1 # (a) attach(glottal) table(geschlecht, verschluss) # (b) tab = table(geschlecht, verschluss) barplot(tab, beside=T, legend=T) # (c) chisq.test(tab) # X-squared = 2.4037, df = 2, p-value = 0.3006 # Nein. 2. x = lvoc[1,] n = apply(lvoc, 2, sum) jahr = c(0:3) prop.trend.test(x, n, jahr) # X^2[1] = 13.4, p < 0.001 # das gleiche mit glm y = t(lvoc) lab = 0:3 o = glm(y ~ lab, "binomial") anova(o, test="Chisq") # X^2[1] = 13.52, p < 0.001 p = y[,1]/apply(y, 1, sum) plot(lab, p, xlab="", ylab="Proportion") m = coef(o)[2] k = coef(o)[1] plot(lab, p, xlab="", ylab="Proportion", xlim=c(-8, 8), ylim=c(0, 1)) m = coef(o)[2] k = coef(o)[1] curve(exp(m*x + k)/(1+ exp(m*x+k)), add=T, col=2) (See chiantwortenb.txt for further info) 3. ui = as.matrix(ui) f2 = as.numeric(rownames(ui)) ui.g = glm(ui ~ f2, binomial) p = ui[,1]/apply(ui, 1, sum) plot(f2, p) coefs = coef(ui.g) k = coefs[1] m = coefs[2] curve(exp(m*x + k)/(1+ exp(m*x+k)), add=T, col=2) umkipp = -k/m abline(v = umkipp) 4. stimm = factor(c("J", "J", "J", "J", "N", "N", "J", "N", "J", "J", "J", "N", "J", "N", "N", "N", "J", "J", "N", "J")) dialekt = factor(c(rep("B", 12), rep("H", 8) ) ) o = glm(stimm ~ dialekt, binomial) 5. lost3 = as.matrix(read.table(paste(pfad, "lost3.txt", sep="/"))) r = rownames(lost3) alter = factor(substring(r, 1, 1)) gesch = factor(substring(r, 3, 3)) p = lost3[,1] / apply(lost3, 1, sum) interaction.plot(alter, gesch, p) g = glm(lost3 ~ alter * gesch, binomial) anova(g, test="Chisq") 6. ver.m = as.matrix(read.table(paste(pfad, "verm.txt", sep="/"))) ver.w = as.matrix(read.table(paste(pfad, "verw.txt", sep="/"))) correct.m = diag(ver.m) correct.f = diag(ver.w) total.m = apply(ver.m, 1, sum) total.f = apply(ver.w, 1, sum) prop.m = correct.m/total.m prop.f = correct.f/total.f p = c(prop.m, prop.f) plabs = names(p) glabs = c(rep("m", 3), rep("f", 3)) col = c(rep(2, 3), rep(3, 3)) barplot(p, beside=T, col=col) incorrect.m = total.m - correct.m incorrect.f = total.f - correct.f dat.m = cbind(correct.m, incorrect.m) dat.f = cbind(correct.f, incorrect.f) dat = rbind(dat.m, dat.f) clabs = factor(rownames(dat)) glabs = factor(c(rep("m", 3), rep("f", 3))) o = glm(dat ~ clabs * glabs, binomial) o2 = glm(dat ~ glabs * clabs, binomial)