Chapter 5

The query system

What? Who?
Where?
When? Why?

This chapter describes the newly implemented query system of the emuR pack-
age. When developing the new emuR package it was essential that it had a query
mechanism allowing users to query a database’s annotations in a simple manner.
The EMU Query Language (EQL) of the EMU-SDMS arose out of years of devel-
oping and improving upon the query language of the legacy system (e.g.,
and Harrington), 2001; [Harrington, 2010; |John [2012). As a result, today we have an
expressive, powerful, yet simple to learn and domain-specific query language. The
EQL defines a user interface by allowing the user to formulate a formal language
expression in the form of a query string. The evaluation of a query string results in
a set of annotation items or, alternatively, a sequence of items of a single annotation
level in the emuDB from which time information, if applicable (see Section 5.2.6), has
been deduced from the time-bearing sub-level. An example of this is a simple query
that extracts all strong syllables (i.e., syllable annotation items containing the label

66

S on the Syllable level) from a set of hierarchical annotations (see Figure 5.1 for an
example of a hierarchical annotation). The respective EQL query string "Syllable
== §" results in a set of segments containing the annotation label S. Due to the tem-
poral inclusion constraint of the domination relationship, the start and end times of
the queried segments are derived from the respective items of the Phonetic level (i.e.,
the m and H nodes in Figure 5.1), as this is the time-bearing sub-level. The EQL
described here allows users to query the complex hierarchical annotation structures
in their entirety as they are described in Chapter 3.

Text(ITEM) : amongst
Syllable (ITEM)’ WI/ ™ S
Phoneme(ITEM): 1% '/m %/ \Is\‘
| A A A
Phonetw(SEGMENT): Vv m V. N s th

Figure 5.1: Simple partial hierarchy of an annotation of the word amongst in the
msajc003 bundle in the ae demo emuDB.

R Example 5.0.1 shows how to create the demo data that is provided by the emuR
package followed by loading an example emuDB called ae into the current R session.
This database will be used in all the examples throughout this chapter.

R Example 5.0.1

library(emuR)

create_emuRdemoData(dir = tempdir())

path2ae = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

ae = load_emuDB(path2ae, verbose = F)

5.1 emuRsegs: The resulting object of a query 67

5.1 emuRsegs: The resulting object of a query

In emuR the result of a query or requery (see Section 5.2.7) is a pre-specified object
which is a superclass of the common data.frame. R Example 5.1.1 shows the result
of a slightly expanded version of the above query ("Syllable == S"), which addi-
tionally uses the dominates operator (i.e., the ~ operator; for further information see
Section 5.2.2) to reduce the queried annotations to the partial hierarchy depicted in
Figure 5.1 in the ae demo emuDB. In this example, the classes of the resulting object
including its printed output are displayed. The class vector of a resulting emuRsegs
object also contains the legacy EMU system’s emusegs class, which indicates that
this object is fully backwards compatible with the legacy class and the methods
available for it (see Harrington, 2010} for details). The printed output provides in-
formation about which database was queried and what the query was as well as
information about the labels, start and end times (in milliseconds), session, bundle,
level and type information. The call to colnames () shows that the resulting object
has additional columns, which are ignored by the print () function. This somewhat
hidden information is used to store information about what the exact items or se-
quence of items were retrieved from the emuDB. This information is needed to know
which items to start from in a requery (see Section 5.2.7) and is also the reason why
an emuRsegs object should be viewed as a reference of sequences of annotation items
that belong to a single level in all annotation files of an emuDB.

R Example 5.1.1

sl = query(ae, "[Syllable == S ~ Text == amongst]")
class(sl)

[1] "emuRsegs" "emusegs" "data.frame"

sl

segment 1list from database: ae

query was: [Syllable == S ~ Text == amongst]...
labels start end session bundle

1 S 256.925 674.175 0000 msajc003

Hit level type

1 Syllable ITEM

5.2 EQL: The EMU Query Language version 2 68

colnames(sl)

[1] "labels" "start"

[3] "end" "utts"

[5] "db_uuid" "session"

[7] "bundle" "start_item_id"

[9] "end_item_id" "level"

[11] "start_item_seq_idx" "end_item_seq_idx"
[13] "type" "sample_start"

[15] "sample_end" "sample_rate"

5.2 EQL: The EMU Query Language version 2

The EQL user interface was retained from the legacy system because it was suf-
ficiently flexible and expressive enough to meet the query needs in most types of
speech science research. The EQL parser implemented in emuR is based on the
Extended Backus-Naur Form (EBNF) (Garshol, |2003)) formal language definition of
John| (2012), which defines the symbols and the relationship of those symbols to
each other on which this language is built (see adapted version of entire EBNF in
Appendix D). Here we will describe the various terms and components that com-
prise the slightly adapted version 2 of the EQL. It is worth noting that the new
query mechanism uses a relational back-end to handle the various query operations
(see Chapter 10 for details). This means that expert users, who are proficient in
Structured Query Language (SQL) may also query this relational back-end directly.
However, we feel the EQL provides a simple abstraction layer which is sufficient for
most speech and spoken language research.

5.2.1 Simple queries

The most basic form of an EQL query is a simple equality, inequality, matching or
non-matching query, two of which are displayed in R Example 5.2.1. The syntax of
a simple query term is [L OPERATOR A], where L specifies a level (or alternatively
the name of a parallel attribute definition); OPERATOR is one of == (equality), !=
(inequality), =~ (matching) or !~ (non-matching); and A is an expression specifying

5.2 EQL: The EMU Query Language version 2 69

the labels of the annotation items of LEl. The second query in R Example 5.2.1 queries
an event level. The result of querying an event level contains the same information
as that of a segment level query except that the derived end times have the value
Zero.

R Example 5.2.1

sl

query(ae, "Phonetic == m")

sl

query(ae, "Tone != Hx")

head(sl, n = 1)

event 1list from database: ae

query was: Tone != Hx...
labels start end session bundle level type
1 L- 1107 O 0000 msajc003 Tone EVENT

R Example 5.2.1 queries two levels that contain time information: a segment level
and an event level. As described in Chapter 3, annotations in the EMU-SDMS may
also contain levels that do not contain time information. R Example 5.2.2 shows a
query that queries annotation items on a level that does not contain time information
(the Syllable level) to show that the result contains deduced time information from
the time-bearing sub-level.

R Example 5.2.2

s1 = query(ae, "Syllable == S")

IThe examples and syntax descriptions used in this chapter have been adapted from examples
by |Cassidy and Harrington| (2001)) and [Harrington and Cassidy| (2002) and were largely extracted
from the EQL vignette of the emuR package. All of the examples were adapted to work with the
supplied ae emuDB.

5.2 EQL: The EMU Query Language version 2 70

head(sl, n = 1)

segment 1list from database: ae
query was: Syllable ==

labels start end session bundle
1 S 256.925 674.175 0000 msajc003
#Hit level type

1 Syllable ITEM

Queries using regular expressions

The slightly expanded version 2 of the EQL, which comes with the emuR package,
introduces regular expression operators (=~ and !~). These allow users to formulate
regular expressions for more expressive and precise pattern matching of annotations.
A minimal set of examples displaying the new regular expression operators is shown
in Table 5.1.

Query Function

"Phonetic =~ ’[AIQUEV]’" A disjunction of annotations using a Regkx
character class

"Word =" a.x*" All words beginning with a

"Word !~ .*st" All words not ending in st

"[Phonetic == n ~ #Syllable =~ .x]" All syllables that dominate an n segment

of the Phonetic level

Table 5.1: EQL V2: examples of simple and complex query strings using RegEx
operators including their function descriptions.

5.2.2 Combining simple queries

The EQL contains three operators that can be used to combine the simple query
terms described above as well as position queries which we will describe below. These
three operators are the sequence operator, —>; the conjunction operator, &; and the
domination operator, ~, which is used to perform hierarchical queries. These three
types of queries are described below. To start with, we describe the two types of
queries that query more complex annotation structures on the same level (sequence

5.2 EQL: The EMU Query Language version 2 71

and conjunction queries). This is followed by a description of domination queries
that query hierarchically linked annotation structures, sometimes spanning multiple
annotation levels.

Sequence queries

The syntax of a query string using the -> sequence operator is [L == A -> L ==
B] where annotation item A on level L precedes item B on level L. For a sequence
query to work, both arguments must be on the same level. Alternatively parallel
attribute definitions of the same level may also be chosen (see Chapter 3 for further
details). An example of a query string using the sequence operator is displayed in
R Example 5.2.3. All rows in the resulting segment list have the start time of @,
the end time of n and their labels are @->n, where the -> substring denotes the
sequence.

R Example 5.2.3

sl = query(ae, "[Phonetic == @ -> Phonetic == n]")

head(sl, n = 1)

segment 1list from database: ae

query was: [Phonetic == @ -> Phonetic == n]...
Ht labels start end session bundle

1 ©@->n 1715.425 1791.425 0000 msajc003

#Hit level type

1 Phonetic SEGMENT

Result modifier

Because users are often interested in just one element of a compound query such
as sequence queries (e.g., the @s in a @->n sequences), the EQL offers a so-called
result modifier symbol, #. This symbol may be placed in front of any simple query
component of a multi component query as depicted in R Example 5.2.4. Placing

5.2 EQL: The EMU Query Language version 2 72

the hashtag in front of either the left or the right simple query term will result in
segment lists that contains only the annotation items of the simple query term that
have the hashtag in front of it. Only one result modifier may be used per query.

