
A practical introduction to    
Fourier Analysis of speech signals.
                                  
Part I: Background                



Let’s assume we have used supersine.m    
to synthesize with just 3 sine components
a rough approximation to a square wave,  
using the following specification:       
                                         
Frequency = [100 300 500]                
Amplitude = [  1 1/3 1/5]                
Phase     = [  0   0   0]                



If we don’t already know,            
how can we find what components      
are in the signal?                   
Basic idea:                          
Compare the given signal with the set
of possible component signals.       



What’s a plausible way of doing this comparison?
                                                
For each possible component, multiply the signal
sample by sample with the component.            
Form the cumulative sum of these products.      
                                                
This is quite similar to calculating            
a correlation coefficient                       



For the moment we will assume that    
we already know that the signal is    
periodic at 100Hz.                    
So we will only look at a 10ms segment
of the signal just synthesized        



Sine waves that fit precisely into
a 10ms window are, of course,     
100Hz, 200Hz, 300Hz, 400Hz etc.   



First of all, we compare the
square−wave approximation   
with a 100Hz sine           
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Maybe no surprise, but when we multiply          
the input signal (top panel) sample by sample    
with a 100Hz sine (2nd panel)                    
then all the products (3rd panel) are positive,  
so the cumulative sum of the products (4th panel)
increases continuously from left to right.       



The value we are now interested in is
the final (right−most) value in the  
cumulative sum (bottom panel):       
                                     
Cumulative sum = 50                  



How can we interpret this value of 50?       
                                             
First lets divide it by the number of samples
over which the cumulative sum was derived    
(the number of samples is 100 because the    
synthesis by supersine.m used a samplerate of
10000Hz):                                    
                                             
(Cumulative Sum)/(Number of Samples) = 0.5   



When synthesizing the signal we used an            
amplitude value of 1 for the 100Hz component.      
This refers to the peak amplitude.           
As the amplitudes of the sine waves                
used for comparison are also 1,                    
then what we have in effect calculated here        
is the mean square amplitude of a sine with a
peak amplitude of 1.                               
We see here that this mean square amplitude is 0.5.
(Root Mean Square would thus be 0.7071.)     
It is easy to show that in general the result of   
our multiplication and summation procedure must be 
half the peak amplitude of the component     
in the input signal                                



To be sure, we check that the amplitudes of the other      
components come out as expected.                           
So the next step is to compare the signal with a 200Hz sine
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This is very close to zero.                
(As expected, since even−numbered harmonics
are not present in a square−wave signal)   
                                           
Amplitude of 200Hz component = 4.6942e−017 



Now for the third component (300Hz).            
This was synthesized with peak amplitude of 1/3.
                                                
Thus, expected value (0.5 * 1/3) =   0.16667    
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Amplitude of 300Hz component = 0.16667



So far, so good.                                        
We appear to have a way of recovering                   
the amplitude of the individual components              
of a signal.                                            
                                                        
But in this signal the PHASE of all components was zero.
What happens when this is not the case?                 
                                                        
We will examine this by using a signal consisting of    
a single component (100Hz), but phase shifted.          
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100Hz component, phase shifted to 45°.   
Amplitude = 0.35355                          
This value is clearly below the figure of 0.5
obtained with no phase shift                 



It’s probably not too difficult to guess what
phase value in the input signal is going to  
give an amplitude of zero                    
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100Hz component, phase shifted to 90°.
Amplitude = 1.4849e−017                   
A very small value!                       



This should give us a clue as to how to handle signals   
regardless of their phase:                               
                                                         
Perform the multiplication−summation with                
TWO comparison signals and combine the result.           
                                                         
Using both a zero−phase sine and a 90°−phase sine    
would give us correct results for the extreme cases      
of a zero−phase and 90°−phase input signal,          
and we can hope that they can be combined to give        
sensible results for phase angles in between, e.g 45°



What’s another name for a sine shifted 90°?



COSINE                                   
                                            
Using comparison signals 90° apart is
intuitively appealing:                      
                                            
It’s like setting up a two−dimensional      
coordinate system                           
(X and Y axes are at 90° to each other) 



Up to now we have defined our signals relative to        
a sine with a phase of 0°, and are now thinking      
of a cosine as a sine rotated 90°.                   
                                                         
So we can imagine plotting our multiplication−summation  
results such that the sine−based result gives the x value
and the cosine result the y value                        
                                                         
(We will see shortly that − for a good reason − standard 
Fourier analysis procedures swap this axis arrangement.) 



