Appendix D
EQL EBNF

This chapter presents the Extended Backus-Naur Form (EBNF) that describes the
EQL. As the original EBNF adapted from |John (2012)) was written in German, some
of the abbreviation terms were translated into English abbreviations (e.g., DOMA is
the abbreviation for the German term Dominanzabfrage and the newly translated
DOMQ is the abbreviation for the English term domination query).

D.0.1 Terminal symbols of EQL2 (operators) and their mean-
ing

The terminal symbols described below are listed in descending order by their binding
priority.

Symbol Meaning

it Result modifier (projection)

, Parameter list separator

== Equality (new in version 2 of the EQL; added for cleaner syntax)
= Equality (optional; for backwards compatibility)

I= Inequality

=" Regular expression matching

1 Regular expression non-matching

> Greater than
>= Equal to or greater than
< Less than

>= Equal to or less than

206

Symbol Meaning

| Alternatives separator
Conjunction of equal rank
Dominance conjunction
-> Sequence operator

~

D.0.2 Terminal symbols of EQL2 (brackets) and their mean-
ings.

Symbol Meaning

' Quotes literal string

Function parameter list opening bracket
Function parameter list closing bracket

Sequence or dominance-enclosing opening bracket
Sequence or dominance-enclosing closing bracket

i R 1 PN

D.0.3 Terminal symbols of EQL2 (functions) and their mean-
ings.

Symbol Meaning

Start Start
Medial Medial
End Final
Num Count

D.0.4 Formal description of EMU Query Language Version

2
EBNF term Abbreviation Conditions
EQL = CONJQ | SEQQ | DOMQ; EMU Query

Language

207

EBNF term Abbreviation Conditions

poMq = "[", (CONJQ | DOMQ | dominance levels must be
SEQQ), "~", (CONJQ | DOMQ | query hierarchically
SEQQ), "1"; associated

SEQQ = "[", (CONJQ | SEQQ | sequential levels must be
poMQ), "->", (CONJQ | SEQQ | query linearly associated
poMQ), "1";

coniq@ = { "[" }, sq, { "&", SQ conjunction levels must be

Foo "I) query linearly associated

SQ = LABELQ | FUNCQ;

simple query

LABELQ = ["#"], LEVEL, ("="

| (] ’ nyp=n | n=~n | np~n)
. . 3

LABELALTERNATIVES;

label query

FUNCQ = POSQ | NUMQ;

function query

P0OSQ = POSFCT, "(", LEVEL, ",",

LEVEL ll) n n=n IIOII | Il1|| .

position query

levels must be
hierarchically
associated; second
level determines

semantics
NUMQ = "Num", "(", LEVEL, ",", number query levels must be
LEVEL, ")", COP, INTPN; hierarchically

associated; first level
determines semantics

LABELALTERNATIVES = LABEL , { label

"|", LABEL }; alternatives

LABEL = LABELING | ("'", label levels must be part of
LABELING, "'"); the database

structure; LABELING
is an arbitrary
character string or a
label group class
configured in the
emuDB; result
modifier # may only
occur once

208

EBNF term Abbreviation Conditions

POSFCT = "Start" | "Medial" | position

"End"; function

cop = "=n ‘ [[—] ’ np=n | s ’ COHlp&I'iSOH

" ’ ne=n ’ ||>=n; operator

INTPN = "0" | INTP; integer positive
with null

INTP = DIGIT-"0", { DIGIT }; integer positive

DIGIT = "Q" | nqn | non | ngn | digit

ngn | ngn | ngn | ey | ngn |

I|9l| ;

INFO: The LABELING term used in the LABEL EBNF term can represent any char-
acter string that is present in the annotation. As this can be any combination of
Unicode characters, we chose not to explicitly list them as part of the EBNF.

D.0.5 Restrictions

A query may only contain a single result modifier # (hashtag).

Appendix E

EQL: further examples

Below are examples of query strings that have been adapted from |Cassidy and Har-|
rington| (2001) and Harrington and Cassidy| (2002) and which are displayed as ques-
tions and answers. All examples use the ae demo emuDB, which is provided by the
emuR package, and were extracted from the EQL vignette of the emuR package. De-
scriptions (some of them duplicates of those in Chapter 5) of the various syntaxes
and query components are also included for easier reading. R Example E.0.1 shows
how to access the ae demo emuDB.

