
1

 MTNEW

Multichannel signal display
Typographical conventions in this document:

matlab functions and variables, and mtnew command names are shown in the bold, fixed-width
font, e.g data, eval, display_settings

Prompts from the program to the user are shown in the red, fixed-width font, e.g. M>, enter
blank-separated list

Input from the user to the program is shown in the green, fixed-width font, e.g v, ?, JAW

Names of signals are shown in the magenta fixed-width font, e.g AUDIO

Getting started
The signals that are displayed in mtnew are stored in MAT files. A complete recording session
(experiment) is divided into trials, which are identified by a number from 1 to n. Each MAT file
only contains data for one trial. However, there may be more than one MAT file per trial. In general,
different categories of signal (e.g EMMA vs. sonagram vs. video) and signals with different sample
rates (e.g EMMA vs. audio) are stored in separate files.

For example, in an imaginary experiment in which EMMA and audio was recorded the data might
be stored in MAT files called myexp_emma_001.mat (EMMA data trial 1), myexp_audio_001.mat
(audio data trial 1), myexp_emma_122.mat (EMMA data trial 122) and so on.

mtnew is a matlab function that must be called with a number of input arguments. These are
outlined in this section. This section also briefly describes the basic way of interacting with the
program.

The main part of this document then describes each command available in the program.

Separate chapters give detailed information on the structure of the mat files used, on advanced ways
of interacting with the program, and on programming extensions to the program.

The program can in principle be used without any knowledge of matlab programming. However, it
can be put to much more effective use with such knowledge. The program is built up on a set of
matlab functions that are designed to make it easy for users to add their own extensions to the
program.

Starting the program
mtnew is called as follows:

mtnew(cutfile,recpath,reftrial,signalspec,cmdfile,session_number)

The first four input arguments are compulsory, the last two are optional.

cutfile: MAT segmentation file containing (at least) variables data and label
(further details are given in the chapter on MAT file structure)

 recpath: Common part of signal filename

2

 reftrial: Number (as string; e.g. '001') of reference (or typical trial). The program
examines the files related to this trial to get basic information on the signals
to be displayed (a further use is to tell the program how many digits are used
to code trial number in the file names).

 signalspec: This is the most complicated specification that needs to be made.
signalspec is a string matrix, in which each line provides information on
one signal. The information is divided into up to four fields, separated by a
period:

“unique_filename”

i.e the unique part of the the mat file name. In the example given above,
‘recpath’ would be set to ‘myexp_’ (probably prefixed by the path to the
files), and “unique_filename” for the audio data would be ‘audio_’, and
‘emma_’ for all the EMMA signals to be displayed. In other words the
“unique_filename” is the part of the filename between the part defined in
‘recpath’ and the trial number.

“external_signalname”

Name of signal in the mat file. Each mat file contains a variable called data,
containing the actual signal data. Multichannel data is arranged so that each
column of data constitutes one signal. The name of the signal in each
column is defined in a string matrix variable called descriptor, which has
as many lines as there are columns in data (there is an exception to this
rule). Thus you need to know these names in order to identify the required
signals to the program. If necessary, you will have to examine descriptor
in one of the data files before starting the program.

“internal_signalname”

Name by which the signal is referred to during the mtnew session. This is
optional; it defaults to “external_signalname”. However, it may often be
convenient to define a new name for use within the progam: The names in
“external_signalname” may be cumbersome to use (they are sometimes
generated automatically). e.g suppose an external signalname is
‘TONGUE_TIP_X’. You could assign this the shorter internal name ‘tipx’.

Sometimes it may even be essential to assign a new internal name. For
example, you may have separate mat files with two different versions of an f0
track, but with an identical name in the descriptor variable in each file, e.g
both use the signalname ‘F0'. In order to look at these signals together you
will need to give them different internal names.

The syntax is thus:

unique_filename.external_signalname[.internal_signalname]

Example:

To load audio and tongue-tip data, giving a new internal name to the EMMA
data:

3

str2mat(‘audio_.AUDIO’,’emma_.TONGUE_TIP_X.tipx’,’emma_.TONGUE_TIP_Y.tipy’)

(str2mat is a matlab function that gets a list of strings into the arrangement
required by matlab)

There is a fourth optional specification called “mem_mode”. This is mainly
intended for use with video data, and allows such data (which is typically
stored in an 8 bit format in the mat files) to be also stored internally as 8bit,
rather than being converted to double when loaded, which is the default
behaviour of the program. This is discussed in detail in the chapter on MAT
file structures.