Just to reinforce the point that sine and cosine
together form the appropriate bases for         
analyzing a signal:                             
                                                
What does one get when one plots one cycle of   
(say) a 100Hz cosine against a 100Hz sine?      
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A circle, of course.                                  
                                                      
This indicates that the sine and cosine component are 
independent of each other                             
                                                      
(The correlation coefficient over this set of points  
would be zero.)                                       
                                                      
So this provides another indication that they could be
an appropriate way of setting up a coordinate system  
that captures all the information about a signal.     
                                                      



                                                            
Now let’s go back to the input signal consisting of a       
100Hz sine, phased−shifted 45°.                         
                                                            
We will now do the multiplication−summation procedure on it,
but using the COSINE as the comparison signal.        
                                                            
(Accordingly the left−most point of the green               
reference signal in the second panel of the following       
figure has an amplitude of 1.)                              
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Now compare the amplitude of the cosine component
with that of the sine component we found earlier:
                                                 
Cosine component = 0.35355                       
Sine component = 0.35355                         



Note that the values are the same.      
                                        
Hardly surprising, as 45° is mid−way
between 0 and 90°.                  
                                        
But how can we combine these two values 
to get the expected value of 0.5?       
                                        
Lets plot the data in a two−dimensional 
coordinate system.                      
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How about the length of the line joining
the data−point to the origin?           



                                           
Using Pythagorus: sqrt(x*x + y*y)          
                                           
Amplitude of combined sine and cosine = 0.5



This has given us the value we wanted for the amplitude.
                                                        
Moreover, note the ANGLE of the line joining            
the data point to the origin:                           
                                                        
It is obviously 45°, because in this case the       
cosine and sine components (i.e the x and y coordinates)
are equal.                                              
                                                        
So this approach gives us both the amplitude and the    
phase for any input signal.                             



As a check, let’s look at the result for an input 
signal (100Hz), synthesized with an amplitude of 4
and a phase of 30°.                           
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Applying the above procedures                 
(muliplication−summation with sine and cosine,
combining them, and measuring the angle in the
plane)                                        
we are reassured to to find the following:    
                                              
Amplitude  = 2                                
Phase angle = 30                              



Up to now, we have been working out the amplitude and phase
just for individual components in the input signal.        
                                                           
We will now start using the standard Matlab function FFT   
(i.e an implementation of the Fast Fourier Transform)      
that extracts all components up to samplerate/2 in one go. 
                                                           
To understand the results we need to go back to the remark 
above that standard procedures usually swap the assignment 
of sine and cosine components to x and y axes.             
                                                           
Why is this in fact preferable?                            
                                                           
Consider how the sine and cosine of an angle is defined    
when we plot a right−angled triangle inside a circle:      
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cos(φ) = a_b / a_c                        
sin(φ) = b_c / a_c                        
                                                  
So assigning the cosine component to the X axis
fits in better with the conventional definition   
of these trigonometric functions.                 
                                                  
For consistency we must now regard an input signal
that is in phase with a cosine reference signal   
as having a phase angle of zero.                  
                                                  



So then we need to ask what phase a sine has relative         
to a cosine:                                                  
                                                              
Since cosine is at +90° relative to sine                  
then sine must be at −90° (or +270°)                  
relative to cosine.                                           
                                                              
(If this is not clear refer back to the figure with an example
of a cosine reference signal, and consider where a sine wave  
starts within the cosine cycle.)                              



So now lets look how a superposition of 4 different  
sine waves comes out of the standard fft procedure.  
                                                     
This example uses:                                   
Frequency: 100, 200, 300, 400                        
Amplitude:   4,   3,   2,   1                        
Phase:       0,  30,  60,  90                        
                                                     
(From now on we will now also automatically scale the
amplitude so that an input amplitude of 1            
comes out as 1, and not as 0.5)                      
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Amplitudes of the 4 superimposed sine waves :
4           3           2           1        



End of Part I                                
                                             
In Part II we look at some practical problems
in the spectral analysis of speech signals   
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