R Example E.0.1

library(emuR)

create_emuRdemoData(dir = tempdir())

path2directory = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

ae = load_emuDB(path2directory)

210

E.0.1 Simple equality, inequality, matching and non-matching
queries (single-argument)

The syntax of a simple, equality, inequality, matching and non-matching query is
[L OPERATOR A] where L specifies a level (or alternatively the name of a parallel
attribute definition), OPERATOR is one of the following operators: == (equality); !=
(inequality); =~ (matching) or !~ (non-matching), and A is an expression specifying
the labels of the annotation items of L.

Example questions and answers:

¢, ”

e Q: What is the query to retrieve all items containing the label “m” in the
“Phonetic” level?

o A:

query (emuDBhandle = ae,
query = "[Phonetic == m]")

[

Q: What is the query to retrieve all items containing the label “m” or “n” in
the “Phonetic” level?

o A:

query (emuDBhandle = ae,
query = "[Phonetic == m | n]")

Q: What is the query to retrieve all items that do not contain the label “m” or
{(n”?

o A:

query (emuDBhandle = ae,
query = "[Phonetic !=m | n]")

Q: What is the query to retrieve all items in the “Syllable” level?
o A:

211

query (emuDBhandle = ae,
query = "[Syllable =~ .*]")

Q: What is the query to retrieve all items that begin with “a” in the “Text”
level?

o A:

query(ae, "[Text =~ a.*]")

Q: What is the query to retrieve all items that do not begin with “a” in the
“Text” level?

o A:

query(ae, "[Text ! a.x]")

The above examples use three operators that are new to the EQL as of version 2.
One is the == equal operator, which has the same meaning as the = operator of the
EQL version 1 (which is also still available) while providing a cleaner, more precise
syntax. The other two are =~ and ! ~, which are the new matching and non-matching
regular expression operators. Further, it is worth noting that the use of parentheses,
blanks or characters that represent operands used by the EQL (see EBNF in Ap-
pendix D) as part of a label matching string (the string on the right hand side of
one of the operands mentioned above), must be placed in additional single quotation
marks to escape these characters. For example, searching for the items containing
the labels 0_’ on the Phonetic level could not be written as " [Phonetic == 0_’]"

but would have to be written as " [Phonetic == '0_’']". Reversing the order of
single vs. double quotation marks is currently not supported, that is ' [Phonetic ==
““0_?2]" will currently not work. Hence, to avoid this issue only double quotation

marks for the outer wrapping of the query string should be used.

E.0.2 Sequence queries using the -> sequence operator

The syntax of a query string using the -> sequence operator is [L == A -> L ==
B], where item A on level L precedes item B on level L. For a sequential query to

212

work both arguments must be on the same level (alternatively, parallel attribute

definitions of the same level may also be chosen).
Example Q & A’s:

o Q: What is the query to retrieve all sequences of items containing the label “@”
followed by items containing the label “n” on the “Phonetic” level?

o A:

NOTE: all row entries in the resulting
segment list have the start time of "@", the
end time of "n'", and their labels will be "@->n"

query(ae, "[Phonetic == @ -> Phonetic == n]")

o Q: Same as the question above but this time we are only interested in the items
containing the label “@” in the sequences.

o A:

NOTE: all row entries in the resulting

segment list have the start time of "@", the

end time of "@" and their labels will also be "@"
query(ae, "[#Phonetic == @ -> Phonetic == n]")

e Q: Same as the first question but this time we are only interested in the items
containing the label “n”.

o A:

