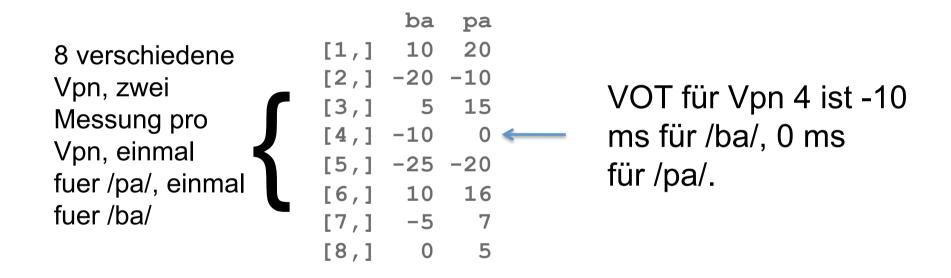
Varianzanalyse mit Messwiederholungen


(Repeated-measures ANOVA)

Jonathan Harrington

Befehle: anova2.txt

path = "Verzeichnis wo Sie anova1 gespeichert haben"
attach(paste(path, "anova1", sep="/"))

8 französische Vpn. erzeugten /pa/ und /ba/. Die VOT-Werte (ms) für diese 8 Vpn. sind wie folgt. Wir wollen prüfen, ob sich diesbezüglich /pa/ und /ba/ unterscheiden.

Ist der VOT-Unterschied zwischen /ba, pa/ signifikant?

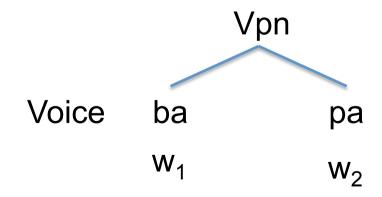
```
ba pa
[1,] 10 20
[2,] -20 -10
[3,1 5 15
                              Vielleicht ein t-test?
[4,1,-10]
[5,] -25 -20
[6,] 10 16
[7,1] -5 7
[8,1 0 5
  ba = c(10, -20, 5, -10, -25, 10, -5, 0)
  pa = c(20, -10, 15, 0, -20, 16, 7, 5)
  vot = c(ba, pa)
  vot.1 = factor(c(rep("ba", length(ba)), rep("pa", length(pa))))
  t.test(vot ~ vot.1, var.equal=T)
  data: vot by vot.1
  t = -1.2619, df = 14, p-value = 0.2276
```

Nicht signifikant

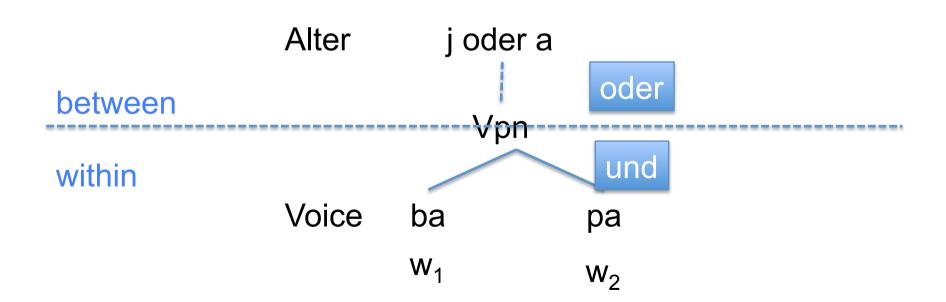
```
ba pa
[1,] 10 20
                     Two Sample t-test
[2,] -20 -10
                 data: vot by vot.1
[3,] 5 15
                 t = -1.2619, df = 14, p-value = 0.2276
                 alternative hypothesis: true difference in means is
[4,1,-10]
                 not equal to 0
[5,] -25 -20
                 95 percent confidence interval:
[6,] 10 16
                  -22.94678 5.94678
[7,1] -5 7
                 sample estimates:
[8,] 0 5
                 mean in group ba mean in group pa
                           -4.375
                                           4.125
```

Mit einem konventionellen t-Test wird jedoch nicht berücksichtigt, dass die Werte **gepaart sind**, d.h. Paare von /pa, ba/ sind **von derselben Vpn**. Genauer: der Test vergleicht einfach den Mittelwert von /pa/ (über alle 8 Vpn) mit dem Mittelwert von /ba/, ohne zu berücksichtigen, dass z.B. VOT von Vpn. 2 insgesamt viel weniger ist als VOT von Vpn. 6.