R Example 5.2.4

query the "Q@"s in "@->n" sequences
sl = query(ae, "[#Phonetic == @ -> Phonetic == n]")

show first entry of sl
head(sl, n = 1)

segment 1list from database: ae

query was: [#Phonetic == @ -> Phonetic == n]...
HH# labels start end session bundle

1 @ 1715.425 1741.425 0000 msajc003

#Hit level type

1 Phonetic SEGMENT

query the "n"s in a "O->n'" sequences
sl = query(ae, "[Phonetic == @ -> #Phonetic == n]")

show fairst entry of sl
head(sl, n = 1)

segment 1list from database: ae

query was: [Phonetic == @ -> #Phonetic == n]...
labels start end session bundle

1 n 1741.425 1791.425 0000 msajc003

#Hi#t level type

1 Phonetic SEGMENT

Conjunction queries

The syntax of a query string using the conjunction operator can schematically be
writtenas: [L.al == A & La2 ==B & La3 ==C & Lad ==D& ... & Lan ==
N], where annotation items on level L have the label A and also have the parallel la-
bels B, C, D, ..., N (see Chapter 3 for more information about parallel labels). By

5.2 EQL: The EMU Query Language version 2 73

analogy with the sequence operator, all simple query statements must refer to the
same level (i.e., only parallel attributes definitions of the same level indicated by the
al - an may to be chosen). Hence, the conjunction operator is used to combine
query conditions on the same level. Using the conjunction operator is useful for two
reasons:

e It combines different attributes of the same level: [Text == always & Accent
== 8] where Text and Accent are additional attributes of level Word; and

e It combines a simple query with a function query (see Position Queries Section
5.2.3): [Phonetic == 1 & Start(Word, Phonetic) == 1].

An example of a query string using the conjunction operator is displayed in R
Example 5.2.5.

R Example 5.2.5

query(ae, "[Text == always & Accent == S]")

segment 1list from database: ae
query was: [Text == always & Accent == S]...

#it labels start end session bundle level
1 always 775.475 1280.175 0000 msajc022 Text
type
1 ITEM

R Example 5.2.5 does not make use of the result modifier symbol. However, only
the annotation items of the left simple query term (Text == always) are returned.
This behavior is true for all EQL operators that combine simple query terms except
for the sequence operator. As it is more explicit to use the result modifier to express
the desired result, we recommend using the result modifier where possible. The
more explicit variant of the above query which yields the same result is " [#Text ==
always & Word == C]".

Domination/hierarchical queries

Compared to sequence and conjunction queries, a domination query using the op-
erator ~ is not bound to a single level. Instead, it allows users to query annotation

5.2 EQL: The EMU Query Language version 2 74

items that are directly or indirectly linked over one or more levels. Queries using
the domination operator are often referred to as hierarchical queries as they provide
the ability to query the hierarchical annotations in a vertical or inter-level manner.
Figure 5.2 shows the same partial hierarchy as Figure 5.1 but highlights the anno-
tational items that are dominated by the strong syllable (S) of the Syllable level.
Such linked hierarchical sub-structures can be queried using hierarchical/domination
queries.

Text(ITEM) : amongst
Syllable(ITEM): / \z/ 3&\\
Phoneme (ITEM)* m N S

- ——— -

v
1] l l l ll

Ph(m(ﬁmj(SEGMENT) .

Figure 5.2: Partial hierarchy depicting all annotation items that are dominated by
the strong syllable (S) of the Syllable level (inside dashed box). Items marked green
belong to the Phoneme level, items marked orange belong to the Phonetic level and
the purple dashed box indicates the set of items that are dominated by S.

A schematic representation of a simple domination query string that retrieves
all annotation items A of level L1 that are dominated by items B in level L2 (i.e.,
items that are directly or indirectly linked) is [L1 == A "L2 == B]. Although the
domination relationship is directed the domination operator is not. This means that
either items in L1 dominate items in L2 or items in L2 dominate items in L1. Note
that link definitions that specify the validity of the domination have to be present in
the emuDB configuration for this to work (see Chapter 4 for details). An example of
a query string using the domination operator is displayed in R Example 5.2.6.

R Example 5.2.6

sl = query(ae, "[Phoneme == p ~ Syllable == S]")

head(sl, n = 1)

5.2 EQL: The EMU Query Language version 2 75

segment list from database: ae

query was: [Phoneme == p "~ Syllable == S]...

labels start end session bundle level
1 p 558.575 639.575 0000 msajc015 Phoneme
type

1 ITEM

As with the conjunction query, if no result modifier is present, a dominates query
returns the annotation items of the left simple query term. Hence, the more explicit
variant of the above query is " [#Phoneme == p ~ Syllable == S]".

5.2.3 Position queries

The EQL has three function terms that specify where in a domination relationship a
child level annotation item is allowed to occur. The three function terms are Start (),
End() and Medial(). A schematic representation of a query string representing a
simple usage of the Start (), End() and Medial() function would be: POSFCT(L1,
L2) == TRUE. In this representation POSFCT is a placeholder for one of the three
functions, at which level L1 must dominate level L2. Where L1 does indeed dominate
L2, the corresponding item from level L2 is returned. If the expression is set to FALSE
(i.e., POSFCT(L1, L2) == FALSE), all the items that do not match the condition of
L2 are returned. An illustration of what is returned by each of the position functions
depending on if they are set to TRUE or FALSE is depicted in Figure 5.3, while R
Example 5.2.7 shows an example query using a position query term.

R Example 5.2.7

sl = query(ae, "[Start(Syllable, Phoneme) == TRUE]")

head(sl, n = 1)

segment 1list from database: ae
query was: [Start(Syllable, Phoneme) == TRUE]...

labels start end session bundle level
1 V 187.425 256.925 0000 msajc003 Phoneme
type

1 ITEM

76

5.2 EQL: The EMU Query Language version 2

== TRUE]"|
(" [End(Syllable, Phoneme) == TRUE]"]

A
["[Start(Syllable, Phoneme)

\‘ ,//X\

z

= TRUE]"]

Phoneme (ITEM)* m
["[Medlal(Syllable, Phoneme)

= FALSE]")

["[Medlal(Syllable, Phoneme)

Syllable (ITEM)’
= FALSE]")

[“[Start(Syllable, Phoneme)

Figure 5.3: Illustration of what is returned by the Start(), Medial() and End()
functions depending if they are set to A: TRUE (green) or B: FALSE (orange)

5.2 EQL: The EMU Query Language version 2 77

5.2.4 Count queries

A further query component of the EQL are so-called count queries. They allow the
user to specify how many child nodes a parent annotation item is allowed to have.
Figure 5.4 displays two syllables, one containing one phoneme and one phonetic
annotation item, the other containing five phoneme and six phonetic items. Using
EQL’s Num() function it is possible to specify which of the two syllables should be
retrieved, depending on the number of phonemic or phonetic elements to which it is
directly or indirectly linked. R Example 5.2.8 shows a query that queries all syllables
that contain five phonemes.

/

[A A
!

PhonetiC(SEGMENT) SV om 1% st h

e Syllable containing one Phoneme and Phonetic item
e Syllable containing five Phoneme and six Phonetic items

Figure 5.4: Partial hierarchy depicting a Syllable containing one Phoneme and Pho-
netic item (green) and a Syllable containing five Phoneme and six Phonetic items
(orange).

A schematic representation of a query string utilizing the count mechanism would
be [Num(L1, L2) == NJ], where L1 contains N annotation items in L2. For this type
of query to work L1 has to dominate L2 (i.e., be a parent level to L2). As the query
matches a number (N), it is also possible to use the operators > (more than), < (less
than) and != (not equal to). The resulting segment list contains items of L1.

R Example 5.2.8

query(ae, "[Num(Syllable, Phoneme) == 5]")

segment list from database: ae

query was: [Num(Syllable, Phoneme) == 5]...
labels start end session bundle
1 S 256.925 674.175 0000 msajc003

5.2 EQL: The EMU Query Language version 2 78

2 S 739.925 1289.425 0000 msajc003
3 W 2228.475 2753.975 0000 msajc010
4 S 1890.275 2469.525 0000 msajc022
5 S 1964 .425 2554.175 0000 msajc023

#Hi#t level type

1 Syllable ITEM
2 Syllable ITEM
3 Syllable ITEM
4 Syllable ITEM
5 Syllable ITEM

5.2.5 More complex queries

By using the correct bracketing, all of the above query components can be com-
bined to formulate more complex queries that can be used to answer questions such
as: Which occurrences of the word “his” follow three-syllable words which contain
a schwa (@) in the first syllable occur in the database? Such multi-part questions
can usually be broken down into several sub-queries. These sub-queries can then
be recombined to formulate the complex query. The steps to answering the above
multi-part question are:

1. Which occurrences of the word “his” [Text == his]
2. ... three-syllable words ...: [Num(Text, Syllable) == 3]

3. ... contain a schwa (@) in the first syllable ...: [Phoneme == @ ~Start(Word,
Syllable) == 1]

4. All three can be combined by saying 2 dominates 3 ([2 ~3]) and these are
followed by 1 ([2 ~3] -> 1])

The combine query is depicted in R Example 5.2.9. This complex query demon-
strates the expressive power of the query mechanism that the EMU-SDMS provides.

R Example 5.2.9

5.2 EQL: The EMU Query Language version 2 79

query(ae, pasteO("[[[Num(Text, Syllable) == 3] ",
"~ [Phoneme == @ ~ Start(Word, Syllable) == 1]] ",
"-> #Text = his]"))

segment 1list from database: ae
query was: [[[Num(Text, Syllable) == 3] ~ [Phoneme == @ ~ Sta...

