Chapter 10

Implementation of the query

syste

Compatibly with other query languages, the EQL defines the user a front-end inter-
face and infers the query’s results from its semantics. However, a query language
does not define any data structures or specify how the query engine is to be im-
plemented. As mentioned in Chapter 1, a major user requirement was database
portability, simple package installation, and a system that did not rely on external
software at runtime. The only available back-end implementation that met those
needs and was also available as an R package at the time was (R)SQLite (Hipp and
Kennedy, 2007; (Wickham et al., 2014). Because of this, emuR’s query system could
not be implemented so as to use directly the primary data sources of an emuDB, that
is, the JSON files described in Chapter 4. A syncing mechanism that maps the pri-
mary data sources to a relational form for querying purposes had to be implemented.
This relational form is referred to as the emuDBcache in the context of an emuDB.
The data sources are synchronized while an emuDB is being loaded and when changes
are made to the annotation files. To address load time issues, we implemented a file
check-sum mechanism which only reloads and synchronizes annotation files that have
a changed MD5-sum (Rivest, {1992). Figure 10.1 is a schematic representation of how
the various emuDB interaction functions interact with either the file representation or
the relational cache.

Despite the disadvantages of cache invalidation problems, there are several advan-
tages to having an object relational mapping between the JSON-based annotation
structure of an emuDB and a relation table representation. One is that the user still
has full access to the files within the directory structure of the emuDB. This means

“Sections of this chapter have been published in [Winkelmann et al.| (2017).

150

add_linkDefinition() requery_hier ()

emuDBhandle

auery0
load_emuDB ()

relational annot. struct.

exampleDB_emuDB items table
. | item_id |
——— exampleDB_DBconfig.json s labels table
0002 _ses : :
bun le2_bndl/ _05') . | 1te'm_1d | label |
—— bundle2.wav g links table
L ... i= |from_id|to_id|...
=
=
n

Figure 10.1: Schematic architecture of emuDB interaction functions of the emuR pack-
age. Orange paths show functions interacting with the files of the emuDB, while green
paths show functions accessing the relational annotation structure. Actions like sav-
ing a changed annotation using the EMU-webApp first save the _annot.json to disk
then update the relational annotation structure.

151

that external tools can be used to script, manipulate or simply interact with these
files. This would not be the case if the files were stored in databases in a way
that requires (semi-)advanced programming knowledge that might be beyond the
capabilities of many users. Moreover, we can provide expert users with the option
of using other relational database engines such as PostgreSQL, including all their
performance-tweaking abilities, as their relational cache. This is especially valuable
for handling very large speech databases.

The relational form of the annotation structure is split into six tables in the
relational database to avoid data redundancy. The six tables are:

1. emu_db: containing emuDB information (columns: uuid, name),
2. session: containing session information (columns: db_uuid, name),

3. bundle: containing bundle information (columns: db_uuid, session, name,
annotates, sample rate, md5_annot_json),

4. items: containing all annotation items of emuDB (columns: db_uuid, session,

bundle, item_id, level, type, seq_idx, sample_rate, sample_point, sample_start,

sample_dur),

5. labels: containing all labels belonging to all items (columns: db_uuid, session,
bundle, item_id, label_idx, name, 1abels), and

6. links: containing all links between annotation items of emuDB (columns: db_uuid,
session, bundle, from id, to_id, labels).

While performing a query the engine uses an aggregate key to address every
annotation item and its labels (db_uuid, session, bundle, item_id) and a similar
aggregate key to dereference the links (db_uuid, session, bundle, from_id / to_id)
which connect items. As the records in relational tables are not intrinsically ordered
a further aggregate key is used to address the annotation item via its index and
level (uuid, session, bundle, level / seq idx). This is used, for example, during
sequential queries to provide an ordering of the individual annotation items. It
is worth noting that a plethora of other tables are created at query time to store
various temporary results of a query. However, these tables are created as temporary
tables during the query and are deleted on completion which means they are not
permanently stored in the emuDBcache.

152

10.0.1 Query expression parser

The query engine parses an EQL query expression while simultaneously executing
partial query expressions. This ad-hoc string evaluation parsing strategy is differ-
ent from multiple other query systems which incorporate a query planner stage to
pre-parse and optimize the query execution stage (e.g., Hipp and Kennedy, |2007;
Conway et al., 2016). Although no pre-optimization can be performed, this strat-
egy simplifies the execution of a query as it follows a constant heuristic evalua-
tion strategy. This section describes this heuristic evaluation and parsing strategy
based on the EQL expression [[Syllable == W -> Syllable == W] ~[Phoneme
== @ -> #Phoneme == s]].