Ein gepaarter t-test klammert die Sprechervariation aus und vergleicht innerhalb von jedem Sprecher ob sich /pa/ und /ba/ unterscheiden


Signifikant, t = -8.82, df = 7, p < 0.001

within-subject factor

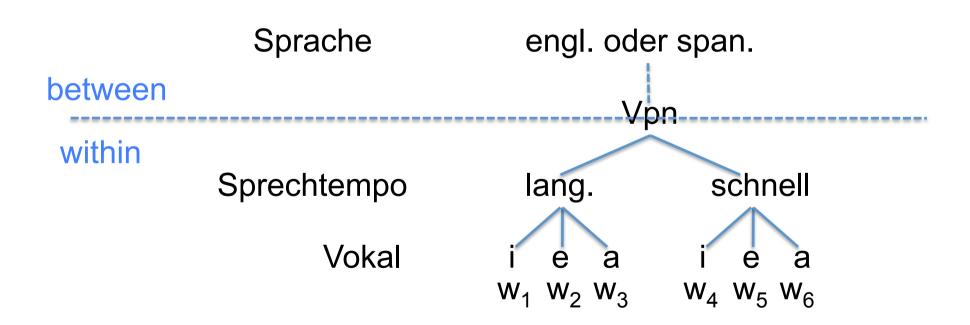

Für das letzte Beispiel war Voice (Ebenen = ba, pa) ein within-subjects Faktor, weil es pro Versuchsperson für jede Ebene von Voice einen Wert gab (einen Wert für ba, einen Wert für pa).

	ba	pa
[1,]	10	20
[2,]	-20	-10
[3,]	5	15
[4,]	-10	0
[5,]	-25	-20
[6,]	10	16
[7,]	-5	7
[8,]	0	5

Vpn ist ein Faktor mit 8 Ebenen (die Versuchspersonen). Voice ist ein Faktor mit 2 Ebenen (ba, pa). w₁, w₂ sind numerische Werte

Ein Between subjects factor beschreibt meistens eine kategorische Eigenschaft pro Vpn. Z.B. Sprache (englisch oder deutsch oder französisch), Geschlecht (m oder w), Alter (jung oder alt) usw.

	ba	pa		
[1,]	10	20		
[2,]	-20	-10		
[3,]	5	15	Between	keine
[4,]	-10	0		
[5,]	-25	-20	Within	Voice
[6,]	10	16		
[7,]	-5	7		
[8,]	0	5		


Die Kieferposition wurde in 3 Vokalen /i, e, a/ und jeweils zu 2 Sprechtempi (langsam, schnell) gemessen. Die Messungen (3 x 2 = 6 pro Vpn) sind von 16 Vpn erhoben worden, 8 mit Muttersprache spanisch, 8 mit Muttersprache englisch.

Inwiefern haben Sprache, Sprechtempo, oder Vokale einen Einfluss auf die Kieferposition?

Between Sprache

Within Sprechtempo, Vokal

Die Kieferposition wurde in 3 Vokalen /i, e, a/ und jeweils zu 2 Sprechtempi (langsam, schnell) gemessen. Die Messungen sind von 8 mit Muttersprache spanisch, 8 mit Muttersprache englisch aufgenommen worden.