 cmdfile: Optional: Command file name. This is a text file of commands to the
program, which are processed when the program is started. This is extremely
useful, as it avoids having to laboriously type in large numbers of display
options by hand every time the program is started. Basically, a command file
can simply consist of a list of commands (one to a line) exactly as the user
would have entered them at the keyboard. However, command files have a
number of additional features that are discussed in the section on advanced
interaction with the program. In order to provide the framework for a
commandfile, Matlab’s diary function can be used to record the commands
entered at the keyboard (a small amount of editing of the diary file will
normally be necessary before it can be used as a command file).

 session_number:Optional. It is perfectly possible to run multiple matlab sessions
simultaneously, with mtnew running in each matlab session. In order to make
it possible to identify which figures belong to which session, an optional
(arbitrary) session number can be specified. This is shown in the title bar of
each figure (and also in the main level prompt, in the command window)

Overview of main display types
mtnew uses separate matlab figures (windows) for the different kinds of displays.

Each type of display (each figure) has a name; a brief description (with their names) of the currently
available displays is given in the following list. The display name is to be found in the title bar of
the figure (in the form “mt_displayname_sessionnumber”).

Name

f(t) Waveform display

xy Trajectory display. Actually more versatile than just a simple 2D x/y display. Allows
flexible use of 3 spatial axes plus a colour axis. Also used for animation of
movements. The figure can be subdivided into any number of individual trajectory

4

displays, each with its own specifications (e.g simultaneous sagittal and coronal
views of 3D data).

sona Sonagram display. Not restricted to the classic sonagram representation of spectral
data from the speech signal. Can be used for any data that is formally equivalent to a
time-series of spectral slices (e.g a special kind of EPG display is possible). As with
the xy display, the figure can be subdivided at will, e.g to show both wide- and
narrow-band sonagrams. Note: Sonagrams are not generated by the program. They
must be computed and stored as MAT files beforehand (see MTSONA2FILE). This
is a deliberate part of the philosophy of clearly separating signal acquisition or
generation from signal display, and ensures the above-mentioned goal of making this
display type available for any signal that is formally equivalent to a sonagram.

video Video display. More formally, it can be used for showing films of any data that can
be regarded as a time-series of images. Again subdivision of the figure is possible.

organization The default setting of this figure is to show a rough oscillogram of the audio data (if
available) of the current cut. It can also be set up to show various other kinds of
‘background’ information. This is detailed elsewhere. Normally, this is the display
with which the user will be least concerned.

For more details, and examples of typical displays see ???

When mtnew is started only the organization and f(t) figures are created. The other display types are
created by the user if and when they are required.

Program Commands: Introduction
Program commands are selected by the user by typing the command letter assigned to it (user input
is made via the normal matlab command window, except when in cursor mode (see below)). The
command must be terminated by typing <CR>. Commands will normally be referred to by the full
command name, since these are fixed, rather than by the single letter used for activating them, since
this assignment of letters to commands can in principle be chosen freely by the user (customization
of these assignments of keys to commands is discussed elsewhere).

When the program starts, the prompt in the command window is M>. This indicates that the user is
at the Main command level. The prompt changes whenever a command is given that takes one to a
new command level (For example, the prompt changes to md> when the display_settings
command is chosen at the Main command level, and changes to mdx> when the setxy command
is chosen at the display_settings level. Thus the length of the prompt indicates how far away
one is from the main command level. Usually it is possible to back up a level in the command
structure by simply pressing <CR>.)

The command structure of the program can be viewed in the menu bar of the organization figure.
The menu items shown there are the Main level commands. Most of these commands expand to
show further levels when they are clicked on. Note: These drop-down menus in the organization
figure are for information only. Clicking on any of the menu items does not actually execute the
command! However, clicking on any menu item that is a terminal item in the menu tree (i.e which
does not expand to a further submenu) will call up the help text for that command. The underlined

5

letter in the command name is the letter that must be typed at the matlab prompt to execute the
command. If the command letter is not in the command name it is shown to the right of the
command name.

A more direct way of getting help when interacting with the program is as follows:

Whenever input is required from the user, a list of the choices available can be obtained as a pop-up
menu by typing ?, and the choice can be selected (and executed) by double-clicking on it. This is
rather a slow way of entering commands themselves; after some practice with the program this
technique will probably not be needed much. However, as a result of some commands the user is
prompted, for example, to enter a list of signals for display etc. The ? technique works here too; this
will give a pop-up list of the signals that can be selected.

Further notes on entering lists at the keyboard:

(This is also particularly relevant when using a commandfile, i.e a situation where pop-up lists
cannot be used.)