H#it labels start end session bundle level
#H# 1 his 2693.675 2780.725 0000 msajc015 Text
type
1 ITEM

As mastering these complex compound queries can require some practice, several
simple as well as more complex examples that combine the various EQL components
described above are available in Appendix E. These examples provide practical
examples to help users in find queries suited to their needs.

5.2.6 Deducing time

The default behavior of the legacy EMU system was to automatically deduce time
information for queries of levels that do not contain time information. This was
achieved by searching for the time-bearing sub-level and calculating the start and
end times from the left-most and right-most annotation items, which where directly
or indirectly linked to the retrieved parent item. This upward purculation of time
information is also the default behavior of the new EMU-SDMS. However, a new
feature has been added to the query engine which allows the calculation of time to
be switched off for a given query using the calcTimes parameter of the query()
function. This is beneficial in two ways: for one, levels that do not have a time-
bearing sub-level may be queried and secondly, the execution time of queries can
be greatly improved. The performance increase becomes evident when performing
queries on large data sets on one of the top levels of the hierarchy (e.g., Utterance
or Intonational in the ae emuDB). When deducing time information for annotation
items that contain large portions of the hierarchy, the query engine has to walk
down large partial hierarchies to find the left-most and right-most items on the time-
bearing sub-level. This can be a computationally expensive operation and is often
unnecessary, especially during data exploration. R Example 5.2.10 shows the usage
of this parameter by querying all of the items of the Intonational level and displaying
the NA values for start and end times in the resulting segment list. It is worth noting

5.2 EQL: The EMU Query Language version 2 80

that the missing time information excluded during the original query can be retrieved
at a later point in time by performing a hierarchical requery (see Section 5.2.7) on
the same level.

R Example 5.2.10

sl = query(ae, "Intonational =~ .*", calcTimes = F)

head(sl, n = 1)

segment 1list from database: ae

query was: Intonational =" .*...

labels start end session bundle level
1 L% NA NA 0000 msajc003 Intonational
type

1 ITEM

5.2.7 Requery

A popular feature of the legacy system was the ability to use the result of a query to
perform an additional query, called a requery, starting from the resulting items of a
query. The requery functionality was used to move either sequentially (horizontally)
or hierarchically (vertically) through the hierarchical annotation structure. Although
this feature technically does not extend the querying functionality (it is possible to
formulate EQL queries that yield the same results as a query followed by 1 : n
requeries), requeries benefit the user by breaking down the task of formulating long
query terms into multiple, simpler queries. Compared with the legacy system, this
feature is implemented in the emuR package in a more robust way, as unique item IDs
are present in the result of a query, eliminating the need for searching the starting
segments based on their time information. Examples of queries and their results
within a hierarchical annotation based on a hierarchical and sequential requery as
well as their EQL equivalents are illustrated in Figure 5.5.
R Example 5.2.11 illustrates how the same results of the sequential query [#Phonetic

=".x -> Phonetic == n] can be achieved using the requery_seq() function. Fur-
ther, it shows how the requery hier() function can be used to move vertically

5.2 EQL: The EMU Query Language version 2 81

Text (ITEM): amongst
VAN
Syllable (yrgn);
Phoneme(ITEM)I V.m=> 'V N s Jtr
| O N)
PhonetZC(SEgMENT): Vv..m 'V N s I7h

sl1 = query(emuDBhandle, query = "Phonetic == t")
sl2 = requery hier(emuDBhandle, sl1, level = "Syllable")
s13 = requery_seq(emuDBhandle, sl2, offset = -1)

Vs.
s13 = query(emuDBhandle, query = " [#Syllable =~ .* ->

[Syllable = .* ~ Phonetic == t]]")

Figure 5.5: Three-step (query — requery hier — requery seq) requery procedure,
its single query counterpart and their color coded movements within the annotation
hierarchy.

through the annotation structure by starting at the Syllable level and retrieving all
the Phonetic items for the query result.

R Example 5.2.11

HARBHBBH AR U AR U HBBHRBHRLH
requery_seq()

query all "n" phonetic items
sl_n = query(ae, "Phonetic == n")

sequential requery (left shift result by 1 (== offset of -1))
and hence retrieve all phonetic i1tems directly preceeding

all "n" phonetic ttems

sl_precn = requery_seq(ae, seglist = sl_n, offset = -1)

show first entry of sl_precn
head(sl_precn, n = 1)

segment 1list from database: ae

5.3 Discussion 82

query was: FROM REQUERY...

labels start end session bundle
1 E 949.925 1031.925 0000 msajc003
#Hit level type

1 Phonetic SEGMENT

HARARARARHHB AR AR AR AR A AN H
requery_hier()

query all strong syllables (S)
sl_s = query(ae, "Syllable == S")

hierarchical Tequery
sl_phonetic = requery_hier(ae, seglist = sl_s,
level = "Phonetic")

show first entry of sl_phonetic
head(sl_phonetic, n = 1)

segment list from database: ae
query was: FROM REQUERY...

labels start end session
1 m->V->N->s->t->H 256.925 674.175 0000
#it bundle level type

1 msajc003 Phonetic SEGMENT

5.3 Discussion

This chapter gave an overview of the abilities of the query system of the EMU-SDMS.
We feel the EQL is a expressive, powerful, yet simple to learn and domain-specific
query language that allows users to adequately query complex annotation structures.
Further we feel that the query system provided by the EMU-SDMS surpasses the
querying capabilities of most commonly used systems. As the result of a query is a
superclass of the common data.frame object, these results can easily be further pro-
cessed using various R functions (e.g., to remove unwanted segments). Further, the
results of queries can be used as input to the get_trackdata() function (see Chapter

5.3 Discussion 83

6) which makes the query system a vital part in the default workflow described in
Chapter 1.

Although the query mechanism of the EMU-SDMS covers most linguistic annota-
tion query needs (including co-occurrence and domination relationship child position
queries), it has limitations due to its domain-specific nature, its simplicity and its pre-
defined result type. Performing more general queries such as: What is the average age
of the male speakers in the database who are taller than 1.8 meters? is not directly
possible using the EQL. Even if the gender, height and age parameters are available
as part of the database’s annotations (e.g., using the single bundle root node meta-
data strategy described in Chapter 3) they would be encoded as strings, which do not
permit direct calculations or numerical comparisons. However, it is possible to answer
these types of questions using a multi-step approach. One could, for example, extract
all height items and convert the strings into numbers to filter the items containing a
label that is greater than 1.8. These filtered items could then be used to perform two
requeries to extract all male speakers and their age labels. These age labels could once
again be converted into numbers to calculate their average. Although not as elegant
as other languages, we have found that most questions that arise as part of studies
working with spoken language database can be answered using such a multi-step
process including some data manipulation in R, provided the necessary information
is encoded in the database. Additionally, from the viewpoint of a speech scientist, we
feel that the intuitiveness of an EQL expression (e.g., a query to extract the sibilant
items for the question asked in the introduction: "Phonetic == s|z|S|Z") exceeds
that of a comparable general purpose query language (e.g. a semantically sim-
ilar SQL statement: SELECT desired_columns FROM items AS i, labels AS 1
WHERE i.unique_bundle_item id = 1.uniq bundle_item_id AND 1l.label = ‘s’
l.label = ‘2z’ OR 1.label = ‘s’ OR 1l.label = ‘S’ OR 1.label = ‘Z’). This
difference becomes even more apparent with more complex EQL statements, which
can have very long, complicated and sometimes multi-expression SQL counterparts.

A problem which the EMU-SDMS does not explicitly address is the problem of
cross-corpus searches. Different emuDBs may have varying annotation structures with
varying semantics regarding the names or labels given to objects or annotation items
in the databases. This means that it is very likely that a complex query formulated
for a certain emuDB will fail when used to query other databases. If, however, the
user either finds a query that works on every emuDB or adapts the query to extract
the items she/he is interested in, a cross-corpus comparison is simple. As the result
of a query and the corresponding data extraction routines are the same, regardless of
database they where extracted from, these results are easily comparable. However,
it is worth noting that the EMU-SDMS is completely indifferent to the semantics

OR

5.3 Discussion 84

of labels and level names, which means it is the user’s responsibility to check if a
comparison between databases is justifiable (e.g., are all segments containing the label
“@” of the level “Phonetic” in all emuDBs annotating the same type of phoneme?).

Chapter 10

Implementation of the query

syste

Compatibly with other query languages, the EQL defines the user a front-end inter-
face and infers the query’s results from its semantics. However, a query language
does not define any data structures or specify how the query engine is to be im-
plemented. As mentioned in Chapter 1, a major user requirement was database
portability, simple package installation, and a system that did not rely on external
software at runtime. The only available back-end implementation that met those
needs and was also available as an R package at the time was (R)SQLite (Hipp and
Kennedy, 2007; (Wickham et al., 2014). Because of this, emuR’s query system could
not be implemented so as to use directly the primary data sources of an emuDB, that
is, the JSON files described in Chapter 4. A syncing mechanism that maps the pri-
mary data sources to a relational form for querying purposes had to be implemented.
This relational form is referred to as the emuDBcache in the context of an emuDB.
The data sources are synchronized while an emuDB is being loaded and when changes
are made to the annotation files. To address load time issues, we implemented a file
check-sum mechanism which only reloads and synchronizes annotation files that have
a changed MD5-sum (Rivest, {1992). Figure 10.1 is a schematic representation of how
the various emuDB interaction functions interact with either the file representation or
the relational cache.