The main strategy of the query expression parser is to recursively parse and
split an EQL expression into left and right sub-expressions until a so-called Simple
Query (SQ) term is found and can be executed (see EBNF in Appendix D for more
information on the elements comprising the EQL). This is done by determining the
operator which is the first to be evaluated on the current expression. This operator
is determined by the sub-expression grouping provided by the bracketing. Each sub-
expression is then considered to be a fully valid EQL expression and once again
parsed. Figure 10.2, which is split into seven stages (marked S1-S7), shows the
example EQL expression being parsed (S1-S3) and the resulting items being merged
to meet the requirements of the individual operator (S4-S6) of the original query.
S1 to S3 show the splitting operator character (e.g., —> in purple) which splits the
expression into a left (green) and right (orange) sub-expression.

The result modifier symbol (#) is noteworthy for its extra treatment by the query
engine as it places an exact copy of the items marked by it into its own intermediary
result storage (see #Sitems node on S7 in Figure 10.2). After performing the database
operations necessary to do the various merging operation which are performed on
the intermediary results, this storage is updated by removing items from it that are
no longer present due to the merging operation. As a final step, the query engine
evaluates if there are items present in the intermediary result storage created by
the presence of the result modifier symbol. If so, these items are used to create
an emuRsegs object by deriving the time information and extracting the necessary
information from the intermediate result storage. If no items are present in the
result modifier storage, the query engine uses the items provided by the final merging
procedure in S3 instead (which is not the case in the example used in Figure 10.2).

A detailed description of how this query expression parser functions is presented
in a pseudo code representation in Algorithms 1 and QEI For simplicity, this repre-

!The R code that implements this pseudo code can be found here: https://github.com/

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

153

S1 [[Syllable == W -> Syllable == ~ [Phoneme == @ -> #Phoneme == s]]
S2 [Syllable == W -> Syllable == W] [Phoneme == @ -> #Phoneme == s]
S3 Syllable == Syllable == W Phoneme == #Phoneme ==
L oQ SQ L aQ L oQ
e u?b C«L’Pe e
e fsﬁ/“ s s
S4 Witems 1tems 1tems [Sitems]l
S5 [W -> Wsequence of items} [@ -> Ssequence of items}\)
insert
S6 [Witems -> Witems i @items ‘>5items}\\\ updaﬁe
f u\pdqt\e i

|
l
W

ST convert_queryResultToEmuRsegs() «-------

Figure 10.2: Example of how the query expression parser parses and evaluates an
EQL expression and merges the result according to the respective EQL operators.

parse query

merge results

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

154

sentation ignores the treatment of the result modifier symbol (#) and focuses on the
parsing and evaluation strategy of the query expression parser. As stated previously,
the presence of the result modifier before an SQ triggers the query engine to place a
copy of the result of that SQ into an additional result table, which is then updated
throughout the rest of the query. The starting point for every query is the query ()
function (see line 64 in Algorithm 2). This function places the filtered items, links
and labels entries that are relevant for the current query into temporary tables. De-
pending on which query terms and operators are found, the EQL query engine uses
the various sub-routines displayed in Algorithms 1 and 2 to parse and evaluate the
EQL expression.

10.0.2 Redundant links

A noteworthy difference between the legacy and the new EMU system is how hier-
archies are stored. The legacy system stored the linking information of a hierarchy
in so-called hierarchical label files, which were plain text files that used the .hlb ex-
tensions. Within the label files this information was stored in space/blank separated
lines:

111 139 140 141 173 174 175 185
112 142 143 176 177

113 144 145 146 178 179 180

114 147

115 148

116 149,

where the first number (green) of each line was the parent’s ID and the following
numbers (orange) indicated the annotation items the parent was linked to. However,
it was not just links to the items on the child level that were stored in each line.
Rather, a link to all children of all levels below the parent level was stored for each
parent item. This was likely due to performance benefits in parsing and mapping onto
the internal structures used by the legacy query engine. A schematic representation
of this cluttered form of linking is displayed in Figure 10.3A. As these redundant
links are prone to errors while updating the data model and lead to a convoluted
annotation structure models (see excessive use of dashed lines in Figure 10.3A), we
chose to eliminate them and opted for the cleaner, non-redundant representation
displayed in Figure 10.3B. Although this led to a more complex query parser engine

IPS-LMU/emuR/blob/master/R/emuR-query.database.R.

