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Causal Link Art -> Ac

* The goal of this presentation is to intuitively
derive why /a/ has F1 and F2 close and /i/ has
F1 and F2 far.

* How do changes in the articulatory system
change acoustic parameters of the signal?

e Air vibration is hard to visualize, so we will
start with a simple system analogous to air
vibration.
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Vibration Essentials

* You need a physical system that impedes
acceleration (mass: F = ma) combined with

one that impedes displacement (spring F =
kx).

* Impedance to displacement from neutral
forces system back to neutral.

* A mass in motion, stays in motion, i.e. does
not impede constant velocity. It will impede
being accelerated or decelerated.



Steps in Vibration

Pull mass, stretching spring away from neutral position.

Spring resists displacement and generate force F = kx to
bring it back to neutral and starts moving to neutral.

At neutral x, mass has a velocity. Stopping there (what the
spring would like) could only happen if deceleration
happens . Which is impeded by mass, so mass keeps
moving with force F = ma.

That compresses the spring eventually stopping the
motion.

The spring does not like being compressed either and a
force K = -kx stretches it back to neutral position.

Mass keeps on moving, system stretches again, etc. etc.
forever.



Frequency

 The number of times that the mass goes back
and forth is its frequency of vibration, main
oroperty of sighal we are interested in.

e Perturbation Theory: If you perturb a physical
oroperty of the system essential for vibration
(m or k), how does that affect the frequency
of the signal.

— how does the frequency change if the mass
increases?

— How does the frequency change if the stiffness of
the spring increases?



Principle 1:
Perturbation Theory for Mass Spring

* |f you increase the mass, you lower the
frequency, because a heavy system
accelerates less.

* |f you increase the stiffness, you increase the
frequency, because a stiff system moves back

with greater force.



Perturbation in time

* As a mass-spring system vibrates, let’s say you
could somehow increase the mass as the
system vibrates, as a function of time. Or let’s
say you could increase the stiffness as a
function of time. Here are the spectrograms
you would get for this time-varying system.
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* The actual formula for frequency: f =




Spectrogram of one mass system
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2-Mass 3-Spring System

* Wall-Spring-Mass-Spring-Mass-Spring-Wall

Pull both masses up. The system will vibrate by
both masses going up and down in phase.

Now pull one mass up and one mass down. The
two masses will vibrate out of phase.



So

In a vibratory system with 2 m and 3 k, there will be
2 modes of vibration.

What will be the frequencies of vibration?

In-phase mode: the middle spring just rides up and
down with the masses.

Out-of-phase mode: the middle spring stretches and
compresses.

Therefore: OP Mode has more effective stiffness (3
springs vs. 2) and therefore has higher frequency.




Summary

* Principle 1: PT for 1-Mass 1-Spring is
— mANNY
— KANFAN

* Principle 2: A vibratory system with more than one mass can
have more than one mode of vibration, and the higher modes
have higher frequencies of vibration .




Perturb 2-mass, 3 spring

e Now increase the mass of either mass as the
system vibrates. What will happen to both
frequencies?

* They will both gradually drop, since the
masses move in both modes, therefore
making each slower to return to neutral.

* Increase stiffness of two peripheral springs,
and both frequencies will increase.



But...

Now increase the stiffness between the
masses. What will happen to the frequencies
of both modes?

The second mode frequency will increase,
since it uses the middle spring.

But in the first mode, the middle spring does
not move at all, so why should increasing its
stiffness affect the frequency? It doesn’t!

So the first mode frequency will be stationary,
as the second mode frequency drops!



Spectrogram of two mode system,
as mid stiffness increases
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Now, you can Kind of understand
why formants can be synchronous
asynchronous
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Summary

* Principle 1: PT for 1-Mass 1-Spring is
— mANNY
— kAMA

* Principle 2: In a multiple mass-spring system, there will be

multiple modes of vibration, each successive one using more
effective stiffness and hence higher frequency.