Despite the disadvantages of cache invalidation problems, there are several advan-
tages to having an object relational mapping between the JSON-based annotation
structure of an emuDB and a relation table representation. One is that the user still
has full access to the files within the directory structure of the emuDB. This means

“Sections of this chapter have been published in [Winkelmann et al.| (2017).

150

add_linkDefinition() requery_hier ()

emuDBhandle

auery0
load_emuDB ()

relational annot. struct.

exampleDB_emuDB items table
. | item_id |
——— exampleDB_DBconfig.json s labels table
0002 _ses : :
bun le2_bndl/ _05') . | 1te'm_1d | label |
—— bundle2.wav g links table
L ... i= |from_id|to_id|...
=
=
n

Figure 10.1: Schematic architecture of emuDB interaction functions of the emuR pack-
age. Orange paths show functions interacting with the files of the emuDB, while green
paths show functions accessing the relational annotation structure. Actions like sav-
ing a changed annotation using the EMU-webApp first save the _annot.json to disk
then update the relational annotation structure.

151

that external tools can be used to script, manipulate or simply interact with these
files. This would not be the case if the files were stored in databases in a way
that requires (semi-)advanced programming knowledge that might be beyond the
capabilities of many users. Moreover, we can provide expert users with the option
of using other relational database engines such as PostgreSQL, including all their
performance-tweaking abilities, as their relational cache. This is especially valuable
for handling very large speech databases.

The relational form of the annotation structure is split into six tables in the
relational database to avoid data redundancy. The six tables are:

1. emu_db: containing emuDB information (columns: uuid, name),
2. session: containing session information (columns: db_uuid, name),

3. bundle: containing bundle information (columns: db_uuid, session, name,
annotates, sample rate, md5_annot_json),

4. items: containing all annotation items of emuDB (columns: db_uuid, session,

bundle, item_id, level, type, seq_idx, sample_rate, sample_point, sample_start,

sample_dur),

5. labels: containing all labels belonging to all items (columns: db_uuid, session,
bundle, item_id, label_idx, name, 1abels), and

6. links: containing all links between annotation items of emuDB (columns: db_uuid,
session, bundle, from id, to_id, labels).

While performing a query the engine uses an aggregate key to address every
annotation item and its labels (db_uuid, session, bundle, item_id) and a similar
aggregate key to dereference the links (db_uuid, session, bundle, from_id / to_id)
which connect items. As the records in relational tables are not intrinsically ordered
a further aggregate key is used to address the annotation item via its index and
level (uuid, session, bundle, level / seq idx). This is used, for example, during
sequential queries to provide an ordering of the individual annotation items. It
is worth noting that a plethora of other tables are created at query time to store
various temporary results of a query. However, these tables are created as temporary
tables during the query and are deleted on completion which means they are not
permanently stored in the emuDBcache.

152

10.0.1 Query expression parser

The query engine parses an EQL query expression while simultaneously executing
partial query expressions. This ad-hoc string evaluation parsing strategy is differ-
ent from multiple other query systems which incorporate a query planner stage to
pre-parse and optimize the query execution stage (e.g., Hipp and Kennedy, |2007;
Conway et al., 2016). Although no pre-optimization can be performed, this strat-
egy simplifies the execution of a query as it follows a constant heuristic evalua-
tion strategy. This section describes this heuristic evaluation and parsing strategy
based on the EQL expression [[Syllable == W -> Syllable == W] ~[Phoneme
== @ -> #Phoneme == s]].

The main strategy of the query expression parser is to recursively parse and
split an EQL expression into left and right sub-expressions until a so-called Simple
Query (SQ) term is found and can be executed (see EBNF in Appendix D for more
information on the elements comprising the EQL). This is done by determining the
operator which is the first to be evaluated on the current expression. This operator
is determined by the sub-expression grouping provided by the bracketing. Each sub-
expression is then considered to be a fully valid EQL expression and once again
parsed. Figure 10.2, which is split into seven stages (marked S1-S7), shows the
example EQL expression being parsed (S1-S3) and the resulting items being merged
to meet the requirements of the individual operator (S4-S6) of the original query.
S1 to S3 show the splitting operator character (e.g., —> in purple) which splits the
expression into a left (green) and right (orange) sub-expression.

The result modifier symbol (#) is noteworthy for its extra treatment by the query
engine as it places an exact copy of the items marked by it into its own intermediary
result storage (see #Sitems node on S7 in Figure 10.2). After performing the database
operations necessary to do the various merging operation which are performed on
the intermediary results, this storage is updated by removing items from it that are
no longer present due to the merging operation. As a final step, the query engine
evaluates if there are items present in the intermediary result storage created by
the presence of the result modifier symbol. If so, these items are used to create
an emuRsegs object by deriving the time information and extracting the necessary
information from the intermediate result storage. If no items are present in the
result modifier storage, the query engine uses the items provided by the final merging
procedure in S3 instead (which is not the case in the example used in Figure 10.2).

A detailed description of how this query expression parser functions is presented
in a pseudo code representation in Algorithms 1 and QEI For simplicity, this repre-

!The R code that implements this pseudo code can be found here: https://github.com/

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

153

S1 [[Syllable == W -> Syllable == ~ [Phoneme == @ -> #Phoneme == s]]
S2 [Syllable == W -> Syllable == W] [Phoneme == @ -> #Phoneme == s]
S3 Syllable == Syllable == W Phoneme == #Phoneme ==
L oQ SQ L aQ L oQ
e u?b C«L’Pe e
e fsﬁ/“ s s
S4 Witems 1tems 1tems [Sitems]l
S5 [W -> Wsequence of items} [@ -> Ssequence of items}\)
insert
S6 [Witems -> Witems i @items ‘>5items}\\\ updaﬁe
f u\pdqt\e i

|
l
W

ST convert_queryResultToEmuRsegs() «-------

Figure 10.2: Example of how the query expression parser parses and evaluates an
EQL expression and merges the result according to the respective EQL operators.

parse query

merge results

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

154

sentation ignores the treatment of the result modifier symbol (#) and focuses on the
parsing and evaluation strategy of the query expression parser. As stated previously,
the presence of the result modifier before an SQ triggers the query engine to place a
copy of the result of that SQ into an additional result table, which is then updated
throughout the rest of the query. The starting point for every query is the query ()
function (see line 64 in Algorithm 2). This function places the filtered items, links
and labels entries that are relevant for the current query into temporary tables. De-
pending on which query terms and operators are found, the EQL query engine uses
the various sub-routines displayed in Algorithms 1 and 2 to parse and evaluate the
EQL expression.

10.0.2 Redundant links

A noteworthy difference between the legacy and the new EMU system is how hier-
archies are stored. The legacy system stored the linking information of a hierarchy
in so-called hierarchical label files, which were plain text files that used the .hlb ex-
tensions. Within the label files this information was stored in space/blank separated
lines:

111 139 140 141 173 174 175 185
112 142 143 176 177

113 144 145 146 178 179 180

114 147

115 148

116 149,

where the first number (green) of each line was the parent’s ID and the following
numbers (orange) indicated the annotation items the parent was linked to. However,
it was not just links to the items on the child level that were stored in each line.
Rather, a link to all children of all levels below the parent level was stored for each
parent item. This was likely due to performance benefits in parsing and mapping onto
the internal structures used by the legacy query engine. A schematic representation
of this cluttered form of linking is displayed in Figure 10.3A. As these redundant
links are prone to errors while updating the data model and lead to a convoluted
annotation structure models (see excessive use of dashed lines in Figure 10.3A), we
chose to eliminate them and opted for the cleaner, non-redundant representation
displayed in Figure 10.3B. Although this led to a more complex query parser engine

IPS-LMU/emuR/blob/master/R/emuR-query.database.R.

https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R
https://github.com/IPS-LMU/emuR/blob/master/R/emuR-query.database.R

155

Algorithm 1 Pseudo Code for Query Engine Algorithm - Part 1

1: function QUERY_DBEQLFUNCQ(query)
2: place all parent level items into tmp table
3 place all child level items into tmp table
4: QUERY _DBHIER (parentItemsT able, childltemsT able)
5: if Start End or Medial query then
6 extract parent items and place in tmp result table
7 else

8 extract child items and place in tmp result table
9 end if

10: end function

11: function QUERY_DBEQLLABELQ(query)

12: split Labels < split labels at |

13: for all splitLabels do

14: if operator is ==, = or | = then

15: extract items thmf contain labels which are equal or unequal to label
16: else if operator is = or ! ~ then

17: extract items that contain labels that match or don't match RegEx
18: end if

19: merge results in tmp table

20: end for
21: end function
22: function QUERY_DBEQLSQ(query)

23: if query contains round brackets then
24: QUERY_DBEQLFUNCQ(query)

25: else

26: QUERY_DBEQLLABELQ(query)
27: end if

28: end function

29: function QUERY _DBEQLCONJQ(query)

30: splitltems < split query at &

31: for all splitltems do

32: QUERY_DBEQLSQ(splitltems)

33: merge results in tmp table

34: end for

35: end function

36: function QUERY_DBHIER(leftTable, rightTable)
37: hp < extract hier. paths conn. le ftTable and rightTable level names
38: for all child and parent level pairs in hp do

39: connect child and parent items using links table
40: reduce to min seq. idx (left side of trapeze)

41: and to max seq. idx (right side of trapeze)

42: end for

43: end function

156

Algorithm 2 Pseudo Code for Query Engine Algorithm - Part 2
44: function QUERY_DBEQLINBRACKET (query)

45: qT'rim < remove outer square brackets

46: leftQuery, rightQuery < split ¢I'rim at cur. operator

47: QUERY _DATABASEWITHEQL(leftQuery) > recursive part of query
48: QUERY_DATABASEWITHEQL(rightQuery) > recursive part of query
49: if cur. operator is domintation operator then

50: QUERY_DBHIER(le ftQueryResultTable, rightQueryResultT able)

51: else if cur. operator is seq. operator then

52: find seq. of leftQueryResultTable and rightQueryResultTable items
53: else

54: QUERY_DATABASEWITHEQL(¢T'rim)

55: end if

56: end function
57: function QUERY _DBWITHEQL(query)

58: if query isn’t wrapped in brackets then
59: QUERY_DBEQLCONJQ(query)

60: else

61: QUERY_DBEQLINBRACKET (query)
62: end if

63: end function

64: function QUERY (query, sesPattern, bndlPattern)

65: filter items in relational tables by sesPattern

66: filter items in relational tables by bndl Pattern

67: QUERY _DBWITHEQL(query)

68: seglist <~ CONVERT_QUERYRESULTTOEMURSEGS(tmpResultT ableN ame)
69: return seglist

70: end function

157

for hierarchical queries and functions, we feel it is a cleaner, more accurate and more

robust data representation.

