Annotation structures

This chapter introduces the reader to annotation structure modelling within emuR. Generally, there are two
ways of thinking about annotations of speech data. Many linguists still think about the elements that build
up an utterance in a purely symbolic way, i.e. a sequence of labels (e.g. phonemes). This approach is very
useful in many sub-disciplines of linguistics, and certainly mainly known from introductory courses in syntax,
in which even beginners start with learning that an utterance can be split up into its constituants, e.g. a
nominal phrase and a verbal phrase, and that each of these can be split up further into smaller entities. A
nominal phrase, for example, consists of a noun together with zero or more dependents of various types, like
determiners, attributive adjectives, and many other possible candidates. A nominal phrase like “the green
tree” would therefore consist of a determiner (“the”), an attributive adjective (“green”), and, of course, the
obligatory noun (“tree”). The constituants of an entitiy are usually written down below of the symbolic
representation of the entity itself, and linked with it, resulting in a tree-like structure. See e.g. a syntactic
analysis of the sentence “John hit the ball”:

<
7,

D N

t the ball.

L
[R RN E R RN RN

John h

The importancy of this analysis is expressed in the way how an entity can be shown to be build up by its
constituants by symbolic links (here shown as lines) which show the dominance structure: entities dominate
their constituants.

The sentence S in the top level consists of the N “John” and a verbal phrase called VP (“hit the ball”), and
these constituants are shown in the next level; this VP on the second level can be split up into a verb V
(“hit”) and a nominal phrase NP (“the ball”), represented on a third level. A fourth level shows the analysis
of the NP on level three, namely its constituants D (the determiner “the”) and N (the noun “ball”). This
analysis therefore reveals the internal syntactic structure of this sentence.

Such an analysis can get along without any reference to physical time, because the only - rather abstract
- relation to time is the sequential order of the constituants of the sentence (e.g. word order). This is true not
only for syntactic analyses, but also valid in other domains, e.g. in a purely phonemic analysis (cf. Figure 1B).

By contrast, physical time, and derived measures like durations etc., are a very substantial part of
phonetic analyses. Many software packages like e.g. praat therefore represent the constituants of an
utterance in a completely different way: they are represented on certain levels (e.g. the tiers in praat) and
consist not only of a symbolic representation, but also of a relation to time and to the signal - whatever it
may be - that was the result of any sort of measurement that was made during the utterance was spoken
(e.g. in most cases an audio recording). The different levels, however, are completely independent of each
other. Even if the researcher has a sort of link definition in his/her head, these links are not present in the
actual annotation structure — even if it looks as if this would be the case (cf. Figure 1A).

The EMU legacy system combined the best of both worlds by mixing time-aligned and symbolic tree-like
structures (cf. Figure 1C).This was achieved by providing software tools that allowed for these types of
annotation structures to be generated, queried and evaluated. In practice, each annotation item had its own

unique identifier within the annotation. These unique IDs could then be used to reference each individual item
and link them together using dominance relations to form the hierarchical annotation structure. On the one
hand, this dominance relation implies the temporal inclusion of the linked sub-level items and was partially
predicated on the no-crossing constraint, which does not permit the crossing of dominance relationships with
respect to their sequential ordering. Since the dominance relations imply temporal inclusion, events can only
be children in a parent-child relationship. To allow for timeless annotation items, a further timeless level
type was used to complement the segment and event type levels used for time-aligned annotations.
Each level of annotation items was stored as an ordered set to ensure the sequential integrity of both the
time-aligned and timeless item levels.

A

Text

m’ole:ntly

J
1

Syllable

[

@J
=
J
T

|

.J

[
F
1 : =
[[~
PELLeme

thEt_zc
<
S .
J
g
®
.
o
m]

B
violently S
~ _____———"’"—::’ \\\:__— ————— -——
= _ P N -
= S w w
= -~ . A\~ -
o TN | ,,://\\‘\\ - \\ o
Phs S | -7 . \ T~ Phe \ §
v ai @ [@ n t l 1 £
: : =
< I I I I I I VRN I I Q.‘
~§ | | | | | | VAN |
g v ai @ l @ n t H 1 i
=
al)
B
violently S
< LA HT AT R STl .
= AR - ~ - - =
= i w w
> Ly A~ -
n /,’ N1 1 _ - //\\ - ///\\ Y
M mh 1 I 7 VA L \ Sy i \ g
1] 8]
v ai S
i =
! _