ANOVA mit Messwiederholungen und der gepaarte t-test

Die Verallgemeinerung von einem gepaarten t-test ist die **Varianzanalyse mit Messwiederholungen** (RM-ANOVA, repeated measures ANOVA).

```
ba pa
  [1,] 10 20
 [2,] -20 -10
                                 Between: keine
 [3,] 5 15
 [4,1,-10]
                                  Within: Voice
 [5,] -25 -20
 [6,] 10 16
 [7,] -5 7
 [8,] 0 5
 Sprecher = factor(rep(1:8, 2))
vot.aov = aov(vot ~ vot.1 + Error(Sprecher/vot.1))
summary(vot.aov)
                          bedeutet: vot.l ist within
```

ANOVA mit Messwiederholungen und der gepaarte t-test

```
Error: Sprecher

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 7 2514.75 359.25

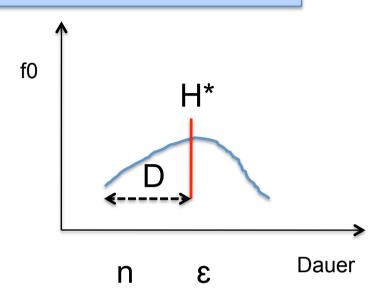
Error: Sprecher:vot.l

Df Sum Sq Mean Sq F value Pr(>F)

vot.l 1 289.000 289.000 77.808 4.861e-05 ***

Residuals 7 26.000 3.714
```

Stimmhaftigkeit hat einen signifikanten Einfluss auf VOT (F(1, 7) = 77.8, p < 0.001).


Vergleich mit dem gepaarten t-test

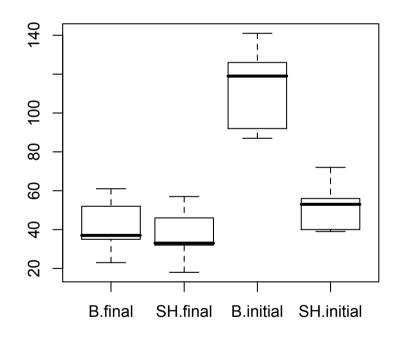
```
Paired t-test
data: vot by vot.1
t = -8.8209, df = 7, p-value = 4.861e-05
```

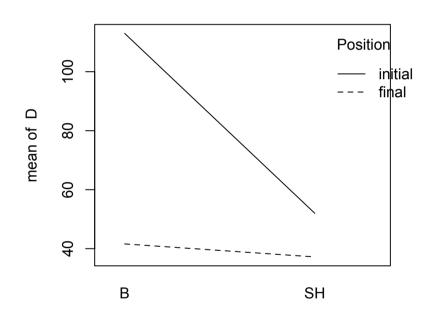
(und der F-Wert ist der t-Wert hoch 2)

ANOVA mit Messwiederholungen: between and within

Die Dauer, *D*, (ms) wurde gemessen zwischen dem Silbenonset und dem H* Tonakzent in äußerungsinitialen Silben (zB <u>nächstes</u>) und -finalen Silben (dem<u>nächst</u>) jeweils von 10 Vpn., 5 aus Bayern (B) und 5 aus Schleswig-Holstein (SH).

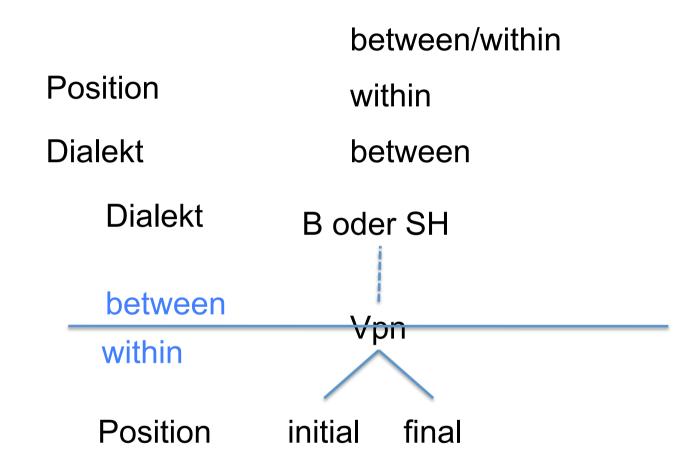
Inwiefern wird die Dauer von der Position und/oder Dialekt beeinflusst?


