ai = read.table(file.path(pfad, "ai.txt")) head(ai) pairs(ai) ai.lm = lm(F1 ~ Kiefer + Lippe, data = ai) summary(ai.lm) summary(lm(F1 ~ Kiefer, data=ai)) summary(lm(F1 ~ Lippe, data=ai)) # Nicht signifikant vokala = read.table(file.path(pfad, "vokala.txt")) head(vokala) v.lm = lm(F1 ~ Rms + Dauer, data = vokala) stepAIC(v.lm) rms.lm = lm(F1 ~ Rms, data = vokala) summary(rms.lm) # Prüfen, ob die Regression durchgeführt werden darf # residuals normalverteilt? shapiro.test(resid(rms.lm)) # OK plot(resid(rms.lm)) # OK acf(resid(rms.lm)) # OK queen = read.table(file.path(pfad, "queen.txt")) head(queen) with(queen, plot(f0, Alter)) # q.lm = lm(Alter ~ f0 + I(f0^2) + I(f0^3), data=queen) summary(q.lm) # Adjusted R-squared: 0.7653 stepAIC(q.lm) summary(lm(Alter ~ I(f0^2) + I(f0^3), data=queen)) # Adjusted R-squared: 0.7697 summary(lm(Alter ~ f0 + I(f0^2), data=queen)) # Adjusted R-squared: 0.7655 q.lm = lm(Alter ~ I(f0^2) + I(f0^3), data=queen) k = coef(q.lm) curve(k[1] + k[2]*x^2 + k[3] * x^3, add=T) shapiro.test(resid(q.lm)) # OK plot(resid(q.lm)) # etwas fragwürdig acf(resid(q.lm)) # fragwürdig with(queen, plot(f0 ~ Alter)) q.lm = lm(f0 ~ Alter + I(Alter^2) + I(Alter^3), data=queen) stepAIC(q.lm) q.lm = lm(f0 ~ I(Alter^2) + I(Alter^3), data=queen) k = coef(q.lm) curve(k[1] + k[2]*x^2 + k[3] * x^3, add=T) with(queen, plot(f0 ~ Alter, xlim = c(20, 150))) curve(k[1] + k[2]*x^2 + k[3] * x^3, add=T) predict(q.lm, data.frame(Alter=100)) q.lm = lm(f0 ~ log(Alter), data = queen) with(queen, plot(f0 ~ Alter, xlim = c(20, 150), ylim=c(100, 300))) k = coef(q.lm) curve(k[1] + k[2] * log(x), add=T) predict(q.lm, data.frame(Alter=100))