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ABSTRACT 

This paper explores the learnability of covert 
contrasts (impressionistically homophonous 
categories that can be reliably distinguished at the 
phonetic level) through a series of model-based 
clustering simulations using human production 
data.  Allowing the models to learn both the 
number and parameters of those categories 
provides a way to explore the potential stability of 
category structures. The results indicate that while 
a statistical learner can be quite effective at 
inducing covert contrasts, success depends 
crucially on the number and distributional 
characteristics of the relevant cue dimensions. 

Keywords: near merger, Dutch, incomplete 
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1. INTRODUCTION 

Phonological contrasts are often argued to be 
neutralized in certain contexts, but a growing body 
of research suggests that many cases of apparent 
neutralization may in fact be reliably distinguished 
at the phonetic level [9, 11, 12]. Together with 
studies demonstrating variability in the perception 
and production of near-merger at the population 
level [5], the question arises of whether such 
COVERT CONTRASTS represent an essentially 
transitory stage in language evolution, or whether 
even subtly cued contrasts could persist indefinitely 
within and/or across generations of speakers. 

One way to address this question is to ask if the 
categories in a particular instance of covert 
contrast are in principle separable by a statistical 
learning algorithm. Previous computational studies 
of phonetic category acquisition [1, 2, 10] have all 
focused on vowel contrasts, which tend to be well-
separated in a low-dimensional acoustic space. 
Covert contrasts might be expected to present 
greater difficulty for statistical learning 
mechanisms on account of the high degree of 
overlap along multiple cue dimensions, suggesting 
that may be more likely to neutralize in the course 
of acquisition or transmission. 

Reports of contrast reduction often remark on its 
uneven distribution in a population, with some 

members of a speech community distinguishing a 
contrast in production and/or perception, while 
others do not [4, 5]. Through a series of statistical 
learning simulations, the present study explores the 
role of this individual variation in cue perception 
and production on the acquisition of covert contrast. 

2. CATEGORY RESTRUCTURING AS 

MODEL SELECTION 

The task of phonetic category induction may be 
intuitively recast as a (model-based) clustering 
problem: determining the intrinsic structure of a set 
of data without prior knowledge of that structure. 
Here, clustering was performed using a Gaussian 
mixture model (GMM) [7]. In a GMM, a D-
dimensional data point x = (x1, . . . , xD ) is 
assumed to be generated by a K -component 
mixture model with density 

(1) 

 

where θ = ((π1 , µ1
, Σ1), . . . , (πK , µK , ΣK )) is a K 

(D + 2)-parameter structure containing the 
component weights π

k
, mean vectors µ

k
, and 

covariance matrices Σ
k of the D-dimensional 

Gaussian densities N. The component weights π 
must obey the constraint that . 

Fitting a K -component GMM involves finding 
θ, usually via the method of maximum likelihood 
estimation: given an observation vector X = x1, 
x2 , . . ., xN , find θ that maximizes the log-
likelihood L  = ln P (X|θmax ). However, there 
remains the problem of determining an optimal 
value of K. One strategy is to pick the simplest 
model consistent with the data, where ‘simplest’ is 
defined with respect to the number of parameters 
in the model. This trade- off between model fit and 
model complexity can be measured in a number of 
ways; here, we employ the BAYESIAN 
INFORMATION CRITERION (BIC), a metric 
which penalizes models based on the number of 
free parameters they contain [8]. BIC-based model 
selection proceeds as follows. Given a series of N 
i.i.d. D-dimensional observations X, let L be the 
maximized log-likelihood of a GMM with K D- 
dimensional components characterized by 
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parameters θ, and let Q stand for the number of 
independent parameters in that model: 

(2) Q = K (D + D(D + 1)/2) + K − 1 

The BIC is then defined as 
(3) BIC = −2L + ln(N)Q 

The first term, −2L, measures the model’s accuracy 
(fit to the data), while the second term, ln(N)Q, 
represents the model’s complexity. Given two 
models fit on the same data, the model with the 
smaller BIC value is considered superior in terms 
of the fit-complexity trade-off. Here, neutralization 
is predicted when the BIC-OPTIMAL model fit to 
data generated from a model with K components 
has fewer than K components. 