* Principle 3 is Formant Asynchrony: Increasing/decreasing m
or k, will have different effects on different frequencies,
depending on whether that m or k is used or not (or used very
little). Effect of m or k decrease is a function of position.




Principle 3 -> /a/ vs. /i/

* Principle 3 is very important since it shows
that perturbing a mass/spring in one location
will have a totally different effect on
frequencies of vibration than making the
same perturbation elsewhere.

* As you will see, /a/ and /i/ involve the same
perturbation, but different locations, leading

to different formant patterns.



3-mass 4-spring, 2 rigid walls
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FIGURE 2.1. Normal modes of a three-mass oscillator. Transverse mode (a) has
the lowest frequency and longitudinal mode (f) the highest.



N-mass -> N-Mode

* You can see the generalization emerging:

 For each additional mass, there is an
additional mode of vibration.

* The previous principles remain fully valid.



Mass-Spring = String
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FIGURE 2.2. Modes of transverse vibration for mass/spring systems with different
numbers of masses. A system with N masses has N modes.



Lagrange: © # of m and kK + 2 Walls
= Wall+String+Wall
« # of modes
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Boundaries: Wall or no wall

Walls fix motion to 0. No-walls fix stretchiness to
0.

An increase in stiffness near a wall has maximal
increase effect on the frequency, since
stretchiness is maximal there.

An increase of mass near a no-wall has maximal
lowering effect on frequency.

Distance from a wall will determines the degree
of effect of an m or k change on frequency.

Close to wall, mass ineffective. Close to no-wall,
stiffness ineffective.
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Wall+String+NoWall
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Constriction: mANkAN

* Portions of air have mass and springiness.

* Constricting a portion of air by constricting a
tube:

— Raises the mass, since packed molecules are
harder to move, i.e. a constriction raises density.

— Raises the stiffness (as in a tire), i.e., a constriction
raises pressure.

* S0 a constriction in a tube amounts to raising
both mass and stiffness.



Putting it all together

Closed-Open vocal tract is analogous to fixed-
free string.

Cons. at the lips /u/ = reduce all formants
Cons. at the glottis = raise all formants
Cons. at 1/3 VT /a/: F1 up and F2 down
Cons. at 2/3 VT /i/: F1 down and F2 up



Adding a little Math

* Now we want to actually calculate how much
each formant frequency changes as a
constriction is introduced.

* The simplest perturbations are perturbations
of a neutral schwa-like tube. What do we
need for the math?

— Mode Frequencies for schwa
— Function representing the perturbation

— Function representing how sensitive each mode
frequency is to a perturbation at each location in
tube



A) CO Neutral Mode Frequencies
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B) Perturbation

The perturbation itself can be expressed as a
list of numbers (vector), with 0’s through it all,
except for the point in space at which a
perturbation exists, e.g.:

Simple /a/:[00010 00000000]
Simple /i/: [0000000001000]
Simple /u/: [0000001000001




* C) Sensitivity
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Weigh Perturbation Function by SF

* Now we have two functions of x, the perturbation
function (P) and the sensitivity function (SF).

e At each x, multiply the one by the other: P .* SF and
sum over X (inner product):

— P” *SF
* The points at which PF =0, don’t contribute to the
inner product.

e x-points at which PF =1 for which SF =1, will
contribute a 1 to the sum and should increase freq.

e x-points at which PF =1 for which SF =-1, will
contribute a -1 to the sum and should decrease freq.



_-1 ] ] ]
0 5 10 15
<- Back Vocal Tract Front >
P'* SF =1

1 T T T

O
o
T

] ]
0 5 10 15
<- Back Vocal Tract Front >



P'* SF =0.52723
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The Formula (Ehrenfest’s
Theorem)

* New Formant Freq. =

Neutral Formant Freq. + (
(P’ * SF)/2 * Neutral Formant Freq. )

X
SV G ZSF) NF




[i/ 500 -5 375

1500 1 2250
/a/ 500 .5 625

1500 -1 750
/u/ 500 -1 375

1500 -1 750
schwa 500 0 500

1500 0 1500
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