param = read.table(file.path(pfad, "param.txt")) ezANOVA(param, .(slopes), .(Vpn), .(Cont), .(Group)) ################################################## noise = read.table(file.path(pfad, "noise.txt")) ezANOVA(noise, .(rt), .(Subj), .(Type, Noise)) boxplot(rt ~ Type * Noise, data = noise) noise.ph = phoc(noise, .(rt), .(Subj), .(Type, Noise)) phsel(noise.ph[[1]]) phsel(noise.ph[[1]], 2) ################################################## auf = read.table(file.path(pfad, "auf.txt")) ezANOVA(auf, .(RT), .(Vpn), .(Monat), .(Lang)) ph = phoc(auf, .(RT), .(Vpn), .(Monat, Lang)) phsel(ph[[1]]) phsel(ph[[1]], 2) ################################################## lok = read.table(file.path(pfad, "lok.txt")) ezANOVA(lok, .(slopes), .(Spr), .(Kons, P), .(G)) lok.ph1 = phoc(lok, .(slopes), .(Spr), .(Kons, P)) phsel(lok.ph1[[1]]) phsel(lok.ph1[[1]], 2) lok.ph2 = phoc(lok, .(slopes), .(Spr), .(Kons, P, G)) phsel(lok.ph2[[1]], 1) phsel(lok.ph2[[1]], 2) phsel(lok.ph2[[1]], 3) ################################################## ezANOVA(rating, .(Rating), .(Vpn), .(Gram, Type, Fam), .(Lang)) ##################################################### lokneu = read.table(file.path(pfad, "lokneu.txt")) lok.ez = ezANOVA(lokneu, .(slopes), .(Spr), .(Kons, P), .(G, dialekt)) ph = phoc(lokneu, .(slopes), .(Spr), .(Kons, P)) phsel(ph[[1]]) phsel(ph[[1]], 2) rtdaten = read.table(file.path(pfad, "rtdaten.txt")) boxplot(RT ~ Group * Cons, data = rtdaten) boxplot(RT ~ Pair * Cons, data = rtdaten) ezANOVA(rtdaten, .(RT), .(Listener), .(Cons, Pair), .(Group)) # wird nicht gehen phoc(rtdaten, .(RT), .(Listener), .(Group, Cons)) # aggregate rtdaten2 = with(rtdaten, aggregate(RT, list(Group, Cons, Listener), mean)) names(rtdaten2) = c("Group", "Cons", "Listener", "RT") r.ph = phoc(rtdaten2, .(RT), .(Listener), .(Cons, Group)) phsel(r.ph[[1]]) phsel(r.ph[[1]], 2) r2.ph = phoc(rtdaten, .(RT), .(Listener), .(Pair, Cons)) phsel(r2.ph[[1]]) phsel(r2.ph[[1]], 2) # look at d:same - r:same temp = rtdaten$Cons == "d" & rtdaten$Pair == "same" a = rtdaten[temp,] temp = rtdaten$Cons == "r" & rtdaten$Pair == "same" b = rtdaten[temp,] m = match(a$Listener, b$Listener) # hugely different from zero boxplot(a$RT - b$RT) # compare with d.diff and r.diff temp = rtdaten$Cons == "d" & rtdaten$Pair == "diff" a = rtdaten[temp,] temp = rtdaten$Cons == "r" & rtdaten$Pair == "diff" b = rtdaten[temp,] m = match(a$Listener, b$Listener) # Almost at zero boxplot(a$RT - b$RT) ############################################### ice.ag = with(ice, aggregate(Dauer, list(Sprecher, Type, Vokal, Stop), mean)) names(ice.ag) = c("Sprecher", "Type", "Vokal", "Stop", "Dauer") ezANOVA(ice.ag, .(Dauer), .(Sprecher), .(Type, Vokal, Stop)) # aggregate over Type and Vokal ice.ag2 = with(ice.ag, aggregate(Dauer, list(Sprecher, Type, Vokal), mean)) names(ice.ag2) = c("Sprecher", "Type", "Vokal", "Dauer") ph = phoc(ice.ag2, .(Dauer), .(Sprecher), .(Type, Vokal)) phsel(ph[[1]]) phsel(ph[[1]], 2) ph = phoc(ice.ag, .(Dauer), .(Sprecher), .(Type, Vokal, Stop)) phsel(ph[[1]]) ############################################### vcv = read.table(file.path(pfad, "vcv.txt")) vcv.ag = with(vcv, aggregate(RT, list(Subject, Vowel, Lang, Left, Right), mean)) names(vcv.ag) = c("Subj", "Vowel", "Lang", "Left", "Right", "RT") vcv.ez = ezANOVA(vcv.ag, .(RT), .(Subj), .(Vowel, Left, Right), .(Lang)) vcv.ez vcv.ag2 = with(vcv, aggregate(RT, list(Subject, Vowel, Right), mean)) names(vcv.ag2) = c("Vpn", "Vok", "Right", "RT") ph = phoc(vcv.ag2, .(RT), .(Vpn), .(Vok, Right))