Die Daten: dr names(dr) attach(dr)


ANOVA mit Messwiederholungen: between and within

Abbildungen

boxplot(D ~ Dialekt * Position)


interaction.plot(Sprache, Dialekt, D)

Position signifikant? Dialekt signifikant? Interaktion?

ANOVA mit Messwiederholungen: between and within


```
aov() Befehl?
dr.aov = aov(D ~ Dialekt * Position + Error(Vpn/Position))
summary(dr.aov)
```

ANOVA mit Messwiederholungen: between und within

```
Df Sum Sq Mean Sq F value Pr(>F)

Dialekt 1 5346.4 5346.4 11.081 0.01040 *

Residuals 8 3860.0 482.5

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' within

Error: Vpn:Position

Df Sum Sq Mean Sq F value Pr(>F)

Position 1 9288.0 9288.0 98.547 8.965e-06 ***

Dialekt:Position 1 4004.4 4004.4 42.487 0.0001845 ***

Residuals 8 754.0 94.2
```

Dialekt (F(1, 8)=11.08, p < 0.05) und Position (F(1, 8) = 98.56, p < 0.001) hatten einen signifikanten Einfluss auf die Dauer und es gab eine signifikante Interaktion (F(1, 1)=42.50, p < 0.001) zwischen diesen Faktoren.

post-hoc Test

TukeyHSD() lässt sich leider nicht auf die Ausgabe einer RM-ANOVA anwenden. Stattdessen gibt es eine Funktion (hier im IPS geschrieben) Tukey.rm()

```
Freiheitsgrade Residuals

args(Tukey.rm)

function (depvar, MSresid, dfresid, ...)

Faktoren
```

Abhängige Variable (D) Mean-Sq Residuals

```
Error: Vpn
         Df Sum Sq Mean Sq F value Pr(>F)
          1 5346.4 5346.4 11.081 0.01040 *
Dialekt
Residuals 8 3860.0 482.5
Error: Vpn:Position
                Df Sum Sq Mean Sq F value
                                             Pr (>F)
                 1 9288.0
                          9288.0 98.547 8.965e-06 ***
Position
                 1 4004.4
                          4004.4 42.487 0.0001845 ***
Dialekt:Position
                             94.2
Residuals
                   754.0
```

Wir nehmen diese Residuals, weil Dialekt:Position hier vorkommt

Tukey.rm(D, 94.2, 8, Dialekt, Position)

Tukey.rm(D, 94.2, 8, Dialekt, Position)

```
[,1]
SH.initial-SH.final 0.15205839
SH.initial-B.initial 0.00004144
SH.initial-B.final 0.38564263
SH.final-B.initial 0.00000812
SH.final-B.final 0.88772790
B.initial-B.final 0.00001275
```

Post-hoc Tukey tests zeigten, dass der Unterschied in der Dauer zwischen initialer und finaler Position signifikant war für die Versuchspersonen aus Bayern (p < 0.001) jedoch nicht aus Schleswig-Holstein.

Die Reaktionszeit (gemessen durch Knopfdruck) ein /x/ Phonem in deutschen Wörtern wahrzunehmen, wurde von 10 L2-Sprechern von deutsch (5 L1-französisch und 5 L1englisch) gemessen. Die Reaktionszeiten sind zweimal erhoben: als sie nach Deutschland kamen (0 Monate) und 6 Monate nachdem sie in Deutschland waren.

Vpn	Sprache	0 Monate	6 Monate
1	F	121	92
2	F	192	57
3	F	110	75
4	F	130	71
5	F	180	70
6	E	95	91
7	E	88	72
8	E	54	61
9	E	78	69
10	E	62	58

Werden die Reaktionszeiten von der Muttersprache und/ oder der Aufenthaltsdauer beeinflusst?