When entering a list at the keyboard (the user is prompted for a blank-separated list), a
useful feature is that partial specifications can be used: If, for example, AUDIO is the only signal
whose name starts with the letter “A” then it is sufficient to simply type A. This mechanism also
allows multiple signals to be selected with a single specification: If there are signals called JAWX
and JAWY then typing JAW (or possibly even just J) will select both of them. (Note: If the full name
of one signal forms the first part of the name of another signal only the first signal will be selected;
i.e multiple selections are only made if an exact match is not found.)

It is also possible to choose items in the list by giving a vector of indices in the list (using any
standard matlab syntax). Enclose the vector in ‘[...]’.

e.g [1 3 5], [3:6], [1:3:7].

Use can also be made here of a variable named ls that indicates the last item in the list: e.g
[5:ls] chooses the fifth item up to the last item.

Common commands

There is a group of commands that is referred to as “<Common>” in the menu bar of the
organization figure. Commands in this group can be used at any command level in the program.
They are never shown explicitly in the list of commands available. In fact the ? technique is an
example of such a Common command. Strictly speaking it should be referred to as the what
command. The letter ? is simply the preset command letter for activating this command. The other
main help commands are also Common commands: global_help (default letter H) uses the
browser to open this PDF document; local_help (default letter h) displays in the Help window
the detailed descriptions of all commands available at the current location in the command
hierarchy. A complete list of the common commands is given below.

Changing Graphics properties

The program does not provide ready-made commands for manipulating properties of the graphics
objects like line styles and widths, marker symbols, and axis grids.

However, whenever the program is waiting for user input at the main level (prompt M>) then it is

6

possible to call up matlab’s graphics property editor by clicking on any graphics object. This offers
a great deal of flexibility and avoids having to program many little details into mtnew itself.

It can be particularly useful when preparing figures for hardcopy.

However, this feature should be used with care. It is best to confine any edits to ‘simple’ properties
like the ones mentioned above. Some properties of the graphics objects should not be changed under
any circumstances (especially userdata and tag) as they are essential to correct operation of the
program.

Detailed Description of all Commands

Under construction!!

Should eventually include details of all commands given in the list of commands at the end of this
document. Currently only complete for cursor-level commands.

 Quickstart

MTNEW: Version 23.08.02

Assuming default command key assignments, at any program prompt type:

? to get a list of currently available choices

h to get a detailed description of currently available commands

H to open the full on-line documentation

Use the menu bar in the mt_organization figure to view the command hierarchy.

Click on any terminal member in the hierarchy to obtain a description of that command

Many cursor movement commands are assigned by default to numeric keys.

Engage the numlock key if you want to use the numeric keypad for cursor movement

(but you will need to disengage it on Linux systems to move and resize figures).

 Cursor

Introduction
Unlike all other commands, commands at this level are carried out immediately
when the command key is pressed. When the cursor level is activated two cursors
become visible in the f(t) figure. If a sonagram figure has been activated, linked
cursors will be visible here, too. If an xy display has been activated, the time instants
corresponding to the two cursors are marked by contours (e.g of the tongue) linking

7

up the time-points on the trajectories. In all these figures, one of the cursors is green
and one is red. The green one is referred to as the active cursor. Many commands
operate specifically on the active cursor.

In order for the cursor commands to work, the mouse pointer must be in the f(t)
figure and the figure must be active (i.e title bar is highlighted). In fact, it is possible
to designate other figures as the target figure for cursor commands (this is done with
the main>display_settings>foreground command). This is most likely to be useful
for the sonagram figure, so that the mouse can be moved over the sonagram to
position the cursors. It is not recommended to set a non-time-based figure like the xy
figure or a video figure to be the foreground figure.

Cursor commands are mainly used for moving the cursors around (surprise!). In
addition to some miscellaneous commands there are two important submenus, one
for sound, and one for defining segment boundaries and labelling the signal (=
marker commands).

A note on the cursor movement commands: It should be obvious, but don’t forget
that the right cursor can never be moved to the left of the left cursor, and vice-versa.
The default key assignments have been based on use of the numeric keypad with the
right hand, and movement of the mouse with the left hand, with left and right buttons
positioning left and right cursors respectively.

leftcursor2pointer
Moves the left cursor to the current position of the mouse pointer.

rightcursor2pointer
Moves the right cursor to the current position of the mouse pointer.

slowleft
Moves the active cursor to the left in small steps. One step is defined as 0.001 times
the current length in seconds of the f(t) display.

fastleft
Moves the active cursor to the left in large steps. One step is defined as 0.01 times
the current length in seconds of the f(t) display, i.e 10 times the size of the slowleft
command.

