Daten & Packages laden

Laden Sie die folgenden Packages und Data Frames:

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.3     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
urla = "https://www.phonetik.uni-muenchen.de/studium_lehre/"
urlb = "lehrmaterialien/R_speech_processing/Rdf"
url = paste0(urla, urlb)
rating <- read.table(file.path(url, "rating.txt"), 
                     stringsAsFactors = T)
preasp <- read.table(file.path(url, "preasp.txt"), 
                     stringsAsFactors = T)
asp <- read.table(file.path(url, "asp.txt"), 
                  stringsAsFactors = T)
vdata <- read.table(file.path(url, "vdata.txt"), 
                    stringsAsFactors = T)

Q & A’s

vdata %>%
  group_by(V, Cons) %>%
  summarise(count = n()) %>%
  ungroup()
## `summarise()` has grouped output by 'V'. You can override using the `.groups`
## argument.
## # A tibble: 21 × 3
##    V     Cons  count
##    <fct> <fct> <int>
##  1 %     K       142
##  2 %     P       142
##  3 %     T       142
##  4 A     K       147
##  5 A     P       141
##  6 A     T       144
##  7 E     K       144
##  8 E     P       140
##  9 E     T       141
## 10 I     K       142
## # ℹ 11 more rows
asp %>% 
  filter(Vpn %in% c("dlm", "hpt") & Kons == "t") %>%
  group_by(Vpn, Bet) %>%
  summarise(mean(d)) %>%
  ungroup()
## `summarise()` has grouped output by 'Vpn'. You can override using the `.groups`
## argument.
## # A tibble: 4 × 3
##   Vpn   Bet   `mean(d)`
##   <fct> <fct>     <dbl>
## 1 dlm   be         57.6
## 2 dlm   un         31.1
## 3 hpt   be         50.0
## 4 hpt   un         31.2
# oder
asp %>% 
  filter(Vpn %in% c("dlm", "hpt")) %>%
  filter(Kons == "t") %>%
  group_by(Vpn, Bet) %>%
  summarise(mean(d)) %>%
  ungroup()
## `summarise()` has grouped output by 'Vpn'. You can override using the `.groups`
## argument.
## # A tibble: 4 × 3
##   Vpn   Bet   `mean(d)`
##   <fct> <fct>     <dbl>
## 1 dlm   be         57.6
## 2 dlm   un         31.1
## 3 hpt   be         50.0
## 4 hpt   un         31.2
preasp %>%
  group_by(cplace) %>%
  summarise(maxdur = max(clodur), 
            meandur = mean(clodur), 
            mindur = min(clodur)) %>%
  ungroup() %>% 
  arrange(desc(meandur))
## # A tibble: 3 × 4
##   cplace maxdur meandur mindur
##   <fct>   <dbl>   <dbl>  <dbl>
## 1 tt      0.328   0.199 0.0816
## 2 pp      0.279   0.181 0.111 
## 3 kk      0.313   0.155 0.0373
preasp %>% 
  filter(vtype == "a" & region != "C") %>%
  group_by(region, city) %>%
  summarise(vdursd = sd(vdur)) %>%
  ungroup()
## `summarise()` has grouped output by 'region'. You can override using the
## `.groups` argument.
## # A tibble: 12 × 3
##    region city      vdursd
##    <fct>  <fct>      <dbl>
##  1 N      bergamo   0.0301
##  2 N      genova    0.0219
##  3 N      milano    0.0304
##  4 N      parma     0.0342
##  5 N      torino    0.0341
##  6 N      venezia   0.0247
##  7 S      bari      0.0206
##  8 S      cagliari  0.0296
##  9 S      Catanzaro 0.0408
## 10 S      lecce     0.0279
## 11 S      napoli    0.0316
## 12 S      palermo   0.0272
rating %>%
  group_by(Vpn) %>%
  summarise(Q1 = quantile(Rating, .25), 
            Q3 = quantile(Rating, .75)) %>%
  ungroup()
## # A tibble: 26 × 3
##    Vpn      Q1    Q3
##    <fct> <dbl> <dbl>
##  1 S1     5.65  6.83
##  2 S10    5.33  6.50
##  3 S11    5.54  6.58
##  4 S12    3.58  6.08
##  5 S13    5.54  6.58
##  6 S14    2.71  5.46
##  7 S15    5.25  6.12
##  8 S16    5.3   6   
##  9 S17    6.53  7   
## 10 S18    4.96  5.87
## # ℹ 16 more rows
rating %>%
  slice_head(n=100) %>%
  group_by(Lang) %>%
  summarise(rat.med = median(Rating),
            rat.mean = mean(Rating)) %>%
  ungroup()
## # A tibble: 2 × 3
##   Lang  rat.med rat.mean
##   <fct>   <dbl>    <dbl>
## 1 E        6.5      6.36
## 2 S        6.33     6.29
rating %>%
  group_by(Vpn) %>%
  summarise(nvpn = n()) %>%
  ungroup() %>%
  dim()
## [1] 26  2
df = preasp %>%
  group_by(city, region, cplace) %>%
  summarise(sprecher = n_distinct(spk)) %>%
  ungroup() %>%
  slice_min(sprecher, n = 1)
## `summarise()` has grouped output by 'city', 'region'. You can override using
## the `.groups` argument.