A
Intonational (ITEM)

.
P l \
’

K Intermeq‘llat‘e (ITEM)

4

l \
VA | \

Foot ITEWPrd&Accgant&;Text ITEM)

n\
1 \L“

o Syllalie iy s

I
\\\ | \l,l

\\\

~
~

NIV

*,\ 3/\4—

Phonetic (SEGMENT)

\
.
A}
A}
\

Phone‘;ﬁe~ ﬂTEM)- .. Tone (pyENT)

Intonational (ITEM)
/', Intermediate (ITEM)

Foot (ITEW9rd&Accent&Text (ITEM)

Seo - Syllable (ITEM) Tteel R

1
~

.

~

<

Phonetic (SEGMENT)

AN
A

Phoneme (ITEM) Tone (EVENT)

Figure 10.3: Schematic of hierarchy graph ae; A: legacy cluttered redundant strategy

vs. A: cleaner non-redundant strategy.

Appendix D
EQL EBNF

This chapter presents the Extended Backus-Naur Form (EBNF) that describes the
EQL. As the original EBNF adapted from |John (2012)) was written in German, some
of the abbreviation terms were translated into English abbreviations (e.g., DOMA is
the abbreviation for the German term Dominanzabfrage and the newly translated
DOMQ is the abbreviation for the English term domination query).

D.0.1 Terminal symbols of EQL2 (operators) and their mean-
ing

The terminal symbols described below are listed in descending order by their binding
priority.

Symbol Meaning

it Result modifier (projection)

, Parameter list separator

== Equality (new in version 2 of the EQL; added for cleaner syntax)
= Equality (optional; for backwards compatibility)

I= Inequality

=" Regular expression matching

1 Regular expression non-matching

> Greater than
>= Equal to or greater than
< Less than

>= Equal to or less than

206

Symbol Meaning

| Alternatives separator
Conjunction of equal rank
Dominance conjunction
-> Sequence operator

~

D.0.2 Terminal symbols of EQL2 (brackets) and their mean-
ings.

Symbol Meaning

' Quotes literal string

Function parameter list opening bracket
Function parameter list closing bracket

Sequence or dominance-enclosing opening bracket
Sequence or dominance-enclosing closing bracket

i R 1 PN

D.0.3 Terminal symbols of EQL2 (functions) and their mean-
ings.

Symbol Meaning

Start Start
Medial Medial
End Final
Num Count

D.0.4 Formal description of EMU Query Language Version

2
EBNF term Abbreviation Conditions
EQL = CONJQ | SEQQ | DOMQ; EMU Query

Language

207

EBNF term Abbreviation Conditions

poMq = "[", (CONJQ | DOMQ | dominance levels must be
SEQQ), "~", (CONJQ | DOMQ | query hierarchically
SEQQ), "1"; associated

SEQQ = "[", (CONJQ | SEQQ | sequential levels must be
poMQ), "->", (CONJQ | SEQQ | query linearly associated
poMQ), "1";

coniq@ = { "[" }, sq, { "&", SQ conjunction levels must be

Foo "I) query linearly associated

SQ = LABELQ | FUNCQ;

simple query

LABELQ = ["#"], LEVEL, ("="

| (] ’ nyp=n | n=~n | np~n)
. . 3

LABELALTERNATIVES;

label query

FUNCQ = POSQ | NUMQ;

function query

P0OSQ = POSFCT, "(", LEVEL, ",",

LEVEL ll) n n=n IIOII | Il1|| .

position query

levels must be
hierarchically
associated; second
level determines

semantics
NUMQ = "Num", "(", LEVEL, ",", number query levels must be
LEVEL, ")", COP, INTPN; hierarchically

associated; first level
determines semantics

LABELALTERNATIVES = LABEL , { label

"|", LABEL }; alternatives

LABEL = LABELING | ("'", label levels must be part of
LABELING, "'"); the database

structure; LABELING
is an arbitrary
character string or a
label group class
configured in the
emuDB; result
modifier # may only
occur once

208

EBNF term Abbreviation Conditions

POSFCT = "Start" | "Medial" | position

"End"; function

cop = "=n ‘ [[—] ’ np=n | s ’ COHlp&I'iSOH

" ’ ne=n ’ ||>=n; operator

INTPN = "0" | INTP; integer positive
with null

INTP = DIGIT-"0", { DIGIT }; integer positive

DIGIT = "Q" | nqn | non | ngn | digit

ngn | ngn | ngn | ey | ngn |

I|9l| ;

INFO: The LABELING term used in the LABEL EBNF term can represent any char-
acter string that is present in the annotation. As this can be any combination of
Unicode characters, we chose not to explicitly list them as part of the EBNF.

D.0.5 Restrictions

A query may only contain a single result modifier # (hashtag).

Appendix E

EQL: further examples

Below are examples of query strings that have been adapted from |Cassidy and Har-|
rington| (2001) and Harrington and Cassidy| (2002) and which are displayed as ques-
tions and answers. All examples use the ae demo emuDB, which is provided by the
emuR package, and were extracted from the EQL vignette of the emuR package. De-
scriptions (some of them duplicates of those in Chapter 5) of the various syntaxes
and query components are also included for easier reading. R Example E.0.1 shows
how to access the ae demo emuDB.

R Example E.0.1

library(emuR)

create_emuRdemoData(dir = tempdir())

path2directory = file.path(tempdir(), "emuR_demoData", "ae_emuDB")

ae = load_emuDB(path2directory)

210

E.0.1 Simple equality, inequality, matching and non-matching
queries (single-argument)

The syntax of a simple, equality, inequality, matching and non-matching query is
[L OPERATOR A] where L specifies a level (or alternatively the name of a parallel
attribute definition), OPERATOR is one of the following operators: == (equality); !=
(inequality); =~ (matching) or !~ (non-matching), and A is an expression specifying
the labels of the annotation items of L.

Example questions and answers:

¢, ”

e Q: What is the query to retrieve all items containing the label “m” in the
“Phonetic” level?

o A:

query (emuDBhandle = ae,
query = "[Phonetic == m]")

[

Q: What is the query to retrieve all items containing the label “m” or “n” in
the “Phonetic” level?

o A:

query (emuDBhandle = ae,
query = "[Phonetic == m | n]")

Q: What is the query to retrieve all items that do not contain the label “m” or
{(n”?

o A:

query (emuDBhandle = ae,
query = "[Phonetic !=m | n]")

Q: What is the query to retrieve all items in the “Syllable” level?
o A:

211

query (emuDBhandle = ae,
query = "[Syllable =~ .*]")

Q: What is the query to retrieve all items that begin with “a” in the “Text”
level?

o A:

query(ae, "[Text =~ a.*]")

Q: What is the query to retrieve all items that do not begin with “a” in the
“Text” level?

o A:

query(ae, "[Text ! a.x]")

The above examples use three operators that are new to the EQL as of version 2.
One is the == equal operator, which has the same meaning as the = operator of the
EQL version 1 (which is also still available) while providing a cleaner, more precise
syntax. The other two are =~ and ! ~, which are the new matching and non-matching
regular expression operators. Further, it is worth noting that the use of parentheses,
blanks or characters that represent operands used by the EQL (see EBNF in Ap-
pendix D) as part of a label matching string (the string on the right hand side of
one of the operands mentioned above), must be placed in additional single quotation
marks to escape these characters. For example, searching for the items containing
the labels 0_’ on the Phonetic level could not be written as " [Phonetic == 0_’]"

but would have to be written as " [Phonetic == '0_’']". Reversing the order of
single vs. double quotation marks is currently not supported, that is ' [Phonetic ==
““0_?2]" will currently not work. Hence, to avoid this issue only double quotation

marks for the outer wrapping of the query string should be used.

