diphon

- Segment von der Mitte eines Phons bis zur Mitte des folgenden Phons
- Berücksichtigung lokaler koartikulatorischer Effekte
- Inventargröße: (Anzahl der Phoneme)²— (Anzahl phonotaktisch nicht erlaubter Kombinationen)

Klassische Diphonsynthese

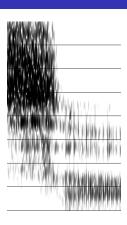


Abbildung: Diphone /fa/ und /sa/: unterschiedliche Formanttransitionen.

Klassische Diphonsynthese: Diphondatenbank

Erstellung der Diphondatenbank (voice)

- Ermittlung des nötigen Diphon-Inventars
- Einbettung der Diphone in einen Trägersatz → prosodisch homogene Realisierung der Diphone
- Rekrutierung eines Sprechers (voice talent)
- Aufnahme des Sprechers beim Lesen der eingebetteten Diphone
- Evtl. mit elektroglottographischer Aufnahme
- Segmentierung, Pitch-Markierung

Klassische Diphonsynthese: Diphondatenbank

Pitch-Markierung (= Epoch Detection)

- Epoche: Ereignis im glottalen Schwingungszyklus
- ullet z.B. Verschluss der Stimmlippen \longrightarrow Führungsamplitude
- nötig für Signalmanipulation bei Konkatenation

Mittels Elektroglottographie EGG

- während der Aufnahme des Sprechers
- transglottaler Stromfluss
- Messung der glottalen Impedanz, die vom Abduktionsgrad der Glottis abhängt
- Problem: Messung der Stimmlippenschwingung bei nicht vollständiger Adduktion

Klassische Diphonsynthese: Diphondatenbank

Segmentierung

- Automatische Vorsegmentierung mittels Forced Alignment (z.B. durch MAUS; Schiel, 2004)
- Forced Alignment: Abbildung des Signals auf eine bereits bekannte Phonemfolge
- manuelle Nachsegmentierung

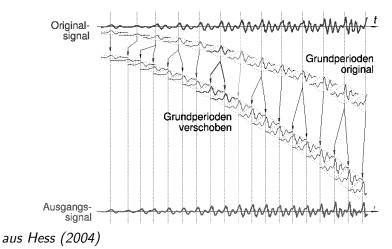
Klassische Diphonsynthese: Resynthese

Ablauf

- Auswahl der zur G2P-Vorgabe passenden Diphone
- Resynthese: Manipulation von Segmentdauer, Grundfrequenz, Intensität
- iGgs zur Vollsynthese (z.B. Formantsynthese) sind die zu manipulierenden Signale bereits gegeben

Manipulation von F0 und Dauer: TD-PSOLA

Signalmanipulation: TD-PSOLA


- TD: Time-Domain, d.h. keine Überführung in Spektralbereich
- PS: Pitch-Synchron, d.h. Verfahren operiert auf Einheiten der Größe einer glottalen Schwingungsperiode
- OLA: Overlap and Add, d.h. Einheiten werden überlagert und addiert

Manipulation von F0 und Dauer: TD-PSOLA

- Fensterung der Einheiten: Multiplikation der Signalauschnitte mit einem Gewichtsfenster zur Abschwächung der Signalränder
- Dauer-Manipulation: Wiederholung von Kopien einer Periode
- F0-Manipulation: Verschiebung der Einheiten gegeneinander (→ Erhöhung) oder auseinander (→ Absenkung). Auffüllen mit/Löschen von Perioden zur Aufrechterhaltung der Dauer
- Intensität: Aufaddieren von Kopien einer Periode

Manipulation von F0 und Dauer: TD-PSOLA

Unit-Selection-Synthese

Unterschiede zur klassischen Diphon-Synthese

- große Datenbank, keine oder geringe Signalmanipulation
- ermöglicht höhere Natürlichkeit der Synthese
- Units: variable Größe (z.B. Diphone); je größer die Einheiten, desto größer das benötigte Inventar

Unit-Selection: Datenbank

- Für jede Unit Aufnahme von **mehreren Exemplaren**:
 - +/-akzentuiert, +/- phrasenfinal, unterschiedliches Sprechtempo, unterschiedliche emotionale Markierung, . . .
- Extrahierung der akustischen Charakteristika (s.u.)