NOTE: all row entries in the resulting

segment list have the start time of "n", the
end time of "n'" and their labels will also be
query(ae, "[Phonetic == @ -> #Phonetic == n]")

n n

n

213

Subsequent sequence queries using nesting of the -> sequence operator

The general strategy for constructing a query string that retrieves subsequent se-
quences of labels is to nest multiple sequences while paying close attention to the
correct placement of the parentheses. An abstract version of such a query string
for the subsequent sequence of arguments A1, A2, A3 and A4 would be: [[[[A1 ->
A2] -> A3] -> A4] -> A5] where each argument (e.g. Al) represents an equal-
ity, inequality, matching or non-matching expression on the same level (alternatively,
parallel attribute definitions of the same level may also be chosen).
Example questions and answers:

o Q: What is the query to retrieve all sequences of items containing the labels
“@”, “n” and “s” on the “Phonetic” level?

o A:

query(ae, "[[Phonetic == @ -> Phonetic == n] -> Phonetic == s]")

e Q: What is the query to retrieve all sequences of items containing the labels
“to”, “offer” and “any” on the “Text” level?

o A:

query(ae, "[[Text == to -> Text == offer] -> Text == any]")

o Q: What is the query to retrieve all sequences of items containing labels “offer”
followed by two arbitrary labels followed by “resistance”?

o A:

query(ae, pasteO("[[[Text == offer -> Text => .x] ",
"-> Text => .*] -> Text == resistance]"))

As the EQL1 did not have a regular expression operator, users often resorted to
using queries such as [Phonetic !'= XXX] (where XXX is a label that was not part
of the label set of the Phonetic level) to match every label on the Phonetic level.
Although this is still possible in the EQL2, we strongly recommend using regular
expressions as they provide a much clearer and more precise syntax and are less
error-prone.

214

E.0.3 Conjunction operator &

The syntax of a query string using the conjunction operator can schematically be
writtenas: [L == A & La2 == B & La3 ==C & La4 ==D& ... & L.an == N],
where items on level L have the label A (technically belonging to the first attribute
of that level, i.e., L_al, which per default has the same name as its level) also have
the attributes B, C, D, ..., N. As with the sequence operator all expressions must be
on the same level (i.e., parallel attribute definitions of the same level indicated by
the a2 - an may to be chosen).

The conjunction operator is used to combine query conditions on the same level.
This makes sense in two cases:

1. when to combining different attributes of the same level: " [Phonetic == 1 &
sonorant == T]" when Sonorant is an additional attribute of level Phonetic;

2. when combining a basic query with a function (see sections Position and Count
below): "[phonetic == 1 & Start(word, phonetic) == 1]".

Example questions and answers:

o Q: What is the query to retrieve all items containing the label “always” in the
“Text” attribute definition which also have the label “C” on a parallel attribute
definition called “Word”?

o A:

query(ae, "[Text == always & Word == C]")

Q: What is the query to retrieve all items of the attribute definition “Text” of
the level “Word” that were also labeled as function words (labeled “F” in the
“Word” level)?

o A:

query(ae, "[Text =~ .*x & Word == F]")

Q: What is the query to retrieve all items of the attribute definition “Text” of
the level “Word” that were also labeled as content words (labeled “C” in the
“Word” level) and as accented (labeled “S” in the attribute definition “Accent”
of the same level)?

215

o A:

query(ae, "[Text =~ .* & Word == C & Accent == S]")

E.0.4 Domination operator ~ (hierarchical queries)

A schematic representation of a simple domination query string that retrieves all
items containing label A of level L1 that are dominated by (i.e., are directly or
indirectly linked to) items containing the label B in level L2 is [L1 == A ~ L2 ==
B]. The domination operator is not directional, meaning that either items in L1
dominate items in L2 or items in L2 dominate items in L1. Note that link definitions
that specify the validity of the domination have to be present in the emuDB for this
to work.

Simple domination

Example questions and answers:

e Q: What is the query to retrieve all items containing the label “p” in the
“Phoneme” level that occur in strong syllables (i.e., dominated by/linked to
items of the level “Syllable” that contain the label “S”)?

o A:

query(ae, "[Phoneme == p ~ Syllable == S]")

o Q: What s the query to retrieve all syllable items which contain a Phoneme
item labeled “p”?

o A:
query(ae, "[Syllable =~ .* ~ Phoneme == p]")
query(ae, "[Phoneme == p ~ #Syllable =~ .*]")

e Q: What is the query to retrieve all syllable items which do not contain a
Phoneme item labeled “k” or “p” or “t”?

