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The speech sciences often employ complex experimental designs requiring models with multiple

covariates and crossed random effects. For curve-like data such as time-varying signals, single-

time-point feature extraction is commonly used as data reduction technique to make the data ame-

nable to statistical hypothesis testing, thereby discarding a wealth of information. The present paper

discusses the application of functional linear mixed models, a functional analogue to linear mixed

models. This type of model allows for the holistic evaluation of curve dynamics for data with com-

plex correlation structures due to repeated measures on subjects and stimulus items. The nonpara-

metric, spline-based estimation technique allows for correlated functional data to be observed

irregularly, or even sparsely. This means that information on variation in the temporal domain is

preserved. Functional principal component analysis is used for parsimonious data representation

and variance decomposition. The basic functionality and usage of the model is illustrated based on

several case studies with different data types and experimental designs. The statistical method is

broadly applicable to any types of data that consist of groups of curves, whether they are articula-

tory or acoustic time series data, or generally any types of data suitably modeled based on penalized

splines. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4998555]

[MAH-J] Pages: 935–946

I. INTRODUCTION

In empirical speech and language research, it is very com-

mon for data to consist of time-varying signals, such as funda-

mental frequency contours, formant, or articulator time series.

Speakers typically record multiple repetitions of the same

stimulus item. The data thus contain multiple sources of corre-

lation, since curves belonging to the same speaker as well as

curves belonging to the same item are inherently correlated,

yet it is important to be able to generalize across both speakers

and items. The temporal signal evolution itself is usually not

directly subjected to statistical analysis due to a lack of statisti-

cal methods which allow taking the complex experimental

designs, in particular crossed random factors, into account.

Statistical methods in the field have undergone a revolution

with the advent of linear mixed modeling, precisely because

linear mixed models are ideally suited for the most typical

design in the speech sciences with crossed random factors, in

that they circumvent many of the problematic assumptions of

repeated measures analysis of variance (ANOVA) (Baayen

et al., 2008; Quen�e and van den Bergh, 2008; Barr et al.,
2013). To be able to use statistical analyses which can mathe-

matically accommodate such complex correlation structures,

data reduction methods are commonly employed. For instance,

observations are analyzed at one or several “magic moment(s)”

(M€ucke et al., 2014); i.e., measurement values are extracted at

a single, often normalized time point (e.g., formant values at

vowel-midpoint, or maximal articulator position), or curves are

reduced to a single value by evaluating, e.g., the slope of two

connected points, thereby reducing the signal to a straight line.

The unfortunate corollary of this is that a large portion of the

information contained in the signal is discarded. Analysis time

points have to be chosen as an arbitrary working criterion.

Often the same statistical model is applied repeatedly on the

same data at different measurement time points in order to

understand whether observations of, e.g., 25% time point meas-

urements generalize to say, 50 or 75% time points. Also, quali-

tative observations on signal dynamics of individual speakers,

items, or repetitions are used to gauge the degree of generaliza-

tion of any given single time point analysis. This has to remain

unsatisfactory, and qualitative observations have become

increasingly unfeasible with the ever increasing amount of data

recorded for a single study, enabled by technological advances

in recording techniques, storage space, and computation times.

Functional data analysis (FDA) (Ramsay and Silverman,

2005) has provided a significant methodological advance

for a global analysis of signal dynamics. Generally, FDA is

a data analysis technique that quantifies shape variationa)Electronic mail: pouplier@phonetik.uni-muenchen.de
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between curves by operating over functions instead of scalars

or vectors as classical multivariate statistical methods do.

The basic assumption is that the curves resulting from a finite

set of empirical measurements arise from an unknown under-

lying smooth function plus some observational error. FDA

makes no a priori assumption about the shape of the underly-

ing function, although often a smoothness restriction is

imposed. The empirical observations are either converted to

functional data for example via a linear combination of spline

basis functions (commonly penalized B-splines), or similar

basis expansions are used for each term in a model for the

functional data. For this conversion to functional data, the

number of basis functions and their locations (knots) have to

be specified. A high number of basis functions will be more

truthful to the variability in the curve, but a penalty term is

used to avoid overfitting (overly wiggly estimation). For

more detail on FDA, the reader is referred to, among others,

Ramsay et al. (2009) and Wang et al. (2016); tutorials on the

application of FDA to speech data specifically can be found

in a series of papers by Gubian and colleagues (Gubian et al.,
2009; Gubian et al., 2015). FDA has found broad application

in phonetics, yet most methods for functional data assume

that curves are independent and thus do not provide a way to

account for the complex correlation structure due to repeated

observations for speakers and items. Moreover, FDA based

methods commonly assume that all curves of a given dataset

are observed on a regular grid that is common to all curves,

which is often not true for studies in the speech sciences,

requiring resampling. We present a tutorial in this paper to

functional mixed models for irregularly or sparsely sampled

data (sparseFLMM), a recent extension of functional linear

mixed models (FLMM; first introduced by Guo (2002)) to

irregularly sampled and correlated data (Cederbaum et al.,
2016a; Cederbaum et al., 2016b). The main idea of

sparseFLMM is to estimate mean functions based on penal-

ized splines, and to use functional principal component anal-

ysis (FPCA) to model the functional random effects. The

approach is further embedded in the framework of functional

additive mixed models [FAMMs; Scheipl et al. (2015)]

which allows for the computation of confidence bands.

Recently, generalized additive mixed models (GAMs) have

been used to analyse time series data (Baayen et al., 2010;

Wieling et al., 2014; Scheipl et al., 2015; Baayen et al.,
2016; Wieling et al., 2016). Our approach can be formulated

as a particular kind of generalized additive mixed model by

reformulating the functional linear mixed model using appro-

priate (spline-based) basis expansions for all model terms.

We use this fact during estimation. The main difference is

that we use functional principal components (FPCs) instead

of spline basis functions to expand the functional random

effects. We will discuss this further below.

The purpose of the present paper is to illustrate the use

of the sparseFLMM method based on several example data-

sets with different data types [acoustic, electropalatography

(EPG), and articulography (EMA) data]. The example data-

sets all evaluate signal characteristics over time for one or

several covariates and require either crossed or simple ran-

dom effects. For the case studies, only limited detail on the

experimental methods for each dataset is given since the

main interest is to demonstrate the application of the statisti-

cal procedure to different types of data and for different

model specifications. The technical details of the statistical

approach and methodological validation via simulations are

presented in Cederbaum et al. (2016a) and Cederbaum et al.
(2016b). The supplementary online material provided with

our paper provides all of the example datasets along with

step-by-step instructions for conducting the analyses pre-

sented in this paper using the sparseFLMM R package

(Cederbaum, 2017) which is available on CRAN (https://

CRAN.R-project.org/package¼sparseFLMM).1

II. FUNCTIONAL MIXED MODELING FOR SPARSELY
SAMPLED AND CORRELATED FUNCTIONAL DATA

This section of the paper gives a general overview of the

model and the estimation approach, which is then applied to

three different datasets with different experimental designs.

The model allows for both discrete and continuous covariates.

We illustrate both cases in our case studies (Secs. III–V).

Note that in the sparseFLMM package, covariate interactions

have only been implemented for discrete covariates. The cur-

rent implementation of the model allows for crossed random

intercepts, simple intercepts (one random factor only), and

independent curves, but not for random slopes (a point we

will return to in Sec. VI).

A. Random effect and covariance estimation

At the heart of the sparseFLMM approach to the estima-

tion of functional random effects is dimension reduction via

functional principal component analysis [see, e.g., Ramsay

and Silverman (2005)], and it is this aspect that differentiates

sparse FLMM from other generalized additive mixed model

approaches. Principal component analysis (PCA) is a non-

parametric dimension reduction technique designed to extract

patterns from high-dimensional multivariate data by finding

orthogonal axes of variation in terms of eigenvectors and

their associated eigenvalues. The data are projected into a

new (lower dimensional) coordinate space with each new

coordinate accounting for, in decreasing order, the next great-

est amount of variance. The eigenvectors (principal compo-

nents) of the covariance matrix correspond to the directions

of greatest variance. The eigenvalues give the amount of vari-

ance which is accounted for by the corresponding eigenvec-

tor. Principal components are linear combinations of the

original variables weighted by their contribution to explain-

ing the variance in a particular dimension. FPCA analysis is

an extension of PCA to functions, therefore the eigenvectors

of PCA become eigenfunctions in FPCA. It is then the first

eigenfunction of the covariance function that points into the

direction of the largest variance of the data, and the variance

of the weights for this eigenfunction in the observed curves

equals the corresponding eigenvalue. Correspondingly, the

second largest eigenfunction is orthogonal to the first eigen-

function, and points in the direction of the second largest

spread of the data.