E.0.2 Sequence queries using the -> sequence operator

The syntax of a query string using the -> sequence operator is [L == A -> L ==
B], where item A on level L precedes item B on level L. For a sequential query to

212

work both arguments must be on the same level (alternatively, parallel attribute

definitions of the same level may also be chosen).
Example Q & A’s:

o Q: What is the query to retrieve all sequences of items containing the label “@”
followed by items containing the label “n” on the “Phonetic” level?

o A:

NOTE: all row entries in the resulting
segment list have the start time of "@", the
end time of "n'", and their labels will be "@->n"

query(ae, "[Phonetic == @ -> Phonetic == n]")

o Q: Same as the question above but this time we are only interested in the items
containing the label “@” in the sequences.

o A:

NOTE: all row entries in the resulting

segment list have the start time of "@", the

end time of "@" and their labels will also be "@"
query(ae, "[#Phonetic == @ -> Phonetic == n]")

e Q: Same as the first question but this time we are only interested in the items
containing the label “n”.

o A:

NOTE: all row entries in the resulting

segment list have the start time of "n", the
end time of "n'" and their labels will also be
query(ae, "[Phonetic == @ -> #Phonetic == n]")

n n

n

213

Subsequent sequence queries using nesting of the -> sequence operator

The general strategy for constructing a query string that retrieves subsequent se-
quences of labels is to nest multiple sequences while paying close attention to the
correct placement of the parentheses. An abstract version of such a query string
for the subsequent sequence of arguments A1, A2, A3 and A4 would be: [[[[A1 ->
A2] -> A3] -> A4] -> A5] where each argument (e.g. Al) represents an equal-
ity, inequality, matching or non-matching expression on the same level (alternatively,
parallel attribute definitions of the same level may also be chosen).
Example questions and answers:

o Q: What is the query to retrieve all sequences of items containing the labels
“@”, “n” and “s” on the “Phonetic” level?

o A:

query(ae, "[[Phonetic == @ -> Phonetic == n] -> Phonetic == s]")

e Q: What is the query to retrieve all sequences of items containing the labels
“to”, “offer” and “any” on the “Text” level?

o A:

query(ae, "[[Text == to -> Text == offer] -> Text == any]")

o Q: What is the query to retrieve all sequences of items containing labels “offer”
followed by two arbitrary labels followed by “resistance”?

o A:

query(ae, pasteO("[[[Text == offer -> Text => .x] ",
"-> Text => .*] -> Text == resistance]"))

As the EQL1 did not have a regular expression operator, users often resorted to
using queries such as [Phonetic !'= XXX] (where XXX is a label that was not part
of the label set of the Phonetic level) to match every label on the Phonetic level.
Although this is still possible in the EQL2, we strongly recommend using regular
expressions as they provide a much clearer and more precise syntax and are less
error-prone.

214

E.0.3 Conjunction operator &

The syntax of a query string using the conjunction operator can schematically be
writtenas: [L == A & La2 == B & La3 ==C & La4 ==D& ... & L.an == N],
where items on level L have the label A (technically belonging to the first attribute
of that level, i.e., L_al, which per default has the same name as its level) also have
the attributes B, C, D, ..., N. As with the sequence operator all expressions must be
on the same level (i.e., parallel attribute definitions of the same level indicated by
the a2 - an may to be chosen).

The conjunction operator is used to combine query conditions on the same level.
This makes sense in two cases:

1. when to combining different attributes of the same level: " [Phonetic == 1 &
sonorant == T]" when Sonorant is an additional attribute of level Phonetic;

2. when combining a basic query with a function (see sections Position and Count
below): "[phonetic == 1 & Start(word, phonetic) == 1]".

Example questions and answers:

o Q: What is the query to retrieve all items containing the label “always” in the
“Text” attribute definition which also have the label “C” on a parallel attribute
definition called “Word”?

o A:

query(ae, "[Text == always & Word == C]")

Q: What is the query to retrieve all items of the attribute definition “Text” of
the level “Word” that were also labeled as function words (labeled “F” in the
“Word” level)?

o A:

query(ae, "[Text =~ .*x & Word == F]")

Q: What is the query to retrieve all items of the attribute definition “Text” of
the level “Word” that were also labeled as content words (labeled “C” in the
“Word” level) and as accented (labeled “S” in the attribute definition “Accent”
of the same level)?

215

o A:

query(ae, "[Text =~ .* & Word == C & Accent == S]")

E.0.4 Domination operator ~ (hierarchical queries)

A schematic representation of a simple domination query string that retrieves all
items containing label A of level L1 that are dominated by (i.e., are directly or
indirectly linked to) items containing the label B in level L2 is [L1 == A ~ L2 ==
B]. The domination operator is not directional, meaning that either items in L1
dominate items in L2 or items in L2 dominate items in L1. Note that link definitions
that specify the validity of the domination have to be present in the emuDB for this
to work.

Simple domination

Example questions and answers:

e Q: What is the query to retrieve all items containing the label “p” in the
“Phoneme” level that occur in strong syllables (i.e., dominated by/linked to
items of the level “Syllable” that contain the label “S”)?

o A:

query(ae, "[Phoneme == p ~ Syllable == S]")

o Q: What s the query to retrieve all syllable items which contain a Phoneme
item labeled “p”?

o A:
query(ae, "[Syllable =~ .* ~ Phoneme == p]")
query(ae, "[Phoneme == p ~ #Syllable =~ .*]")

e Q: What is the query to retrieve all syllable items which do not contain a
Phoneme item labeled “k” or “p” or “t”?

216

o A:
query(ae, "[Syllable =~ .* ~ Phoneme != p | t| k]")
query(ae, "[Phoneme !=p | t | k = #Syllable =~ .x]")

Even though the domination operator is not directional, what you place to the left
and right of the operator does have an impact on the result. If no result modifier (the
hash tag #) is used, the query engine will automatically assume that the expression
to the left of the operator specifies what is to be returned. This means that the
schematic query string [L1 == A =~ L2 == B] is semantically equal to the query
string [#L1 == A =~ L2 == B]. As it is more explicit to mark the desired result we
recommend you always use the result modifier where possible.

Multiple domination

The general strategy when constructing a query string that specifies multiple dom-

ination relations of items is to nest multiple domination expressions while paying

close attention to the correct placement of the parentheses. A dominance relation-

ship sequence or the arguments A1, A2, A3, A4, can therefore be noted as: "[[[[Al

~ A2] ~ A3] ~ A4] ~ A5]" where A1l is dominated by A2 and A3 and so on.
Example questions and answers:

o Q: What is the query to retrieve all items on the “Phonetic” level that are
part of a strong syllable (labeled “S”) and belong to the words “amongst” or
“beautiful”?

o A:

query(ae, pasteO("[[#Phonetic =~ .*x ~ Syllable == S] ",
"~ Text == amongst | beautiful]"))

e Q: The same as the question above but this time we want the “Text” items.

o A:

217

query(ae, pasteO("[[Phonetic =~ .* ~ Syllable == S] ",
"~ #Text == amongst | beautiful]"))

E.0.5 Position

The EQL has three function terms to specify where in a domination relationship a
child level item is allowed to occur. The three function terms are Start (), End()
and Medial ().

Simple usage of Start(), End() and Medial()

A schematic representation of a query string representing a simple usage of the
Start (), End() and Medial () function would be: "POSFCT(L1, L2) == 1" or "POSFCT(L1,
L2) == TRUE". In this representation POSFCT is a placeholder for one of the three
functions where the level L1 must dominate level L2. The == 1 / == TRUE part of the
query string indicates that if a match is found (match is TRUE or == 1), the according
item of level L2 is returned. If this expression is set to == 0 / == FALSE (FALSE), all
the items that do not match the condition of L2 will be returned. A visualization of
what is returned by the various options of the three functions is displayed in Figure
5.4.

As using 1 and 0 for TRUE and FALSE is not that intuitive to many R users,
the EQL version 2 optionally allows for the values TRUE/T and FALSE/F to be used
instead of 1 and 0. This syntax should be more familiar to most R users.

Example questions and answers:

Q: What is the query to retrieve all word-initial syllables?
o A:

query(ae, "[Start(Word, Syllable) == TRUE]")

Q: What is the query to retrieve all word-initial phonemes?

o A:

218

query(ae, "[Start(Word, Phoneme) == TRUE]")

Q: What is the query to retrieve all non-word-initial syllables?

o A:

query(ae, "[Start(Word, Syllable) == FALSE]")

Q: What is the query to retrieve all word-final syllables?
o A:

query(ae, "[End(Word, Syllable) == TRUE]")

Q: What is the query to retrieve all word-medial syllables?

o A:

query(ae, "[Medial(Word, Syllable) == TRUE]")

Position and boolean &

The syntax for combining a position function with the boolean operator is [L ==
& Start(L, L2) == TRUE], where item E on level L occurs at the beginning of item
L. Once again, L has to dominate L2 (optionally, parallel attribute definitions of the
same level may also be chosen).

Example questions and answers:

o Q: What is the query to retrieve all “n” Phoneme items at the beginning of a
syllable?

o A:

query(ae, "[Phoneme == n & Start(Syllable, Phoneme) == 1]")

o Q: What is the query to retrieve all word-final “m” Phoneme items?

o A:

219

query(ae, "[Phoneme == m & End(Word, Phoneme) == 1]")

e Q: What is the query to retrieve all non-word-final “S” syllables?
o A:

query(ae, "[Syllable == S & End(Word, Syllable) == 0]")

Position and boolean ~

The syntax for combining a position function with the boolean hierarchical operator
is [L == E ~ Start(L1, L2) == 1], where level L and level L2 refer to different
levels where either L dominates L2, or L2 dominates L.

Example questions and answers:

o Q: What is the query to retrieve all “p” Phoneme items which occur in the first
syllable of the word?

o A:

query(ae, "[Phoneme == p ~ Start(Word, Syllable) == 1]")

Q: What is the query to retrieve all phonemes which do not occur in the last
syllable of the word?

o A:
query(ae, "[Phoneme =~ .* ~ End(Word, Syllable) == 0]")
E.0.6 Count

A schematic representation of a query string using the count mechanism looks like
[Num(L1, L2) == NJ], where L1 contains N items in L2. For this type of query to
work, L1 has to dominate L2. As the query matches a number (N), it is also possible
to use the operators > (more than), < (less than) and != (not equal). The resulting
segment list contains items of L1.