slowright
Moves the active cursor to the right in small steps. One step is defined as 0.001 times
the current length in seconds of the f(t) display.

fastright

8

Moves the active cursor to the right in large steps. One step is defined as 0.01 times
the current length in seconds of the f(t) display, i.e 10 times the size of the slowright
command.

jumpleft
Moves both cursors to the left by the time corresponding to the current distance
between the cursors. Thus the right cursor moves onto the previous position of the
left cursor, and the distance between the cursors does not change.

jumpright
Moves both cursors to the right by the time corresponding to the current distance
between the cursors. Thus the left cursor moves onto the previous position of the
right cursor, and the distance between the cursors does not change.

swap
Swaps the active cursor, i.e the red cursor turns green and the green one red.

jumpmstart
Move active cursor to current start marker.

This command will only have any effect if marker commands have been used to
define segment boundaries. See discussion of marker commands for further
background. The command will also have no effect if e.g the active cursor is the left
cursor and the current start marker is to the right of the right cursor (and vice-versa).

jumpmend
Move active cursor to current end marker.

This command will only have any effect if marker commands have been used to
define segment boundaries. See discussion of marker commands for further
background. The command will also have no effect if e.g the active cursor is the left
cursor and the current end marker is to the right of the right cursor (and vice-versa).

previouszx
Move active cursor to previous zero crossing in the audio signal. (Note: In fact any
signal can be used as the audio channel. See main>i_o>audiochannel.)

nextzx
Move active cursor to next zero crossing in the audio signal. (Note: In fact any signal
can be used as the audio channel. See main>i_o>audiochannel.). Currently, only the
positive zero-crossing can be used.

9

previoussubcut
Moves the left and right cursors onto the start and end boundaries, respectively, of
the last subcut whose start boundary is to the left of the current left-cursor position. If
no subcuts are completely within the current f(t) display, the cursors are not moved.

Subcuts (and how they differ from markers) are explained elsewhere.

See main>display_settings>settime>sub_cut_control for information on activating
subcut display.

nextsubcut
Moves the left and right cursors onto the start and end boundaries, respectively, of
the first subcut whose start boundary is to the right of the current left-cursor position.
If no subcuts are completely within the current f(t) display, the cursors are not
moved. Also, the command may not work quite as expected if the next subcut is not
completely on the screen, but a later one is. Here, too, the cursors will not be moved.

Subcuts (and how they differ from markers) are explained elsewhere.

See main>display_settings>settime>sub_cut_control for information on activating
subcut display.

xyview
Changes the view of displays in the xy figure. For 2D displays of 3D data (e.g
sagittal, coronal or transversal views) it is often convenient to design the display as
3D and then switch between the possible views, rather than set up completely
different displays for the different viewing planes.

After giving this command the user is prompted for the desired view. Give a 2-letter
string (e.g ‘yx’, ‘xz’) to specify the real-world axes to assign to the display x and y
axis respectively (it is also possible to revert from a 2D display back to the default
3D display). Axis direction can be reversed by prefixing the axis letter with a ‘-‘, e.g
‘-xy’.

If there are multiple displays in the xy figure, choose the axes system to be modified
by clicking in the coordinate system in the xy figure (it will then be necessary to
reactivate the f(t) figure by clicking in its title bar). If this is inconvenient (e.g if you
want to set the view in a startup command file) consider using the underlying
function MT_SXYV directly (consult the function’s help for further information).

imageatcursor
Display video frame corresponding to the time-instant of the active cursor (only
available if a video figure is operational)

toggleautoimageupdate
Determines whether video frame is automatically updated whenever the active cursor

10

is moved, i.e without having to explicitly use the imageatcursor command. Initially,
this feature is not in operation (it may make cursor movement rather sluggish, so it
may not always be desirable).

(Only available if a video figure is operational.)

return
Exit from cursor mode and return to the main command level.

sound

Introduction

Activates the sound submenu (see cursor>sound).

 The signal currently defined as the audio channel will be output via the
soundcard. Any signal can be assigned to the audio channel (see
main>i_o>audiochannel), but the program tries to make an intelligent? initial
choice (i.e it looks for a signal called ‘audio’ or ‘Audio’). Assigning non-
audio signals like laryngograph or EMG can actually be quite useful.