In the sparseFLMM model, the random effects functions

are expressed as weighted sums of the eigenfunctions

(FPCs) of their covariance operators (in the functional case,
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the covariance matrix becomes a covariance operator). This

contrasts with other approaches such as Scheipl et al. (2015),

which use a spline basis to model random effects. [Scheipl

et al. (2015) also provide an estimation approach based on

FPCs if these FPCs are provided by the user, and it is this

variant that we later use during estimation after we have esti-

mated the FPCs from the data.] Using FPCs to expand the

functional random effects, as done in sparseFLMM, has sev-

eral advantages over spline basis functions. For one, FPCs

have an optimal approximation property. Specifically, for a

given basis size and e.g., random intercepts, the best approx-

imation is obtained using an FPC basis expansion. This will

be in particular better than a spline basis expansion with the

same number of basis functions. This leads to small and par-

simonious bases and thus much reduced computation times

and memory footprints. Cederbaum et al. (2016a) compared

the FPC-based and spline based estimation and found

reduced computation times, e.g., 7–8 h vs 10 days in an

example. The FPC approach also yields better estimation

quality. Cederbaum et al. (2016a) found between 2.8 and

6 times lower root relative mean squared errors for the

covariate effects for our approach compared to a spline

based additive model, and also lower errors for other model

components. Second, FPCs provide an interpretable decom-

position of the variance, and the FPC weights can be used

for further analysis or exploration of the data: the model

allows us to assess how much variability is explained by

which model component, and how many FPCs are needed

for each random effect to explain a given amount of variabil-

ity in the data, as will be illustrated in our case studies

below. A variance threshold is used to choose the number of

FPCs to describe the random functions. By weighting a

given principal component function with the coefficients for

the observations, the variance or spread of the observations

in a particular dimension can be observed. The weights can

in principle be used for further analysis, such as to probe the

data for groupings in the random effects (e.g., speakers and

items). It has to be kept in mind though that FPCA calculates

orthogonal axes of variation in terms of eigenfunctions and

their associated eigenvalues from overall distributional prop-

erties of the data independently of the variables used to con-

struct the dataset. This means that it is not guaranteed that

any grouping effects of, say, speakers in the weights of a

given FPC, has an experimentally relevant interpretation in

terms of speaker properties.

As criterion for the selection of the number of FPCs, the

cumulative percentage of explained variance is used. The

explained variance is calculated for all functional random

effects in the model and the FPCs are ranked across all func-

tional random effects according to the percent variance they

account for. The FPCs are then selected one-by-one in rank

order until the specified level of variance (e.g., 95%) is

accounted for. The threshold is usually set such that the

main FPCs accounting for the biggest amount of variance

are included in the model and may typically range between

95 and 99%. In contrast to the random effects, sparseFLMM

estimates the fixed effects on the basis of splines. Note that

the effects of covariates are solely estimated as fixed effects

in the current implementation of the model.

Another distinctive advantage of sparseFLMM is that it

not only estimates the effects of the covariates and their inter-

actions in crossed designs, but also allows for irregular spac-

ing of the (possibly very few) observation points. This is

achieved by estimating all curves simultaneously; thus, esti-

mation for any given curve is informed by the overall data

distribution. As a corollary, the number and the location of

the observation points can differ between curves, and the

observation points of a given curve do not have to be equally

spaced. Point-wise confidence bands enable the evaluation of

significant differences between groups of curves. Due to

penalized splines being employed for mean and covariance

estimation, there are no underlying assumptions about the

shape and properties of the functions apart from an underlying

smoothness. This means that the model is generally applicable

for all types of data that can be suitably approximated using

splines. The possibility of irregular grids for the temporal part

of the model and the possibility of modeling crossed func-

tional random effects are in their combination the features dif-

ferentiating the current model from related developments,

such as wavelet-based models on equal grids (Morris and

Carol, 2006; Lancia et al., 2015) or FDA approaches for inde-

pendent curves or non-crossed designs (e.g., Di et al., 2014;

Gubian et al., 2015; Guo, 2002). As already mentioned, the

sparseFLMM approach is closely related to GAMs which

have been applied to time series data (Baayen et al., 2010;

Wieling et al., 2014; Scheipl et al., 2015; Baayen et al.,
2016). In GAMs, it is possible to model individual variation

by speaker and by item using factor smooths in the bam func-

tion of the R mgcv package (Wood, 2011; Wood et al., 2015).

Using, as done by the sparseFLMM approach, FPC bases as a

parsimonious representation of the functional random effects

instead of spline bases, as done by these other approaches,

provides an interpretable variance decomposition for the ran-

dom terms in the model and increases computational effi-

ciency. Moreover, using FPCA the basis functions are

estimated from the data as the eigenfunctions of the estimated

covariance of the functional random effects (see also Wang

et al., 2016). GAMs as proposed by Baayen et al. (2010) and

Baayen et al. (2016) assume that the error is autocorrelated

with a specific parametric first order autoregressive [AR(1)]

structure with a fixed correlation parameter (rho), which has

to be set as an arbitrary working criterion by the researcher.

This may lead to incorrect standard errors and thus incorrect

inference. In contrast to this, sparseFLMM has the distinct

advantage of estimating the auto-covariance of the error from

the data, which allows the error to be heteroscedastic and/or

vary nonparametrically over the time interval, giving more

reliable inference in this respect. While we also use penalized

splines for covariance estimation, we can increase the number

of spline basis functions in this step to allow for more flexibil-

ity than is usually possible (for computational reasons) in

approaches directly expanding the random effects in splines.

For a further discussion on and comparison of differences

between the current model and other approaches, see

Cederbaum et al. (2016a).

The general form of the model with crossed random

effects for Speaker and Item is given in Eq. (1),
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YijhðtÞ ¼ lðt;xijhÞ þ BiðtÞ þCjðtÞ þ EijhðtÞ þ eijhðtÞ; (1)

with Yijh(t) being the index curve for speaker i, item j, and

repetition h observed at time t2 T¼ [0,1]. l(t, xijh) is a curve

specific smooth mean function, xijh are known covariates

and possible interactions of covariates. Bi(t) and Cj(t) are

random functional intercepts for Speaker and Item, respec-

tively. Eijh(t) is a Speaker-, Item-, and Repetition-specific

smooth random deviation and also includes the interaction

between Speaker and Item. eijh(t) is white noise measurement

error and captures random uncorrelated variation within each

curve. The mean function l(t, xijh) includes, in the case of p
covariates, pþ 1 effects in the form of the reference mean

(f0(t)), p covariate fixed effects (f1(t),…, fp(t)), and their inter-

actions. Equation (2) gives a case with four effects, i.e., two

item covariates and their interaction

lðt;xijhÞ ¼ f0ðtÞþ f1ðtÞ � covariate1jþ f2ðtÞ � covariate2j

þ f3ðtÞ � covariate1j � covariate2j; (2)

where f0(t), f1(t),…, f3(t) are unknown fixed functions. A more

complex case with eight effects is provided in Cederbaum

et al. (2016a). Note that the covariate effects are linear at

each time point t and thus can be interpreted in the usual way

when fixing a time point. In particular, if we fix a set of time

points, the linear covariate effect estimates and confidence

intervals for those time points correspond to the kind of result

one would obtain from a “magic moment” analysis, but with-

out the need to restrict the analysis to those time points or to

specify them in advance.