216

o A:
query(ae, "[Syllable =~ .* ~ Phoneme != p | t| k]")
query(ae, "[Phoneme !=p | t | k = #Syllable =~ .x]")

Even though the domination operator is not directional, what you place to the left
and right of the operator does have an impact on the result. If no result modifier (the
hash tag #) is used, the query engine will automatically assume that the expression
to the left of the operator specifies what is to be returned. This means that the
schematic query string [L1 == A =~ L2 == B] is semantically equal to the query
string [#L1 == A =~ L2 == B]. As it is more explicit to mark the desired result we
recommend you always use the result modifier where possible.

Multiple domination

The general strategy when constructing a query string that specifies multiple dom-

ination relations of items is to nest multiple domination expressions while paying

close attention to the correct placement of the parentheses. A dominance relation-

ship sequence or the arguments A1, A2, A3, A4, can therefore be noted as: "[[[[Al

~ A2] ~ A3] ~ A4] ~ A5]" where A1l is dominated by A2 and A3 and so on.
Example questions and answers:

o Q: What is the query to retrieve all items on the “Phonetic” level that are
part of a strong syllable (labeled “S”) and belong to the words “amongst” or
“beautiful”?

o A:

query(ae, pasteO("[[#Phonetic =~ .*x ~ Syllable == S] ",
"~ Text == amongst | beautiful]"))

e Q: The same as the question above but this time we want the “Text” items.

o A:

217

query(ae, pasteO("[[Phonetic =~ .* ~ Syllable == S] ",
"~ #Text == amongst | beautiful]"))

E.0.5 Position

The EQL has three function terms to specify where in a domination relationship a
child level item is allowed to occur. The three function terms are Start (), End()
and Medial ().

Simple usage of Start(), End() and Medial()

A schematic representation of a query string representing a simple usage of the
Start (), End() and Medial () function would be: "POSFCT(L1, L2) == 1" or "POSFCT(L1,
L2) == TRUE". In this representation POSFCT is a placeholder for one of the three
functions where the level L1 must dominate level L2. The == 1 / == TRUE part of the
query string indicates that if a match is found (match is TRUE or == 1), the according
item of level L2 is returned. If this expression is set to == 0 / == FALSE (FALSE), all
the items that do not match the condition of L2 will be returned. A visualization of
what is returned by the various options of the three functions is displayed in Figure
5.4.

As using 1 and 0 for TRUE and FALSE is not that intuitive to many R users,
the EQL version 2 optionally allows for the values TRUE/T and FALSE/F to be used
instead of 1 and 0. This syntax should be more familiar to most R users.

Example questions and answers:

Q: What is the query to retrieve all word-initial syllables?
o A:

query(ae, "[Start(Word, Syllable) == TRUE]")

Q: What is the query to retrieve all word-initial phonemes?

o A:

218

query(ae, "[Start(Word, Phoneme) == TRUE]")

Q: What is the query to retrieve all non-word-initial syllables?

o A:

query(ae, "[Start(Word, Syllable) == FALSE]")

Q: What is the query to retrieve all word-final syllables?
o A:

query(ae, "[End(Word, Syllable) == TRUE]")

Q: What is the query to retrieve all word-medial syllables?

o A:

query(ae, "[Medial(Word, Syllable) == TRUE]")

Position and boolean &

The syntax for combining a position function with the boolean operator is [L ==
& Start(L, L2) == TRUE], where item E on level L occurs at the beginning of item
L. Once again, L has to dominate L2 (optionally, parallel attribute definitions of the
same level may also be chosen).

Example questions and answers:

o Q: What is the query to retrieve all “n” Phoneme items at the beginning of a
syllable?

o A:

query(ae, "[Phoneme == n & Start(Syllable, Phoneme) == 1]")

o Q: What is the query to retrieve all word-final “m” Phoneme items?

o A:

219

query(ae, "[Phoneme == m & End(Word, Phoneme) == 1]")

e Q: What is the query to retrieve all non-word-final “S” syllables?
o A:

query(ae, "[Syllable == S & End(Word, Syllable) == 0]")

Position and boolean ~

The syntax for combining a position function with the boolean hierarchical operator
is [L == E ~ Start(L1, L2) == 1], where level L and level L2 refer to different
levels where either L dominates L2, or L2 dominates L.