Phon_et_zc
[
AE_‘._
S
—--©
[:I—-s
ALEI;>W

All these ideas of the legacy EMU system have been adopted to the EMU-SDMS. The elements needed to
achieve the above mentioned properties are:

Level types
There are three types of levels in the EMU-SDMS. Two of them are time-aligned and one is purely symbolic:
« SEGMENTS (segments of the signal represented by a start time and a end time)

« EVENTS (single points in time)
o ITEMs (timeless symbols)

Relation types

There are two (self-explaining) types of relations in the EMU-SDMS:
o dominance
e sequence

Sequence is expressed by means of a numerical ID. E.g. the word label “amongst” is the 30st element in the
first utterance (msajc003) of the ae database. This information is saved in the file msajc003__annot.json:

{

"id": 30,
"labels": [
{
"name": "Text",
"value": "amongst"
}
]
},
{
"id": 39,
"labels": [
{
"name": "Syllable",
"value": "W"
}
]
},
{
"id": b3,
"labels": [
{
"name": "Phoneme",
"value": "V"
}
]
},
{
"id": 87,
"sampleStart": 3749,
"sampleDur": 1389,
"labels": [
{
"name": "Phonetic",
"value": "V"
}
]
},

Dominance relationships are also saved in the annot.json files within each bundle, e.g.:

{
"fromID": 30,
"toID": 39

3,

"fromID": 39,
"toID": 53
})

"fromID": 53,
"toID": 87
1,

i.e. (the timeless) “amongst” dominates the (timeless) weak syllable “W”, which dominates (and consists of)
the (“timeless”) vowel phoneme “V”, which dominates the phonetic (and therefore time-aligned) vowel “V”.

The resulting annotation tree can be seen by browsing to http://ips-lmu.github.io/EMU-webApp/ and
opening the first utterance of the demo database ae. In this demo database, you will find all three level types,
i.e. timeless ITEMs, and time-aligned SEGMENTS and (tonal) EVENTS, respectively.

Reduced data redundancy

One obvious way to reduce data redundancy is the use of the level type ITEM, as it is a purely timeless
symbol, i.e. only a symbol, but no time information has to be stored, alongside with information about the
ITEM’s position in a sequential order of ITEMs and the ITEM’s dominance over SEGMENTS; the dominance
relationship of an ITEM to one or more SEGMENTs allows, however, to deduce time information from the
start time of the first dominated SEGMENT and the end time of the last dominated SEGMENT. So, if
you are searching “amongst” in the ae database, you will not only get the information, that there is one
“amongst” in the first utterance, but also the start time of its first phonetic segment and the end time of its
last phonetic segment (“V”, i.e. ID 87, and “t”, i.e. ID 92, respectively).

Another way to reduce data redundancy was achieved by allowing parallel annotations (multiple attributes)
to be defined in the form of linearly linked levels for any given level (e.g., a segment level bearing SAMPA
annotations as well as IPA UTF-8 annotations). See examples of this in the ae demo database mentioned
above.

Database annotation structure definition

Unlike other systems, the EMU-SDMS requires the user to define the annotation structure formally for all
annotations within a database. As mentioned above, the actual annotation files (...annot.json) of an emuDB
contain the annotation items as well as their hierarchical linking information. To be able to check the validity
of a connection between two items, the user specifies which links are permitted for the entire database just as
for the level definitions. The permitted hierarchical relationships in an emuDB are expressed through link
definitions between level definitions as part of the database configuration. There are three types of valid links:

ONE_TO_ONE
ONE_TO_MANY
MANY_TO_MANY

These links specify the permitted relationships between instances of annotation items of one level and those
of another.

http://ips-lmu.github.io/EMU-webApp/

Text (17EM) --- ONE_TO_MANY
e e MANY_TO_MANY
Syllable (ITENI)
4

Phoneme (ITEM)

.