Example questions and answers:

220

Q: What is the query to retrieve all words that contain four syllables?

o A:

query(ae, "[Num(Word, Syllable) == 4]")

Q: What is the query to retrieve all syllables that contain more than sixz phonemes?

o A:

query(ae, "[Num(Syllable, Phoneme) > 6]")

Count and boolean &

A schematic representation of a query string combining the count and the boolean
operators looks like [== E & Num(L1, L2) == NJ], where items E on level L are
dominated by L1 and L1 contains N L2 items. Further, L1 dominates L2 on the
condition that L and L1 (not L2) refer to the same level (parallel attribute definitions
of the same level may also be chosen).

Example questions and answers:

Q: What is the query to retrieve the “Text” of all words which consist of more
than five phonemes?

o A:
query(ae, "[Text =~ .* & Num(Text, Phoneme) > 5]")
query(ae, "[Text =~ .* & Num(Word, Phoneme) > 5]")

Q: What is the query to retrieve all strong syllables that contain five phonemes?

o A:

query(ae, "[Syllable == S & Num(Syllable, Phoneme) == 5]")

221

Count and ~

A schematic representation of a query string combining the count and the boolean
operatorsis [L == E = Num(L1, L2) == N] where items E on level L are dominated
by L1 and L1 contains N L2 items. Further, L1 dominates L2 on the condition that
L and L1 do not refer to the same level.

Example questions and answers:

o Q: What is the query to retrieve all “m” phonemes in three-syllable words?

o A:

query(ae, "[Phoneme == m ~ Num(Word, Syllable) == 3]")

Q: What is the query to retrieve all “W” syllables in words of three syllables
or less?

o A:

query(ae, "[Syllable = W = Num(Word, Syllable) <= 3]")

o Q: What is the query to retrieve all words containing syllables which contain
four phonemes?

o A:

query(ae, "[Text =~ .* ~ Num(Syllable, Phoneme) == 4]")

E.0.7 Combinations

" and -> (domination and sequence)

A schematic representation of a query string combining the domination and the
sequence operators is [[A1 ~ A2] -> A3], where Al and A3 refer to the same level
(parallel attribute definitions of the same level may also be chosen).

Example questions and answers:

o Q: What is the query to retrieve all “m” preceding “p” when “m” is part of an
“S” syllable?

222

o A:

query(ae, "[[Phoneme == m -> Phoneme =~ p] ~ Syllable == S]")

1)
S

e Q: What is the query to retrieve all
“W” syllable?

preceding “t” when “t” is part of a

o A:

query(ae, "[Phoneme == s -> [Phoneme == t ~ Syllable == W]]")

o Q: What is the query to retrieve all “S” syllables, containing an “s” phoneme
and preceding an “S” syllable?

o A:
query(ae, "[[#Syllable == S ~ Phoneme == s] -> Syllable == S]")

@, “,
S

e Q: Same question as above but this time we want all items where “s” is
part of a “S” syllable and the “S” syllable precedes another “S” syllable.

e A: "[[Phoneme == s ~ Syllable == S] -> Syllable == S]" would cause
an error as Phoneme == s and Syllable == S are not on the same level.
Therefore, the correct answer is:

query(ae, "[[Syllable == S ~ #Phoneme == s] -> Syllable == S]")

" and -> and & (domination and sequence and boolean &)

Example questions and answers:

o Q: What is the query to retrieve the “Text” of all words beginning with a “@”
on the “Phoneme” level?

o A:

223

NOTE: usage of pasteO() is optional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[Text =~ .* ~ Phoneme == @ ",
"& Start(Text, Phoneme) == 1]"))

Q: What is the query to retrieve all word-initial “m” items in a “S” syllable
preceding “o0:”?

o A:

NOTE: usage of pasteO() is optional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[[Phoneme == m & Start(Word, Phoneme) == 1 ",
"-> Phoneme == o0:] ~ Syllable == S]"))

Q: Same question as the question above, but this time we want the “Text” items.

o A:

NOTE: usage of pasteO() is optional
as 1t 1s only used for formatting purposes

query(ae, pasteO("[[[Phoneme == m & Start(Word, Phoneme) == 1 ",
"-> Phoneme == o:] ~ Syllable == S] ",
"T #Text =" .x]"))

E.0.8 A few more questions and answers (because practice
makes perfect)

o Q: What is the query to retrieve all “m” or “n” phonemes which occur in the
word-medial position?

o A:

query(ae, "[Phoneme == m | n & Medial(Word, Phoneme) == 1]")

224

Q: What is the query to retrieve all “H” phonetic segments followed by an
arbitrary segment and then by either “I” or “U”?

A:

NOTE: usage of pasteO() is opttional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[[Phonetic == H -> Phonetic ="~ .*] ",
"-> Phonetic == I | U]"))

Q: What is the query to retrieve all syllables which do not occur in word-medial
positions?

A:

query(ae, "[Syllable =~ .* & Medial(Word, Syllable) == 0]")

Q: What is the query to retrieve the “Text” items of all words containing two
syllables?

A:
query(ae, "[Text =~ .*x & Num(Text, Syllable) == 2]")
Q: What is the query to retrieve the “Text” items of all accented words following

che ” ?

A:
query(ae, "[Text == the -> #Text =~ .* & Accent == S]")
Q: What is the query to retrieve all “S” (strong) syllables consisting of five

phonemes?

A

225

query(ae, "[Syllable = S ~ Num(Word, Phoneme) == 5]")

Q: What is the query to retrieve all “W” (weak) syllables containing a “@”
phoneme?

A

query(ae, "[Syllable == W ~ Phoneme == @]")

Q: What is the query to retrieve all Phonetic items belonging to a “W” (weak)
syllable?

A:

query(ae, " [Phonetic =~ .*x ~ #Syllable == W]")

Q: What is the query to retrieve “W” (weak) syllables in word-final position
occurring in three-syllable words?

A:

NOTE: usage of pasteO() is optional

as 1t 1s only used for formatting purposes

query(ae, pasteO("[Syllable == W & End(Word, Syllable) == 1",
"~ Num(Word, Syllable) == 3]"))

Q: What is the query to retrieve all phonemes dominating “H” Phonetic items
at the beginning of a syllable and occurring in accented (“S”) words?

A:

NOTE: usage of pasteO() is opttional
as 1t 1s only used for formatting purposes
query(ae, pasteO("[[[Phoneme =~ .* ~ Phonetic == H] ",
"~ Start(Word, Syllable) == 1] ~ Accent == S]"))

E.1 Differences to the legacy EMU query language 226

E.1 Differences to the legacy EMU query language

In this section summarizes the major changes concerning the query mechanics of
emuR compared to the legacy R package emu Version 4.2. This section is mainly
aimed at users transitioning to emuR from the legacy system.

E.1.1 Function call syntax

In emuR it is necessary to load an emuDB into the current R session before being able
to use the query () function. This is achieved using the 1load_emuDB() function. This
was not necessary using the legacy emu.query() function.

E.1.2 Empty result

The query function of emuR returns an empty segment list (row count is zero) if the
query does not match any items. If the legacy EMU function emu.query() did not
find any matches it, returned an error with the message:

Can't find the query results in emu.query: there may have
been a problem with the query command.

E.1.3 The result modifier hash tag #

Compared to the legacy EMU system, which allowed multiple occurrences of the
hash tag # to be present in a query string, the query () function only allows a single
result modifier. This ensures that only consistent result sets are returned (i.e., all
items belong to a single level). However, if multiple result sets in one segment list
are desired, this can easily be achieved by concatenating the result sets of separate
queries using the rbind () function.

E.1.4 Interpretation of the hash tag # in conjunction oper-
ator queries

legacy EMU

E.1 Differences to the legacy EMU query language

227

emu.query(template = "andosl",
pattern = "x",
query = "[Text=spring & #Accent=S]")}

yielded:

moving data from Tcl to R

Read 1 records

segment 1list from database: andosl
query was: [Text=spring & #Accent=S]
labels start end utts
1 spring 2288.959 2704.466 msajc094

and

emu.query(template = "andosl",
pattern = "x",
query = "[#Text=spring & #Accent=S]")

yielded the identical:

moving data from Tcl to R

Read 1 records

segment 1list from database: andosl
query was: [#Text=spring & #Accent=S]
labels start end utts
1 spring 2288.959 2704.466 msajc094

Hence, the hash tag # had no effect.

emuR

query (emuDBhandle = andosl,
query = "[Text == spring & #Accent == S]",
resultType = "emusegs")

E.1 Differences to the legacy EMU query language 228

segment 1list from database: andosl
query was: [Text=spring & #Accent=S]
labels start end utts
1 S 2288.975 2704.475 0000:msajc094

Returns the same item but with the label of the hashed attribute definition name.
The second legacy example is not a valid emuR query (two hash tags) and will return
an error message.

query(dbName = "andosl",
query = " [#Text == spring & #Accent == S]")

Error in query.database.eql.KONJA(dbConfig, qTrim)
Only one hashtag allowed in linear query term: #Text=spring & #Accent=S

E.1.5 Bugs in legacy EMU function emu.query()
Alternative labels in inequality queries

Example:

legacy EMU

It appears that the OR operator | was mistakenly ignored when used in conjunction
with the inequality operator !=:

emu.query(template = "ae",
pattern = "x",
query = "[Text !'= beautiful | futile ~ Phoneme = u:]")
yielded:

moving data from Tcl to R

Read 4 records

segment list from database: ae

query was: [Text!=beautiful|futile ~ Phoneme=u:]

E.1 Differences to the legacy EMU query language 229

labels start end utts
1 new 475.802 666.743 msajc057
2 futile 571.999 1091.000 msajc010
3 to 1091.000 1222.389 msajc010

4 beautiful 2033.739 2604.489 msajc003

emuR

The query engine of the emuR package respects the presence of the OR operator in
such queries:

query (emuDBhandle = ae,
query = "[Text != beautiful | futile ~ Phoneme == u:]",
resultType = "emusegs")

segment 1list from database: ae

query was: [Text!=beautiful|futile ~ Phoneme=u:]
labels start end utts

1 to 1091.025 1222.375 0000:msajc010

2 new 475.825 666.725 0000:msajc057

Errors caused by missing or superfluous blanks or parentheses

Some queries in the legacy EMU system required blanks around certain operators
to be present or absent as well as parentheses to be present or absent. If this was
not the case the legacy query engine sometimes returned cryptic errors, sometimes
crashing the current R session. The query engine of the emuR package is much more
robust against missing or superfluous blanks or parentheses.