B. Estimation procedure

Estimation is conducted in several steps. First, the mean

effects are estimated using penalized splines under a work-

ing independence assumption of the curves and time points,

and the curves are centered with the estimated mean. To

avoid the choice of the number of basis functions, we choose

a penalized spline basis approach for our covariate effects.

Then, the number of basis functions should not make a great

difference to the estimation as long as a sufficiently high

number is used, see, e.g., Ruppert (2002). A higher number

of basis functions should not lead to overfitting due to the

penalization parameters, but it will mostly affect computa-

tion times. Using mgcv, the model estimates the smoothing

parameter using restricted maximum likelihood (Wood

et al., 2015), i.e., the optimal amount of smoothness is esti-

mated from the data using a maximum likelihood based

method. At the next step, the auto-covariances of the func-

tional random effects (and the error variance) are obtained,

again using penalized spline smoothing. For our case studies,

we use the third order derivative as order of the penalty for

covariance estimation of the functional random intercepts.

This can be motivated in general for speech production data

by the fact that jerk (which, as the derivative of acceleration,

corresponds to the third derivative with respect to position)

minimization is generally taken to be an important parameter

in movement optimization (Nelson, 1983; Wada et al.,
1995). Eigen decompositions of the covariances are

conducted to obtain the FPCs for each functional random

effect. The FPCs are then selected with respect to the user-

specified variance threshold. Finally, the complete model

[Eq. (1)] can be estimated, using these FPC bases to expand

the random effects, and thus accounting for the correlation

structure (between subjects, items, and near-by time points) in

the inference for the mean; that is, incorporating the func-

tional random effects in the estimation of the covariate effects

and computation of the confidence bands. The effects of the

covariates are solely estimated as fixed effects. The model

outputs estimated covariate-specific changes to the mean

function; i.e., prototypical curves over time which represent

the covariate effects. Point-wise (not simultaneous) confi-

dence bands are used to evaluate significance. Point-wise sig-

nificance means that a test for the curve value being equal to

zero at a given time point would be rejected at the specified

alpha level (e.g., 0.05), but that multiple testing across time

points is not taken into consideration. Significance is claimed

when the confidence band does not include zero at a given

time-point. Confidence bands do not take into account the var-

iability in the estimated FPCs (they are “conditional” on the

estimated FPCA), but simulations in Cederbaum et al.
(2016a) and Cederbaum et al. (2016b) show that coverage of

the true value is still close to the nominal level (e.g., 95%).

The case studies in the remainder of the paper illustrate

how to interpret estimated mean functions for the covariates

and their interactions, as well as the decomposition of variance.

III. FORMANT DATA OF ROMANIAN VOWEL
SEQUENCES

The first case illustrates the evaluation of formant dynam-

ics based on Romanian vowel sequences. These data require a

single covariate only but crossed random effects of Subject

and Item. Romanian features a typologically uncommon diph-

thong–hiatus contrast for the vowel sequences /ea/ and /oa/

[see Gubian et al. (2015) for the investigation of a similar con-

trast in Spanish using FDA]. Previous modelling work using

articulatory synthesis has proposed that the hiatus /e.a/ and the

diphthong /ea/ differ in their temporal coarticulation pattern

with /e.a/ showing a lesser degree of coarticulation between

the two members of the vowel sequence compared to the diph-

thong (Marin and Goldstein, 2012). We compare here the for-

mant dynamics of the /ea/ – /e.a/ contrast for five Romanian

speakers. The data were acquired as part of the work reported

in Marin (2014), which compared mid and high vowel and

diphthong sequences articulatorily by measuring five different

time points in each vowel sequence for each comparison with

a corresponding number of statistical tests. The publication

includes an articulatory analysis for two out of the three diph-

thong–hiatus pairs analyzed here. The full experimental proto-

col and more information on the diphthong–hiatus inventory

of Romanian can also be found therein. Of the experimental

participants, three speakers were female, and two were male.

The stimulus material consisted of the diphthong-hiatus pairs

teama vs te am (cliticþauxiliary sequence); seara vs seat;
cafea fin�a vs gafe afine with the first member of each pair

being the diphthong. Each speaker repeated the stimulus items
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six times over the course of the experiment. The stimulus

items were embedded in a neutral carrier phrase. The targeted

token total was 6 words � 5 speakers � 6 repetitions¼ 180.

Due to recording failure or undetected mispronunciations, 17

repetitions are missing leaving N¼ 163 tokens. For these,

we obtained, via LPC analysis, formant time series for the

first two formants (F1, F2) for the /ea/ part of each token.

Formants were tracked using the AUDAPTER software package

developed by Cai et al. (2008). LPC order (and fundamental

frequency to control cepstral smoothing) were specified indi-

vidually for each speaker. Figure 1 gives the average formant

curves with 1 standard deviation (SD) bands. SDs were com-

puted point-wise across all curves for F1, F2 separately.

For the dataset, the number of equidistant points per curve

varies between 28 and 135 (median: 65). Using sparseFLMM,

it was possible to enter the formant curves for all speakers into

the statistics without correction for vocal tract size differences,

nor were the formant time series smoothed or resampled prior

to statistical analysis. Since our main point is a methodological

one, we restrict our analysis to F2 here. The model only had a

single covariate (Status) since we wanted to know whether

there is a difference in F2 dynamics between diphthong and

hiatus. For categorical covariates, the code requires dummy

coding; here, zero was given to the diphthong. This means that

the reference group mean corresponds to Status Diphthong

(stimulus items teama, seara, cafea fin�a).

The model has a random effects structure as specified in

Eq. (1) in Sec. II with i¼ 1,…, 5, j¼ 1,…, 6, and h¼ 1,…, 6.

The mean function l(t, xijh), given in Eq. (3), includes the

reference mean and one covariate (Status)

lðt; xijhÞ ¼ f0ðtÞ þ f1ðtÞ � Statusj; (3)

where f0(t) and f1(t) are unknown fixed functions.

The model estimates are evaluated via plots of the

covariate effects and are for interpretation best visualized in

a summed effects plot as given in Fig. 2. Figure 2(a) gives

the reference mean f0(t) (here, the diphthong condition), and

the effect of the covariate f1(t) with conditional point-wise

confidence bands is in Fig. 2(b). The effect on the formant

curve is denoted by delta Hz. The reference mean displays a

clear F2 falling dynamic as to be expected for an /ea/ diph-

thong [Fig. 2(a)]. The effect of a covariate on the mean is

obtained by multiplying the covariate effect with the dummy

coding (1 or 0) of that covariate and adding it to the refer-

ence mean. This is precisely what is shown in a summed

effects plot [Fig. 2(c)]. Recall that significance is claimed

when the confidence band of the covariate effect plot [Fig.

2(b)] does not include zero at a given time-point. In F2, we

observe a significant difference between diphthong and hia-

tus: the confidence band for the covariate effect [Fig. 2(b)]

does not cover zero from about 0.65 normalized time

onwards, that is, during the /a/ target of the diphthong. At

around 0.25, the confidence band is just above the zero line;

the lower limit of the confidence band at timepoint 0.25 is

0.3. We might call this borderline significance. Note that

confidence bands are narrower than the 1 SD bands in Fig. 1

due to accounting for the correlation structure in the data.

The hiatus has a more extreme (lower) F2 target for /a/

compared to the diphthong. The /e/ targets of diphthong and

hiatus do differ significantly from each other at trend level

(there is, as mentioned above, a trend for significance at about

0.25) with a tendency for a more extreme /e/ target for the

hiatus. Overall, the results mean that there is less carryover

(e-to-a) coarticulation in the hiatus compared to the diph-

thong. Note in this context in particular how the formants

have no static portion at all, but rather continuously rising and

falling curves. While these curve dynamics can be investi-

gated by measuring, e.g., five different time points in each

vowel sequence as done for articulatory data by Marin (2014),

this entails running five statistical models per comparison and

FIG. 1. (Color online) Average F1, F2 curves for the Romanian vowel

sequences by Status (diphthong, hiatus) with 1 standard deviation bands.

Note that the averages are across all speakers, male and female.