&

Phonetic (SEGN[ENT)

B
) Intonational (ITEM) |[--- ONE_TO_MANY
T e MANY_TO_MANY
R Intermediate (ITEM)

4
v 1

~
Foot (ITEM) Wordés AccentéText (ITEM)

S ~
~“~~ Sy”abl(i (ITEN:[) ———— .
& Sy
Phoneme (ITEM) Tone (EVENT)

&

Phonetic (SEGN[ENT)

The structure in Figure 2A is a typical example of an EMU hierarchy where only the Phonetic level of type
SEGMENT contains time information and the others are timeless as they are of the type ITEM. The top
three levels, Text, Syllable and Phoneme, have a ONE_TO_MANY relationship specifying that a single
item in the parent level may have a dominance relationship with multiple items in the child level. In this
example, the relationship between Phoneme and Phonetic is MANY_TO_MANY: this type of relationship
can be used to represent schwa elision and subsequent sonorant syllabi

cation, as when the final syllable of “sudden” is /d@n/ at the Phoneme level but [dn] at the Phonetic
level. Figure 2B displays an example of a more complex, intersecting hierarchical structure definition where
Abercrombian feet (Abercombie, 1967) are incorporated into the Tones and Break Indices (ToBI) (Beckman
and Ayers, 1997) prosodic hierarchy by allowing an intonational phrase to be made up of one or more feet
(for further details see Harrington, 2010, page 98).

Parallel labels and multiple attributes

The legacy EMU system made a distinction between linearly and non-linearly linked inter-level links. Linearly
linked levels were used to describe, enrich or supplement another level. For example, a level called Category
might have been included as a separate level from Word for marking words’ grammatical category memberships
(thus each word might be marked as one of adjective, noun, verb, etc.), or information about whether or
not a syllable is stressed might be included on a separate Stress tier (description taken from Harrington,
2010, page 77). Using ONE_TO_ONE link definitions to define a relationship between two levels, it
is still possible to model linearly linked levels in the new EMU-SDMS. However, an additional, cleaner
concept that reduces the extra level overhead has been implemented that allows every annotation item
to carry multiple attributes (i.e., labels). The generic term attribute (vs. label) was chosen to have the
exibility of adding attributes that are not of the type STRING (i.e., labels) to the annotation modeling

mailto:/d@n

capabilities of the EMU-SDMS in future versions. Figure 3 shows the annotation structure modeling difference
between linearly linked levels (see Figure 3A) and an annotation structure using multiple attributes (see
Figure 3B). Figure 3A shows three separate levels (Word, Accent and Text) that have a ONE_TO__ONE
relationship. Each of their annotation items is linked to exactly one annotation item in the child level (e.g.,
A1-A3). Figure 3B shows a single level that has three attribute definitions (Word, Accent and Text) and
each annotation item contains three attributes (e.g., A1-A3). It is worth noting that every level definition
must have an attribute definition which matches its level name. This primary attribute definition must
also be present in every annotation item belonging to a level. As emuR’s database interaction functions,
such as add_levelDefinition(), and the EMU-webApp automatically perform the necessary actions this
should only be of interest to (semi-)advanced users wishing to automatically generate the annot.json format.

A

---- ONE_TO_ONE

Word qTEM)y A1 BI Ci

¥

Accent qTEM) A2 B2 (2

Text (1TEM) A8 B3 (3

B
Word
& Accent Al B1 C1
& Text &A2 &B2 &(C2
&A3 &B3 &C3
(ITEM)
Examples

Start once again with the conversion from a collection of TextGrids and correspondings audio files:

library(emuR)

create demo data in directory provided by the tempdir() function
(of course other directory paths may be chosen)
create_emuRdemoData(dir = tempdir())

create path to demo data directory, which s
called "emuR_demoData"
demoDataDir = file.path(tempdir(), "emuR_demoData")

show demo data directories
list.dirs(demoDataDir, recursive = F, full.names = F)

create path to TextGrid collection
tgColDir = file.path(demoDataDir, "TextGrid_collection")

show content of TextGrid_collection directory
list.files(tgColDir)

convert TextGrid collection to the emuDB format
convert_TextGridCollection(dir = tgColDir,

dbName = "myFirst",

targetDir = tempdir(),

tierNames = c("Text", "Syllable",

"Phoneme", "Phonetic"))

get path to emuDB called "myFirst"
that was created by convert_TextGridCollection()
path2directory = file.path(tempdir(), "myFirst_emuDB")

load emuDB into current R session
dbHandle = load_emuDB(path2directory, verbose = FALSE)

summary (dbHandle)

list level definitions

as this reveals the "-autobutildBackup" levels
added by the autobuild_linkFromTimes() calls
list_levelDefinitions(dbHandle)