Example questions and answers:

o Q: What is the query to retrieve all “p” Phoneme items which occur in the first
syllable of the word?

o A:

query(ae, "[Phoneme == p ~ Start(Word, Syllable) == 1]")

Q: What is the query to retrieve all phonemes which do not occur in the last
syllable of the word?

o A:
query(ae, "[Phoneme =~ .* ~ End(Word, Syllable) == 0]")
E.0.6 Count

A schematic representation of a query string using the count mechanism looks like
[Num(L1, L2) == NJ], where L1 contains N items in L2. For this type of query to
work, L1 has to dominate L2. As the query matches a number (N), it is also possible
to use the operators > (more than), < (less than) and != (not equal). The resulting
segment list contains items of L1.

Example questions and answers:

220

Q: What is the query to retrieve all words that contain four syllables?

o A:

query(ae, "[Num(Word, Syllable) == 4]")

Q: What is the query to retrieve all syllables that contain more than sixz phonemes?

o A:

query(ae, "[Num(Syllable, Phoneme) > 6]")

Count and boolean &

A schematic representation of a query string combining the count and the boolean
operators looks like [== E & Num(L1, L2) == NJ], where items E on level L are
dominated by L1 and L1 contains N L2 items. Further, L1 dominates L2 on the
condition that L and L1 (not L2) refer to the same level (parallel attribute definitions
of the same level may also be chosen).

Example questions and answers:

Q: What is the query to retrieve the “Text” of all words which consist of more
than five phonemes?

o A:
query(ae, "[Text =~ .* & Num(Text, Phoneme) > 5]")
query(ae, "[Text =~ .* & Num(Word, Phoneme) > 5]")

Q: What is the query to retrieve all strong syllables that contain five phonemes?

o A:

query(ae, "[Syllable == S & Num(Syllable, Phoneme) == 5]")

221

Count and ~

A schematic representation of a query string combining the count and the boolean
operatorsis [L == E = Num(L1, L2) == N] where items E on level L are dominated
by L1 and L1 contains N L2 items. Further, L1 dominates L2 on the condition that
L and L1 do not refer to the same level.

Example questions and answers:

o Q: What is the query to retrieve all “m” phonemes in three-syllable words?

o A:

query(ae, "[Phoneme == m ~ Num(Word, Syllable) == 3]")

Q: What is the query to retrieve all “W” syllables in words of three syllables
or less?

o A:

query(ae, "[Syllable = W = Num(Word, Syllable) <= 3]")

o Q: What is the query to retrieve all words containing syllables which contain
four phonemes?

o A:

query(ae, "[Text =~ .* ~ Num(Syllable, Phoneme) == 4]")

E.0.7 Combinations

" and -> (domination and sequence)

A schematic representation of a query string combining the domination and the
sequence operators is [[A1 ~ A2] -> A3], where Al and A3 refer to the same level
(parallel attribute definitions of the same level may also be chosen).

Example questions and answers:

o Q: What is the query to retrieve all “m” preceding “p” when “m” is part of an
“S” syllable?

222

o A:

query(ae, "[[Phoneme == m -> Phoneme =~ p] ~ Syllable == S]")

1)
S

e Q: What is the query to retrieve all
“W” syllable?

preceding “t” when “t” is part of a

o A:

query(ae, "[Phoneme == s -> [Phoneme == t ~ Syllable == W]]")

o Q: What is the query to retrieve all “S” syllables, containing an “s” phoneme
and preceding an “S” syllable?

o A:
query(ae, "[[#Syllable == S ~ Phoneme == s] -> Syllable == S]")

@, “,
S

e Q: Same question as above but this time we want all items where “s” is
part of a “S” syllable and the “S” syllable precedes another “S” syllable.

e A: "[[Phoneme == s ~ Syllable == S] -> Syllable == S]" would cause
an error as Phoneme == s and Syllable == S are not on the same level.
Therefore, the correct answer is:

query(ae, "[[Syllable == S ~ #Phoneme == s] -> Syllable == S]")