- Statt Signalmanipulation Suche nach der besten Sequenz \hat{U} aus gespeicherten Unit-Varianten
- basierend auf der Minimierung von Target- (T) und Join-Kosten (J)

$$\hat{U} = \arg\min_{U} \sum_{i} \left[J(u_{i-1}, u_i) + T(u_i, s_i) \right]$$
 (1)

- s_i: durch die vorgeschalteten Text- und Prosodie-Module vorgegebenen Zielspezifikationen
- *u_i*: gespeicherte Unit

Target-Kosten $T(u_i, s_i)$

- Abstand des Exemplars u_i zu den Zielvorgaben s_i
- u_i, s_i als **Merkmalsvektoren** repräsentiert mit Angaben zu:
 - Identität der Unit
 - Unit-Kontext
 - prosodische Spezifikationen
 - F0-Kontur
 - Dauer
 - Intensität

• Beispiel:

- $s_i = [/u:d/, +akz, -phrasenfinal, 120-110-100, 80], d.h.$
- Ziel ist ein /u:d/-Diphon in akzentuierter und nicht-phrasenfinaler Position mit der F0-Kontur 120-110-100 Hz und der Dauer 80 ms
- $T(u_i, s_i)$ als Kombination von **Teilkosten**
 - eine Teilkostenfunktion für jedes der betrachteten Merkmale j: $T_i(u_{ij}, s_{ij})$
 - gewichtete Summe voneinander unabhängiger Teilkosten:

$$T(u_i, s_i) = \sum_i w_j T_j(u_{ij}, s_{ij})$$
 (2)

- Teilkosten T_j numerischer Features:
 - Korrelation zwischen F0 der Unit u_i und der F0-Zielkontur in s_i
 - Mittlere absolute Distanz zwischen F0 in u_i und Zielkontur
 - Absolute Distanz zwischen u_i-Dauer und Zieldauer
- binäre Teilkosten T_i kategorialer Features:
 - gleicher Unit-Kontext von u_i und s_i : 0, sonst 1
 - Akzentangaben gleich: 0, sonst 1

Join-Kosten $J(u_{i-1}, u_i)$

- Diskontinuitäten zwischen aufeinanderfolgenden Units u_{i-1} und u_i
- ebenfalls als gewichtete Summe von unabhängigen Teilkosten modellierbar:

$$J(u_{i-1}, u_i) = \sum_{i} v_j J_j(u_{i-1j}, u_{ij})$$
 (3)

- Teilkosten J_j (nach Hunt&Black, 1996):
 - Cepstral-Distanz an der Konkatenationsstelle
 - absolute F0-Distanz
 - absolute Log-Energiedistanz

Ermittlung der besten Unit-Sequenz \hat{U}

- analog zu statistischen POS-Taggern, Alignment (vgl. POS-, G2P-Folien)
- HMM-Modellierung
 - Beobachtungen: Targets $\{s\}$
 - Zustände: gespeicherte Units {u}
 - ullet Transitionswahrscheinlichkeiten o Join-Kosten
 - ullet Emissionswahrscheinlichkeiten o Target-Kosten
- \hat{U} mittels **Viterbi**: Finden des Pfades durch die Trellis, auf dem die minimalen Kosten anfallen

Evaluierung

Verständlichkeit

- Verwendung semantisch nicht vorhersagbarer Sätze (SUS)
- Erzeugung eines SUS: zufälliges Auffüllen eines syntaktisch wohlgeformten POS-Templates mit Wörtern der entsprechenden Wortarten
- Reimtest:
 - Diskriminierbarkeit von Konsonanten
 - Paare sich reimender Wörter, die sich jeweils in einem distinktiven phonologischen Merkmal unterscheiden
 - ABX-Test: Präsentation eines Worts aus einem Paar (in SUS)
 - + Aufgabe, zu beurteilen, welches

Evaluierung

Natürlichkeit

• Mean-Opinion-Score (MOS): Qualitätsurteile auf einer Skala von 1–5