3. COVERT CONTRAST IN DUTCH 

The voicing contrast between word-final 
obstruents in Dutch is a case that has been argued 
to be both complete [6] and incomplete 
neutralization [11]. Compelling evidence in favor 
of incomplete neutralization is provided by Warner, 
et al. [11], who show that a distinction between 
word-final /t/ and /d/ is not only supported by 
small but statistically significant differences in the 
production of cues such as the duration of the stop 
burst, but that listeners are also able to distinguish 
forms such as those in Table 1 on the basis of cues 
which appear to overlap significantly in production, 
such as the degree of voicing during closure. 

Table 1: Dutch minimal pairs differing in under- lying 

voicing of the final obstruent, from [11]. 

voiceless voiced 

baat /bat/ ‘benefit’ baad /bad/ ‘bathe-1sg’ 

boot /bot/ ‘nut’ bood /bod/ ‘offered-1sg’ 

eet /et/ ‘eat-sg.’ eed /ed/ ‘oath’ 

meet /met/ ‘measure-sg’ meed /med/ ‘avoided-

1sg’ noot /not/ ‘nut’ nood /nod/ ‘necessity’ 

smeet /smet/     ‘threw-sg’ smeed /smed/ ‘forge-1sg’ 

zweet /zwet/    ‘nut’ Zweed /zwed/ ‘Swede’ 

The original production data set gathered by 
Warner et al. contains 2,160 tokens gathered from 
15 native speakers: two repetitions each of 72 
Dutch lexical items, forming 36 minimal pairs, 
containing either phonologically long or short 
vowels. The simulations reported here consider 
just the seven minimal pairs shown in Table 1 (420 
tokens), the subset of the data containing 
phonetically short vowels. 

3.1. Series 1: Pooled data 

Warner et al. [11] measured the duration of four 
potential cues to underlying final stop voicing in 
Dutch: the duration of the release burst (B), the 

duration of the preceding vowel (V), the duration 
of the closure (C), and the duration of the voiced 
period of the closure (G). The means and standard 
deviations for these cues based on the productions 
of all 15 speakers are given in Table 2, and plotted 
in Fig. 1. 

Table 2: Mean (s.d.) for cues to Dutch final /t/ and /d/ 

for all speakers in [11]. 

Category B V G C 

voiced 118 (36) 207 (39) 27 (16) 69 (18) 
voiceless 130 (34) 208 (40) 28 (17) 71 (19) 

Figure 1: Density plots of cues to underlying final /t/ 

(solid) and /d/ (dashed) for all speakers in [11]. 

 
Two general types of model-fitting simulations 

were performed using these data, to assess (a) 
whether neutralization would be predicted (based on 
the BIC-optimal number of mixture components) 
and (b) the robustness of the solution to random 
variation in the training data. First, to explore 
individual variation in attention to cue, a series of 
75 GMMs were fit to a set of N =500 observation 
vectors generated from a 2-component, 4-
dimensional Gaussian mixture with the parameters 
given in Table 2, representing all non-empty subsets 
of the set of 4 cues (e.g. {B, V, C, G, BV, BC, 
VC...}) crossed with 1 to 5 components. A single-
component model was BIC-optimal in all cases, 
despite marginal improvements in classification 
accuracy for models with 3 or more components. 

In order to insure that the simulation results did 
not simply reflect an idiosyncratic statistical property 
of the particular observation data to which the 
models were fit, each simulation was repeated 1,000 
times with different sets of input data generated from 
the parameters in Table 2. The results of these 
typicality experiments confirm the initial findings: 
the optimal solution was a single-component model 
in all cases except for the cue combination BGC, 
where K =1 models were selected 90% of the time 
and K =2 models just 10%. 

3.2. Series 2: Individual data 

The results of the simulations reported above 
predict complete neutralization of the Dutch 
voicing contrast in final position, contra Warner et 
al., who found that listeners were able to 
distinguish between voicing categories with 
greater-than-chance accuracy based on differences 
between cues which did not covary with voicing in 
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production. However, the authors also noted a 
certain amount of between-speaker variability in 
their data; by pooling the production data for all 
speakers, this individual variation is obscured. To 
explore the effect of individual variability in 
production on the recoverability of this contrast, 
simulations were repeated using data from four 
speakers representative of the range of variation 
seen in the Warner et al. data set (subjects 3, 5, 6, 
and 14), shown in Table 3 and Fig. 2. 

Table 3: Mean (s.d.) for cues to Dutch final /t/ and /d/ 

for individual speakers in [11]. 

 

Figure 2: Density plots of cues to underlying final /t/ 

(solid) and /d/ (dashed) for individual speakers. 