" and -> and & (domination and sequence and boolean &)

Example questions and answers:

o Q: What is the query to retrieve the “Text” of all words beginning with a “@”
on the “Phoneme” level?

o A:

223

NOTE: usage of pasteO() is optional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[Text =~ .* ~ Phoneme == @ ",
"& Start(Text, Phoneme) == 1]"))

Q: What is the query to retrieve all word-initial “m” items in a “S” syllable
preceding “o0:”?

o A:

NOTE: usage of pasteO() is optional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[[Phoneme == m & Start(Word, Phoneme) == 1 ",
"-> Phoneme == o0:] ~ Syllable == S]"))

Q: Same question as the question above, but this time we want the “Text” items.

o A:

NOTE: usage of pasteO() is optional
as 1t 1s only used for formatting purposes

query(ae, pasteO("[[[Phoneme == m & Start(Word, Phoneme) == 1 ",
"-> Phoneme == o:] ~ Syllable == S] ",
"T #Text =" .x]"))

E.0.8 A few more questions and answers (because practice
makes perfect)

o Q: What is the query to retrieve all “m” or “n” phonemes which occur in the
word-medial position?

o A:

query(ae, "[Phoneme == m | n & Medial(Word, Phoneme) == 1]")

224

Q: What is the query to retrieve all “H” phonetic segments followed by an
arbitrary segment and then by either “I” or “U”?

A:

NOTE: usage of pasteO() is opttional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[[Phonetic == H -> Phonetic ="~ .*] ",
"-> Phonetic == I | U]"))

Q: What is the query to retrieve all syllables which do not occur in word-medial
positions?

A:

query(ae, "[Syllable =~ .* & Medial(Word, Syllable) == 0]")

Q: What is the query to retrieve the “Text” items of all words containing two
syllables?

A:
query(ae, "[Text =~ .*x & Num(Text, Syllable) == 2]")
Q: What is the query to retrieve the “Text” items of all accented words following

che ” ?

A:
query(ae, "[Text == the -> #Text =~ .* & Accent == S]")
Q: What is the query to retrieve all “S” (strong) syllables consisting of five

phonemes?

A

225

query(ae, "[Syllable = S ~ Num(Word, Phoneme) == 5]")

Q: What is the query to retrieve all “W” (weak) syllables containing a “@”
phoneme?

A

query(ae, "[Syllable == W ~ Phoneme == @]")

Q: What is the query to retrieve all Phonetic items belonging to a “W” (weak)
syllable?

A:

query(ae, " [Phonetic =~ .*x ~ #Syllable == W]")

Q: What is the query to retrieve “W” (weak) syllables in word-final position
occurring in three-syllable words?

A:

NOTE: usage of pasteO() is optional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[Syllable == W & End(Word, Syllable) == 1",
"~ Num(Word, Syllable) == 3]"))

Q: What is the query to retrieve all phonemes dominating “H” Phonetic items
at the beginning of a syllable and occurring in accented (“S”) words?

A:

NOTE: usage of pasteO() is opttional
as 1t 1s only used for formatting purposes
query(ae, pasteO("[[[Phoneme =~ .* ~ Phonetic == H] ",
"~ Start(Word, Syllable) == 1] ~ Accent == S]"))

E.1 Differences to the legacy EMU query language 226

E.1 Differences to the legacy EMU query language

In this section summarizes the major changes concerning the query mechanics of
emuR compared to the legacy R package emu Version 4.2. This section is mainly
aimed at users transitioning to emuR from the legacy system.

E.1.1 Function call syntax

In emuR it is necessary to load an emuDB into the current R session before being able
to use the query () function. This is achieved using the 1load_emuDB() function. This
was not necessary using the legacy emu.query() function.

E.1.2 Empty result

The query function of emuR returns an empty segment list (row count is zero) if the
query does not match any items. If the legacy EMU function emu.query() did not
find any matches it, returned an error with the message:

Can't find the query results in emu.query: there may have
been a problem with the query command.