FIG. 2. (Color online) Results for F2. Covariate mean effect (solid line)

with conditional point-wise confidence bands (dashed line). (a) Reference

mean (f0(t)), (b) covariate effect Status (f1(t)), (c) summed estimated effects

curves (solid line f0(t): diphthong; dashed-dotted line f0(t)þ f1(t): hiatus).
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carefully choosing the time-points a priori to fall into infor-

mative time regions.

We now turn to the decomposition of variance of the ran-

dom effects. Functional random effect Speaker accounts for

43% of the variance (3 FPCs selected by the model), Item for

only 3.71% (1 FPC selected), the smooth error term E, which

subsumes both a speaker-by-item interaction and a repetition-

specific deviation, accounts for 46% (3 FPCs selected). A

way to evaluate the functional random effects further is given

in Fig. 3 for the speaker specific deviation. Figure 3(a) plots

the global mean and how positive (þ) and negative (–)

weights on FPC1 capture speaker-specific differences from

the global mean. Note that these plots give the global mean,

which corresponds to all covariates being set to the empirical

average, not the reference mean. Speakers with a positive

weight for FPC1 show an F2 curve below the global mean,

while the F2 curve for speakers with a negative weight

for FPC1 lies above the global mean. Figure 3(b) plots the

estimated means per speaker. Of the five participants, speak-

ers 3 and 4 were male, the others female. There is some ten-

dency for F2 curves for the male participants to be below the

global mean, while the female participants are above the

mean as one would expect from typical vocal-tract size differ-

ences between male and female speakers. Speaker 4 is below

the global mean initially, but then has a rather flat curve

compared to the other participants. This may be related to

this participant speaking noticeably faster than the other

speakers, meaning his data may show undershoot. The first

FPC selected by the model for random effect speaker thus

seems to capture some of the sex related vocal-tract size dif-

ferences but not unequivocally so; possibly also differences in

speech rate (related to undershoot) factor into this FPC.

We now apply the same plotting procedures to the ran-

dom effect Item. Our experiment included three different

diphthong–hiatus pairs, and thus three items per condition

(three diphthong, three hiatus items). Figure 4 visualizes the

weights of the FPC associated with the Item effect [Fig. 4(a)]

and the estimated item-specific means [Fig. 4(b)]. It is notice-

able in Fig. 4(b) that items 5 and 6 have somewhat steeper F2

trajectories mainly due to a higher initial starting point of the

curves, whereas items 1–4 are very similar. Items 5 and 6 are

the two-word stimuli consisting of a noun þ adjective phrase

(5: cafea fin�a, 6: gafe afine). Interestingly both diphthong (5)

and hiatus (6) diverge similarly from both the global mean

and the other stimulus items, suggesting that it is either the

difference in syntactic structure or the higher number of sylla-

bles that may be captured by this FPC.

We now turn to the second case study, which illustrates

the application of sparseFLMM to EPG data and the use of a

model with a covariate interaction.

IV. EPG DATA OF GERMAN FRICATIVE SEQUENCES

The study we discuss here consists of EPG data of

German fricative sequences, which was recorded as part of a

larger study looking at fricative sequences in German (Pouplier

and Hoole, 2016). We illustrate how a more complex experi-

mental design with crossed random effects, two covariates, and

their interaction can be evaluated using sparseFLMM. The

details of data acquisition and treatment can be found in

Pouplier and Hoole (2016), where magic-moment analyses of

these data have been published. For present purposes, we con-

trast the fricative sequences /f#S/ and /s#S/ and ask whether the

extent of anticipatory coarticulation varies as a function of C1

(/f/ vs /s/) and lexical stress.

The dataset comprises EPG data from nine native speak-

ers of German. Stimuli consisted of (semantically nonsensi-

cal) noun-noun compound phrases with abutting medial

fricatives sequences /f#S/ and /s#S/; the compounds were

embedded in a neutral carrier sentence. The stimuli varied

according to whether the V1C1 syllable of the V1C1#C2V2

sequence bore lexical stress or not. There were four items per

condition. Palatograms were extracted for each token during

the acoustically identified C1#C2 interval. The EPG data

were sampled at 200 Hz. For EPG data, each sample consists

of a binary on/off contact pattern for 62 electrodes. Prior to

statistical modelling, these palatograms underwent a normali-

zation procedure which mapped the 62 contact patterns of

each sample onto a single valued, time-varying similarity

index such that any given sample can take on a value ranging

from �1 to 1, indicating its Euclidean distance to prototypical

/f, s, S/. The prototypes were computed in a speaker and con-

dition specific manner based on homorganic control condi-

tions (/f#f/, /s#s/, /S#S/). The similarity index was computed

such that 1 represents a prototypical realization of C1 (/f/ for

the /f#S/ condition, /s/ for the /s#S/ condition), a value of �1

FIG. 3. (Color online) Variance decomposition, random effect Speaker. (a)

Global mean function and effect of adding (þ) and subtracting (�) a suitable

multiple (twice the square root of the eigenvalue) of FPC1 for random effect

Speaker. (b) Global mean and estimated mean curves for the five speakers.

FIG. 4. (Color online) Variance decomposition, FPC1 of random effect

Item. (a) Global mean function and effect of adding (þ) and subtracting (�)

a suitable multiple (twice the square root of the eigenvalue) of FPC1 for ran-

dom effect Item. (b) Global mean and estimated mean curves for the six

stimulus items (from 1 to 6: teama, te am, seara, seat, cafea fin�a, gafe
afine).
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represents a prototypical realization of C2 (/S/). This means

that for any given sample, the similarity index quantifies, for

the /s#S/ condition, how close this sample is to /s/ (ideal value

of 1) or /S/ (ideal value of �1) or, for the /f#S/ condition, how

close any given sample is to /f/ (ideal value of 1) or /S/ (ideal

value of �1). A value of zero represents an EPG pattern inter-

mediate between the two prototypical reference patterns (see

Fig. 5). To the extent that there is anticipatory coarticulation

of /S/ during the C1, the index will be smaller than 1 during

the initial parts of the fricative interval. For further detail on

the normalization procedure, the reader is referred to Pouplier

and Hoole (2016).

In sum, the data consist of curves representing a time-

varying similarity index computed from EPG data. The ques-

tion we pursue here is whether there is an effect of C1 in the

coarticulatory patterns of V1C1#C2V2 fricative sequences in

interaction with prosody (lexical stress of the first syllable).

The expectation is that there is more anticipatory coarticula-

tion in C1 ¼ /f/ and in the unstressed condition. This is so

because the tongue is free to anticipate C2 during a labial C1

/f/ but not during a lingual C1 /s/ consonant and because

unstressed positions are known to be articulatorily “weaker”

compared to stressed positions. The average curves given in

Fig. 5 are consistent with there being more anticipatory coar-

ticulation for the labial C1 with the /f#S/ curve showing neg-

ative (/S/-like) index values earlier in time compared to the

/s#S/ curve.

The statistical model has two covariates: C1 (/f/, /s/) and

Stress of C1 (stressed, unstressed), plus their interaction, and

crossed random effects for Subjects and Items. The model

equation and mean function thus correspond to Eqs. (1) and

(2) given in Sec. II. Each C1-Stress combination is repre-

sented by four stimulus items, and there are five repetitions

per stimulus. Targeted token total was 9 speakers � 2 C1

conditions � 2 stress conditions � 4 items � 5 repeti-

tions¼ 720, minus token loss due to technical failure result-

ing in a dataset of n¼ 709 curves. All trials were mapped

onto a time interval of [0,1] without resampling to a regular

grid. The data consist of 24–65 equidistant measurements

(median¼ 34) per curve with different spacings across

curves.

