library(ez) lok = read.table(file.path(pfad, "lok.txt")) ezANOVA(lok, .(slopes), .(Spr), .(Kons, P), .(G)) source(file.path(pfad, "phoc.txt")) lok.ph1 = phoc(lok, .(slopes), .(Spr), .(Kons, P)) phsel(lok.ph1[[1]]) phsel(lok.ph1[[1]], 2) library(lme4) o = lmer(slopes ~ Kons * G * P + (1 | Spr), data = lok) o2 = lmer(slopes ~ Kons + G + P + (1 | Spr), data = lok) # any interactions significant? Yes anova(o, o2) # test on G:Kons. NS o3 = update(o2, ~ . +G:Kons) anova(o2, o3) # test on G:P. NS o4 = update(o2, ~ . +G:P) anova(o2, o4) # test on Kons:P. Sig. o5 = update(o2, ~ . +Kons:P) # also works o5b = update(o2, ~ . +P:Kons) anova(o2, o5) # test on G:Kons:P # Need to compare model with interaction terms minus this one. Sig. o6 = update(o, ~ . -Kons:P:G) anova(o, o6) # post-hoc, Kons * P lab = factor(paste(lok$Kons, lok$P)) o8 = lmer(slopes ~ lab + (1 | Spr), data = lok) library(multcomp) summary(glht(o8, linfct=mcp(lab="Tukey")))