Order of result segment list

To our knowledge, the order of a segment list in the legacy EMU system was never
predictable or explicitly defined. In the new system, if the result type of the query ()
function is set to "emuRsegs" the resulting list is ordered by UUID, session, bundle
and sample start position. If the parameter calcTimes is set to FALSE it is ordered
by UUID, session, bundle, level, seq_idx. If it is set to "emusegs" the resulting list
is ordered by the fields utts and start.

E.1 Differences to the legacy EMU query language 230

Additional features

e The query mechanics of emuR accepts the double equal character string == (rec-
ommended) as well as the single = equal character string as an equal operator.

e The EQL?2 is capable of querying labels by matching regular expressions using
the =~ (matching) and !~ (non-matching) operators.

e For example: query("andosl", "Text =~ .*tz.x")

Bibliography

Abercombie, D. (1967). Elements of general phonetics. Aldine Pub. Company.

Beckman, M. E. and Ayers, G. (1997). Guidelines for ToBI labelling. The OSU
Research Foundation, 3.

Bird, S. and Liberman, M. (2001). A formal framework for linguistic annotation.
Speech communication, 33(1):23-60.

Boersma, P. and Weenink, D. (2016). Praat: doing phonetics by computer (Version
6.0.19). http://www.fon.hum.uva.nl/praat/.

Bombien, L. (2011). Segmental and prosodic aspects in the production of consonant
clusters: On the goodness of clusters. PhD thesis, Miinchen, Univ., Diss., 2011.

Bombien, L., Cassidy, S., Harrington, J., John, T., and Palethorpe, S. (2006). Recent
developments in the Emu speech database system. In Proc. 11th SST Conference
Auckland, pages 313-316.

Cassidy, S. (2013). The Emu Speech Database System Manual: Chapter 9. Simple
Signal File Format. http://emu.sourceforge.net/manual/chap.ssff.html.

Cassidy, S. and Harrington, J. (1996). Emu: An enhanced hierarchical speech data
management system. In Proceedings of the Sixth Australian International Confer-
ence on Speech Science and Technology, pages 361-366.

Cassidy, S. and Harrington, J. (2001). Multi-level annotation in the Emu speech
database management system. Speech Communication, 33(1):61-77.

Coleman, J. and Local, J. (1991). The “no crossing constraint” in autosegmental
phonology. Linguistics and Philosophy, 14(3):295-338.

http://www.fon.hum.uva.nl/praat/
http://emu.sourceforge.net/manual/chap.ssff.html

BIBLIOGRAPHY 240

Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S. K., and Tiffin, N. (2016).
RPostgreSQL: R interface to the PostgreSQL database system. R package version
0.4-1 package version 0.4-1.

Draxler, C. and Jansch, K. (2004). SpeechRecorder - a Universal Platform Indepen-
dent Multi-Channel Audio Recording Software. In Proc. of the IV. International
Conference on Language Resources and Evaluation, pages 559-562, Lisbon, Por-
tugal.

Fromont, R. and Hay, J. (2012). LaBB-CAT: An annotation store. In Australasian
Language Technology Association Workshop 2012, volume 113. Citeseer.

Garshol, L. M. (2003). BNF and EBNF: What are they and how do they work.
acedida pela ultima vez em, 16.

Google (2014). AngularJS. http://angularjs.org/.
Harrington, J. (2010). Phonetic analysis of speech corpora. John Wiley & Sons.
Harrington, J. and Cassidy, S. (2002). The emu-query language (anhang).

Harrington, J., Cassidy, S., Fletcher, J., and Mc Veigh, A. (1993). The mu+ system
for corpus based speech research. Computer Speech & Language, 7(4):305-331.

Hipp, D. R. and Kennedy, D. (2007). Sqlite. https://www.sqlite.org/.

Ide, N. and Romary, L. (2004). International standard for a linguistic annotation
framework. Natural language engineering, 10(3-4):211-225.

ISO (2012). Language resource management — Linguistic annotation framework
(laf). ISO 24612:2012, International Organization for Standardization, Geneva,
Switzerland.

John, T. (2012). Emu speech database system. PhD thesis, Ludwig Maximilian
University of Munich.

Kisler, T., Schiel, F., Reichel, U. D., and Draxler, C. (2015). Phonetic/linguistic web
services at bas. ISCA.

Kisler, T., Schiel, F., and Sloetjes, H. (2012). Signal processing via web services: the
use case WebMAUS. In Proceedings Digital Humanities 2012, Hamburg, Germany,
pages 30-34, Hamburg.

http://angularjs.org/
https://www.sqlite.org/

BIBLIOGRAPHY 241

Knuth, D. E. (1968). The Art of Computer Programming Vol. 1, Fundamental
Algorithms. Addison- Wesley, Reading, MA, 9:364-369.

McAuliffe, M. and Sonderegger, M. (2016). Speech Corpus Tools (SCT). http:
//speech-corpus-tools.readthedocs.io/.

Ooms, J. (2014). The jsonlite package: A practical and consistent mapping between
json data and r objects. arXiv:1403.2805 [stat.CO].

R Core Team (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

R Special Interest Group on Databases (R-SIG-DB), Wickham, H., and Miiller, K.
(2016). DBI: R Database Interface. R package version 0.4.

Reichel, U. D., Kleber, F., and Winkelmann, R. (2009). Modelling similarity per-
ception of intonation. In Proc. 10th Interspeech, pages 1711-1714, Brighton.

Reichel, U. D. and Winkelmann, R. (2010). Removing micromelody from funda-
mental frequency contours. In Proc. 5th Speech Prosody Conference, Chicago.
100923:1-4.

Rivest, R. (1992). The md5 message-digest algorithm. https://tools.ietf.org/
html/rfc1321.

Rose, Y., MacWhinney, B., Byrne, R., Hedlund, G., Maddocks, K., O’Brien, P.,
and Wareham, T. (2006). Introducing phon: A software solution for the study
of phonological acquisition. In Proceedings of the... Annual Boston University

Conference on Language Development. Boston University Conference on Language
Development, volume 2006, page 489. NIH Public Access.

RStudio and Inc. (2015). httpuv: HTTP and WebSocket Server Library. R package
version 1.3.3.

Shue, Y.-L., P., K., C., V., and K., Y. (2011). VoiceSauce: A program for voice
analysis. In Proceedings of the ICPhS, volume XVII, pages 1846-1849.

Wickham, H., James, D. A., and Falcon, S. (2014). RSQLite: SQLite Interface for
R. R package version 1.0.0.

Winkelmann, R. (2015). Managing speech databases with emur and the emu-webapp.
In Proceedings of the Sixteenth Annual Conference of the International Speech
Communication Association, volume 1, pages 2611-2612.

http://speech-corpus-tools.readthedocs.io/
http://speech-corpus-tools.readthedocs.io/
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321

BIBLIOGRAPHY 242

Winkelmann, R., Harrington, J., and Jansch, K. (2017). EMU-SDMS: Advanced
speech database management and analysis in R. Computer Speech € Language,

pages —.

Winkelmann, R. and Jéansch, K. (2015). The new R library for the Emu Speech
Database System. https://github.com/IPS-LMU/emuR.

Winkelmann, R. and Raess, G. (2014). Introducing a Web Application for Labeling,
Visualizing Speech and Correcting Derived Speech Signals. In Calzolari (Confer-
ence Chair), N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J.,
Moreno, A., Odijk, J., and Piperidis, S., editors, Proceedings of the Ninth Interna-
tional Conference on Language Resources and Fvaluation (LREC’1}), Reykjavik,
Iceland. European Language Resources Association (ELRA).

Winkelmann, R. and Raess, G. (2015). EMU-webApp. http://ips-1mu.github.
io/EMU-webApp/.

Wittenburg, P., Brugman, H., Russel, A., Klassmann, A., and Sloetjes, H. (2006).
Elan: a professional framework for multimodality research. In Proceedings of
LREC, volume 2006.

Zipser, F. and Romary, L. (2010). A model oriented approach to the mapping of
annotation formats using standards. In Workshop on Language Resource and
Language Technology Standards, LREC 2010, La Valette, Malta.

https://github.com/IPS-LMU/emuR
http://ips-lmu.github.io/EMU-webApp/
http://ips-lmu.github.io/EMU-webApp/