The two independent variables were dummy coded into

two covariates: stress of the first syllable: 0¼ stressed,

1¼ unstressed, and C1: 0¼ /s/ and 1¼ /f/. The reference

condition for the following analyses corresponds to all

dummy codings being zero, i.e., /s#S/ stressed. Figure 6

shows the mean effects of the covariates and their interaction

with conditional point-wise confidence bands. The effect on

the index curve is denoted by delta index. As explained

before, the effect of a covariate on the mean can be obtained

by multiplying the covariate effect with the dummy coding

(1 or 0) and adding it to the reference group mean. To evalu-

ate the effect of an interaction, the effect curves of the two

covariates of interest and their interaction have to be added

to the reference mean curve. Relevant comparisons are then

of the sum of all four curves (reference mean þ covariate1

þ covariate2 þ covariate1 � covariate2 effect, meaning here:

reference mean þ C1 þ Stress þ C1 � Stress effect) to the

sum of the reference mean and only the covariate1 (C1), or

only the covariate2 (Stress) effect. The relevant confidence

band is the one of the interaction curve [here, f3(t) in Eq.

(2)]. Significance is claimed if the confidence bands do not

include zero: in this case (Fig. 6), C1 identity is significant

in the middle part of the interval [Fig. 6(b)], Stress shows a

tendency for significance at the very beginning of the time

interval [Fig. 6(c)], and the interaction is significant in the

second part of the interval [Fig. 6(d)]. The summed effects

curves are illustrated in Fig. 7.

It can be seen from the effects plot in Fig. 6(b) that the

difference between C1¼ /s/ and C1¼ /f/ is significant

FIG. 5. (Color online) Mean index curves with 1 SD bands for /s#S/ (dashed

line) and /f#S/ (solid line), averaged across all speakers and items. The SD

was computed point-wise across all curves separately for /s#S/ and /f#S/.

Capital hSi is used to denote /S/.

FIG. 6. (Color online) Covariate mean effects (red solid lines) with condi-

tional point-wise confidence bands (dashed lines). (a) Reference mean

(f0(t)); (b) covariate effects C1 (f1(t)); (c) Stress (f2(t)), and (d) interaction

effect for C1 � Stress (f3(t)).
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between roughly 0.4–0.7 normalized time. In Fig. 7, it is evi-

dent that this is due to an earlier stronger constriction forma-

tion for /S/ in /f#S/ compared to /s#S/. At the same time, the

significant difference at the beginning of the C1 effects curve

shows that /s#S/ has a lower index value compared to /f#S/,

which indicates that /S/ exerts a subtle influence on the spa-

tial properies of /s/ early on in the constriction, as to be

expected from the interaction of two lingual consonants.

Adding the effect curve of Stress [Fig. 6(c)] to the refer-

ence (/s#S/) mean reveals that the unstressed condition has an

index lowering effect for /s#S/: the f0(t) curve has a higher

index value compared to f0þ f2(t) initially, and the confi-

dence band confirms this as significant in Fig. 6(c). The inter-

action effect can be visualized by comparing the space

between relevant pairs of summed effects curves in Fig. 7.

Throughout the entire time interval, the distance between the

solid (red) line /s#S/ reference mean curve (f0(t)), and the

dashed (orange) line f0(t)þ Stress (f2(t)) curve is smaller

compared to the distance between the (light blue) dashed-

dotted /f#S/ (f0(t)þC1 (f1(t)) curve and the (dark blue) dotted

curve f0(t)þC1 (f1(t))þ Stress (f2(t))þ interaction (f3(t)).
The interaction is (barely) significant roughly after 0.4 nor-

malized time [Fig. 6(d)]. Changing the lexical stress level of

the first syllable from stressed to unstressed reduces the index

values for /f#S/ but not for /s#S/. For /f#S/, this means that the

index/EPG pattern is pulled towards the /S/ reference pattern

throughout, indicating that there is significantly stronger

anticipatory coarticulation in unstressed /f#S/ compared to

stressed /f#S/.

In terms of variance decomposition for the random

effects, two FPCs were selected for Speaker (accounting

for 11.7% of the variance), one for Item (2.8% variance

accounted for), and five for the smooth error term E (Speaker

� Item � Repetition, 76.7% variance accounted for). This

means that the item effects are rather weak in the present

dataset even though each C1 � Stress combination was repre-

sented by four different stimulus items. The lion’s share of

the variability is accounted for by error term E, and here it is

the first of the four chosen FPCs (FPC1) that accounts for as

much as 51.19% of the variance. Figure 8 plots the effect of

adding and subtracting a suitable multiple of this FPC to the

mean. This FPC suggests very strong idiosyncratic speaker-

item-repetition specific coarticulation patterns in both direc-

tions (anticipatory, carryover).

In cases in which more than one FPC is selected for a

functional random effect, it can be useful to look at a scatter-

plot for the FPC weights for two of the FPCs in order to

gauge the interpretability of the FPCs in two dimensions of

variability. To illustrate this, we now look at the FPC weights

for Speaker in more detail. Figures 9(a) and 9(b) illustrate the

effect of adding and subtracting a suitable multiple of FPCs 1

and 2 selected for functional random effect Speaker to the

mean and additionally gives the weights of these two FPCs

selected for Speaker as a scatterplot [Fig. 9(c)]. The estimated

mean curves for some of the speakers with different weights

FIG. 8. Global mean function and effect of adding (þ) and subtracting (�) a

suitable multiple (twice the square root of the eigenvalue) of FPC1 for func-

tional random error term E.

FIG. 7. (Color online) Summed effects curves for the covariate combina-

tions C1 and Stress. Solid line (f0(t)): /s#S/ stressed; dotted-dashed line (f0(t)
þ f1(t)): /f#S/ stressed; dashed line (f0(t) þ f2(t)): /s#S/ unstressed; dotted

line (f0(t) þ f1(t) þ f2(t) þ f3(t)): /f#S/ unstressed.

FIG. 9. (Color online) (a), (b) Global mean function and effect of adding

(þ) and subtracting (�) a suitable multiple (twice the square root of the

eigenvalue) of FPC1 (a) and FPC2 (b) for random effect Speaker, (c) scatter-

plot of the weights for FPC1 and FPC2 for random effect Speaker; (b) esti-

mated mean curves for speakers 4, 6, 7, 9, and the global mean.
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on the two FPCs are also shown [Fig. 9(d)]. For instance,

speakers 6 and 7 [positive weight on FPC1 in Fig. 9(c)], show

more anticipatory coarticulation than, e.g., speakers 4 and 9

(positive weight on FPC1). Gender and dialect come to mind

as potential grouping factors, but they do not seem to be very

relevant for our sample at hand. Speaker 5 was the only male

in our sample. Regionally 5, 8 were of Northern German ori-

gin, speakers 1, 3, 6 from Swabian dialect areas, 2, 7, 9 from

dialectal Bavaria, and speaker 4 from Hesse. While the vari-

ance decomposition for random effect Speaker in case of the

Romanian vowels seemed to have a certain degree of inter-

pretability in terms of (presumed) vocal tract size and speech

rate differences, for the current dataset there is no obvious

interpretation of the grouping in terms of speaker

characteristics.

V. FREQUENCY EFFECTS IN ARTICULOGRAPHY
DATA

In this third case study, we illustrate the application of

the sparseFLMM model to EMA data for the case of a con-

tinuous covariate. We evaluate variation in the relative tim-

ing of the two consonants of Russian C1C2V onset clusters

as a function of cluster frequency. The data consist of EMA

data from 11 Russian speakers. For details of data acquisi-

tion and treatment, the reader is referred to Pouplier et al.
(2015) and Pouplier et al. (2017). The speakers recorded

C1C2V syllables embedded in a constant carrier phrase.

Five repetitions were recorded at two speech rates (“slow,”

“fast”). We include only the fast condition here, since the

current sparseFLMM implementation does not allow for

interactions involving continuous covariates. Table I lists the

stimuli, which consisted of 12 different syllables of differing

token frequency. The numbers in parentheses first show the

log frequency determined based on the Russian Internet

Corpus (Sharoff, 2005), and second the number of tokens

available. Due to technical failure during data recording, the

number of tokens per cluster can differ.

For this type of data, a common research question con-

cerns the relative timing between the successive consonants.

Typically, so-called landmark segmentation is employed:

based on the temporal evolution of the velocity profile, time

points such as movement onset or target achievement are

determined (see, among many others, e.g., Marin and Pouplier,

2014). Relative timing is then evaluated by simple landmark

subtraction, for example, by calculating the temporal interval

between release of C1 and target achievement of C2. This

entails that spatial variation, which may be conditioned by the

temporal overlap, is completely left aside and can only be

assessed independently of the temporal measurements; also

the general temporal evolution dynamics cannot adequately be

taken into consideration.