 

First, BIC scores for all non-empty subsets of 
cue dimensions were computed for 4 sets of 75 
models, each set trained on data generated from one 
of the subjects in Table 3. Fig. 3 shows the optimal 
number of cue dimensions (1=light grey, 2=dark 
grey) computed for these 300 GMMs (models with 
more than 2 components were never BIC-optimal). 
In some cases, learners were able to recover the 
underlying contrasts, but the outcome varied both 
with the source of training data as well as with the 
dimensionality of the input. For instance, while a 2- 
component GMM was BIC-optimal when fit to 
data from s6 containing just vowel duration (V) 
information, adding additional cue dimensions 
resulted in 1-component models emerging as 
optimal, while the reverse was generally true for 
models fit to data from subject s3. 

As in Series 1, each of the clustering 
simulations based on individual speaker data were 
repeated 1,000 times. The typicality of the results 
shown in Fig. 3 is summarized in Fig. 4, which 
shows the proportion (out of 1,000) of 1, 2, and (in 
a very few cases) 3-category solutions learned. 
These simulations highlight the potentially 
stochastic nature of the category restructuring 
process, demonstrating that even small fluctuations 
in the input may cause the number of categories 
posited by one learner to differ from the number 
posited by another learner, even when exposed to 
nominally the same data. This illustrates how the 
fate of a covert contrast may depend heavily on the 
particulars of the input to which learners are 
exposed, in addition to individual differences in the 
saliency or integrity of acoustic cues to a contrast. 

Figure 3: Number of BIC-optimal categories (1=light 

grey, 2=dark grey) for GMMs fit to individual subject 

data by input dimensionality. 

 

Figure 4: Proportion of 1 (light grey), 2 (dark grey), 

and 3 (black) BIC-optimal category solutions for input 

data from individual Dutch speakers by input 

dimensionality. 

 
Furthermore, the typicality simulations illustrate 

the danger in assessing the potential separability of 

a contrast based on a single acoustic dimension, 

even if highly salient. While 1-component solutions 

were generally preferred for observation data which 

included only B and V cues, 2-component solutions 

were more likely to be optimal for other types of 2-

dimensional observation data, such as that 
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containing B or G cues. When burst (B) 

information (which covaried most robustly with the 

underlying voicing specification for all 4 speakers) 

was surpressed, 1- component models were nearly 

always optimal, but the mere presence of the burst 

cue alone was not al- ways sufficient for a learner 

to recover the contrast. 

4. DISCUSSION 

One key finding of this study is that access to a cue 

dimension that, when considered on its own, 

allows a learner to posit a K -category solution as 

optimal does not necessarily imply that a K -

category solution will be optimal when this 

dimension is considered simultaneously with other 

dimensions. This is consistent with [11], who 

found a significant effect of continuum step when 

examining listener sensitivity to closure duration 

(C), a cue which did not significantly covary with 

underlying voicing in production. One 

interpretation of these results is that even though 

an individual acoustic dimension may not vary 

systematically with an underlying category 

distinction in production, human listeners may 

nonetheless possess some awareness of the role it 

plays in distinguishing between categories. 

The finding that GMMs were sometimes able to 

recover the contrast when fit to subsets of the data 

predicts that the likelihood of recovering a covert 

contrast may vary stochastically in a population. 

That is, whether a learner posits e.g. 2 categories 

rather than 1 cannot be predicted solely on the 

basis of considering pooled data from a population, 

since learners are exposed to different subsets of 

the population and/or may attend to or integrate the 

range of potential cue dimensions in different ways. 

This is consistent with the findings that some 

members of a speech community show covert 

contrast/near mergers in production, perception, or 

both, while others neither produce nor perceive 

such contrasts [5]. 

5. CONCLUSIONS 

The results of model-based clustering indicate that 

an unsupervised statistical learner is in principle 

capable of recovering covert contrasts, with a 

success rate dependent on the type and number of 

cues provided. This suggests that covert contrasts 

may represent potential stable states, rather than 

just temporary phases in the evolution of a contrast. 

However, the results also demonstrate that an 

underlying contrast cannot necessarily be inferred 

from separability along individual acoustic-

phonetic dimensions, especially when considerable 

individual variation exists in the input. These 

results underscore the importance of considering 

individual-level variation in the production and 

perception of cues when investigating the 

acquisition and evolution of sound patterns, 

whether computationally or experimentally. 
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