It is not possible to interrupt the sound output once it has started. However, if
any mouse button is pressed, the sound function itself is terminated and new
commands can be entered by the user. In particular, the time instant in the
sound signal at which the mouse button was pressed is noted by the program,
and it is possible to set the time display in the f(t) figure with this time point
at the centre of the screen by using the main>timeshift>bookmark command
(see that command for a detailed example).

cursor

Plays the segment delimited by the current left and right cursor positions

screen

Plays the currently visible f(t) screen

cut

Plays the whole of the current cut

trial

Plays the whole of the current trial (in simple cases where no segmentation
has been carried out, this will be the same as the cut command

current_marker

11

Plays the segment delimited by the start and end boundaries of the current
marker type. If either the start or end boundary has not been set the active
cursor is used instead, in which case it must be in an appropriate position, i.e
if only the start boundary has been set then the active cursor must be to the
right of this boundary (and vice-versa if only the end boundary has been set).

For more background on markers see the marker submenu.

numbered_marker

Plays the segment delimited by the start and end boundaries of the desired
marker type. After this command has been given, the user must type a single
digit to choose the marker type to be played (there is no prompt for this
choice, and the key pressed is not echoed). Obviously, if more than 10 marker
types are in operation only marker types 1 to 9 can be played with this
command. If either the start or end boundary has not been set the active
cursor is used instead, in which case it must be in an appropriate position, i.e
if only the start boundary has been set then the active cursor must be to the
right of this boundary (and vice-versa if only the end boundary has been set).

For more background on markers see the marker submenu.

left_screen

Plays from the start of the f(t) screen up to the left cursor.

right_screen

Plays from right cursor up to the end of the f(t) screen.

left_cut

Plays from the start of the current cut up to the left cursor.

right_cut

Plays from right cursor up to the end of the current cut.

xleft_screen

Plays from the start of the f(t) screen up to the right cursor.

(“x” stands for “extended”, i.e unlike the corresponding commands without
“x” in the command name this command (and its counterparts like xleft_cut)
plays up to the cursor furthest from the start position.)

xright_screen

Plays from left cursor up to the end of the f(t) screen.

12

xleft_cut

Plays from the start of the current cut up to the right cursor.

xright_cut

Plays from left cursor up to the end of the current cut.

marker

Introduction

Activates the marker submenu (see cursor>marker).

This menu allows markers to be set, moved and deleted, and the resulting
segments to be labelled.

See the separate section on cuts, subcuts and markers for more background to
marker files.

Currently, there is no command to activate the marker functions. It is
necessary to call function MT_IMARK directly. See the help for this function
for more details. Basically, it is necessary to specify a marker file, the number
of marker types to be used, and whether the program is to work in append,
edit, or read-only mode.

Marker type is simply an integer from 1 to n. It is not possible to define more
than one segment of the same marker type within the same cut. Workarounds
for this restriction are discussed elsewhere.

set_start

Sets a start marker at the position of the active cursor, using the current
marker type. The marker is shown in the f(t) figure (and the sona figure if
present) as a solid line going from the bottom of the figure up to a height that
depends on cut type. The solid line has a right-pointing triangle as line-
marker. The position of the start marker is also shown in the organization
figure with green right-pointing triangles, with position related to the
oscillogram of the current cut. This display can be useful for keeping track of
what markers have been set in cases where the f(t) figure does not display all
the current cut.

If the start marker has already been set, it is moved to the active cursor
position. In other words, it is not necessary to clear the marker to set it again.
This means that it is necessary to be a little bit careful not to reposition a
marker inadvertently. In future, a mechanism for locking markers to guard
against this may be introduced.

set_end

Sets an end marker at the position of the active cursor, using the current

13

marker type. The marker is shown in the f(t) figure (and the sona figure if
present) as a dashed line going from the bottom of the figure up to a height
that depends on cut type. The dashed line has a left-pointing triangle as line-
marker. The position of the end marker is also shown in the organization
figure with red left-pointing triangles, with position related to the oscillogram
of the current cut. This display can be useful for keeping track of what
markers have been set in cases where the f(t) figure does not display all the
current cut.

No end marker will be set if the active cursor is to the left of the
corresponding start marker (if already set).

clear_start

Clears the start marker of the current marker type.

clear_end

Clears the end marker of the current marker type.

decrease_type

Decreases the current marker type by one (if the current maker type is already
1, the program issues a warning but does nothing). The current marker type is
indicated by a horizontal dashed line across the f(t) figure, and a
corresponding number on the y-axis on the right side of the figure. It is also
shown in a similar way across the oscillogram of the current cut in the
organization figure,

increase_type

Increases the current marker type by one (if the current maker type is already
at the maximum value, the program issues a warning but does nothing). The
current marker type is indicated by a horizontal dashed line across the f(t)
figure, and a corresponding number on the y-axis on the right side of the
figure. It is also shown in a similar way across the oscillogram of the current
cut in the organization figure,

set_label

The user is prompted to enter a label. This is displayed near the start marker
of the current marker type. It is actually quite possible to define a label even
if the corresponding start marker has not yet been set. It is displayed at a time
location of zero until a start marker is set (and thus may well not be visible on
the screen). (Note that labels are not displayed in the organization figure.)