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

155

Algorithm 1 Pseudo Code for Query Engine Algorithm - Part 1

1: function QUERY_DBEQLFUNCQ(query)
2: place all parent level items into tmp table
3 place all child level items into tmp table
4: QUERY _DBHIER (parentItemsT able, childltemsT able)
5: if Start End or Medial query then
6 extract parent items and place in tmp result table
7 else

8 extract child items and place in tmp result table
9 end if

10: end function

11: function QUERY_DBEQLLABELQ(query)

12: split Labels < split labels at |

13: for all splitLabels do

14: if operator is ==, = or | = then

15: extract items thmf contain labels which are equal or unequal to label
16: else if operator is = or ! ~ then

17: extract items that contain labels that match or don't match RegEx
18: end if

19: merge results in tmp table

20: end for
21: end function
22: function QUERY_DBEQLSQ(query)

23: if query contains round brackets then
24: QUERY_DBEQLFUNCQ(query)

25: else

26: QUERY_DBEQLLABELQ(query)
27: end if

28: end function

29: function QUERY _DBEQLCONJQ(query)

30: splitltems < split query at &

31: for all splitltems do

32: QUERY_DBEQLSQ(splitltems)

33: merge results in tmp table

34: end for

35: end function

36: function QUERY_DBHIER(leftTable, rightTable)
37: hp < extract hier. paths conn. le ftTable and rightTable level names
38: for all child and parent level pairs in hp do

39: connect child and parent items using links table
40: reduce to min seq. idx (left side of trapeze)

41: and to max seq. idx (right side of trapeze)

42: end for

43: end function

156

Algorithm 2 Pseudo Code for Query Engine Algorithm - Part 2
44: function QUERY_DBEQLINBRACKET (query)

45: qT'rim < remove outer square brackets

46: leftQuery, rightQuery < split ¢I'rim at cur. operator

47: QUERY _DATABASEWITHEQL(leftQuery) > recursive part of query
48: QUERY_DATABASEWITHEQL(rightQuery) > recursive part of query
49: if cur. operator is domintation operator then

50: QUERY_DBHIER(le ftQueryResultTable, rightQueryResultT able)

51: else if cur. operator is seq. operator then

52: find seq. of leftQueryResultTable and rightQueryResultTable items
53: else

54: QUERY_DATABASEWITHEQL(¢T'rim)

55: end if

56: end function
57: function QUERY _DBWITHEQL(query)

58: if query isn’t wrapped in brackets then
59: QUERY_DBEQLCONJQ(query)

60: else

61: QUERY_DBEQLINBRACKET (query)
62: end if

63: end function

64: function QUERY (query, sesPattern, bndlPattern)

65: filter items in relational tables by sesPattern

66: filter items in relational tables by bndl Pattern

67: QUERY _DBWITHEQL(query)

68: seglist <~ CONVERT_QUERYRESULTTOEMURSEGS(tmpResultT ableN ame)
69: return seglist

70: end function

157

for hierarchical queries and functions, we feel it is a cleaner, more accurate and more

robust data representation.

A
Intonational (ITEM)

.
P l \
’

K Intermeq‘llat‘e (ITEM)

4

l \
VA | \

Foot ITEWPrd&Accgant&;Text ITEM)

n\
1 \L“

o Syllalie iy s

I
\\\ | \l,l

\\\

~
~

NIV

*,\ 3/\4—

Phonetic (SEGMENT)

\
.
A}
A}
\

Phone‘;ﬁe~ ﬂTEM)- .. Tone (pyENT)

Intonational (ITEM)
/', Intermediate (ITEM)

Foot (ITEW9rd&Accent&Text (ITEM)

Seo - Syllable (ITEM) Tteel R

1
~

.

~

<

Phonetic (SEGMENT)

AN
A

Phoneme (ITEM) Tone (EVENT)

Figure 10.3: Schematic of hierarchy graph ae; A: legacy cluttered redundant strategy

vs. A: cleaner non-redundant strategy.