To evaluate relative timing patterns of independent

articulators, curve statistics have, to our knowledge, usually

not been employed since relative timing analyses require to

evaluate the evolution of temporally overlapping curves with

quite different spatial coordinates (due to the anatomical dif-

ferences in articulator location and movement range). For

our present dataset, the idea is to circumvent this problem by

focusing on the movement kinematics of C2 only, but in the

time interval in which C1 and C2 potentially co-exist. This

approach essentially quantifies how C2 evolves within the

movement cycle of C1.

For data extraction, we employed the following segmen-

tation procedure: based on the velocity profile of each conso-

nant, we algorithmically identified the peak velocity of

constriction formation of C1 and the time point of constric-

tion release of C2 (20% threshold of peak velocity of the

release). We then extracted the articulator time series of C2

(lip aperture for labials, tongue tip for coronals, and tongue

back for dorsals) for that time interval (Fig. 10). The kine-

matic data were sampled at 1.25 kHz and for present purposes

downsampled by a factor of 3 to reduce the computational

power required to run the model (the number of points per

curve is a major determinant of memory demands). The cur-

rent dataset comprises 576 curves. The number of equidistant

points per curve varies between 37 and 125 (median¼ 62).

Again, all curves are mapped onto a [0,1] time interval with-

out resampling. Since place of articulation for C2 varies

across labial, coronal, and dorsal and the data therefore have

very different spatial coordinates across subjects and articula-

tors, we z-scored (standardized) the time series by articulator

by subject.

For the current data, we specify in sparseFLMM a single

covariate, (log transformed) Frequency, and random effects

of Speaker Bi(t) as well as of Speaker-by-Repetition Eij(t).
No item effect is specified, since there is only a single cluster

TABLE I. Stimuli in order of decreasing frequency from top left to bottom

right. Numbers in parentheses give log frequency and available number of

tokens per stimulus.

gla (12.7, n¼ 52) mla (9.5, n¼ 54) Spa (7.2, n¼ 55)

mno (12.4, n¼ 53) tka (8.9, n¼ 48) lga (7.0, n¼ 52)

kto (12.1, n¼ 46) lba (8.8, n¼ 55) Sma (6.5, n¼ 55)

bla (11.5, n¼ 53) xma (7.9, n¼ 31) mxa (6.0, n¼ 22)

FIG. 10. (Color online) Illustration of data segmentation conventions for

one token of the syllable /mno/. Panels show from top to bottom: oscillo-

gram of the audio recording, tongue tip vertical position, lip aperture

(Euclidean distance between lip sensors). Time on the x-axis is in millisec-

onds. The constrictions of C1 /m/ and C2 /n/ are informally indicated. The

vertical lines across all three panels mark the time interval over which the

time series for C2 (tongue tip vertical position, middle panel) was extracted

for analysis. Only the vertical position curve of C2 entered into the analysis.
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per frequency. Prior to running the model, the Frequency

covariate was centered to the mean so that the effect can be

interpreted relative to this mean. The model only has one

functional random intercept and can be specified as

YijðtÞ ¼ lðt; xijÞ þ BiðtÞ þ EijðtÞ þ eijðtÞ; (4)

with l(t, xij)¼ f0(t)þ f1(t)�Frequencyj implying a linear effect

of Frequency on articulator position for each time point.

Significance is evaluated as in the previous examples by gen-

erating the effects plots with confidence bands, as done in

Fig. 11. Figure 11(b), in which the effect curve represents the

effect on articulator position when increasing the variable

Frequency by 1, shows no significant effect. The reference

mean here represents the mean position for the mean of covar-

iate Frequency. For understanding the impact of a higher or

lower frequency relative to the reference mean, the summed

effects plot can be generated by adding to the reference mean

the estimated curve of covariate 1 (Frequency) multiplied by

the given centered frequency value of interest. For the

summed effects plot in Fig. 11(c), we plot the reference mean

and five selected frequencies, in rank order 1 (lowest), 4, 8, 9,

and 12 (highest).

The curves for the lower frequency clusters show a later

movement onset of C2 compared to higher frequency clus-

ters, as well as a spatially reduced movement [compare the

dotted orange curve of freq1 against the dashed-dotted pink

curve of freq12 in Fig. 11(c)]. Since the effect is not signifi-

cant, we abstain from further interpretation here. In terms of

variance decomposition, no FPC was selected for Speaker.

This is not surprising given the data were z-scored by

speaker by articulator. For Eij(t), four FPCs were selected

which together account for 96.12% of the variance.

VI. DISCUSSION

Our current case studies illustrated how data in which

each observation is a curve—whether formant, EPG, or artic-

ulography data—can be analyzed as functional data for exper-

imental designs requiring several (continuous or discrete)

covariates and crossed random or simple random effects. One

innovation of the current approach to the estimation of

sparseFLMM is that it does not require data points to be

observed at identical, equidistant grid points and allows for

sparsely sampled curves, which in the extreme may be mea-

sured at only a single point [given a sufficient number of

curves with a sufficient number of points from which strength

can be borrowed across curves; see also Yao et al. (2005)].

Simulations in Cederbaum et al. (2016a) have shown that the

model can be estimated well when 3–10 points per curve are

observed, although the number of speakers and items then

needs to be much larger than in the current studies (on the

order of 40 or more). Estimation uses information across

observations within a curve as well as across curves. Any

given estimated curve is therefore informed by the distribu-

tion of all curves of the entire dataset. Another important fea-

ture of the approach is that the curves are not smoothed prior

to entering the model. Instead, smoothing is performed as part

of covariance and mean estimation. This ensures that the orig-

inal observations enter the overall model, no variation is

removed beforehand, and the variation is accounted for in

subsequent inference.

For the final step of the estimation procedure, the current

model implementation offers two ways to predict the weights

of the eigenfunctions in the expansion of the random effects.

In the computationally more efficient version (computation

time being on the order of seconds), the weights are computed

directly as best linear unbiased predictors, but no confidence

bands for the mean and covariate effects can be computed as

the mean and covariate effects are estimated under the work-

ing assumption that the curves and time points are indepen-

dent from each other. In order to obtain valid statistical

inference, the second option re-estimates the whole model

within one framework [Scheipl et al. (2015), based on the

estimated FPCs] accounting in the mean effects estimation

for the crossed random effects structure via FPC expansions

of the functional random intercepts, and constructs confidence

bands. This is the option we focused on here. One drawback

of that method is that it is computationally time intensive for

large datasets. Nonetheless, it is faster than spline-based alter-

natives [Scheipl et al. (2015), when using splines as bases]

which do not make use of parsimonious representation via

FPCA [see Cederbaum et al. (2016a) for explicit comparisons

and further discussion]. Additionally, we have recently pro-

posed ways to speed up the covariance estimation part of the

algorithm (Cederbaum et al., 2016b) which have also been

implemented in the sparseFLMM R-package. In a further

development of the method compared to Cederbaum et al.
(2016a), sparseFLMM now includes the option to approxi-

mate the covariate effect estimation using the “discrete”

option of the R mgcv package [as of version 1.8.7. (Wood

et al., 2017)]. This considerably speeds up computation times

and can be used for large datasets. However, this is at the cost

FIG. 11. (Color online) Covariate mean effects (red solid lines) with condi-

tional point-wise confidence bands (dashed lines). (a) Reference mean

(f0(t)), (b) continuous covariate effect Frequency (f1(t)), and (c) summed

effects curves for five selected frequencies (1 ¼ lowest, 12¼ highest; 1:

/mxa/, 4: /Spa/, 8: /mla/, 9: /bla/, 12: /gla/, see Table I).
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of estimation accuracy. The discrete option bins observations

(i.e., time points) into intervals and bases the computation on

the number of observations in each bin rather than the value

of the observation itself. This is equivalent to a rounding

effect on the covariate. It is thus advantageous to not use the

discrete option unless required by computational constraints.