Currently no special fonts (e.g phonetic) can be used in the label.

14

set_type

Set marker type to a specific type. After giving this command the user must
enter a single digit (1 to 9) specifying the marker type to use (thus restricted
to cases where no more than this range of markers is in operation). This
single digit specification is not explicitly prompted for, and is not echoed. If
it is necessary to specify marker types outside this range, then the underlying
function mt_smark must be used directly (e.g in a macro). See the function
help for more details.

15

Advanced techniques for interacting with the program
User input is set up so as to make it easy to assemble frequently needed collections of commands to
the program in command files, and to assign a series of elementary commands to ‘macro’
commands. Thus, if the program does not have a command that you would find useful, consider
how existing commands could be combined to provide what you need.

One of the main points to understand here is the use of some special characters. This applies
regardless of whether input comes from the keyboard or from a commandfile.

% When first character in line, treat this line as a comment (mainly useful for adding comments
in command files)

Separates commands on a single line of input. Useful for making command files more
legible, but also for defining macro commands

* Indicates default input when used as single character between two #

@ If this is the first character on a line of input, then the line is passed to the matlab eval
function before proceeding. The result of the eval function should be a string of program
commands.

This can be an elegant way of e.g repeating a command (or group of commands) a large
number of times.

Examples:

1.

The movie command prompts for the delay factor for the animation

use @repmat(‘4#',[1 20]) to have the animation played 20 times with delay factor 4

2.

Scroll through the time display in time steps, waiting for a keypress after each shift

@repmat('t#s#q#v#pause#',[1 10])

Even this may be awkward to type repeatedly. So if you are lazy or want more flexibility you
can prepare this in a small function e.g

function ss=r(irep)

myrep=10;

if nargin myrep=irep; end;

ss=repmat('t#s#q#v#pause#',[1 myrep]);

Then you just need to type “@r” to get 10 steps through the signal, or “@r(22)” to get 22
steps.

16

‘’ If first and last character of a line of input are single quotes then the line is passed directly to
the program without being parsed for any of the above special characters (the line is also
stripped of the quotes).

An important case where this is necessary is when defining a macro command from the
keyboard. Since macro commands normally contain # to separate individual commands, the
normal parsing needs to be disabled when specifying the macro commands.

Defining macro commands
There is currently no particular function for defining macro commands.

The definition is made by assigning the command string to a field of variable M, that is accessible
whenever the eval_command command (its default command letter is v) is used.

e.g

M.n=’n#*#s#X#r’

defines a macro called ‘n’ that moves to the next cut and does an XY display of the whole cut

The best way of defining frequently used macros is to write a small script contain a collection of
lines of the form

M.fieldname1=.......

M.fieldname2=.......

etc.

and run this script automatically using the eval_command command in a startup commandfile.

e.g

v

mymacrodef

(or v#mymacrodef)

If you want to define macros ‘on the fly’ at the keyboard there is a slight complication if the macro
contains #.

After using the eval_command command, the M.fieldname=.... string must be enclosed in
quotes.

i.e you will need to type something like:

v

‘M.n=’n#*#s#X#r’‘

Macro commands also work at the cursor level.

17

Currently the @ (and %) special characters cannot be used as the first characters of macros.

However, it is quite possible to define a macro with repetitions of a group of commands using a
similar construction to the one used in the @ example above. e.g

M.r=repmat(‘s#s#’,[1 20])

When used at the cursor level this will give output sound of the current segment 20 times.

This is because the macro definition is done by passing the complete expression to the MATLAB
eval function. So the definition can include any MATLAB expression that will evaluate to a string.

Further points

1. Reassigning the special characters

To assign the special characters given above to different characters either edit PHILCOM.M (for
permanent changes) or write a function to modify the appropriate global variables defined in
PHILCOM.M (for temporary changes).

2. Calling command files

The most commonly used commandfile is one specified when calling MTNEW (referred to as a
start-up commandfile). However commandfiles with collections of commands can be used at any
time in the program:

specify philcom(‘commandfile’) from either the eval_command or keyboard
command.