There are no link definitions:

list_linkDefinitions(dbHandle)

We want to add a few link definitions. We chose ONE_TO_MANY on order to link Text and Syllable (as
one word may contain several syllables), and to link Syllable and Phoneme (as one Syllable usually consists of
several Phonemes); however, we use MANY_TO_MANY when linking the Phoneme level with the Phonetic
level (allowing insertions and deletions, respectively, on the Phonetic level)

invoke autobuild function

for "Text" and "Syllable" levels

autobuild_linkFromTimes (dbHandle,
superlevelName = "Text",
sublevelName = "Syllable",
convertSuperlevel = TRUE,
newLinkDefType = "ONE_TO_MANY")

invoke autobuild function

for "Syllable" and "Phoneme" levels

autobuild_linkFromTimes(dbHandle,
superlevelName = "Syllable",
sublevelName = "Phoneme",
convertSuperlevel = TRUE,
newLinkDefType = "ONE_TO_MANY")

invoke autobuild function
for "Phoneme" and "Phonetic" levels
autobuild_linkFromTimes (dbHandle,
superlevelName = "Phoneme",
sublevelName = "Phonetic",

convertSuperlevel = TRUE,
newLinkDefType = "MANY_TO_MANY")

list level definitions
list_levelDefinitions(dbHandle)

list_linkDefinitions(dbHandle)

remove the levels containing the "-autobutildBackup"

suffizx

remove_levelDefinition(dbHandle,
name = "Text-autobuildBackup",
force = TRUE,

verbose = FALSE)

remove_levelDefinition(dbHandle,
name = "Syllable-autobuildBackup",
force = TRUE,
verbose = FALSE)

remove_levelDefinition(dbHandle,
name = "Phoneme-autobuildBackup",
force = TRUE,
verbose = FALSE)

list level definitions
list_levelDefinitions(dbHandle)

list_linkDefinitions(dbHandle)

serve (dbHandle)

Legal labels and label groups

We often might want to restrict ourselves to only a few “legal” labels; for examples, it might be useful to use
only “S” and “W” for strong and weak syllables (therefore, “s” or “w” and any other label will be illegal; this
will not delete labels other than “W?” and “S” that are already in our database; it will, however, present us
and out co-workers for introducing such labels in the future)

get_legallabels(dbHandle,
levelName = "Syllable",
attributeDefinitionName = "Syllable")

set_legalLabels(dbHandle,
levelName = "Syllable",
attributeDefinitionName = "Syllable",
legallabels = c("S", "W"))

serve (dbHandle)

Another useful possibility is the grouping of certain labels, e.g.:

add_labelGroup(dbHandle,
name = "Vowels",
values = C(”i!", Ilo:ll, IIVII))

list_labelGroups (dbHandle)

#####Delete this again with ...
#delete_labelGroup (dbHandle,
name = "Vowels")

query (emuDBhandle = dbHandle,

query = "Phonetic == Vowels")
#instead of
query (emuDBhandle = dbHandle,

query = "Phonetic == i: | o: | V")

Further information

Type
vignette()

to find all available vignettes (i.e. introductory help pages) of all installed packages.

For the emuR-package, you’ll find 3 vignettes, “emuR__intro” (an introduction similar to chapters 01-03),
“emuDB” (information about the database format of emuR), and “EQL” (an introduction to the emuR query
language). To see the vignette concerned with the EMU-SDMS annotation structure, type

vignette ("emuDB")

	Annotation structures
	Database annotation structure definition
	Parallel labels and multiple attributes

	Examples
	Legal labels and label groups
	Further information