We did not use the discrete option for any of the examples in

this paper. In terms of the confidence bands, it has to be kept

in mind that these are point-wise rather than simultaneous

confidence bands. Moreover, the uncertainty associated with

estimating the FPCs is not taken into account. Nonetheless,

simulations have shown that the confidence bands provide

coverage close to the nominal level for the actual effects and

thus are indeed appropriate to evaluate (point-wise) signifi-

cance (Cederbaum et al., 2016a).

A further point we would like to address is the issue of

random slopes and the possibility of modeling by-subject var-

iability in the main effects (Baayen et al., 2008). Currently,

the mgcv package, which we are building on, does not allow

for specifying correlated intercepts and slopes (or correlated

intercepts). Random slopes could in principle be added to a

FLMM model, see for instance the denseFLMM package on

CRAN (Greven and Cederbaum, 2017), which estimates

FPCs for more complex models, including functional random

slopes for functional data observed on the same dense grid.

The extension for sparsely or irregularly sampled functional

data, however, is far from trivial. (For dense data, the model

can basically be estimated point-wise.) Importantly, even if

the software were extended to estimate FPCs for random

slopes, it is currently not possible to estimate models with

correlated random intercepts and slopes in mgcv, the R pack-

age on which sparseFLMM builds internally once we have

estimated the FPCs (and which is also used for estimating

GAMs; i.e., GAMs likewise do not allow for estimating cor-

related intercepts and slopes or correlated intercepts). Such a

model can thus unfortunately not be estimated with the cur-

rent state of the art, but is an important avenue for future

research.

Finally, with mixed-effects models, model selection is

often performed in order to test for the necessity of a predic-

tor in building a complex model. With the current implemen-

tation of sparseFLMM, comparisons of model quality based

on the Akaike information criterion (AIC) are not possible.

Given the current debate in statistics on statistical inference

after model selection [which is not valid unless post-selection

inference is used and valid procedures for this are still in their

infancy; see, among others, Fithian et al. (2017)], we are in

favor of avoiding model selection if possible when statistical

inference is of interest. The strategy should be to maximally

include all predictors chosen a priori by virtue of the experi-

mental design. The effect curves with confidence bands indi-

cate whether a given covariate has a significant effect or not,

with a pointwise confidence band not containing zero for

some time point corresponding to a significantly different

from zero effect at that time point. If there is a small region

of significance or only a small distance to the zero line it is,

as always, up to the researcher to interpret the statistical

result.

The details of data treatment presented here are specific

to each case study. The model, however, is generally suitable

for any kind of time series data or data with time series-like

observations, be they acoustic, articulatory, eyetracking

curves, or ERPs, but also more generally the method is in

principle applicable to the comparison of groups of curves/

functional data, such as they commonly occur, e.g., in ultra-

sound research. For ultrasound research, in which usually

tongue contours are tracked over time and each sample rep-

resents a curve, another development will have to involve

the analysis of curves over time. Hoole and Pouplier (2017)

have recently shown how PCA can successfully be applied

to raw ultrasound images to obtain time series of scalar val-

ues similar to the ones presented here; these can then in prin-

ciple be subject to sparseFLMM modelling.

With technological advances in speech production meth-

ods, it has become increasingly feasible to collect large data-

sets for many speakers, making it all the more important to

develop methods which allow for adequate statistical model-

ing of functional data. While methods for linear mixed model-

ing of individual measurement points have become well

established, data in the speech sciences usually consist of

time series in the form of signals or signal-derived analysis

parameters, recorded with multiple repetitions per item for

each speaker. sparseFLMM obviates the need for data reduc-

tion by means of feature extraction and magic moment analy-

ses. At first blush, it may seem a high price to pay that effects

have to be interpreted graphically. But in fact, analysis is not

strictly dependent to graphical evaluation: While we allow for

smooth effects over time—anything linear would be way too

simplistic—the sparseFLMM model is in fact linear in the

covariates for each time point. Thus, the linear covariate

effect at any given time point, which can be visually seen in

our figures (e.g., Fig. 2), could also be extracted with its confi-

dence intervals from the model output and interpreted in the

usual way. In that sense, if one chose, say three or five time

points along the time interval and extracted the linear covari-

ate effects and confidence intervals for those time points from

the model output, one could in fact simulate the result of a

“magic moment” analysis from the output (as we did when

discussing extracting the lower limit of the confidence band at

time point 0.25 for the Romanian diphthong case study in

Sec. III). Moreover, as we show in our case studies, the vari-

ance decomposition of the sparseFLMM method renders

information which can be interpretable and in principle is

available for further analysis. The advantage of sparseFLMM

is that analysis is not restricted to a given set of time points,

nor do they have to be specified in advance. More impor-

tantly, there may be considerable benefit from using more

complex models which allow for curve shape quantification

of correlated data. As we have pointed out in Sec. I, it has to

be a great concern if data reduction techniques either discard

a wealth of information in order to be able to take the com-

plex correlation structure of crossed designs into account or

successfully quantify curve shape at the price of disregarding

the complex correlation structures in the data. We therefore

believe that statistical models allowing us to quantify curve

evolution over time will provide an important tool for the

speech and language sciences.

J. Acoust. Soc. Am. 142 (2), August 2017 Pouplier et al. 945



ACKNOWLEDGMENTS

Work supported by the ERC under the EU’s 7th

Framework Programme (FP/2007-2013)/Grant Agreement

No. 283349-SCSPL to M.P. and by the German Research

Foundation (DFG) through Emmy Noether Grant GR 3793/

1-1 to S.G.

1See supplementary material at http://dx.doi.org/10.1121/1.4998555 for

step-by-step instructions for analyzing the datasets for all case studies dis-

cussed in this paper, including R code.

Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). “Mixed-effects

modeling with crossed random effects for subjects and items,” J. Memory

Lang. 59, 390–412.

Baayen, R. H., Kuperman, V., and Bertram, R. (2010). “Frequency effects

in compound processing,” in Compounding, edited by S. Scalise and I.

Vogel (Benjamins, Amsterdam), pp. 257–270.

Baayen, R. H., van Rij, J., de Cat, C., and Wood, S. N. (2016).

“Autocorrelated errors in experimental data in the language sciences:

Some solutions offered by Generalized Additive Mixed Models,” in Mixed
Effects Regression Models in Linguistics, edited by D. Speelman, K.

Heylen, and D. Geeraerts (Springer, Berlin), arXiv:1601.02043.

Barr, D. J., Levy, R., Scheepers, C., and Tily, H. J. (2013). “Random effects

structure for confirmatory hypothesis testing: Keep it maximal,”

J. Memory Lang. 68, 255–278.

Cai, S., Boucek, M., Ghosh, S. S., Guenther, F. H., and Perkell, J. S. (2008).

“A system for online dynamic perturbation of formant frequencies and

results from perturbation of the Mandarin triphthong /iau/,” in

Proceedings of the 8th International Seminar on Speech Production,

December 8–12, Strasbourg, France, pp. 65–68.

Cederbaum, J. (2017). “sparseFLMM: Functional linear mixed models for

irregularly or sparsely sampled data. R package version 0.1.0,” https://

CRAN.R-project.org/package¼sparseFLMM (Last viewed May 19, 2017).

Cederbaum, J., Pouplier, M., Hoole, P., and Greven, S. (2016a). “Functional

linear mixed models for irregularly or sparsely sampled data,” Stat.

Modell. 16, 67–88.

Cederbaum, J., Scheipl, F., and Greven, S. (2016b). “Fast symmetric addi-

tive covariance smoothing,” arXiv:1609.07007.

Di, C.-Z., Crainiceanu, C., and Jank, W. S. (2014). “Multilevel sparse func-

tional principal component analysis,” Stat 3, 126–143.

Fithian, W., Sun, D., and Taylor, J. (2017). “Optimal inference after model

selection,” arXiv:1410.2597v4, 1-39.

Greven, S., and Cederbaum, J. (2017). “denseFLMM: Functional Linear

Mixed Models for Densely Sampled Data,” R package version 0.1.0.