18

Command List

(with default key assignments)

[main]
n next
i i_o
s show
c cursor
t timeshift
d display_settings

[common]
h help
? what
k keyboard
v eval_command
+ eval_variable

[main>i_o]
r return
a audiochannel
p plot
q quit

[main>cursor]
1 slowleft
4 fastleft
7 jumpleft
2 slowright
5 fastright
8 jumpright
0 swap
<left_button> leftcursor2pointer
<right_button> rightcursor2pointer
[jumpmstart
] jumpmend
z nextzx
Z previouszx
c nextsubcut
C previoussubcut
w xyview
i imageatcursor
I toggleautoimageupdate
r return

19

s sound
m marker

[main>timeshift]
q return
0 t0
d duration
s skipforwards
S skipbackwards
l start2left
L end2left
r start2right
R end2right
b start2start
B end2end
[start2mstart
] start2mend
{ end2mstart
} end2mend
m bookmark
z zoomin2cursor
Z zoomout2cut
c centre2cutpos
C startend2cutpos

[main>show]
r return
t timedisplay
x xycursor
X xyscreen
s sonacursor
S sonascreen
m moviecursor
M moviescreen
f videocursor
F videoscreen

[main>display_settings]
r return
f foreground
x setxy
t settime
o setorganization

[main>display_settings>settime]
r return

20

i initialize
c choose_signals
p pair_axes
P cancel_pairing
s sub_cut_control
g get_settings
u up
d down
e extremes
x clipping

[main>display_settings>setxy]
r return
i initialize
f figure_settings
a axes_settings
x axis_settings
g get_settings

[main>display_settings>setorganization]
r return
t maxmin_trial
c maxmin_cut

[main>cursor>marker]
s set_start
e set_end
S clear_start
E clear_end
d decrease_type
u increase_type
t set_type
l set_label

[main>cursor>sound]
s cursor
S screen
c cut
t trial
3 current_marker
6 numbered_marker
l left_screen
r right_screen
L left_cut
R right_cut
[xleft_screen

21

] xright_screen
{ xleft_cut
} xright_cut

Supplement 1

Supplement

Display_settings
(preliminary version, 27.6.07)

Introduction

The commands in this section are mainly used to set up the display of the time-wave or xy
display. A few settings are also available for the organization figure. Currently, there are no
interactive commands for adjusting the display in sonagram or video figures, but a few utility
functions are available for common tasks.

setxy

The commands in this section are used to setup and adjust the display of signals in the xy
figure. The term ‘xy’ is actually a misnomer, since the displays can be three-dimensional if
desired, and can also use colour as a fourth dimension.
The settings can become quite complicated, since there are several possibilities for specifying
the kind of data associated with each axis (x, y, z, colour), so it is usually best to include all
the xy settings in a command file.

initialize

This command creates the xy figure (if one is already present it will be cleared).
The user is then prompted to specify the names of the axes to be created (the default is simply
‘xy’). Note that the figure can contain any number of axes, for example to show both a
sagittal and axial view of 3D EMA data, in which case a possible specification would be
‘sagittal axial’. These names must be used in some display commands to identify the axis to
which the command is to be applied. If more than one axis is specified then the user must
specify how the axes are to be arranged within the figure, using a two-element vector as in
matlab’s subplot function, i.e [1 2] indicates two axes side-by-side, [2 1] indicates axes
arranged vertically.
Following initialization it will be necessary to carry out various axes and axis settings as
explained below.

axes_settings
These are settings that apply to a complete axes system, e.g the sagittal display. The
axis_settings command, on the other hand, involve settings that apply to only one axis of one
display (e.g x, y, z).
After choosing the axes_settings command it is necessary to choose the display property that
is to be modified. These are explained here.

n_trajectories
After intialization, the first property that should be set is ‘n_trajectories’. This specifies, for
example, how many EMA sensors will be used in the display.

trajectory_names
Normally, specification of ‘n_trajectories’ should immediately be followed by

Supplement 2

‘trajectory_names’. This would then be the list of the names of the EMA sensors (the precise
way in which the names are most conveniently specified may depend on how the axis settings
are done (see below). In practice, if the data consists of e.g signals ‘tb_x’ and ‘tb_y’, then the
sensor name would normally be specified not as ‘tb’, but as ‘tb_’.