E.1.3 The result modifier hash tag #

Compared to the legacy EMU system, which allowed multiple occurrences of the
hash tag # to be present in a query string, the query () function only allows a single
result modifier. This ensures that only consistent result sets are returned (i.e., all
items belong to a single level). However, if multiple result sets in one segment list
are desired, this can easily be achieved by concatenating the result sets of separate
queries using the rbind () function.

E.1.4 Interpretation of the hash tag # in conjunction oper-
ator queries

legacy EMU

E.1 Differences to the legacy EMU query language

227

emu.query(template = "andosl",
pattern = "x",
query = "[Text=spring & #Accent=S]")}

yielded:

moving data from Tcl to R

Read 1 records

segment 1list from database: andosl
query was: [Text=spring & #Accent=S]
labels start end utts
1 spring 2288.959 2704.466 msajc094

and

emu.query(template = "andosl",
pattern = "x",
query = "[#Text=spring & #Accent=S]")

yielded the identical:

moving data from Tcl to R

Read 1 records

segment 1list from database: andosl
query was: [#Text=spring & #Accent=S]
labels start end utts
1 spring 2288.959 2704.466 msajc094

Hence, the hash tag # had no effect.

emuR

query (emuDBhandle = andosl,
query = "[Text == spring & #Accent == S]",
resultType = "emusegs")

E.1 Differences to the legacy EMU query language 228

segment 1list from database: andosl
query was: [Text=spring & #Accent=S]
labels start end utts
1 S 2288.975 2704.475 0000:msajc094

Returns the same item but with the label of the hashed attribute definition name.
The second legacy example is not a valid emuR query (two hash tags) and will return
an error message.

query(dbName = "andosl",
query = " [#Text == spring & #Accent == S]")

Error in query.database.eql.KONJA(dbConfig, qTrim)
Only one hashtag allowed in linear query term: #Text=spring & #Accent=S

E.1.5 Bugs in legacy EMU function emu.query()
Alternative labels in inequality queries

Example:

legacy EMU

It appears that the OR operator | was mistakenly ignored when used in conjunction
with the inequality operator !=:

emu.query(template = "ae",
pattern = "x",
query = "[Text !'= beautiful | futile ~ Phoneme = u:]")
yielded:

moving data from Tcl to R

Read 4 records

segment list from database: ae

query was: [Text!=beautiful|futile ~ Phoneme=u:]

E.1 Differences to the legacy EMU query language 229

labels start end utts
1 new 475.802 666.743 msajc057
2 futile 571.999 1091.000 msajc010
3 to 1091.000 1222.389 msajc010

4 beautiful 2033.739 2604.489 msajc003

emuR

The query engine of the emuR package respects the presence of the OR operator in
such queries:

query (emuDBhandle = ae,
query = "[Text != beautiful | futile ~ Phoneme == u:]",
resultType = "emusegs")

segment 1list from database: ae

query was: [Text!=beautiful|futile ~ Phoneme=u:]
labels start end utts

1 to 1091.025 1222.375 0000:msajc010

2 new 475.825 666.725 0000:msajc057

Errors caused by missing or superfluous blanks or parentheses

Some queries in the legacy EMU system required blanks around certain operators
to be present or absent as well as parentheses to be present or absent. If this was
not the case the legacy query engine sometimes returned cryptic errors, sometimes
crashing the current R session. The query engine of the emuR package is much more
robust against missing or superfluous blanks or parentheses.

Order of result segment list

To our knowledge, the order of a segment list in the legacy EMU system was never
predictable or explicitly defined. In the new system, if the result type of the query ()
function is set to "emuRsegs" the resulting list is ordered by UUID, session, bundle
and sample start position. If the parameter calcTimes is set to FALSE it is ordered
by UUID, session, bundle, level, seq_idx. If it is set to "emusegs" the resulting list
is ordered by the fields utts and start.

E.1 Differences to the legacy EMU query language 230

Additional features

e The query mechanics of emuR accepts the double equal character string == (rec-
ommended) as well as the single = equal character string as an equal operator.

e The EQL?2 is capable of querying labels by matching regular expressions using
the =~ (matching) and !~ (non-matching) operators.

e For example: query("andosl", "Text =~ .*tz.x")