Gubian, M., Torreira, F., and Boves, L. (2015). “Using functional data anal-

ysis for investigating multidimensional dynamic phonetic contrasts,”

J. Phon. 49, 16–40.

Gubian, M., Torreira, F., Strik, H., and Boves, L. (2009). “FDA as a tool for

analyzing speech dynamics. A case study on the French word c’�etait,” in

Proceedings of Interspeech 2009, September 6–10, Brighton, UK, pp.

2199–2202.

Guo, W. (2002). “Functional mixed effects models,” Biometrics 58, 121–128.

Hoole, P., and Pouplier, M. (2017). “€Ohman returns: New horizons in the

collection and analysis of imaging data in speech production research,”

Comput. Speech Lang. 45, 253–277.

Lancia, L., Rausch, P., and Morris, J. S. (2015). “Automatic quantitative

analysis of ultrasound tongue contours via wavelet-based functional mixed

models,” J. Acoust. Soc. Am. 137, EL178–EL183.

Marin, S. (2014). “Romanian diphthongs /ea/ and /oa/: An articulatory com-

parison with /ja/ - /wa/ and with hiatus sequences,” Rev. Filolog�ıa Rom�an.

31, 83–97.

Marin, S., and Goldstein, L. (2012). “A gestural model of the temporal

organization of vowel clusters in Romanian,” in Consonant Clusters and
Structural Complexity, edited by P. Hoole, L. Bombien, M. Pouplier, C.

Mooshammer, and B. K€uhnert (Mouton de Gruyter, Berlin), pp.

177–203.

Marin, S., and Pouplier, M. (2014). “Articulatory synergies in the temporal

organization of liquid clusters in Romanian,” J. Phon. 42, 24–36.

Morris, J. S., and Carol, R. J. (2006). “Wavelet based functional mixed mod-

els,” J. R. Stat. Soc. Ser. B. 68, 179–199.

M€ucke, D., Grice, M., and Cho, T. (2014). “More than a magic moment—

Paving the way for dynamics of articulation and prosodic structure,”

J. Phon. 44, 1–7.

Nelson, W. L. (1983). “Physical principles for economy of skilled move-

ments,” Biol. Cybernet. 46, 135–147.

Pouplier, M., and Hoole, P. (2016). “Articulatory and acoustic characteris-

tics of German fricative clusters,” Phonetica 73, 52–78.

Pouplier, M., Marin, S., Hoole, P., and Kochetov, A. (2017). “Speech rate

effects in Russian onset clusters are modulated by frequency, but not audi-

tory cue robustness,” J. Phon. 64, 108–126.

Pouplier, M., Marin, S., and Kochetov, A. (2015). “Durational characteris-

tics and timing patterns of Russian onset clusters at two speaking rates,” in

Proceedings of Interspeech 2015, September 6–10, Dresden, Germany,

pp. 2679–2683.

Quen�e, H., and van den Bergh, H. (2008). “Examples of mixed-effects

modeling with crossed random effects and with binomial data,”

J. Memory Lang. 59, 413–425.

Ramsay, J. O., Hooker, G., and Graves, S. (2009). Functional Data Analysis
with R and Matlab (Springer, Dordrecht, the Netherlands).

Ramsay, J. O., and Silverman, B. W. (2005). Functional Data Analysis
(Springer, New York).

Ruppert, D. (2002). “Selecting the number of knots for penalized splines,”

J. Comput. Graph. Stat. 11, 735–757.

Scheipl, F., Staicu, A.-M., and Greven, S. (2015). “Functional additive

mixed models,” J. Comput. Graph. Stat. 24, 477–501.

Sharoff, S. (2005). “Russian internet corpus,” http://corpus.leeds.ac.uk/

list.html (Last viewed June 30, 2014).

Wada, Y., Koike, Y., Vatikiotis-Bateson, E., and Kawato, M. (1995). “A

computational theory for movement pattern recognition based on optimal

movement pattern generation,” Biol. Cybernet. 73, 15–25.

Wang, J.-L., Chiou, J.-M., and M€uller, H.-G. (2016). “Functional data analy-

sis,” Ann. Rev. Stat. Appl. 3, 257–295.

Wieling, M., Montemagni, S., Nerbonne, J., and Baayen, R. H. (2014).

“Lexical differences between Tuscan dialects and standard Italian:

Accounting for geographic and sociodemographic variation using general-

ized additive mixed modeling,” Language 90, 669–692.

Wieling, M., Tomaschek, F., Arnold, D., Tiede, M., Br€oker, F., Thiele, S.,

Wood, S. N., and Baayen, R. H. (2016). “Investigating dialectal differ-

ences using articulography,” J. Phon. 59, 122–143.

Wood, S. N. (2011). “Fast stable restricted maximum likelihood and mar-

ginal likelihood estimation of semiparametric generalized linear models,”

J. R. Stat. Soc. Ser. B. 73, 3–36.

Wood, S. N., Goude, Y., and Shaw, S. (2015). “Generalized additive models

for large datasets,” J. R. Stat. Soc. Ser. C. 64, 139–155.

Wood, S. N., Zeheyuan, L., Shaddick, G., and Augustin, N. (2017).

“Generalized additive models for gigadata: Modelling the UK Black

Smoke Network daily data,” J. Am. Stat. Assoc. (published online).

Yao, F., M€uller, H.-G., and Wang, J.-L. (2005). “Functional data analysis

for sparse longitudinal data,” J. Am. Stat. Assoc. 100, 577–590.

946 J. Acoust. Soc. Am. 142 (2), August 2017 Pouplier et al.

http://dx.doi.org/10.1121/1.4998555
http://dx.doi.org/10.1016/j.jml.2007.12.005
http://dx.doi.org/10.1016/j.jml.2007.12.005
http://dx.doi.org/10.1016/j.jml.2012.11.001
https://CRAN.R-project.org/package=sparseFLMM
https://CRAN.R-project.org/package=sparseFLMM
https://CRAN.R-project.org/package=sparseFLMM
http://dx.doi.org/10.1177/1471082X15617594
http://dx.doi.org/10.1177/1471082X15617594
http://dx.doi.org/10.1016/j.wocn.2014.10.001
http://dx.doi.org/10.1111/j.0006-341X.2002.00121.x
http://dx.doi.org/10.1016/j.csl.2017.03.002
http://dx.doi.org/10.1121/1.4905881
http://dx.doi.org/10.5209/rev_RFRM.2014.v31.n1.51024
http://dx.doi.org/10.5209/rev_RFRM.2014.v31.n1.51024
http://dx.doi.org/10.5209/rev_RFRM.2014.v31.n1.51024
http://dx.doi.org/10.1016/j.wocn.2013.11.001
http://dx.doi.org/10.1111/j.1467-9868.2006.00539.x
http://dx.doi.org/10.1016/j.wocn.2014.03.001
http://dx.doi.org/10.1007/BF00339982
http://dx.doi.org/10.1159/000442590
http://dx.doi.org/10.1016/j.wocn.2017.01.006
http://dx.doi.org/10.1016/j.jml.2008.02.002
http://dx.doi.org/10.1198/106186002853
http://dx.doi.org/10.1080/10618600.2014.901914
http://corpus.leeds.ac.uk/list.html
http://corpus.leeds.ac.uk/list.html
http://dx.doi.org/10.1007/BF00199052
http://dx.doi.org/10.1146/annurev-statistics-041715-033624
http://dx.doi.org/10.1353/lan.2014.0064
http://dx.doi.org/10.1016/j.wocn.2016.09.004
http://dx.doi.org/10.1111/j.1467-9868.2010.00749.x
http://dx.doi.org/10.1111/rssc.12068
http://dx.doi.org/10.1080/01621459.2016.1195744
http://dx.doi.org/10.1198/016214504000001745

	s1
	l
	n1
	s2
	s2A
	d1
	d2
	s2B
	s3
	d3
	f1
	f2
	s4
	f3
	f4
	f5
	f6
	f8
	f7
	f9
	s5
	t1
	f10
	d4
	s6
	f11
	fn1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c39
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38