Unlike the above two properties (which must be specified) a specification for the remaining
properties is not essential, and will often not be required.

contour_order
This property is useful for specifying whether and how lines joining up the sensors are to be
shown. Default if to join up all sensors in the order in which they were specified for
‘trajectory_names’, but it will often be desired, for example, to avoid having the contour of
the tongue joined up to the lips. Basically, the specification consists of a list of sensor names,
but inserting the keyword ‘<line_break>’ at locations where the contour is to be interrupted
(note that it is perfectly possible to specify a sensor more than once).

hold_mode
When set to ‘on’, trajectories already displayed on the screen are not deleted when new data
are displayed.

surface_mode
This allows all corresponding time-points in each trajectory to be joined up by setting to
‘row’. This usually only useful when there are only a few time-points in the currently
displayed trajectory.

axis_settings
This command is used to determine the data specification for each axis.
First the user is prompted to choose the axis to which to apply the settings (x, y, z or c (the
latter standing for ‘colour’).
Following this, one of four possible data modes must be chosen. These are:

signal_data, time, constant, sensor_number
It is the combination of these 4 data modes for 4 different axes that gives the so-called xy-
display its flexibility.
Details of each data mode are:

signal_data
For the x, y and z axes this would be the most usual choice, e.g the data for the x-axis is
determined by the x-coordinate of the sensor data (for the colour axis this choice would be
unusual, but perfectly possible, e.g if a velocity signal is available then trajectory colour
could be determined by sensor velocity).
If this mode is chosen then the user must then reply to the following prompt:
'Generate signal list from trajectory names?'
Replying with ‘y’ (yes) is the simplest and most usual case. In this case the user is then
prompted for the suffix to add to the trajectory names to generate the signal names.
For example, if trajectories have been defined with names ‘tt_’, ‘tm_’, and ‘tb_’ then the
signals used for the x-axis will be ‘tt_x’, ‘tm_x’ and ‘tb_x’ if ‘x’ is specified as the suffix.
The following note is mainly relevant for 3D EMA data:

Supplement 3

Assume that the sensor coordinates in an EMA system are defined as ‘x’ for lateral, ‘y’ for
anterior-posterior, and ‘z’ for vertical position respectively. In order to set up a traditional
sagittal display one might think that the obvious way to proceed is to map sensor ‘y’
coordinates to the graphics x-axis, and ‘z’ coordinates to the graphics ‘y’ axis (mutatis
mutandis for coronal and axial views). In fact, it is generally better to set up all views of the
data with a complete - and identical - 3D specification (e.g x to x, y to y and z to z), and then
adjust the way each axes system is viewed to get e.g sagittal, coronal or 3D views. There are
currently no interactive commands for changing the views of the axes in the xy figure: this
has to be done by calling the function mt_sxyv.
There are two reasons for proceeding in this way: Firstly, for any 3D data (not just EMA) it is
probably easier to write a command file if all axes in the xy figure have exactly the same
specification (if the data is 3D it is probably better to treat it as such; the view can be changed
freely). Secondly, in the special case of 3D EMA, setting up the display of sensor orientation
can be extremely confusing if the scheme suggested here is not followed (this is discussed
further below).

time
This specification is often used for the colour axis. Colour of each trajectory is modulated
according to relative time in the trajectory; this means that trajectories for different sensors
have the same colour at the same time instant, making it for example easier to follow the
phasing relationships between sensors in the trajectory display.
‘time’ can, however, also be used as a specification for any of the 3 spatial axes (x, y, or z).
For example, setting the graphic x-axis to ‘time’ and the graphic y-axis to the sensor vertical
coordinates gives an alternative to the standard time-wave display in the f(t) figure (in
particular, any number of sensors can be collated in one panel, which is not possible in the
f(t) figure.

constant
Using this specification means that the position of the trajectory on one of the spatial axes, or
the colour of the trajectory can be determined by any expression that evaluates to a scalar
value.
An example would be to use the trial number (in combination with axes ‘hold’ mode) so that
data from different trials can be overlaid, but distinguished either by colour or position on
one of the axes. This can either be done by hand, i.e when prompted for ‘constant expression’
give a value like ‘5', ‘8', ‘15' etc, and change this before every new plot, or, more elegantly by
specifying an appropriate function that will evaluate to an appropriate value, e.g for the
present case mt_gtrid(‘trial_number’) ???check double quotes??? Since the expression is
evaluated each time a trajectory is drawn the constant expression only has to be specified
once.
As a further example, it would be quite easy to write one’s own function to extract the
repetition number of an item if this is contained in the label of each trial or segment.

sensor_number
This can be used as a way of making it easier to distinguish the trajectories of different
sensors (i.e by colour, or position on one of the spatial axes). ‘sensor_number’ here simply
means the the position in the list of trajectories given as ‘trajectory_names’ in the
axes_settings described above (i.e it has nothing to do with the sensor number in the original
data acquistion system)

Supplement 4

=====================================
The remaining properties in the setup of the xy figure concern the so-called sub-cut display.
This will be documented when the usage of sub-cuts and markers has been homogenized.

